
Dynamic Searchable Encryption in Very-Large
Databases: Data Structures and Implementation

David Cash∗, Joseph Jaeger∗, Stanislaw Jarecki†, Charanjit Jutla‡,
Hugo Krawczyk‡, Marcel-Cătălin Roşu‡, and Michael Steiner‡

∗Rutgers University
†University of California, Irvine

‡IBM Research

Abstract—We design and implement dynamic symmetric
searchable encryption schemes that efficiently and privately
search server-held encrypted databases with tens of billions of
record-keyword pairs. Our basic theoretical construction sup-
ports single-keyword searches and offers asymptotically optimal
server index size, fully parallel searching, and minimal leakage.
Our implementation effort brought to the fore several factors
ignored by earlier coarse-grained theoretical performance anal-
yses, including low-level space utilization, I/O parallelism and
goodput. We accordingly introduce several optimizations to our
theoretically optimal construction that model the prototype’s
characteristics designed to overcome these factors. All of our
schemes and optimizations are proven secure and the information
leaked to the untrusted server is precisely quantified. We evaluate
the performance of our prototype using two very large datasets:
a synthesized census database with 100 million records and
hundreds of keywords per record and a multi-million webpage
collection that includes Wikipedia as a subset. Moreover, we
report on an implementation that uses the dynamic SSE schemes
developed here as the basis for supporting recent SSE advances,
including complex search queries (e.g., Boolean queries) and
richer operational settings (e.g., query delegation), in the above
terabyte-scale databases.

I. INTRODUCTION

BACKGROUND. Searchable symmetric encryption (SSE) al-
lows one to store data at an untrusted server and later search
the data for records (or documents) matching a given keyword
while maintaining privacy. Many recent works [3]–[5], [7], [9],
[14], [15], [17], [19], [21] studied SSE and provided solutions
with varying trade-offs between security, efficiency, and the
ability to securely update the data after it has been encrypted
and uploaded. These constructions aim at practical efficiency,
in contrast to generic cryptographic tools like homomorphic
encryption or multiparty computation which are highly secure
but not likely to be efficient in practice.

Large data sizes motivate storage outsourcing, so to be
useful an SSE scheme must scale well. Existing SSE schemes
employ only symmetric cryptography operations and standard

data structures and thus show potential for practical effi-
ciency, but obstacles remain. While most constructions have
theoretically optimal search times that scale only with the
number of documents matching the query, the performance of
their implementations on large datasets is less clear. Factors
like I/O latency, storage utilization, and the variance of real-
world dataset distributions degrade the practical performance
of theoretically efficient SSE schemes. One critical source of
inefficiency in practice (often ignored in theory) is a complete
lack of locality and parallelism: To execute a search, most prior
SSE schemes sequentially read each result from storage at a
pseudorandom position, and the only known way to avoid this
while maintaining privacy involves padding the server index
to a prohibitively large size.

CONTRIBUTIONS. We give the first SSE implementation that
can encrypt and search on datasets with tens of billions
of record/keyword pairs. To design our scheme, we start
with a new, simple, theoretical SSE construction that uses a
generic dictionary structure to already achieve an asymptotic
improvement over prior SSE schemes, giving optimal leakage,
server size, search computation, and parallelism in search. This
starting point can be seen as a generalization and simplification
of the more ad-hoc techniques of [3]. We show how to make
the scheme dynamic, meaning that the data can be changed
after encryption: Our scheme can easily support additions to
the data, as well as deletions via revocation lists.

Because the scheme uses a generic dictionary that itself
has no security properties, it allows for several extensions and
modifications with only small changes to the security proofs.
In particular, our implementation effort showed that disk I/O
utilization remained a bottleneck which prevented scaling; so
we extend our basic construction to improve locality and
throughput. These extensions preserve privacy with slightly
different leakages that we analyze with formal security proofs.
Below we describe the techniques behind results in more detail,
starting with the new theoretical scheme that we extend later,
and then compare our results to prior work.

BASIC CONSTRUCTION. Our scheme is very simple (see
Figure 2): It associates with each record/keyword pair a pseu-
dorandom label, and then for each pair stores the encrypted
record identifier with that label in a generic dictionary data
structure. We derive the labels so that the client, on input
a keyword to query, can compute a keyword-specific short
key allowing the server to search by first recomputing the
labels, then retrieving the encrypted identifiers from the dic-

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23264

tionary, and finally decrypting the matching encrypted record
identifiers. The only information leaked to the server by the
encrypted index (other than the indexes of records matching a
query) is the number of items in the dictionary, i.e. the number
of record/keyword pairs in the data. This scheme is easy to
implement correctly (and with parallel searching) because we
make no security demands on the dictionary thus allowing
instantiations as applications demand.

EXTENSIONS FOR EXTERNAL STORAGE. To compute the
results of a keyword search with r matches, our basic scheme
requires r retrievals from the dictionary for pseudorandom
labels. Assuming O(1) cost of a dictionary retrieval, this is
asymptotically optimal. However, in implementations this will
be far from optimal when the dictionary is stored in external
memory (i.e., a block device like a HDD), because each
random-looking retrieval will generate a disk read. This is in
contrast to a plaintext system which could store all of the
matches in a single contiguous area of memory.

In view of this reality we extend our scheme to use external
storage more carefully while maintaining privacy. We first
show how to securely “pack” related results together via a
padding strategy to reduce the number of dictionary retrievals.

