
Pattern Recognition Systems Under Attack:
Design Issues and Research Challenges

Battista Biggio, Giorgio Fumera, and Fabio Roli

Dept. of Electrical and Electronic Engineering,
University of Cagliari,

Piazza d’Armi, 09123, Cagliari, Italy
{battista.biggio,fumera,roli}@diee.unica.it

http://pralab.diee.unica.it

Abstract
We analyze the problem of designing pattern recognition systems in

adversarial settings, under an engineering viewpoint, motivated by their
increasing exploitation in security-sensitive applications like spam and
malware detection, despite their vulnerability to potential attacks has not
yet been deeply understood. We first review previous work and report
examples of how a complex system may be evaded either by leveraging
on trivial vulnerabilities of its untrained components, e.g., parsing errors
in the pre-processing steps, or by exploiting more subtle vulnerabilities of
learning algorithms. We then discuss the need of exploiting both reactive
and proactive security paradigms complementarily to improve the security
by design. Our ultimate goal is to provide some useful guidelines for
improving the security of pattern recognition in adversarial settings, and
to suggest related open issues to foster research in this area.

1 Introduction
Pattern recognition systems have been increasingly exploited in security-sensitive
applications like spam, malware, and intrusion detection, motivated by the
growing number, sophistication and variability of recent attacks and security
threats [70, 31, 51, 47, 35, 63, 61]. However, these techniques have not been
originally designed to cope with intelligent, adaptive attackers that may pur-
posely modify the input data to mislead the outcome of an automatic analysis,
thus breaking the underlying assumption of data stationarity (i.e., that train-
ing and test data follow the same distribution) [65, 20, 41, 6, 24]. This has
revealed a number of intrinsic vulnerabilities that can be exploited to cause
different security violations, including denial of service and missed detection
of malicious samples or events. In contrast, countermeasures and novel algo-
rithms have been also proposed to improve system security against well-crafted
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attacks [31, 24, 64, 28]. This will not stop adversaries from attempting to find
novel ways of misleading such defense systems, triggering a phenomenon com-
monly modeled as an arms race.

In this work, we revise under an engineering viewpoint previous work on the
design of pattern recognition systems in adversarial settings [65, 20, 41, 6, 24].
Most of the proposed defense strategies follow the paradigm of proactive se-
curity : they attempt to prevent potential attacks, or mitigate their impact,
before they occur, by incorporating knowledge of the attacker’s strategy in the
designed algorithm or defense mechanism. In real-world applications, however,
deployed systems still follow a reactive approach: they are only updated when
novel attacks are observed, by adding novel features (if required), and, more
often, by retraining the system using newly-collected data. We argue that both
paradigms should be exploited complementarily, for thoroughly assessing secu-
rity against carefully-targeted attacks, and of improving it security by design.
We also underline that the security of a complex pattern recognition system cru-
cially depends on that of its weakest link [3, 43], i.e., its most vulnerable point
(a well-known concept in computer security), which may not necessarily be a
complex, trained component (e.g., a classifier). We report examples of how com-
plex systems may be evaded by leveraging on trivial vulnerabilities of untrained
components, e.g., parsing errors in the pre-processing steps, but also examples
of how more subtle vulnerabilities of learning algorithms can be exploited to
the same end. Our main goal is to provide useful guidelines for improving the
security of pattern recognition in adversarial settings, and to suggest related
open issues to foster research in this area.

In Sect. 2, we define reactive and proactive arms races, using spam filtering
as an example. In Sect. 3, we describe the architecture of a pattern recognition
system that will be exploited later to discuss potential vulnerabilities. A model
of the adversary, that can be exploited to identify them, and for proactively
evaluating security, is presented in Sect. 4, with some examples from our recent
work. Proactive defenses derived by our adversary’s model, and reactive defenses
are discussed in Sect. 5. Conclusions and future applications are finally discussed
in Sect. 6.

2 Pattern Recognition for Computer Security
We introduce the problem of designing and deploying pattern recognition sys-
tems in security applications through an example related to the spam filtering
task. This leads us to define the concepts of reactive and proactive security.

Motivation and Trends. Since the 90s, the variability and sophistication
of computer viruses and attack threats increased, in response to the growing
complexity and amount of vulnerable attack points of security systems. Since
automatic tools for designing novel variants of attacks can be easily obtained and
exploited by not very skilled attackers, and a flourishing underground economy
strongly motivates them, an exponential proliferation of malware and other
threats has been recently observed. To cope with such malicious data, including
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Figure 1: A schematic representation of the reactive (left) and proactive (right)
arms races incurring in security applications involving pattern recognition sys-
tems.

never-before-seen attacks, machine learning has been increasingly adopted to
complement the earlier rule-based systems (e.g., signature-based systems based
on string matching): the latter filters known attacks, while the former can detect
their variants, and novel attacks. However, machine learning turned out to be
not a panacea.

