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ABSTRACT One of the biggest concerns of big data is privacy. However, the study on big data privacy is
still at a very early stage. We believe the forthcoming solutions and theories of big data privacy root from
the in place research output of the privacy discipline. Motivated by these factors, we extensively survey the
existing research outputs and achievements of the privacy field in both application and theoretical angles,
aiming to pave a solid starting ground for interested readers to address the challenges in the big data case.
We first present an overview of the battle ground by defining the roles and operations of privacy systems.
Second, we review the milestones of the current two major research categories of privacy: data clustering
and privacy frameworks. Third, we discuss the effort of privacy study from the perspectives of different
disciplines, respectively. Fourth, the mathematical description, measurement, and modeling on privacy are
presented. We summarize the challenges and opportunities of this promising topic at the end of this paper,
hoping to shed light on the exciting and almost uncharted land.

INDEX TERMS Big data, privacy, data clustering, differential privacy.

I. INTRODUCTION
Big data is amilestone in the information age, and brings deep
impact on human society. Thanks to the dramatic develop-
ment of information technology, especially the Internet and
electronic storage techniques, we are embracing the age of
big data, which involves many critical aspects of our society,
such as climate [1], biology [2], health [3], and social
science [4]. The available big data sets significantly advance
our knowledge, services, and productivity across many sec-
tors of our society. For example, a big medical data set can
be used to find the best treatment plan for a given patient; a
big traffic data set can improve the related traffic control and
reduce congestion. The early version of the big data concept
appeared in 2001 in the Gartner report by Laney [5], and
big data was defined as large and complex data sets that
current computing facilities were not able to handle. It is
characterized by 3Vs (Volume, Velocity, and Variety). Today,
almost every part of our society is expecting to improve itself
using big data.

However, privacy protection has become one of the biggest
problems with the progress of big data. Human privacy is
usually challenged by the development of technology. The
record of individuals for tax and draft purpose was a great
threat to personal privacy in the 11th century in England,
and photographs and yellow page services significantly
threatened people’s privacy in the late 19th century.

Today, human beings can record extraordinary amount of
information in various forms, such as photos, video clips,
electronic documents, and footprints of web surfing. The
easily available modern technologies and tools, e.g., search
engines, social networks, hacking packages, especially the
data mining and machine learning tools, pose a great chal-
lenge to individual privacy in the age of big data.

Recent research indicated that simply anonymized
data sets can be easily attacked in terms of privacy.
De Montjoye et al. [6] collected a 15 month mobility data
set of 1.5 million people. After a simple anonymization
operation (removing the obvious identifiers, such as name,
home address, phone number, and staff ID), they obtained
a data set where the location of an individual was specified
hourly with a spatial resolution equal to that given by the
carrier’s antennas. From the processed data set, theywere able
to identify a person with 95% accuracy by only four spatial-
temporal points. The weakness of simple anonymization was
further confirmed by a recent major test [7], in which the
authors studied a data set of 3 month credit card transactions
of 1.1 million people, and found it again that four spatial-
temporal points were sufficient to re-identify 90% of the
individuals.

Furthermore, the failure of simple anonymization pushes
us to think about the real meaning of identification. As IDs
are pervasively used today. Therefore, a straightforward idea
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for privacy protection is removing IDs. However, the reality
has demonstrated that thismethod does not work. It is obvious
that we were born without IDs (e.g., our names, driver licence
numbers, student IDs, and staff IDs), which were given by
different organizations. Essentially, an ID is a representation
of a set of features of a described object. For example, we can
differentiate Alice from Bob in a crowd based on their faces,
build, and other physical features without knowing their IDs.
In other words, we identify a person based on his or her
various characteristics, rather than IDs. This may somehow
explain why the simple anonymization processing does not
work.

Recently, two world leading researchers in machine learn-
ing pointed out that big data is one of the drivers for
the dramatic development of machine learning algorithms.
However, the advance of the learning technology also greatly
threatens privacy of individuals [8]. The mining commu-
nity realized the privacy challenge decades ago, and exten-
sive effort has been invested in privacy protection, such as
privacy aware learning [9], [10], privacy preserving data
publishing (PPDP) [11].

It is extraordinarily challenging on privacy protection in
the age of big data. First of all, privacy is a subjective
concept, it is hard to reach a clear and global definition or
measurement on privacy. Secondly, the fast development of
various technologies, especially the data mining and machine
learning techniques, are desperate threat to privacy. A reliable
privacy protection mechanism today may be easily breached
tomorrow with the advancement of related technologies.
We fully believe the solutions for big data privacy root from
the existing research outputs. As a result, it is necessary to
understand the outputs of privacy study in the non-big data
circumstance, and design new solutions and algorithms to
serve the challenges of the big data cases.

We can simply separate the privacy study into to two
categories: content privacy and interaction privacy. In the
former class, attackers may identify an individual from an
anonymized or encrypted data set given some knowledge
about the victims. For example, an attacker knows Alice
went to a few shops at different time intervals, he may
use this information to extract all the events of Alice from
an annoymized data set of credit card records at a state
or national level database. Another example is that we can
identify the individuals using voice fingerprint from the
record of a confidential meeting record under the condition
that we have labeled voice records of the speakers from
other sources. In the second category, we more care about
privacy protection against eavesdroppers on user interactions
on a given content, such as user behavior, habit, and other
‘‘fingerprint’’ in accessing services. For instance, by mon-
itoring the victim’s encrypted web traffic, an attacker can
confirmwhether the victim is accessing a sensitive web site or
not [12]; by monitoring user behavior at application level, we
can identify a user from a set of anonymized interactions [13].