We found that even this modification was too slow for
the datasets we targeted, and in particular we noticed that
real data-sets exhibit extreme variability in the number of
matches for a keyword: There were typically many keywords
matching very few documents, then some keywords matching a
significant fraction of the entire database. Our padding strategy
thus becomes unsatisfactory because the (many) keywords
matching only a few results create a lot of padding, and the
searches that return a large number of results still trigger a
large number of dictionary retrievals.

To address this we introduce further modifications that
replace dictionary reads with array reads when processing large
numbers of results. These modifications result in a slightly
different, but intuitively acceptable (and perhaps even better)
leakage profile that we discuss below.

EXTENSION FOR UPDATES. We observe that our scheme easily
extends to allow for additions to the data after it has been
uploaded. We only have to arrange that the client can compute
the labels for the new data to be added, which it sends to the
server for to be added to the dictionary. This requires either
client state or communication proportional to the total number
of keywords ever added or deleted. To support deletions we
maintain a (pseudorandom) revocation list at the server that
allows to filter out results that should be deleted; To actually
reclaim space we must re-encrypt periodically.

OTHER APPLICATIONS. Recent constructions of SSE support-
ing more complex queries [3] and multi-client settings [13]
use SSE as a black-box. Thus our data structures and asso-
ciated operations (including support for dynamic databases)
are readily available to support terabyte-scale databases in
these much richer/complex encrypted-search settings (see end
of Section II).

IMPLEMENTATION. Our implementation remains efficient on
two orders of magnitude larger datasets than the most scalable

previous work [3], resulting in the first implementation of
SSE on terabyte-scale databases containing tens of billions
of indexed record/keyword pairs. We report on our prototype
design and experimental results in Section V.

COMPARISON TO PRIOR WORK. In Figure 1 we compare our
basic theoretical scheme to prior work. The basic scheme
Πbas generalizes and greatly simplifies an approach implicit
in [3], which complicated the analysis by demanding security
properties of the underlying data structures.

For a database with N record/keyword pairs, our basic
scheme Πbas produces an encrypted index of optimal size
O(N), leaks only the size N and the matching record id’s,
and processes a search with r results in optimal O(r) time,
assuming O(1)-cost for dictionary retrievals. Searching is
trivial to parallelize with any number of processors.

Most prior schemes leak additional information, like the
number of unique keywords, the size of the largest number
of matches for a keyword, and so on. Some of these works
also pad their encrypted indexes to be (worst-case) quadratic
in their input size, which is totally impractical for large
datasets. A notable issue with most prior work was a difficulty
with parallelism: Other than [3], parallel searching was only
achieved by two works that needed quadratic padding. Works
like [7] required walking through an encrypted linked list and
were not parallelizable at all. See the “Ind Leak”, “Index Size”,
and “Search Time” columns in Figure 1.

The only prior dynamic schemes either had an impracti-
cally large index [14] or leaked the structure of the added
documents [15], meaning that the server learned, say, the
pattern of which keywords appear in which documents as they
are added, which is a severe form of leakage compared to the
usual SSE leakage of facts like the total database size. Our
dynamic extension maintains the optimal index size and only
leaks basic size information (and not document structure, as
in [15]). Unlike prior dynamic schemes, ours does not reclaim
space after each deletion - rather, we envision applications
where deletions are relatively rare or, more generally, where
a periodic complete re-encryption of the data is performed
(re-encryption may be desirable to mitigate the leakage from
updates with any dynamic SSE scheme).

MORE ON RELATED WORK. The notion of SSE we consider
has its origins in work by Song, Wagner, and Perrig [19].
Several schemes since have improved upon the security and
efficiency offered by the original schemes. The most similar
to our construction is that of Chase and Kamara [5], and Cash
et al [3]. Chase and Kamara also uses a dictionary, but in
a different way and with an impractical level of padding for
large datasets. Cash et al implements a scheme similar to our
basic construction, but do not address updates nor, as we show
in Section V-E, does their approach achieve the same level of
practical scalability.

There is also a related line of work on searchable public-
key encryption starting with [2], all of which do not scale
due to linear-time searching. The version of SSE we deal
with inherently leaks the identifiers of documents that match a
query, as well as when a query is repeated. It is possible to hide
even this information using private information retrieval [6] or
oblivious RAM [10]. Several recent improvements to oblivious

2

Scheme Security Ind Leak Dyn.? Dyn Leak Index Size Search Time/Comm Dyn. Comm

CGKO’06-1 [7] NonAd m,N No — O(N +m) O(r), O(1) —
CGKO’06-2 [7] Ad Mn No — O(Mn) O(r), O(r) —

CK’10 [5] Ad m,n,M No — O(Mn) O(r), O(r) —
LSDHJ’10 [21] Ad m,n Yes no proof O(mn) O(m), O(1) O(|Wid|)

KO’12 [17] Ad(UC) n,M No — O(Mn) O(r), O(1) —
KPR’12 [15] Adro m,N Yes EP(Wid) O(N +m) O(r), O(1) O(|Wid|)
KP’13 [14] Adro m,n Yes minimal O(mn) O((r logn)/p), O(1) O(|Wid|+m logn)

Basic (Πbas here) NonAd,Adro N No — O(N) O(r/p), O(1) —
Basic Adp (Πro

bas
here) Ad N No — O(N) O(r/p), O(r) —

Basic Dyn (Πdyn
bas

,Πdyn,ro
bas

here) NonAd,Adro N Yes minimal O(N) O((r + dw)/p), O(1) O(|Wid|+m logn)