A known example of that is spam filtering. Spam e-mails originally conveyed
their message as “clean” body text. Rule-based spam filters were firstly adopted,
to detect the presence of “spammy” words. Machine learning (i.e., text classi-
fication) was later introduced to perform a more sophisticated analysis of text
messages. Spammers thus started “obfuscating” their text, e.g., by misspelling
spammy words and adding random vocabulary words, to avoid detection by
simple rules and text classifiers, respectively [70, 47, 51]. During 2005, spam-
mers devised image-based spam (or image spam) [13, 4], i.e., rendering the spam
message into attached images to evade the textual-based analysis. Due to the
massive volume of image spam sent in 2006 and 2007, researchers and companies
developed countermeasures, based on signatures of known spam images, and on
extracting text from suspect images by OCR tools, for standard spam detec-
tion. Spammers reacted by randomly obfuscating images with adversarial noise,
both to evade signature-based detection, and to make OCR-based detection in-
effective. Researchers responded with approaches based on machine learning
techniques using visual features, to discriminate between images attached to
spam and to legitimate e-mails. Image spam volumes have since declined, but
spammers kept introducing novel tricks.

Reactive and proactive security. As highlighted by the spam filtering
story, security problems are often cast as a reactive arms race, in which the
system designer and the adversary attempt to achieve their goals by reacting to
the changing behavior of the opponent, i.e., learning from the past. This can be
modeled as the following cycle [20]. First, the adversary analyzes the existing
system and manipulates data to violate its security; e.g., to evade detection, a
spammer may gather some knowledge of the words used by the targeted anti-
spam filter to block spam, and then manipulate spam emails accordingly (words
like “cheap” can be misspelled as “che4p”). Second, the system designer reacts by
analyzing the novel attack samples and updating the system consequently; e.g.,
by adding features to detect the novel attacks, and retraining the classifier on the
newly-collected samples. In the previous example, this amounts to retraining
the filter on the newly-collected spam, thus adding novel spammy words into the
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filter’s dictionary (e.g., “che4p”). This reactive arms race continues everlastingly
(Fig. 1, left).

However, reactive approaches do not anticipate new security vulnerabilities
nor they attempt to forecast future attacks, leaving the system vulnerable to
them. Computer security guidelines accordingly advocate a proactive approach
in which the designer should also attempt to anticipate the adversary’s strategy
by (i) identifying the most relevant threats, (ii) devising proper countermea-
sures, when required, and (iii) repeating this process before system deployment.
To this aim, one can simulate attacks based on a model of the adversary, to
complement the reactive arms race (Fig. 1, right). While this does not account
for unknown or changing aspects of the adversary, it can improve security by
delaying each step of the reactive arms race, as it should force the adversary to
exert greater effort (time, skills, and resources) to find new vulnerabilities. Ac-
cordingly, the resulting systems should remain effective for a longer time, with
less frequent supervision or human intervention and with less severe vulnerabil-
ities. However, this approach requires a thorough and systematic revision and
re-engineering of traditional design methodologies, since state-of-the-art pat-
tern recognition and machine learning techniques do not take into account the
presence of malicious adversaries, and rely on the assumption that training and
testing data follow the same distribution (or that distribution drift, if any, is not
maliciously driven). Although proactive security has been implicitly pursued in
most of previous work, it has only recently been formalized within a general
framework for the empirical evaluation of pattern classifier’s security[20], which
we summarize in the next section.

3 Pattern Recognition Systems: Outside and In-
side Worlds

Fig. 2 shows the architecture of pattern recognition systems, with reference
to classification tasks. We will use it to discuss the vulnerabilities that an
adversary could exploit, and the possible countermeasures. To this aim, here
we distinguish between the “outside” world (everything that is out of designer’s
control, including the physical process that generates data, and the adversary)
and the “inside” world (the system’s components that are under the control of
the designer).