There have been solid exploration in privacy protection
in the past decades. The main stream of privacy protection

covers various disciplines, such as cryptography,
communication, information theory, and so on.

Cryptography is a matured and powerful tool for privacy
protection. The major challenge of the current cryptography
based privacy protection mechanism is how to deal with the
extremely large scale of data in the big data cases. Further,
more and more users are using mobile devices with limited
computing power, which is a big disadvantage for computing
intensive encryption and decryption algorithms.

Communication privacy is mainly explored by the com-
munication and networking community. The fundamental
work is Shannon’s information theoretical work on perfect
secrecy [14] in 1949, where the principle is to maximize the
entropy to minimize the probability of recognition. An out-
standing work in this direction was carried out by Chaum [15]
in 1981, and a recent comprehensive survey on this topic
appeared in 2009 [16]. Browsing privacy protection is obvi-
ously a hot topic in this Internet age, there are many proposals
in web browsing attacks [17] and defence [12], [18]. There
have been many mechanisms and systems in place, such as
the onion routing mechanism [19], the Tor system [20], and
the Crowds system [21].

Modern privacy study has been explored about two decades
mainly in two classes, data clustering and privacy frame-
works. The early work is the k-anonymity method [22]
for privacy preserving proposed in 1998, which is the first
method in the data clustering class, then its extension as
`-diversity [23] appeared in 2007, and then the t-closeness
method developed in 2010 [24]. The data clustering methods
are practical and feasible, but it lacks profound theoretical
foundation. In 2006, Dwork et al. [25], [26] proposed the
differential privacy framework, which is a strict mathematical
model for privacy protection. A statistical interpretation of
differential privacy [27] was developed in 2010. Following
the research line of differential privacy, researchers proposed
differential identifiability [28] and membership privacy [29]
to cover the problems in the framework of differential privacy.

We note that the context is homogeneous for all of the
existing data clustering strategies and the differential privacy
framework we mentioned so far, namely, they suppose all the
users share one given privacy standard, and ignore personal
privacy differences. As a result, personalized privacymethods
were developed, such as the work of Li et al. [24] and Jor-
gensen et al. [30]. Given the nature of privacy measurement,
it is not surprise to see the employment of game theory in this
field, such as mechanism design [31].

We have to note that legislation and regulation play a
critical role in privacy protection. In order to protect cyber
privacy, there have been some policies in place. In 2014,
the European Court of Justice established a regulation that
European citizens possess the right to ask search engines to
remove items that are considered inaccurate, irrelevant, or
excessive, which is called ‘‘the right to be forgotten’’ [32].

Privacy protection has been extensively applied in practice.
Besides the aforementioned applications of privacy preserv-
ing data publishing and differential privacy, electronic voting
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system is also a highly interested field in terms of privacy
protection. Firstly, privacy measurement of voting systems
has been explored [33], [34]. Bernhard et al. [35] conducted
a comprehensive survey on privacy definitions of electronic
voting systems, and classified all the definitions into three
categories: purely cryptographic based, entropy based, and
game based definitions.

Today, we are at the doorstep of the big data age, however,
we have to address the privacy threat before we can exten-
sively execute big data applications, and enjoy the benefit.
In general, most of the available privacy solutions are ad hoc
based, and lack of theoretical foundation. To date, we do not
yet find a very good or suitable theory or a set of theories
to model and analyze the problem. However, we should
not be discouraged in this case by looking at the history
of science: Shannon discovered the essence of information
after nearly half century since the first appearance of elec-
tronic communication; Nash discovered the Nash equilibrium
after centuries of human commercial activities. We humbly
believe there will be an appropriate theoretical framework
for privacy sooner or later based on the forthcoming efforts
from every individual of the community. This is also the
motivation of the article, in which we expect to review the
latest development in privacy protection from both theoretical
and practical perspectives, and pave a comfortable start point
for passionate readers to explore further in this emerging,
exciting and promising field. In order to serve our potential
readers with different level of needs, we separate the idea
parts of the surveyed papers from the related theoretical
parts.

The rest of the paper is structured as follows. We discuss
the different roles and operations of privacy systems in
Section II. The major developments of modern privacy study
are presented in Section III. In Section IV, we survey the pri-
vacy study from different disciplines. Mathematical descrip-
tion of privacy study, privacy measurement, and privacy
models are surveyed and discussed in Section V, VI, and VII,
respectively. We discuss the challenges and opportunities in
privacy study in Section VIII. Finally, we summarize the
paper in Section IX.

II. PRELIMINARY OF PRIVACY STUDY
In this section, we present an overview of privacy systems,
including different participation roles, anonymization oper-
ations, and data status. We also introduce the terms and
definitions of the system. We demonstrate these as shown
in Figure 1.

In terms of participants, we can see four different roles in
privacy study.

1) Data generator. Individuals or organizations who gen-
erate the original raw data (e.g., medical records of
patients, bank transactions of customers), and offer the
data to others in a way either actively (e.g. posting
photos to social networks to public) or passively (leav-
ing records of credit card transactions in commercial
systems).

FIGURE 1. The roles and operations of a privacy system.

2) Data curator. The persons or organizations who collect,
store, hold, and release the data. Of course, the released
data sets are usually anonymized before publishing.

3) Data user. The people who access the released data sets
for various purposes.

4) Data attacker. The people who try to gain more infor-
mation from the released data sets with a benign or
malicious purpose. We can see that a data attacker is
a special kind of data user.