Fig. 1. Comparison of some SSE schemes. Many leakages can be replaced by upper bounds and some search times assume interaction when the original
paper was non-interactive. Legend: In security, “Ad” means adaptive security, Adro means adaptive security in the random oracle model, and NonAd means
non-adaptive security. Ind Leakage is leakage from encrypted database only. Search comm. is the size of the message sent from client (O(r) from the server
is inherent.) ro means random oracle model, n = # documents, N =

∑

w
|DB(w)|, m = |W|, M = maxw |DB(w)|, r = |DB(w)| for the query w, p = #

processors, |Wid| = # keyword changes in an update, EP(Wid) = structural equality pattern of changed keywords (see discussion at the end of Section IV), dw
= the number of times the searched-for keyword has been added/deleted.

RAM move it further towards practicality [11], [20], but it is
far from clear that they are competitive with SSE schemes
at scale as one must implement the plaintext searching as an
abstract RAM program and then run this program underneath
the ORAM scheme without leaking information, say, via
timing.

ORGANIZATION. Preliminary definitions are given in Sec-
tion II. Our non-dynamic (i.e., static) SSE constructions are
given in Section III, and the dynamic extensions are given
in Section IV. Finally we report on our implementation in
Section V.

II. DEFINITIONS AND TOOLS

The security parameter is denoted λ. We will use the
standard notions of variable-input-length PRFs and symmetric
encryption schemes (c.f. [16]). For these primitives we make
the simplifying assumption that their keys are always in
{0, 1}λ, and that key generation for the encryption scheme
picks a random key. Some of our constructions will be ana-
lyzed in the random oracle model [1], with the random oracle
denoted H .

Our constructions will use a symmetric encryption scheme
that is assumed to have pseudorandom ciphertexts under
chosen-plaintext attack, which we call RCPA security. For-
mally, this says than an adversary cannot distinguish an oracle
returning encryptions of chosen messages from one returning
a random string with length equal to a fresh ciphertext for the
chosen message.1

SSE SCHEMES. We follow the formalization of Curtmola et
al. [7] with some modifications discussed below. A database
DB = (idi,Wi)di=1 is a list of identifier/keyword-set pair-
swhere idi ∈ {0, 1}λ and Wi ⊆ {0, 1}∗. When the DB under

consideration is clear, we will write W =
⋃d

i=1 Wi. For a
keyword w ∈ W, we write DB(w) for {idi : w ∈ Wi}.
We will always use m = |W| and N =

∑

w∈W
|DB(w)|

to mean the number of keywords and the total number of
keyword/document matches in DB.

1Our constructions can be proved secure assuming a type of key anonymity
property, but RCPA is simpler and is anyway achieved by many efficient
constructions.

A dynamic searchable symmetric encryption (SSE) scheme
Π consists of an algorithm Setup and protocols Search and
Update between the client and server, all fitting the syntax
below. We assume that the server is deterministic, and that
the client may hold some state between queries. A static SSE
scheme is exactly the same, but with no Update protocol.
Setup takes as input a database DB, and outputs a secret key
K along with an encrypted database EDB. The search protocol
is between a client and server, where the client takes as input
the secret key K and a query w ∈ {0, 1}∗ and the server takes
as input EDB and the server outputs a set of identifiers and the
client has no output. In the Update protocol the client takes
as input a key K, an operation op ∈ {add, del, edit+, edit−},
a file identifier id, and a set Wid of keywords. These inputs
represent the actions of adding a new file with identifier id
containing keywords Wid, deleting the file with identifier id,
or add/removing the keywords in Wid from an existing file. At
the end of the Update, the server outputs an updated encrypted
database, and the client has no output.

We say that an SSE scheme is correct if the search protocol
returns the (current) correct results for the keyword being
searched (i.e., DB(w)), except with negligible probability.
(More precisely, this should hold for every database DB, after a
polynomially unbounded number of updates. We defer details
to the full version.) To simplify the formalism we ignore the
case where the client attempts to add a file with an existing
identifier or delete/edit with an identifier that is not present
in DB. Our protocols (and implementations) can handle these
cases cleanly.

DISCUSSION. For simplicity our formalization of SSE does
not model the storage of the actual document payloads. The
SSE literature varies on its treatment of this issue, but in all
cases one can augment the schemes to store the documents
with no additional leakage beyond the length of the payloads.
Compared to others we model also modifications of documents
(edit+, edit−) in addition to add and delete of complete doc-
uments (add, del) as this can lead to more efficient protocols
with reduced leakage.

The correctness definition for SSE requires the server to
learn the ids of the results. One could define correctness to
require the client to learn the ids instead. The two approaches
are essentially equivalent assuming that encrypted documents

3

are of fixed length.

SECURITY. Security [5], [7], [15] follows the real/ideal simula-
tion paradigm and is parametrized by a leakage function L that
describes what a secure protocol is allowed to leak. Formally,
L is a stateful party in an ideal security game, which is defined
below.