The Outside World. Input samples (e.g., images) are generated by a
physical system, modeled by a (unknown) distribution p(X,Y ), where the ran-
dom variables X and Y denote respectively a sample (not its representation,
e.g., in terms of a feature vector) and its class label. The classical underly-
ing assumption is that of stationarity, i.e., the samples collected for system
design (from now on, training samples) and the ones processed during opera-
tion (testing samples) come from the same p(X,Y ). Non-stationarity has also
been considered, modeled as p(X,Y ; t), t being a parameter denoting time, but
only of non-adversarial nature. Many security applications involve such a kind
of non-stationarity: the topics of legitimate e-mails evolve over time, the con-
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Figure 2: Architecture of a typical pattern recognition system deployed in a
real-world application, where training (Tr) and test (Ts) data are drawn from a
changing distribution p(X,Y,A; t).

tent of network HTTP traffic changes depending on the Web sites visited by the
users, biometric traits like faces are subject to aging, etc. However, the presence
of intelligent, adaptive adversaries who exploit their knowledge of the targeted
system to evolve their attack strategy over time, introduces a further source
of adversarial non-stationarity, that can be modeled by introducing a random
variable A, as p(X,Y,A; t)[41, 20] (see Fig. 2).

The Inside World. The system components under the designer’s con-
trol are the following [33]. Data collection for system design is typically done
off-line before deployment. It can also occur during operation, when online
learning techniques are used. It can include verification of ground truth labels,
and data cleaning, using automatic or semi-automatic techniques involving hu-
man supervision. For instance, in malware detection systems malware samples
collected through “honeypots” are clustered (before pre-processing and feature
extraction) for reducing the training set size, and for unsupervised ground truth
assessment before human supervision[63, 2, 61]. Pre-processing of training or
testing samples is then carried out; e.g., images of biometric traits can be nor-
malized (change of resolution, cropping, rotation, etc.); e-mails and network
packets are parsed to extract structural components like e-mails’ header, body
and attachments, and packet header, payload and footer. Feature extraction
is carried out on parsed samples, and may be followed by a feature selection
step, either with or without supervision. A learning algorithm is then applied
at design stage to a labelled training set (comprising all or a subset of collected
data) for building a classifier. When online learning is used, the learning algo-
rithm is periodically rerun on novel data during operation. At operation phase,
unlabeled test samples are fed to the classifier, which usually produces a real-
valued score which is then fed to a decision stage. Eventually, a decision rule
assigns a label (usually, Malicious or Legitimate) to an input sample, based on a
thresholding strategy on the classifier’s score, whose parameters are set during
design.

During system design, the above steps are carried out sequentially. Several
cycles can occur, if the estimated system performance is not satisfactory, restart-
ing from any of the above steps [33]. Further, some components may be deployed
in different physical locations, and thus their communication channels may be
affected by the adversary; e.g., in systems requiring remote authentication, the

5

fei
Highlight



pre-processing and feature extraction steps can be implemented remotely on
a client’s personal computer. This introduces different vulnerabilities (not di-
rectly related to the above components), increasing the attack surface, i.e., the
set of vulnerable points.

In the above context, a useful distinction between two kinds of system fail-
ures (e.g., misclassifications and denial of service) can be made, generalizing
the one proposed for biometric systems [42]. Intrinsic failures (aka “zero-effort”
failures) are statistical errors not caused by a deliberate action made by the ad-
versary. Failures due to adversarial attacks are due instead to deliberate efforts
aimed at misleading the system. The latter ones can be caused by exploiting
vulnerabilities that all the above components potentially exhibit, besides the
ones already known. For instance, note that all components depend on the
analysis of data collected for system design (or even during operation), which
may be manipulated by an adversary. In the next sections we will discuss how to
systematically analyze the vulnerabilities of pattern recognition systems, point-
ing out some potential ones in Sect. 4.1, and how to re-engineer their design
cycle, using a proactive approach.

4 Wearing the Black Hat: Understanding At-
tacks

Here we describe a model of the adversary adapted from our recent work [20,
10, 65]. It builds on a well-known attack taxonomy [6, 41], and can be exploited
proactively for evaluating vulnerabilities and improving security by design (see
Fig. 1, right).

The attack taxonomy proposed in [6, 41] categorizes attacks against learning
algorithms along three axes: (i) the attack influence, which can be exploratory,
if the adversary can only manipulate the test data, or causative, if both training
and test data can be modified; (ii) the attack specificity, which ranges from
targeted to indiscriminate, depending on whether the attack is focused on
the classification of a specific subset of samples or of any of them; and (iii) the
security violation caused by the attack, which can be an integrity violation,
if it allows the adversary to access a restricted service or resource protected by
the system (e.g., an impostor may gain access to a genuine client’s account [42,
64, 20], or a spam email may reach a protected user’s inbox [70, 51, 47, 17]),
an availability violation, if it denies legitimate users’ access or compromise
normal system operation (e.g., causing legitimate emails or network traffic to
be misclassified as spam or intrusive [55, 66]), or a privacy violation, if it
allows the adversary to obtain confidential information about the classifier or
its protected resources (e.g., the clients’ templates in a biometric recognition
system [1, 36, 54]).