There are three major data operations in a privacy system.
1) Collecting. Data curators collect data from different

data sources.
2) Anonymizing. Data curators anonymize the collected

data sets in order to release it to public.
3) Communicating. Data users performan information

retrieval on the released data sets.
Furthermore, a data set of the system possesses one of the

following three different statuses.
1) Raw. The original format of data.
2) Collected. The data has been received and processed

(such as de-noising, transforming), and stored in the
storage space of the data curators.

3) Anonymized. The data has been processed by an
anonymization operation.

We can see that an attacker could achieve his goals by
attacking any of the roles and the operations.

In general, we can divide a given record into four categories
according to its attributes.

1) Explicit identifiers. The unique attributes that clearly
identify an individual, such as drive licence numbers.

2) Quasi-identifiers. The attributes that have the potential
to re-identify individuals whenwe gather them together
with the assistance of other information, such as age,
career, postcode, and so on.

3) Sensitive information. The expected information inter-
ested by an adversary.

4) Other. The information not in the previous three cate-
gories.

We present an example as shown in Table 1. In this exam-
ple, name is the explicit identifier, while the job, gender,
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TABLE 1. A table of patients in a medical database.

and age form the quasi-identifier, disease belongs to sensitive
information.

We call the quasi-identifiers of a record as a qid group,
which is also called equivalence class in literature.

III. THE MILESTONES OF PRIVACY STUDY
To date, the majority work on privacy protection is conducted
in the context of databases. There are mainly two cate-
gories: data clustering and theoretical frameworks of pri-
vacy. The data clustering direction developed from the initial
k-anonymity method, then the `-diversity method, and then
the t-closeness (interested readers are encouraged to find the
detailed information from [11]). The second category mainly
includes the framework of differential privacy and its further
developments. We show the journey of privacy study so far
in Figure 2, and the details are going to be presented in the
following of this section.

FIGURE 2. The categories of privacy study.

We use Table 1 as an example to quickly demonstrate the
journey of the data clustering methods for privacy protection.
In Table 1, it is obvious that we need to remove the explicit
identifers before we release the data to public. As a result,
we have Table 2 as follows.

TABLE 2. A table of patients in a medical database without explicit
identifiers.

However, the quasi-identifiers of Table 2 can be used to re-
identify patients through various techniques, such as linking
them to other publicly available data sets.

Around year 2000, Samarati and Sweeny [22], [36], [37]
introduced the k-anonymity method to protect the content of
Table 2. The basic strategy is to make sure each qid group has
at least k entries in the table in order to decrease the proba-
bility of re-identification. For example, merging job types of
dancer, singer, and painter to artist, engineer and lawyer to
professional, the exact age (e.g., 38) can be represented in

a range (e.g., [35-40)). A sample of the anynomized output
using k-anonymity is shown in Table 3, where k = 2.

TABLE 3. An anonymized table of patients obeying k-anonymity (k = 2).

In this way, an attacker can re-identify a victim with a
maximum probability of 1

k . With a decently large k , the
privacy can be nicely protected. However, we have to be
aware that a larger k meaning a large information loss.

Based on the k-anonymity mechanism, Tao and Xiao [38]
further introduced personalized privacy for the k-anonymity
method.

Outside of privacy preserving data publishing,
k-anonymity is also widely used in mobile networks, such
as location privacy of mobile users [39], and location based
service privacy [40].

We can see that the k-anonymity data clustering method
tries to work on attributes of the quasi-identifers, and
invests no effort on the sensitive attributes. This exposes the
k-anonymity method to some subtle but effective attacks,
such as the homogeneity attack due to lack of diversity in
sensitive attributes, and the background knowledge attack
based an adversary’s knowledge of the victims. For example,
an attacker knows that Alice is in Table 3, and she has cancer
(the sensitive information). Due to the fact that the number of
the specific sensitive value is unique (or very limited), then
he can identify that Alice is the second record in the table.

In order to overcome the disadvantages of the k-anonymity
method, Machanavajjhala et al. [23] proposed the `-diversity
method in 2006, which requires the sensitive attributes to be
well represented in anonymized data sets. A formal descrip-
tion of this method is ‘‘guarantee there are at least ` dis-
tinct values for the sensitive attributes in each qid group.’’
A sample output of `-diversity (` = 2) under k-anonymity
(k = 2) is shown in Table 4.

TABLE 4. An anonymized table of patients obeying `-diversity (` = 2)
under k-anonymity (k = 2).

Wenote that defenders have to prepare a sufficiently large `
to beat the attacks on sensitive attributes. For example, if
an attacker is sure that Alice is in Table 4, then she has a
possibility of 0.5 of suffering cancer. In particular, `-diversity
degraded to k-anonymity when ` = 1. The term ‘‘well repre-
sented’’ can be measured by probability, entropy, and so on.
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We can treat the `-diversity mechanism as an extension of the
k-anonymity principle by including the sensitive attributes.

To implement `-diversity, we should increase the granular-
ity of sensitive attributes (e.g., representing the diseases as
common or deadly) or adding noise. We loss information of
the original records to buy privacy protection.

In some specific cases, the `-diversity method may release
more privacy to attackers. For example, for a given test results
of a virus, the probability of negative is 0.99. If we knowAlice
is in the data set, then she is positivewith a probability of 0.01.
However, after a `-diversity operation, if we know Alice is
in one qid group, then we can conclude that her positive
probability is 0.5. In other words, `-diversity operation offers
more information gain to attackers in some specific cases.

In order to fix this vulnerability, Li et al. [24] proposed
t-closeness in 2010. The idea is like this: for a given
qid group, guarantee its distribution is bounded by t against
its corresponding distribution on the whole data set. A further
work of t-closeness-like was proposed by Rebollo-Monedero
and colleagues in year 2000 [41].