Definition 1: Let Π = (Setup, Search,Update) be a dy-
namic SSE scheme and let L be a leakage function. For
algorithms A and S, define games Real

Π
A(λ) and Ideal

Π
A,S(λ)

as follows:

Real
Π
A(λ): A(1

λ) chooses DB. The game then runs (K,EDB)
← Setup(DB) and gives EDB to A. Then A repeatedly
requests to engage in the Search or Update protocols, where
A picks a client input in. To respond, the game runs the Search
or Update protocol with client input (K, in) and server input
EDB and gives the transcript to A (the server is deterministic
so this constitutes its entire view). Eventually A returns a bit
that the game uses as its own output.

Ideal
Π
A,S(λ): A(1λ) chooses DB. The game runs EDB ←

S(L(DB)) and gives EDB to A. Then A repeatedly requests
to engage in the Search or Update protocols, where A picks a
client input in. To respond, the game gives the output of L(in)
to S, which outputs a simulated transcript that is given to
A. Eventually A returns a bit that the game uses as its own
output.

Π is L-secure against adaptive attacks if for all adversaries
A there exists an algorithm S such that

Pr[Real
Π
A(λ) = 1]− Pr[IdealΠA,S(λ) = 1] ≤ neg(λ).

We define L-security against non-adaptive attacks in the same
way, except that in both games A must choose all of its queries
at the start, L takes them all as input, and S uses the output
of L to generate EDB and the transcripts at the same time.
We also obtain adaptive and non-adaptive security definitions
for static SSE schemes by disallowing adversary queries for
Update.

DATA STRUCTURES. Our constructions will employ the stan-
dard data structures of lists, arrays, and dictionaries. We
formalize a dictionary data type in detail because its syntax
is relevant to our security analyses. Below, when we say
label,data, or data structure, we mean bitstring and will treat
them as such in the analysis.

An dictionary implementation D consists of four algorithms
Create,Get, Insert,Remove. Create takes a list of label-data
pairs ("i, di)mi=1, where each label is unique, and outputs
the data structure γ. On input γ and a label ", Get(γ, ")
returns the data item with that label. On input γ and (", d),
Insert(γ, (", d)), outputs an updated data structure, that should
contain the new pair. On input γ and ", Remove(γ, ") outputs
an updated data structure with the pair removed.

We define correctness in the obvious way, i.e., the output
of Get is always the data with the (unique) label it is given
as input, and that it returns ⊥ when no data with the label is
present.

We say that a dictionary implementation is history-
independent if for all lists L the distribution of Create(L)
depends only on the members of L and not their order in the
list. The Create algorithm may be randomized or deterministic
and satisfy history-independence. This simplest way to achieve
it is to sort L first, but for large lists this will be infeasible.

We note that we only need the ability to remove data in
some limited uses of dictionaries. In all settings were we need
a very large dictionary, we can use an add-only version of the
data structure.

EXTENSIONS AND GENERALIZATION. Two works [3], [13]
showed that data structures for single-keyword SSE can be
generalized to work for more complex SSE functionalities
and models. Specifically, [3] shows how to extend SSE data
structures to perform boolean queries on encrypted data (via
the OXT protocol), and [13] further extends this functionality
to more complex multi-user SSE settings. As a result, all
the data structures in this paper, including their associated
operations, their extreme efficiency and dynamic (updatable)
capabilities, can be readily used to support these richer func-
tional settings. All that is needed is to extend the data stored in
these data structures from simple document identifiers (in the
basic SSE case) to other associated data such as an encrypted
key in the case of multi-client SSE (a key used by clients to
decrypt documents) or protocol-specific values (such as the
‘y’ value in the OXT protocol from [3]). As a consequence,
our advancement on the practicality and scale of SSE data
structures immediately translates into the ability to support
very large and dynamic databases even for functionalities as
involved as full boolean SSE search in single- and multi-client
SSE settings. We provide concrete evidence of this practical
impact in Section V-E where we report performance numbers
on query execution in these complex settings.

III. STATIC CONSTRUCTIONS

Let D = (Create,Get, Insert,Remove) be a dictionary
implementation, F be a variable-input-length PRF, and Σ =
(Enc,Dec) be a symmetric-key encryption scheme.

BASIC CONSTRUCTION. In Figure 2 we give our first and
simplest construction, denoted Πbas. To build the encrypted
database, Setup(DB) chooses a key K and uses it to derive
per-keyword keys for a PRF (to derive pseudorandom labels)
and for encryption (to encrypt the identifiers). Then for each
keyword w, it it iterates over the identifiers in DB(w). For
each identifier, it computes a pseudorandom label by applying
the PRF to a counter, encrypts the identifier, and adds the
label/ciphertext pair to a list L. After all of the results have
been processed it builds the dictionary γ from L, which
becomes the server’s index. It is important that L is sorted
by the labels before being loaded into the dictionary, or that
the dictionary satisfies history independence - Without one of
these, the scheme will leak information about the order in
which the input was processed.

To search for keyword w, the client re-derives the keys for
w and sends them to the server, who re-computes the labels
and retrieves and decrypts the results.

LEAKAGE FUNCTION. The leakage function L for our first
construction responds to an initial startup query, and to search

4

Setup(DB)

1. K
$

← {0, 1}λ allocate list L
2. For each w ∈W :

K1 ← F (K, 1‖w), K2 ← F (K, 2‖w)
Initialize counter c← 0
For each id ∈ DB(w) :

"← F (K1, c); d← Enc(K2, id); c++
Add (", d) to the list L (in lex order)

Set γ ← Create(L)
3. Output the client key K and EDB = γ.
Search
Client: On input (K,w),

K1 ← F (K, 1‖w), K2 ← F (K, 2‖w)
Send (K1,K2) to the server.