Our model incorporates these aspects to give clearer guidelines on how to
hypothesize the attacker’s goal, knowledge of the targeted system, and her ca-
pabilities of manipulating data or of compromising some of the system’s com-
ponents.
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Goal. It is defined according to the desired security violation and attack
specificity, i.e., axes (iii) and (ii) of the attack taxonomy in [6, 41].

Knowledge of each system component can be perfect or limited. It includes
the kind of decision function (e.g., a linear SVM), the classification function and
the trained parameters (e.g., the feature weights of a linear classifier), and the
available feedback, if any (e.g., the class labels assigned to some test samples).
Feedback on the classifier’s decisions can be exploited to improve the attacker’s
level of knowledge [50, 58, 57, 10, 60]. The attacker may however not only
know how these components are implemented (as discussed in our previous
work), but also where they are deployed, and when they operate. For example,
knowing how the training data is being collected, from which locations/servers
and at what time, may allow her to poison them by injecting carefully-crafted
samples [22, 46, 59], and to collect similar data to train a good approximation
of the targeted classifier system, which can be used in turn to evade detec-
tion [10]. She may also know whether and how communication channels, if any,
are used (e.g., how a remote biometric authentication module connects to the
main server [62, 42]); and what security protocols are used by human supervi-
sors and operators to interact with the automatic classification system [42] (e.g.,
usually supervisors of intrusion detection systems manually inspect log files to
monitor attack detection and false alarms, and validate decisions).

Capability. It refers to how the adversary can affect training and test
data. At an abstract level, it is defined as the attack influence, i.e., axis (i) of
the attack taxonomy in [6, 41]. It includes assumptions on which features can
be manipulated, and to what extent, taking into account application-specific
constraints (e.g., some features may be correlated, some may compromise the
functionality of malicious samples, if modified, etc. [31, 47, 35, 64]). To get
a more complete view of the attack surface, Fig. 2 suggests that, besides data
manipulation, the attacker may directly compromise each component of the
system, including communication channels and each module’s internals. For in-
stance, if pre-processing and feature extraction are performed remotely, and the
results are sent through a non-secure channel, she may compromise the latter
and perform a man-in-the-middle attack to cause a number of misclassifications,
by manipulating the output of the feature extractor instead of creating samples
that exhibit certain feature values. She may even override the classifier’s deci-
sion, if the whole system is compromised, e.g., by a Trojan horse [62, 42]. She
may also exploit weaknesses in human-dependent processes or security proto-
cols, by leveraging on social engineering techniques, or on coercion or collusion
with a privileged user or an administrator [62, 42].

Attack strategy. Once the adversary’s goal, knowledge and capability are
defined, an optimal attack strategy should be defined. If the attack only involves
data manipulation, it can be formalized as an optimization problem that aims
to meet the goal within a bounded or minimal effort, e.g., evading detection
while minimizing the number of modifications to some non-obfuscated attack
samples [20, 10, 31, 50], or performing a computer intrusion while taking care
of covering its traces. Instead, if the attacker can directly compromise some
of the system components, or the security protocols, then the attack can be
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trivially executed. Note that the weakest link of pattern recognition systems
is not necessarily the learning or classification component; e.g., they may be
straightforwardly evaded by leveraging on vulnerabilities in the pre-processing
(i.e., file parsing) steps [43, 52].

A thorough proactive security evaluation, considering any kind of possible
attack, may be unfeasible, and designing the corresponding countermeasures
may be even more difficult [7, 11]. A good system designer should thus only
develop proactive defenses against attacks that can be considered more relevant
or threatening in the near future, which we believe our framework helps to
identify.

4.1 Previous Work on Adversarial Attacks
Most previous work investigating attacks make some assumptions on the adver-
sary’s goal, knowledge and capabilities, either implicitly or explicitly, and can
be recast in our framework as done for the attack taxonomy in [6, 41]. Other
works hypothesize a simpler model of the attacker, which can be included in
ours as well (see work cited in the previous section). The following examples
will help understanding how our model can be exploited to identify and analyze
non-trivial attacks.