Different from the data clustering strategy, the differential
privacy framework [25] was proposed in 2006, which offers
a strong privacy protection in sense of information theory.
The basic background is that an attacker may obtain expected
information by multiple queries to a statistical database on
top of his background knowledge of victims. The defence
strategy is: for two data sets with a minimum difference, the
difference between the queries on the two data sets is very
limited, therefore limiting the information gain for attackers.
One popular methods to achieve this is adding noise to out-
puts. Lee and Clifton [28] found that differential privacy does
not match the legal definition of privacy, which is required
to protect individually identifiable data, rather than the how
much one individual can affect an output as differential pri-
vacy provides. As a result, they proposed differential identifi-
ability to provide the strong privacy guarantees of differential
privacy, while letting policy makers set parameters based on
the established privacy concept of individual identifiability.
Following this research line, Li et al. [29] analyzed the pros
and cons of differential privacy and differential identifiability,
and proposed a framework called membership privacy. The
proposed framework offers a principled approach to devel-
oping new privacy notions under which better utility can be
achieved than what is possible under differential privacy.

As differential privacy is a global concept for all users of
a given data set, namely the privacy protection granularity is
the same to all protected users, therefore it is called uniform
privacy or homogenous differential privacy. In order to offer
customized privacy protection for individuals, personalized
differential privacy (also named as heterogenous differen-
tial privacy or non-uniform privacy) were also extensively
explored [30], [42].

IV. DISCIPLINES IN PRIVACY STUDY
Based on the content of the previous sections, we can see that
privacy research just started, and privacy research in big data

is almost untouched. In this section, we try to survey themajor
disciplines involving in privacy study. Of course, the list of
disciplines is not exhaustive. We also note that Information
Theory is extensively used as a theoretical foundation in
various disciplines discussed here, and we therefore do not
list it as an independent discipline.

A. CRYPTOGRAPHY
Based on the current situations in practice, we can conclude
that encryption is still the dominant methodology for privacy
protection although it is a bit away from the privacy protection
theme we talking about here.

Cryptography can certainly be used in numerous fashions
for privacy protection in the big data age. For example, a
patient can use the public key of her doctor to encrypt her
medical documents, and deposits the ciphertext into the doc-
tor’s online database for her treatment while her privacy is
strictly preserved.

With the emergence of big data, clouds are built to serve
many applications due to its economical nature and acces-
sibility feature. For example, many medical data sets are
outsourced to clouds, which triggers the privacy concerns
from patients. The medical records of a patient can only be
accessed by authorized persons, such as her doctors, rather
than other doctors or people. The public key encryption is
obviously not convenient if the number of the authorized
persons is sufficiently large due to the key management issue.
In this case, Attribute Based Encryption (ABE) is an appro-
priate tool [43], [44], which was invented in 2004 by
Sahai andWaters [45]. In theABE scheme, a set of descriptive
attributes of the related parties, such as hospital ID, doctor ID,
and so on, are used to generate a secret key to encrypt mes-
sages. The decryption of a ciphertext is possible only if the
set of attributes of the user key matches the attributes of the
ciphertext. The ABE scheme creatively integrates encryption
and access control, and therefore no key exchange problem
among the members of the authorized group.

The dilemma of encryption based privacy protection in
big data is: on one hand, we need to offer sufficient privacy
protection for users, at the same time, we have to make
the encrypted data informative and meaningful for big data
analysis and public usage. As a result, we face a number of
challenges as follows.

One challenge is information retrieval on encrypted data.
This research branch is also called searchable encryption,
which boomed around year 2000 [46], [47]. The basic idea is
as follows: a user indexes and encrypts her document collec-
tion, and sends the secure index together with the encrypted
data to a server which may be malicious. To search for a given
keyword, the user generates and submits a trapdoor for the
keyword, which the server uses to run the search operation
and recover pointers to the appropriate encrypted documents.

Another challenge here is operations on encrypted objects.
This research branch is named as homomorphic encryption
started in 1978 [48]. In this kind of encryptions, we expect to
carry out computations on ciphertext, and obtain an encrypted
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output. If we decrypt the output it should match the result of
operations performed on the original plaintext. Mathemati-
cally, we can describe it as follows: given a message m, a
key k , and an encryption algorithm E , we can obtain a cipher-
textEk (m). Let f be a function, and its corresponding function
is f ′, Dk be a decryption algorithm under key k , then an
encryption scheme is homomorphic if f (m) = Dk (f ′(Ek (m))).
In 2009, Gentry kicked off a further development in this

direction, Fully Homomorphic Encryption (FHE), which sup-
ports arbitrary computation on ciphertexts [49]. A survey on
this branch can be found in [50]. The problem is that we do
not have a feasible fully homomorphic encryption system in
place yet due to the extraordinary inefficiency in computing.
Compared to FHE, Multi-Party Computation (MPC), which
was initiated byYao in 1982 [51], has been used in practice by
offering weaker security guarantees but much more efficient.
The scenario of MPC is like this: multiple participants jointly
compute a public function based on their private inputs while
reserve their input privacy against the other participants,
respectively.

We have to note that encryption can protect the privacy
of a object itself, however, it is vulnerable against side
information attacks, such as traffic analysis attack against
anonymous communication systems. For example, we can
encrypt web pages of a protected web site, however, the
encryption cannot change the fingerprints of the web pages,
which are represented by the size the HTML text, number of
web objects, and the size of the web objects. An attacker can
figure out which web pages or web sites a victim visited using
traffic analysis methodology [52]–[54]. In terms of solutions,
information theory based packet padding is the main player,
including dummy packet padding [55] and predicted packet
padding [12].