Server: For c = 0 until Get returns ⊥,
d← Get(γ, F (K1, c)); m← Dec(K2, d)
Parse and output id in each m

Fig. 2. Scheme Πbas.

queries, where its behavior is defined as follows. We describe
the interactive stateful leakage function for the adaptive defini-
tions; The non-adaptive leakage function is the obvious version
that iterates over the queries with the adaptive leakage function.
On initial input DB, L outputs N =

∑

w∈W
|DB(w)|, saves

DB and an empty list Qsrch as state. Then, for a search input
w, L increments i, adds (i, w) to Qsrch and outputs DB(w)
and a set sp(w,Qsrch), called the search pattern for w, defined
by

sp(w,Qsrch) = {j : (j, w) ∈ Qsrch}.
The search pattern indicates which other queries were also for

the keyword w, and represents the fact that our scheme will
send the same message when a search is repeated.

We deal with non-adaptive L-security first.

Theorem 2: Πbas is correct and L-secure against non-
adaptive attacks if F is a secure PRF and (Enc,Dec) is RCPA-
secure.

Proof sketch: Without loss of generality we assume an ad-
versary never repeats a query, as this obviously will not help
because our search protocol is deterministic. Correctness holds
because collisions amongst the labels produced by F occur
with negligible probability in a random function and hence
also with the PRF F . To prove non-adaptive security we must
give a simulator that takes as input the leakage output setting
up DB (which is N) as well as the leakages on each of the
queries (which are just the sets DB(wi) of identifiers matching
the i-th query, assuming all queries are unique). We need to
produce the view of the server, which is the EDB data structure
along with the messages from the client from each search.

The simulator iterates over the queries, choosing keys

Ki
1,K

i
2

$

← {0, 1}λ for the i-th query, and then for each
id ∈ DB(wi) it computes " and d as specified in the real
Setup (using Ki

1 and Ki
2 as K1 and K2), adding each of

the pairs to a list L. Then it adds random label/data pairs
to L (still maintained in lexicographic order) until it has N
total elements, and creates a dictionary γ = Create(L). The
simulator outputs EDB = γ and the transcript for the i query
is (Ki

1,K
i
2).

A simple hybrid argument shows that the simulator’s output
is indistinguishable from the real server view. The first hybrid
shows that selecting each K1,K2 at random is indistinguish-
able from deriving them from K, by the PRF security of F .
The next hybrid shows that the labels and data ciphertexts for
unqueried keywords are pseudorandom. The only subtlety is
to verify that, because the list is maintained in lexicographic
order, the relationship between the unopened result sets is not
needed. !

It is easy to prove secure (via a reduction to the above
theorem) a version of Πbas that does not maintain a sorted list
L, as long as the dictionary is history-independent.

In the random oracle model we can achieve adaptive
security for the same L if F is replaced with the random oracle
H so F (K,x) := H(K‖x), and the encryption algorithm Enc,
on inputs K,m ∈ {0, 1}λ, chooses a random r ∈ {0, 1}λ and
outputs (r,H(K‖r)⊕m). We denote this variant Πro

bas.

Theorem 3: Πro
bas is L-secure against adaptive attacks in

the random oracle model.

Proof sketch: This theorem is proved in a similar way to the
previous one, except that the simulator programs the random
oracle in response to adaptive queries to open the labeled
ciphertexts to match the query results as they are revealed.
For our version of the PRF and encryption scheme above,
the simulator can arrange for the random oracle responses to
point at random labels, and for the ciphertexts to decrypt to
the revealed results. The only defects in the simulation occur
when an adversary manages to query the random oracle with a
key before it is revealed, which can be shown to happen with
negligible in λ probability. !

ALTERNATIVE APPROACH TO ADAPTIVE SECURITY. We
sketch how to modify our protocol to achieve adaptive security
without a random oracle at the cost of extra communication.
We choose the encryption scheme for the scheme to be of the
one-time pad form e.g. CTR mode with a random IV. Now
instead of sending the keys K1 and K2, the client computes
the labels and encryption pads herself and sends them to the
server, who can retrieve the labels and perform the decryption.
In general the client will not know when to stop, but we can
either have the client retrieve a server-stored encrypted counter
first, or have the server send a “stop” message when all of
the results have been found. Note that the required additional
communication is proportional to the size of the result-set and
can overlap the disk access as well as the return of results.
Hence, the resulting scheme should perform in practice as good
as the prior schemes.

ASYMPTOTIC EFFICIENCY. The EDB consists of a dictionary
holding N =

∑

w∈W
|DB(w)| identifier/ciphertexts pairs.

Searching is fully parallelizeable if the dictionary allows
parallel access, as each processor can independently compute
F (K1, c) and retrieve/decrypt the corresponding ciphertext.

RELATION TO [5] A prior SSE scheme by Chase and Kamara
used a dictionary, but in a crucially different way. There, a
single label was associated with the entire set DB(w), and thus
security requires padding all of the result sets to the maximum
size. We instead associate one label with each result for a
keyword (so if there are T documents with a keyword, then

5

there are T independent labels in our scheme but only 1 label
in the Chase-Kamara scheme). This allows us to avoid padding
and enable parallel searching, resulting in significant storage
savings and performance gains on large datasets.