4.1.1 Poisoning Adaptive Biometric Face Verification

The application of our framework led us to highlight a novel vulnerability of
adaptive face recognition systems [21, 12]. They deal with temporal variations
of the clients’ faces by exploiting images acquired during system operation. Tem-
plate self-update is the simplest approach, inspired by semi-supervised learning
techniques: a user’s template gallery is periodically updated using samples as-
signed with high confidence to the same identity. An attacker may however
exploit it to compromise the stored templates by a poisoning attack, i.e., sub-
mitting a suitable sequence of fake (or spoofed) faces to the camera (e.g., ob-
tained by printing a face image on paper [8]) while claiming the identity of a
victim user. This may eventually replace some of the victim’s templates with
other desired face images, that may be sufficiently different from the former, to
deny access to him; or similar to the attacker’s images, allowing her to imper-
sonate the victim without using any fake trait. We now give an example of the
optimal poisoning attacks we derived in [21, 12], that minimize the size of the
fake face sequence under perfect or limited knowledge.

Users are authenticated by computing a similarity score s(F, T ) between the
submitted face image F and the stored template T of the claimed identity: if
s(F, T ) > ta (a pre-defined acceptance threshold), the claimed identity is au-
thenticated as genuine, otherwise it is rejected as an impostor attempt. In our
example, the unique template T of each client is obtained by averaging n = 5
distinct face images acquired during enrollment, and it is self-updated during
operation as a moving average using face images F such that s(F, T ) > tu, be-
ing tu a pre-defined update threshold (typically, tu > ta).1 We assume that the

1Despite self-update of an averaged template has been proposed for face verification (see,
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Figure 3: Attack samples (top) and
victim’s template (bottom) for poison-
ing with limited knowledge, at differ-
ent iterations.
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Figure 4: FAR and GAR for poisoning
with perfect (solid lines) and limited
(dashed lines) knowledge, at different
iterations.

adversary’s goal is to impersonate the victim without using fake traits, by re-
placing his template while minimizing the number of submitted fakes (queries).
We consider both perfect and limited knowledge; in the former case, the at-
tacker knows the victim’s templates, the feature representation, the verification
and update algorithm, and the corresponding thresholds; in the latter, more
realistic case, she does not know the template, but is able to get a similar image
(e.g., from social networks) that meets the update condition, successfully start-
ing the poisoning attack. Capability: she can submit a number of fake faces
to get access to the victim’s template gallery, i.e., to a portion of the training
data.

We refer the reader to [21, 12] for the computation of the optimal attack.
For a specific attacker-victim pair, Fig. 3 shows how the victim’s template is
updated by a limited knowledge attack. Fig. 4 shows the corresponding behavior
of the False Acceptance Rate (FAR, the probability of the attacker accessing
the system impersonating the victim) and the Genuine Acceptance Rate (GAR,
the probability of the victim correctly accessing the system). In case of perfect
knowledge less queries are required, coherently with theoretical bounds [46]. In
any case, the victim’s account can be violated with high probability even when
the template is partially compromised, as shown by the significantly high FAR
value after half of the queries. As a side-effect the GAR quickly decreases, i.e.,
the victim is denied access.

A possible countermeasure against this attack, which is part of our ongoing
work, is to model the changes induced by legitimate template updates to detect
anomalous updates, like the sudden, biased drift induced by a poisoning attack.
This proactive defense is an example of data sanitization [28], as discussed in
Sect. 5.1.

4.1.2 Poisoning HTTP-based Malware Clustering

In [23] we investigated the poisoning of a simplified version of an HTTP-based
behavioral malware clustering system [61]. It aims at obtaining a small set

e.g., [21] and references therein), multiple templates are often used for each user. It is never-
theless possible to poison these systems with a similar attack to that exemplified in this work,
as discussed in [12].
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of compact malware clusters to aid the automatic generation of network signa-
tures that can detect botnet command-and-control (C&C) and other malware-
generated communications at the network perimeter. Each malware is mapped
as a six-dimensional feature vector: number of GET and POST requests, aver-
age URLs length, average number of parameters in the request, average amount
of data sent by POST requests, average response length. We developed a poi-
soning attack against the single-linkage hierarchical clustering, which is used to
identify malware families.