B. DATA MINING AND MACHINE LEARNING
Data mining and machine learning are the biggest threat to
modern privacy protection. The essential purpose of mining
and learning is to obtain new knowledge from data sets.
However, these techniques are very damaging if they are
in the evil hands. The data community realized the danger
when they tried to release data sets to public. We note that
in traditional data mining and machine learning, the data is
usually stored in databases in a given venue, and the data
environment is homogeneous, e.g., the studied objects are
usually records or tables.

A comprehensive survey in this field was done in 2010
by Fung et al. [11] in terms of privacy preserving data pub-
lishing. They surveyed the data publishing issue with privacy
protection: given a data set T , how to transform it to a pub-
lishable data set T ′ under the condition of privacy protection
of the data generators in T . They classified the attacks in
two categories.
• Linkage attack. Attackers combine the publicly released
data set T ′ with other data sets they possess to re-identify
the data generators at different granularities, such as
attribute level, record level, or table level.

• Probabilistic attack. An attacker gains more new
knowledge about a victim based on the released T ′

compared with his original background knowledge of
the victim before the releasing.

Various privacy models, such as the k-anonymity,
`-diversity, t-closeness, and ε-differential privacy, were
surveyed, and the privacy operation algorithms were also
enumerated.

One thing we note here is that the authors ‘‘urge com-
puter scientists in the privacy protection field to conduct
cross-disciplinary research with social scientists in sociology,
psychology, and public policy studies. Having a better under-
standing of the privacy problem from different perspectives
can help realize successful applications of privacy-preserving
technology.’’

In 2015, Xu et al. [56] conducted another extensive survey
on privacy disclosure and protection from the data mining
perspective. They surveyed the privacy concerns and privacy
techniques from the perspectives of different roles of data
mining applications: data provider, collector, miner, and deci-
sion maker. Game theory was identified as a promising tool
for privacy protection by the authors.

Due to these two excellent surveys, we suggest readers who
are interested in this field to read them for more details.

It is worthwhile to notice Zhu et al. [57] argued that data
are usually related in data sets, and proposed a concept of
correlated differential privacy in PPDP.

C. BIOMETRIC PRIVACY
Biometric is a powerful tool for security, which aims to iden-
tify individuals based on their physical, behavioral, and phys-
iological attributes, such as face, iris, fingerprint, voice, and
gait. Biometrics has been widely used in access control, and
the procedure includes two stages: enrollment and release.
In the first stage, biometric features, such as fingerprints, are
sampled, and the information is stored in a database either as
a raw data or in a transformed form. In the second stage, the
related biometric characteristics are sampled again on site,
and compared with the stored one for authentication.

Compared with the conventional passwords, biometric
methods enjoy a few advantages, including hard to be steal,
not need to be remembered. However, it is a nightmare once a
biometric is compromised, e.g., it can be used to impersonate
the victims, to break the privacy of the victims. In order to
protect privacy introduced by biometric based security sys-
tems, securer multi-party computation techniques are usually
hired to execute the job [58], [59].

Lai et al. [60], [61] studied the privacy-security trade-
offs in biometric systems based on information theory
framework for both single use case and multiple use case.
They concluded that it was possible to achieve perfect pri-
vacy of biometric systems if and only if common random-
ness could be generated from two biometric measurements.
Ignatenko and Willems [62] determined the fundamental
tradeoffs between secret-key, identification, and privacy-
leakage for two specific biometric settings.
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A recent paper [63] summarized the techniques of privacy
protection in biometric domain. The authors pointed out that
soft biometrics (e.g., age, gender, height), rather than finger-
print, iris, can be easily collected as an ancillary information
during the procedure of biometric data collection. The soft
biometrics poses a great threat to privacy. This conclusion is
not surprise to us if we treat soft biometrics as a kind of quasi
identifiers.

Nowadays, surveillance cameras are widely used in many
countries. Some video records are broadcasted on TV as part
of news or uploaded to the Internet for public for specific
purposes, e.g., looking for evidence. In this case, some parts
of the video need to be protected, e.g., an unrelated person in
the video by chance, therefore, a mask is usually employed
to cover the face or body. This is called privacy region
protection. However, with the technical development in
image processing, especially the recently invented com-
pressed sensing [64], [65], it is possible to recover the orig-
inal image based on the partial image (non-privacy region)
through the dependency and other features.

D. GAME THEORY
Game theory is a rich set of mathematical models to deal with
conflict and cooperation between intelligent and rationale
decision-makers. It has been widely used in economics, polit-
ical science, psychology, computer science, and so on. Given
the nature of privacy protection, game theory is obviously
a powerful tool to be hired to motivate privacy investment,
settle argument among different participants, and so on. There
is a long list of the applicable scenarios that game theory can
contribute. In this section, we only enumerate a few closely
related branches to the theme of this paper.

Game theory has been widely applied in various security
studies. For example, Macnshaei et al. [66] studied game
theory from network security perspectives, and researchers
of [40] and [67] also applied game theory to analyze privacy
protection in mobile networks. However, we noticed that the
application of game theory in privacy is far less compared
with its popularity in security.With a great concern on privacy
in big data, it is sure that game theorywill be extensively used.
For example, Krishnamurthy and Poor [68] combined social
and game theoretical learning to offer an overview of social
sensing, where privacy is a big factor.

After the birth of differential privacy, game theoretical
approaches were immediately applied to this new and excit-
ing field. For example, McSherry and Talwar [69] proposed
mechanism design for privacy under the framework of differ-
ential privacy in 2007. Pai and Roth [31] presented a survey
on mechanism design and privacy with a focus on differential
privacy in 2013.