A. Efficient extensions

We give a sequence of three schemes (denoted
Πpack,Πptr,Π2lev, with names explained below) that exhibit
the techniques in our most practical Π2lev construction.

REDUCING DICTIONARY RETRIEVALS: Πpack . During a
search for w, our basic construction performs |DB(w)| re-
trievals from the dictionary, each with an independent and
random-looking tag. Even an external-memory efficient dic-
tionary will perform relatively poorly when the dictionary is
stored on disk.

Most prior schemes suffer from this drawback. To improve
locality we modify the basic construction to encrypt several
identifiers in each ciphertext. Specifically, we fix a block size
B, and when building the results list, we process B identifiers
at a time and pack them into one ciphertext d, with the
same tag. We pad the last block of identifiers up to the same
length. Searching proceeds exactly as before, except the server
decrypts and parses the results in blocks instead of individually.
We denote this variant Πpack.

This reduces the number of disk accesses from |DB(w)|
dictionary retrievals to)|DB(w)|/B*. We can prove security
against non-adaptive or adaptive attacks under the same as-
sumptions, but with the leakage function LB that starts by
outputting

∑

w∈W
)|DB(w)|/B* instead of

∑

w∈W
|DB(w)|.

We note that this leakage is incomparable to the original
leakage (see the discussion at the end of this section).

Theorem 4: Πpack is correct and LB-secure against non-
adaptive attacks if F is a secure PRF and (Enc,Dec) is RCPA-
secure.

The proof is a simple extension of the proof for the basic
construction. The essential observation is that the server only
needs to know how many of the packed blocks to create
in the encrypted index. Similar to before, we can achieve
adaptive security in the random oracle model or by increasing
communication. We defer the details to the full version.

FURTHER REDUCTION VIA POINTERS: Πptr . Πpack would be
inefficient when returning very large sets DB(w), as the server
still performs)|DB(w)|/B* dictionary retrievals. Making B
large results in too much padding when the dataset contains
many keywords only appearing in a few + B documents.

We address this tension by modifying the scheme again,
calling the new variant Πptr. Πptr packages the identifiers into
encrypted blocks of B as before, but it stores these blocks in
random order in external memory and not in the dictionary
(technically, we say they are stored in an array). The scheme
will now use the dictionary to store encrypted blocks of b
pointers to these encrypted blocks. To search, the server will
retrieve the encrypted pointers from the dictionary and then
follow them to the encrypted identifiers.

Πptr is described in Figure 3. In this scheme, the EDB con-
sists of a dictionary γ holding encrypted blocks of b pointers

Setup(DB)

1. K
$

← {0, 1}λ; allocate array A, list L
2. For each w ∈W :

Set Ki ← F (K, i‖w) for i = 1, 2
T ←)DB(w)/B*
Partition DB(w) into B-blocks I1, . . . , IT
Pad IT up to B entries if needed
Choose random empty indices i1, . . . , iT in A
For j = 0, . . . , T (store id blocks in array)

d← Enc(K2, Ij); Store A[ij]← d
T ′ ←)T/b*
Partition {i1, . . . , iT } into b-blocks J1, . . . , JT ′

Pad JT ′ up to b entries if needed
For c = 0, . . . , T ′(store ptr blocks in dict.)

"← F (K1, c) ; d′ ← Enc(K2, Jc)
Add (", d′) to L

Set γ ← Create(L)
3. Output the client key K and EDB = (γ, A).

Search
Client: On input (K,w),

K1 ← F (K, 1‖w), K2 ← F (K, 2‖w)
Send (K1,K2) to the server.

Server: For c = 0 until Get returns ⊥,
d← Get(γ, F (K1, c))
(i1, . . . , ib)← Dec(K2, d)
For j = 0, . . . , b (ignore padding indices)

m← Dec(K2, A[ij])
Parse and output ids in m

Fig. 3. Scheme Πptr.

and an array A holding blocks of B encrypted identifiers for a
given keyword, where b and B are block size parameters to be
chosen. The setup algorithm stores blocks of encrypted results
in random locations in A, and then stores encrypted pointers
to those locations in γ, with labels that allow retrieval similar
to the prior variants.

In the full version we show that this variant achieves the
security for the leakage function Lb,B which initially outputs
∑

w∈W
)|DB(w)|/B* and

∑

w∈W
)|DB(w)|/(bB)*, which are

the number of blocks in γ and A respectively, and later
leakages are just the identifiers as before.

MOST PRACTICAL VARIANT: Π2lev . In real data sets the
number of records matched by different keywords will vary
by several orders of magnitude. This presents a challenge in
optimizing our variants, and we could not find a setting of B
and b that gave an acceptable trade-off between index size (due
to padding) and search time. Small sets DB(w) still resulted in
a large block of size B in the dictionary and a large block of
size b in the array, while huge sets still required many retrievals
from the dictionary.

Thus we again modify the scheme to extend the ideas
before, calling the new variant Π2lev. The crucial difference is
that sets DB(w) can be processed and stored differently based
on their sizes, with an extra level of indirection for very large
sets that explains the name. Care must be taken to do this with
an acceptable form of leakage.

Below we describe the Πpack variant formally. At a high

6

Setup(DB)

1. K
$
← {0, 1}λ allocate list L, array A

2. For each w ∈W

Set Ki ← F (K, i‖w) for i = 1, 2
T ← $|DB(w)|/B%
If |DB(w)| ≤ b (small case: ids in dict.)