Goal: causing a denial of service. Being clustering unsupervised, the effec-
tiveness of poisoning can not be assessed with respect to any ground-truth labels.
We then reformulated the goal as that of maximizing a given distance function
between the clusterings obtained in the presence and in the absence of poisoning.
We assumed perfect knowledge: the input data, their feature values, and the
internals of the clustering algorithm are known to the attacker. Capability:
since poisoning samples do not need to preserve any malicious functionality,
the attacker can add any number of them to the initial dataset, with the only
constraint on their feature values given by feature normalization. The optimal
attack strategy can be therefore formulated as maxA dc(C, fD(D ∪A)), being
C = f(D) the clustering output on the initial, untainted dataset D, A the set
of poisoning attacks, fD(D ∪A) the clustering output on the points in D when
the tainted data D∪A is clustered, and dc a distance measure between cluster-
ings. We refer the reader to [23] for details on the (approximate) solution of this
optimization problem. We considered three different greedy heuristics tailored
to single-linkage hierarchical clustering, named Bridge (Best), Bridge (Hard),
and Bridge (Soft): poisoning samples are added one at a time, until |A| points
are added. Their underlying idea was to consider a number of candidate at-
tack points that attempt to bridge each pair of adjacent clusters. Bridge (Best)
evaluates the objective function for each candidate by re-running the clustering
algorithm with the candidate attack point, and chooses the best attack. Bridge
(Hard) and Bridge (Soft) approximate the clustering result without re-running
the clustering algorithm for each candidate attack point, to reduce the com-
putational complexity. They respectively approximate the clustering output
using deterministic and probabilistic sample-to-cluster assignments, assuming
that each candidate will effectively merge the two corresponding clusters.

In the experiments we used 1,000 malware samples collected from different
malware sources and commercial malware feeds [23, 61]. The attacker gradually
adds poisoning samples to the untainted data, up to 5% of the data. We com-
pared the proposed heuristics with two greedy random attack strategies, named
Random and Random (Best). The former chooses a random attack point at
each iteration, while Random (Best) chooses the best attack point among a
set of randomly-selected candidates, by re-running the clustering algorithm for
each candidate. For a fair comparison, the number of candidates evaluated by
Random (Best) equals that of the candidate points evaluated by Bridge (Best).
The results, summarized in Fig. 5, show that the effect of the attack is to in-
crease quickly the attacker’s objective, which amounts to fragmenting the initial
clustering into smaller, heterogeneous clusters (i.e., clusters made of points ini-

10



0% 1% 2% 3% 4% 5%
0

20
40
60
80

100
120
140
160
180

Distance from the initial clustering (objective function)

Fraction of samples controlled by the attacker

 

 
Random
Random (Best)
Bridge (Best)
Bridge (Soft)
Bridge (Hard)

0% 1% 2% 3% 4% 5%
5

10

15

20

25

30

Fraction of samples controlled by the attacker

Number of clusters

 

 
Random
Random (Best)
Bridge (Best)
Bridge (Soft)
Bridge (Hard)

Figure 5: Results for the poisoning attack on malware clustering, for different
attack heuristics: variation of the objective function dc(C, fD(D ∪ A′)) (left);
number of selected clusters as the fraction of samples controlled by the adversary
increases (right).

tially belonging to different clusters). Our attack strategies are superior to the
random-based ones, which witnesses the soundness of our heuristic solutions.
These results underline that single-linkage hierarchical clustering may be itself
a vulnerable point (and, perhaps, the weakest link) in a more complex pattern
recognition system. This potential weakness not only demands for a more sys-
tematic security assessment, but, potentially, also for clustering algorithms with
improved security properties.

5 Wearing the White Hat: Implementing Coun-
termeasures

In this section we leverage on our adversary’s model to discuss how attacks
similar to those exemplified in the previous section, along with less complicated
ones, can be countered, highlighting some guidelines for improving the design
of pattern recognition systems in adversarial settings. In particular, we advo-
cate that both proactive and reactive security paradigms should be exploited
complementarily.

5.1 Proactive defenses
The main proactive defense strategies proposed thus far for pattern recognition
systems come from the field of adversarial machine learning. They can be
categorized according to two well-known paradigms in security, i.e., security by
design and security by obscurity, as discussed below.

Secure Learning and Security By Design. According to the paradigm
of security by design, a system should be designed from the ground up to be se-
cure. Based on this idea, modifications to learning algorithms and novel learning
techniques that explicitly take into account a specific kind of adversarial data
manipulation have been proposed in several recent work.