Due to the value of data, people nowadays start to sale their
data to organizations for monetary reward, game theory is
then naturally employed to serve the needs, such as pricing
and data auction. Ghosh and Roth [70] initiated the study of
privacy auction where privacy is treated as a type of goods.
Following this direction, a few further development have been

conducted in [71] and [72]. Recently, Xu et al. [73] noticed
the impact of information asymmetry in privacy auction,
and proposed a contract-based approach to balance privacy
protection and data utility.

E. POLICY AND SOCIAL SCIENCE
Acquisti et al. [74] reviewed diverse streams of empiri-
cal research on privacy behavior from the perspective of
social and behavior science. They explained the phenomenon
through three themes. 1) Uncertainty, people are not sure
about the consequences of privacy related behaviors and
their own preferences over these consequences; 2) Context-
dependence, depending on a given situation, an individual
can exhibit anything ranging from extreme concern to apa-
thy on privacy; 3) Malleability and influence, the degree
to which privacy concerns are malleable and manipulable
by commercial and governmental interests. They concluded
that privacy depended on many factors, such as culture and
timing. The authors argued the problem as a tradeoff between
transparency and control.

From the perspective of law and legislation, there have
been laws and regulations in place, such as the American
Privacy Act of 1974, the European General Data Protection
Regulation in 2012. In 2014, the European Court of Justice
enacted that their citizens have the right to request search
engines to delink their results of items that are considered
inaccurate, irrelevant, or excessive, which is a new right as
right-to-be-forgotten. Newman [32] pointed out that it was
a trend to execute privacy protection in a way of distributed
regulation, in which law enforcement relied on individuals
and firms to monitor and implement regulations.

Horvitz and Mulligan [75] discussed the control of big
data from the policy-making perspective, and believed that
discussions on data and the threat from machine learning
among policy-makers and the public will lead to insightful
designs of policies and programs, which can balance the
goals of protecting privacy and ensuring fairness with those
of reaping the benefits to scientific research, and to individual
and public health.

V. MATHEMATICAL DESCRIPTION OF PRIVACY STUDY
In this section, we present the mathematical models that we
have mentioned in the previous sections, aim to help readers
to deeply understand the existing privacy protection schemes,
and pave a solid starting ground for further exploration on the
uncharted land.

From a system viewpoint, our privacy study can be
summarized as shown in Figure 3.

In Figure 3, X = {X1,X2, . . . ,Xn} is the original data, and
the anonymization system is a mapping function F , which
transformsX to Y = {Y1,Y2, . . . ,Ym} as an expected output.
The goals of function F are to reserve the usability of †
as much as possible, and protect the privacy at a certain
level. For an attacker, his goal is to obtain X̂ , an estimation
of X based on the released data Y and possible background
knowledge.
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FIGURE 3. The defence and attack of an anonymization system.

The two goals of a privacy protection systems are usually
termed as utility and privacy. In other words, utility and
privacy are the two key constraints of function F . Utility
is usually measured by distortion D, and privacy can be
measured by leakage L.
Let λ be a Lebesgue measure (or simply an abstract

measure), then we can represent data distortion as follows.

D = λ(X ;Y). (1)

Similarly, information leakage can be expressed as follows.

L = λ(X ; X̂ ). (2)

There aremany different measurementmetrics forD and L.
For example, a simple measure of distortion [76] could be the
average mean-square defined as follows.

D =
1
n

n∑
k=1

E[(Xk − Yk )2], (3)

where E[·] is the expectation over the joint distribution
of X and Y .

A simplemeasure of L could be themutual information I (·)
defined in information theory.

L = I (X , X̂ ). (4)

We will discuss related measurement metrics in privacy
study in the next section for more details.

Given a distortion threshold D0, and a information leakage
threshold L0, we can simply describe the studied object as an
optimization problem as follows.

optimize F

s.t. D ≤ D0

L ≤ L0 (5)

At the same time, from an attacker’s viewpoint, he is inter-
ested about knowledge X̂ = {X̂1, X̂2, . . . , X̂k}. In general,
we suppose X̂ ⊆ X , and he aim to learn knowledge of the
corresponding to X̂ in X ( in some occasions, he may be
interested to know whether X̂ ⊆ X or not).
Suppose an attacker possesses a background knowledge

of the expected knowledge X̂ in X . Then his learning is
a mapping function G : Y → X̂ given the background
knowledge. Similar to the defence operation, attack could
also be represented as an optimization problem similar to
Equation (5).

VI. PRIVACY MEASUREMENTS
In general, measurement is the foundation for scientific work.
At one hand measurement is a must, just as indicated by
Galilei ‘‘Measure what is measurable, and make measurable
what is not so.’’ At the other hand, some objects are not easy
to be measured, such as the ’’madness of men’’ expressed
by Sir Newton (‘‘I can calculate the movement of stars, but
not the madness of men.’’) To date, the measurement on
privacy is not very clear. The good news is that researchers
have invented some measurement tools in place from various
research communities, we can borrow these metrics for pri-
vacy study with appropriate adjustments. We present a few
commonly used measurement metrics below for readers.

A. RELATIVE MEASUREMENT
It is hard to obtain a direct measurement in some cases, then
the relative measurements become an option, such as object
A is bigger than B, Alice is closer to Bella than Ian. In other
words, we have a benchmark, then we measure the distance
between the studied object to the benchmark. We call this
relative measurement.

One popular relative measurement is the Kullback-Leibler
distance [77], which is used to measure the distance between
two distributions, p(x) and q(x). It is represented as follows.