Pad DB(w) to b elements
!← F (K1, 0); d← Enc(K2,DB(w))
Add (!, d) to L

If |DB(w)| > b (medium/large cases)
Partition DB(w) into B-blocks I1, . . . , IT
Pad IT up to B elements
Choose random empty indices i1, . . . , iT in A
For j = 1, . . . , T (store ids in array)
d← Enc(K2, Ij);A[ij]← d

If T ≤ b (medium case: ptrs in dict.)
Pad {i1, . . . , iT } to b elements
!← F (K1, 0); d′ ← Enc(K2, i1‖ · · · ‖ib)
Add (!, d) to L

If b < T ≤ bB (large case: ptrs in array & dict.)
T ′ ← $T/B%
Part. {i1, . . . , iT } into b-blocks J1, . . . , JT ′

Pad JT ′ to B elements
Choose random empty indices i′1, . . . , i

′

T ′ in A
For j = 1, . . . , T ′

d← Enc(K2, Jj);A[i′j]← d
Pad {i′1, . . . , i

′

T ′} to b elements
!← F (K1, 0); d′′ ← Enc(K2, i

′

1‖ . . . ‖i
′

b)
Add (!, d′′) to L

3. γ ← Create(L)
Output the client key K and EDB = (γ, A).

Fig. 4. Setup for SSE Scheme Π2lev.

level, it works as follows. It classifies the sets DB(w) as small,
medium, or large. For small sets, it will store the identifiers
directly in the dictionary (so no pointers are used, similar to the
packed variant Πpack). For medium size sets, it will store them
as in Πptr, with a block of pointers in the dictionary and then
blocks of identifiers in the array. Finally large sets are stored
differently, with two levels of indirection: The dictionary is
now used to hold pointers that point to blocks of pointers in
the array, which point to the identifier blocks.

In Π2lev we again fix parameters b and B to be sizes of
blocks in an dictionary γ and array A respectively. The scheme
classifies each of the result sets DB(w) with |DB(w)| ≤ b as
small, sets of size b < |DB(w)| ≤ Bb as medium, and finally
sets of size Bb ≤ |DB(w)| < B2b as large. We will always
set b, B so that no set is larger than B2b.

Small sets fit completely in a block of the top-level
dictionary γ, and are stored there. Medium sets will be stored
as in the previous variant but with a single block of at most
b pointers in γ and the corresponding blocks of identifiers in
A. These sets consist of between b+ 1 and bB identifiers.

Finally, for large sets we store a block of at most b pointers
in γ. In each of the b positions pointed to in A, we store another
block of at most B pointers to other positions in A. Finally,
these pointers point to blocks of encrypted identifiers. Figure 4
describes the Setup(DB) function of Π2lev in more detail.

To search, the client works as with the other variants by
sending K1,K2. The server computes the label "← F (K1, 0),
and retrieves d ← Get(γ, "), and decrypts d using K2. If it

finds identifiers here, then it outputs them and stops. Other-
wise, it uses the pointers to retrieve blocks from A. If those
blocks contain identifiers then it outputs them. Otherwise it
follows the next level of pointers to finally find the identifiers,
which it decrypts and outputs.

SECURITY. We prove security for the leakage function Lm,b,B

that initially outputs m = |W| and the value

S =
∑

w:|DB(w)|>b

)|DB(w)|/B*+
∑

w:|DB(w)|>bB

⌈

|DB(w)|/B2
⌉

.

The value m is the number of data items in γ, and the value S
is the number of blocks in A. This is leaking S itself, which is
defined by the above sum, and not the individual summands,
resulting leakage that is incomparable to our other variants and
to prior schemes. On search queries L has the same leakage
as before.

Theorem 5: Π2lev is correct and Lm,b,B-secure against
non-adaptive attacks if F is a secure PRF and (Enc,Dec) is
RCPA-secure.

We can prove adaptive security either in the random oracle
model or by increasing communication. We defer this simple
extension to the full version.

POINTERS VS. IDENTIFIERS. Although pointers are smaller
than identifiers in our implementations, Π2lev packs the same
number of pointers or identifiers together (b in the dictionary,
or B in the array) to simplify the presentation. The actual im-
plementation packs more pointers into a block than identifiers.
Formally, we introduce parameters b′, B′, and modify Π2lev as
follows.

• When storing identifiers in the dictionary (in the small
case), it packs up to b of them together, but when storing
pointers there it packs b′ in the same amount of space.

• When storing identifiers in the array (in the medium and
large cases), it packs up to B of them together, but when
storing pointers there it packs B′ together in the same
amount of space.

This causes an analogous change to the value S leaked, which
can be calculated similarly. We defer the formal analysis
(which is almost identical to that of Π2lev) to the full version.

LEAKAGE DISCUSSION. The leakage functions
LB ,Lb,B ,Lm,b,B are non-standard. First consider LB , and
how it compares to L which outputs N =

∑

w∈W
|DB(w)|.

Any input DB with m unique keywords, each with
|DB(w)| ≤ b, will be indistinguishable under LB , but
many of them will not be under L. A similar incomparability
goes in the other direction. We are not aware of a scenario
where this difference is important for reasonably small B.
The function Lb,B leaks strictly more information than LB

(actually Lb), but it also does not appear to be harmful.
Finally, Lm,b,B leaks this type of size information and the
number of keywords m. The number m seems to be the
most useful information for an adversary, but in prior work it
has been considered acceptable. It is possible to modify the
scheme to avoid leaking exactly m, say by storing blocks of
a different size in the dictionary.