Game-theoretical approaches achieve this goal by modeling the interactions
between the attacker and the classifier as a game in which players aim to max-
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imize their own payoff function. The adversary’s goal is to evade detection by
minimally manipulating some attack samples, while the classifier is retrained
to correctly classify them. Since the attack samples have to preserve some
malicious or intrusive functionality (like the advertisements conveyed by spam
emails, and valid exploits carried by malware), they can not be modified at
will, and this can be formally taken into account by defining specific constraints
into the definition of the attacker’s strategy. The aforementioned procedure
is iterated until a game equilibrium point is reached, i.e., when no player can
improve his payoff function unilaterally by playing a different strategy. This
approach has been initially investigated in the seminal work of Dalvi et al. [31];
then, more rigorous approaches have introduced Nash and Stackelberg games
for secure learning, deriving formal conditions for the corresponding equilibrium
strategies [25, 45, 49, 26, 24]. Although these approaches seem quite promising,
understanding whether and to what extent the resulting attacker’s strategies are
well-representative of realistic, practical scenarios remains an open issue [71, 30].
The main reason is that adversarial classification is not a game with well-defined
rules such as board games (e.g., chess), and, thus, the real attacker’s objective
may not even correspond to a proper payoff function. It may therefore be
interesting to verify, in a reactive manner, whether real attackers behave as hy-
pothesized, and exploit feedback from observed manipulations on real attacks
to improve the definition of the attacker’s strategy. Another issue is that most
formulations (e.g., Nash and Stackelberg games) do not account for limited
knowledge of the attacker’s objective function (that may reflect in turn the lim-
ited attacker’s knowledge about the classifier) explicitly. When they do (see,
e.g., Bayesian games [38]), uncertainty on the payoff function is simply modeled
with a prior distribution over its parameters (and, thus, the payoff function
is still essentially known). Another relevant problem is the scalability of their
training procedure to large datasets.

Learning with invariances is essentially a minimax approach in which the
learning algorithm is modified to minimize the maximum loss incurred under
worst-case manipulations of the attack samples. In particular, different variants
of the SVM learning algorithm have been proposed to account for a maximum
number of worst-case feature manipulations, including deletion, insertion, and
rescaling [37, 68, 32].

Other approaches make different assumptions on the attacker’s strategy and
exploit different models to build secure classification techniques. A version
of secure SVMs and Relevance Vector Machines (RVMs) has been proposed
in [74, 73]. Similarly to the problem of learning with invariances, these classifiers
aim to minimize the worst-case loss under a given attacker’s model. Torkamani
and Lowd [69] have faced the problem of collective classification in adversar-
ial settings, where the goal is to jointly label a set of interconnected samples
(e.g., cross-linked web pages). All the aforementioned works allow us to learn
secure discriminative classifiers by assuming that the attack samples are modi-
fied according to a given attack strategy. To learn secure generative classifiers,
instead, the distribution of the manipulated attack samples should be explicitly
modeled, as proposed in [19, 64]. This avoids one to define a specific strategy
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for manipulating the attack samples. These approaches have been applied espe-
cially to counter spoofing attacks to biometric systems, i.e., impostor attempts
to impersonate genuine users using counterfeited traits (e.g., gummy fingers).
Notably, all these techniques achieve security against evasion attempts by as-
suming that only the malicious class can be manipulated in certain ways and to
some extent: this results in decision functions that tend to “enclose” the legiti-
mate class more tightly, which in turn requires to trade-off between the security
against potential attacks and the number of misclassified legitimate samples.

While most works focused on countering evasion attacks at test time (which
do not involve manipulating the training data), some work dealt with the se-
curity of the training process in the presence of training data contamination,
which may occur when the system is updated with data collected during op-
eration [56, 55, 28, 66]. To significantly compromise the training phase of a
learning algorithm, an attack has to be exhibit some characteristics that are
different from those shown by the rest of the training data, otherwise it would
have no impact at all. Therefore, most of the training attacks can be regarded as
outliers, and countered either by data sanitization (i.e., outlier detection) [28] or
by exploiting robust statistics [40, 53] to mitigate the outliers’ impact on learn-
ing (e.g., robust principal component analysis [66, 29]). Notably, in [27] the
robustness of SVMs to training data contamination has been formally analyzed
under the framework of Robust Statistics [40, 53], highlighting that bounded
kernels and bounded loss functions may significantly limit the outliers’ impact
on classifier training.

Another relevant aspect for pattern recognition systems in adversarial set-
tings is that they should be privacy preserving. Although some attacks can
violate a system’s privacy (see, e.g., hill-climbing attacks to recover the clients’
templates in biometric recognition systems [1, 36, 54]), their practical feasibility
is still debatable. Nevertheless, some privacy-preserving classifiers have been al-
ready proposed; in particular, differentially-private SVMs [67], that implement
the privacy-preserving mechanism of Dwork [34] to protect information about
the training data by randomizing the SVM’s decision function.

Multiple Classifier Systems (MCSs) have been exploited for different pur-
poses in adversarial settings, in particular, to improve security against evasion
attempts [47, 17, 15, 16, 18] and against poisoning of the training data [9]. MCSs
indeed provide an easy way to obtain complex non-linear classification functions
which are difficult to reverse-engineer while being easy to update and maintain.