D(p, q) =
∑
x∈χ

p(x) · log
p(x)
q(x)

, (6)

where χ is the sample space of x.
There are also many other measurements similar to

Kullback-Leibler distance, such as Jeffrey’s measure [78].
Interested readers are encouraged to find more information
from reference [79]. These measures are the first order mea-
sures as they all base on first order statistics.

In order to measure accurately, second order metrics were
also proposed. One popular second order metric is corren-
tropy [80]. It works independently on measuring pair-wise
arbitrary samples. For any two finite data sequences A and B,
suppose we have sample {(Aj,Bj)}mj=1,m ∈ N, then the
similarity of the sequences is estimated as

V̂m,σ (A,B) =
1
m

m∑
j=1

kσ (Aj − Bj), (7)

where kσ (·) is the Gaussian kernel, which is usually defined
as

kσ (·) , exp
(
−

x2

2σ 2

)
. (8)

Correntropy metrics are symmetric, positive, and bounded.
One more example of relative measurement is the defi-

nition of flash crowd by Wendell and Freedman [81]. The
phenomenon is that many web users will access a given web
site due to some specific reasons, such as a breaking news.
They gave the definition as follows: a flash crowd is a period
over which request rates for a particular domain name are
increasing exponentially.
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In privacy studies, two measurement metrics were
mentioned in [27], we also introduce them here for readers.
Given P is the distribution of the data X ∈ χ , and PZ is
the empirical distribution of the released data Z . Let F(x)
and F̂Z (x) be the cumulative distribution function (cdf) cor-
responding to P and PZ , respectively.

The Kolmogorov-Smirnov (KS) distance is defined as
follows.

d = sup
x∈χ
|F(x)− F̂Z (x)| (9)

The squared L2 distance is defined as follows.

d =

[∑
i

(
P(xi)− P̂z(xi)

)2] 1
2

(10)

B. INFORMATION THEORETIC MEASUREMENT
From information theoretical perspective, Coney et al. [33]
defined the privacy measurement for voting systems. Let a
voter’s vote be a random variable V , and S be the information
(e.g., geographic information) through sources other than the
voting system, E be the information that an adversary gaining
from the voting system. They defined an election system is
perfectly private if V is conditionally independent of E after
conditioning on S, namely, pV |S (v; s) = pV |S,E (v; s, e) for
all v, s, e. In other words, the information from the voting
system contributes no gain to the probability of V . They
further defined the amount of privacy loss, L, as

L = max (H (V |S)− H (V |S,E)) , (11)

where H (X ) is the entropy of random variable X .
The measurement was revisited by Bernhard et al. in

year 2012 [34].

C. UNICITY MEASURE
De Mpntijoye [6] proposed a unicity εp as the measure of
privacy risk of being re-identified from a simply anonymized
data set, which does not contain obvious identifiers, such
as name, home address, phone number, and staff ID. The
detailed definition is as follows.

Given a p(p ≥ 1) point object Op, and a simply
anonymized data set D, unicity ε is the probability of extract-
ing the subset of trajectories S(Op) from D that match the
p points composing Op. Namely

ε =
|S(Op)|
|D|

, (12)

where |x| is the cardinality of set x.
An object is identified if |S(Op=k )| = 1 when k points are

needed.

VII. MATHEMATICAL PRIVACY MODELS
A. k-ANONYMITY MODEL
For the k-anonymity model, Machanavajjhala et al. [23]
mathematically described it as follows.

Let T = {t1, t2, . . . , tn} be a table of a data set D,
A = {A1,A2, . . . ,Am} be all the attributes of T , and ti[Aj] be
the value of attributeAj of tuple ti. IfC = {C1,C2, . . . ,Ck} ⊆
A, then we denote T [C] = {t[C1], t[C2], . . . , t[Ck ]} as the
projection of t onto the attributes in C .
The quasi-identifer is defined as a set of nonsensitive

attributes of a table if these attributes can be linked with
external data sets to uniquely identify at lest one individual
in the data set D. We use QI to represent the set of all quasi-
identifers.

A table T satisfies k-anonymity if for every tuple t ∈ T
there exist at least k − 1 other tuples ti1 , ti2 , . . . , tik−1 ∈ T ,
such that t[C] = ti1 [C] = ti2 [C], . . . , tik−1 [C], for
all C ∈ QI .

B. `-DIVERSITY MODEL
As aforementioned, `-diversity [23] is an extension of the
k-anonymity to ‘‘well represent’’ the sensitive attributes.
There are four different interpretations of the term ‘‘well
represented’’.

1) Distinct `-diversity. Similar to k-anonymity, each sen-
sitive attribute has to possess at least ` distinct values
in each qid group.

2) Probabilistic `-diversity. The frequency of a sensitive
value in a qid group is at most 1

`
.

3) Entropy `-diversity. For every qid group, its entropy is
at least log `.

4) (c, `)-diversity. The frequency of sensitive values of a
qid group is confined in the range defined by c (a real
number) and ` (in integer).

C. t-CLOSENESS MODEL
t-Closeness [24] is a further development on `-diversity. For
a given table T , for a set and its superset of T , we limited
the distance between the two sets not higher than a given
threshold t , then the table follows t-closeness.

D. DIFFERENTIAL PRIVACY FRAMEWORK
Differential privacy [25] was proposed around 2006 about
the measurement and standard of privacy for data tuples
from databases. It is a stronger privacy protection framework
compared with the data clustering methods. There are a set of
definitions composing the framework.
Definition (ε-Differential Privacy): A randomized func-

tion K gives ε-differential privacy if for all data sets
D1 and D2 differing on at most one element (the two data
sets are called neighboring data sets), and all S ∈ Range(K),

Pr[K(D1) ∈ S] ≤ eε × Pr[K(D2) ∈ S]. (13)

In other words, with the minimum difference between two
data sets, the difference after an anonymization operation is
not greater than a given value (eε).

In the differential privacy framework, global sensitiv-
ity [26] is a key metric, which is defined as

1f = max
D1∼D2

||f (D1)− f (D2)||1, (14)
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where function f : D → Rd , D1 ∼ D2 means they are
neighboring data sets, and || · ||1 is the L1 norm.
The implementation of differential privacy is usually

executed by the Laplace mechanism, which is defined as
follows.

For a multidimensional real-valued query function
q : D → Rd with sensitivity 1f , the Laplace mechanism
will output

K(D) := q(D)+ Lap
(
1f

ε

)d
=

(
q1(D)+ Lap

(
1f

ε

)
, . . . , qd (D)+ Lap

(
1f

ε

))
,

(15)

where Lap(λ) is a random variable with probability density
function

f (x) =
1
2λ

exp−|x|/λ, ∀x ∈ R, (16)

and all d Laplacian random variables are independent.
A number of features of differential privacy in distributed

and parallel query scenario were derived by McSherry
in 2009 [82].

A recent work [83] used the staircasemechanism to replace
the Laplacemechanism in order to reduce the amount of noise
needed for differential privacy.

Wasserman and Zhou interpreted the framework of differ-
ential privacy in the statistical domain in 2010 [27].

VIII. CHALLENGES AND OPPORTUNITIES
A. CHALLENGES OF PRIVACY STUDY
Big data is a new environment for computer science, and
privacy is one of the critical problem, which has to be appro-
priately addressed before we can enjoy the pervasive applica-
tions of big data.

There are many problems and challenges ahead in terms of
privacy study in big data. We summarize the major ones here
for readers based on our current understanding.

1) Measurement of privacy. As privacy is a subjective
concept, it various from person to person, from time
to time even for the same person. It is hard to define
it, and therefore, hard to measure. This problem is
fundamental and challenging. It needs the effort not
only from technical aspects, but more from social and
psychological perspective.

2) Theoretical framework of privacy. We now have data
clustering methods and the differential privacy frame-
work for data privacy. However, we also see the limita-
tions of various data clustering methods, and the needs
to adapt the differential privacy in practice. Should we
have new and better theoretical foundations for privacy
study in big data era? we believe the answer is positive,
and it takes time.

3) Scalability of privacy algorithms. We have some
mechanisms and strategies in place to handle big
databases, and the main strategy is divide and conquer.

However, the scale of big data is far bigger than
a database. Therefore, it is challenging to design
scalable algorithms for privacy algorithms.

4) Heterogeneity of data source. The available privacy
algorithms are almost all for homogeneous data
sources, such as the records in databases. However, the
data sources of forthcoming big data are heterogeneous
with a high probability. It is challenging to deal with
heterogenous data sources in an efficient way.

5) Efficiency of privacy algorithms. Given the volume of
big data, efficiency becomes a very important element
of privacy algorithms in the big data environment.

B. OPPORTUNITIES AND DIRECTIONS
We can conclude that we desperately need to improve the
existing privacy protection methods to meet the unprece-
dented requirements of big data. Furthermore, new privacy
frameworks and mechanisms are highly expected in the near
future. Based on our understanding, we believe the followings
are the promising directions for our investment.

1) Quantum computing for unconditional privacy preserv-
ing. We are getting closer and closer to the practical
usage of quantum computers. One good news is that
quantum computing can offer fantastic functions in
security and privacy preserving. The majority advan-
tage of the current encryption methods is time com-
plexity. However, it is not an unconditional method
for privacy protection or security. The recently pro-
posed measurement based model of quantum computa-
tion [84] provide a promising diagram to achieve blind
computing, meaning a client can delegate a computa-
tion to a quantum server, and the server can execute the
task without gaining any knowledge about the input,
output, and the client. Braz et al. [85] implemented the
conceptual framework of the model and demonstrated
the feasibility of blind quantum computing. It is time
to start our exploration in quantum computing not only
for privacy and security, but also the other aspects of
computing.

2) Integrating computer techniques with social science.
We have to accept that in terms of privacy study, com-
puting techniques and strategies have to follow or serve
the needs and findings of social science, which is the
leading battle ground. This is supported by the leading
researchers in the field, such as the authors of the highly
cited survey paper [11], and the emerging discipline of
Computational Psychophysiology [86].

3) Inventing new theoretical privacy frameworks.We have
seen the practical usage of the various data clustering
methods in privacy protection, and also the strictness
of the differential privacy framework. The former suf-
fers different vulnerability, and the later lacks some
flexibility and feasibility in practice. Do we have new
frameworks to fill the gap? the answer is yes. We note
that given the complexity of privacy study, we may
need a set of theories to serve the problem, rather
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a single one. For example, fuzzy logic to deal with
ambiguous concepts, and game theory to settle argu-
ments from different parties.

IX. SUMMARY
With the approaching of the big data age, privacy pro-
tection is becoming a unavoidable hurdle in front of us.
Motivated by this, we surveyed the major milestones in
privacy study up to date from different perspectives, aiming
to pave a reliable ground for interested readers to explore
this exciting, emerging, and promising field. We summa-
rized the outputs of privacy study in different research
principles and communities. In particular, we presented
the mathematical effort of the related privacy models and
frameworks.

We have seen the great effort from different communities
in privacy protection, especially from the theoretical aspect.
However, these theoretical attempts are still insufficient to
most of the incoming big data applications. We fully believe
the theoretical effort in big data privacy is essential and highly
demanded in problem solving in the big data age, and it is
definitely worthwhile to invest our energy and passion in this
direction without any reservation.
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