The following open issues can be finally highlighted. (i) Adversarial data
manipulation can also be seen as a particular kind of noise. This suggest to
investigate the connections between secure learning techniques and classifier
regularization, by formally characterizing adversarial noise, following the intu-
ition in [72] related to SVMs and noise-based classifier regularization (see also
[56] for an example). Secure learning models with high computational complex-
ity (e.g., game-theoretical models) may be thus revisited to identify suitable,
lightweight approximations based on regularizing the objective function in an
ad hoc manner. (ii) The security properties of the learning algorithm and the
classifier’s decision function should be considered independently from those ex-
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hibited by the chosen feature representation. Security of features should be
considered as an additional, important requirement: features should not only
be discriminant, but also robust to manipulation, to avoid straightforward clas-
sifier evasion, e.g., by mimicking feature values exhibited by legitimate samples.
Although this is mainly an application-specific issue, since features are usually
designed by domain experts, there is room for a theoretical investigation of
whether and how feature correlation and redundancy may make evasion more
difficult, and what problems may arise from learning in high-dimensional fea-
ture spaces. Intuitively, in the latter case, the adversary has more degrees of
freedom to manipulate her samples, thus classifier evasion and poisoning may
be more effective.

Information Hiding, Randomization, and Security by Obscurity.
These proactive defenses, also referred to as disinformation techniques in [6,
5, 41], follow the paradigm of security by obscurity, i.e., they rely on hiding
information to the attacker to improve system security. Some specific examples
have been suggested by R. Lippmann’s talk at the 2013 Dagstuhl Perspectives
Workshop on Machine Learning Methods for Computer Security [44], including:
(i) randomizing collection of training data (collect at different timings, and
locations); (ii) using difficult to reverse-engineer classifiers (e.g., MCSs); (iii)
denying access to the actual classifier or training data; and (iv) randomizing
the classifier’s output to give imperfect feedback to the attacker. We have
investigated a specific implementation of the latter approach in [14]; however,
it is still an open issue to understand whether randomization may be effective
also against attacks that can be exploited to reverse-engineer the classification
function [50, 57, 10], and whether and how it can implement privacy-preserving
classification [67].

5.2 Reactive defenses
System security can also be improved reactively, by learning from the past, which
can sometimes be more effective and convenient than a pure proactive strategy
aimed at mitigating the risk of future attacks [7, 11]. This requires one to: (i)
timely detect novel attacks, (ii) frequently retrain the classifier, and (iii) ver-
ify whether classifier decisions are consistent with the training data and the
corresponding ground-truth labels. In practice, collaborative approaches and
“traps” are used to identify novel security threats. For instance, collaborative
spam filtering allow end-users to share signatures of newly-spread spam, and
honeypots are used to “trap” novel malware samples and analyze them in con-
trolled settings. The classifier should then be updated, typically by retraining
it on the newly-collected data, and adding specific features, if required. While
this procedure is currently carried out manually, we argue that it should be
automated to some extent to act more promptly when required; e.g., automatic
drift detection techniques [48] may be exploited to detect changes in the data
evidence p(X). The correctness of classifier decisions should (partly) be verified
by expert domains as well. This opens the issue of how to consider a more
involved and coordinated presence of “humans in the loop” to supervise pattern
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recognition systems, and, if needed, to fix some of its (potentially corrupted)
functionalities.

6 Conclusions and Future Applications
In this paper we have presented an overview of work related to the security of
pattern recognition systems with the goal of providing useful guidelines on how
to improve their design and assess their security against well-crafted, specific at-
tacks. We believe that our paper provides a useful introduction, both for system
designers and researchers, on the main issues and research challenges related to
the design of pattern recognition systems for security-sensitive tasks. Further,
this work, and, in particular, the proposed attacker’s model can be a convenient
resource also to identify and prevent potential, very sophisticated future attacks.
By reasoning on the (vulnerable) components of a pattern recognition system,
for instance, one may expect future attacks to target the feature selection phase
through an ad hoc training data manipulation. This trend should not be under-
estimated, as also witnessed by the past arms races: recent attacks, as the two
exemplified in this paper, may be very sophisticated and effective. This may
become a very relevant threat in the next years, since nothing prevent attack-
ers to exploit machine learning in an offensive way, i.e., as a tool for evading
pattern recognition systems [10].

To conclude, we would like to point out that other emerging applications,
not necessarily related to security tasks, may also exhibit an adversarial behav-
ior, therefore requiring a revisited design of pattern recognition systems as that
advocated in this paper; for instance, machine learning is increasingly being
used for user authentication, in computer vision and forensics [44], for senti-
ment analysis and market segmentation [39]. So far, however, the analysis of
carefully-crafted attacks and the security of the corresponding techniques have
not yet been systematically investigated in these research areas. This is a fur-
ther motivation behind continuing to push research on the security of pattern
recognition systems.
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