7

IV. DYNAMIC CONSTRUCTIONS

We extend our static SSE constructions to support changes
to the database. Our dynamic SSE constructions will consist of
a statically encrypted database EDB using any of the schemes
described above, and an auxiliary encrypted database EDB+

which is maintained to be of the form of a basic dictionary-
based scheme. The EDB+ is initially empty and changes as
updates happen.

ADD-ONLY SCHEME: Π+
bas . We start with an extension of

Πbas, denoted Π+
bas that supports additions only, meaning

add, edit+ inputs from the client during Update. Π+
bas is

simpler and possibly interesting in its own right.

To support additions we use a dictionary γ+ which is
initially empty and to which a pair (", d) is added with each
keyword addition; here " is a label computed from the keyword
and a keyword-specific counter, and d is the encryption of
the record id involved in the addition operation. Search for a
keyword w is performed by the server by first searching γ as
in the static case, then re-computing all labels corresponding
to w in γ+. The latter labels are computed using a w-specific
key provided by the client and a running counter.

Note that addition operations involving keyword w require
the client to know the current value of the w-specific counter.
For this, the scheme maintains a dictionary δ associating
each keyword that was ever added via edit+ or add with its
current counter value. δ can be stored at the client or stored
at the server and retrieved by the client for performing update
operations. We formalize a scheme Π+

bas where the client stores
locally the dictionary δ and discuss below a stateless variant.
We assume throughout that the client never tries to add a
record/keyword pair that is already present - it is easy, but
messy, to extend our scheme and the leakage profile to handle
this.

In Π+
bas, Setup(DB) is exactly as in Πbas except that the

client also initializes δ to be an empty dictionary and keeps it
as state, and the server initializes an empty dictionary γ+ that
is stored with EDB. We next give the update protocol.

Update: We only specify the protocol with client input op ∈
{add, edit+}. The parties work exactly the same on either
type of operation. The client has input id,Wid. It starts by
deriving key K+ ← F (K, 3)2, and proceeds as follows:
For w ∈Wid:

Set K+
1 ← F (K+, 1‖w), K+

2 ← F (K+, 2‖w).
c← Get(δ, w); If c = ⊥ then c← 0
Set "← F (K+

1 , c) ; d← Enc(K+
2 , id)

c++ ; Insert (w, c) into δ
Add (", d) to L in lexicographic order

Send L to the server.

When inserting (w, c) into δ, we assume that it will overwrite
any previous entry (w, ·) if it exists.

Finally, the server adds each (", d) ∈ L to γ+. This
completes the update protocol.

To complete Π+
bas we describe the protocol Search.

2We use input 3 for domain separation to K+ make independent of each
keyword-specific K1 = F (K, 1‖w) and K2 = F (K, 2‖w).

Search: On input w, the client sets K+ ← F (K, 3) and
proceeds:

K1 ← F (K, 1‖w),K2 ← F (K, 2‖w)
K+

1 ← F (K+, 1‖w),K+
2 ← F (K+, 2‖w)

Send (K1,K2,K
+
1 ,K+

2) to the server.

Upon receiving the message, the server computes its output as
follows:

For c = 0 until Get returns ⊥,
d← Get(γ, F (K1, c)) ; m← Dec(K2, d)
Parse and output id in each m

For c = 0 until Get returns ⊥,
d← Get(γ+, F (K+

1 , c)) ; m← Dec(K+
2 , d)

Parse and output id in each m.

Intuitively, the server is repeating the search procedure from
Πbas twice: Once with (K1,K2) and γ, and then with
(K+

1 ,K+
2) and γ+.

LEAKAGE PROFILE FOR Π+
bas . Let us first give some intuition

for the leakage of Π+
bas. Initially the leakage is exactly like

Πbas, where only the size of DB is leaked. Upon an edit+ or
add query, if the keywords being added were not previously
searched for, then the server learns nothing other than number
of record/keyword pairs added (not even the if the operation
was edit+ vs. add). If, however, one (or more) of the keywords
were previously searched for, then the server can reuse its keys
from before to detect the presence of these keywords (this type
of leakage is inherent when the keys provided to the server for
searching are deterministically generated and the same each
time). The leakage on a search is similar to before, except
now for record/keyword pairs in γ+ the server can recognize
when they were added. The order for pairs in γ generated at
setup time is still hidden, however.

We proceed with the formal definition of L+ for adaptive
security. Amongst its state, it will keep a list Q describing
all queries issued so far, where an entry of Q is of the form
(i, op, . . .), meaning a counter, the operation type, and then the
one or more inputs to the operation.

On initial input DB, L+ creates a state consisting of a
counter i← 0, an empty list Q and DB, and a set ID initialized
to contain all of the identifiers in DB. Let us define the search
pattern sp(w,Q) of a keyword with respect to Q to be the
indices of queries that searched for the keyword w, i.e.

sp(w,Q) = {j : (j, srch, w) ∈ Q}.

For an identifier id and keyword w, the add pattern of id, w
with respect to Q is the indices that added w to the document
id, i.e.

ap(id, w,Q) = {j : (j, add, id,Wid) ∈ Q,w ∈Wid}

∪ {j : (j, edit+, id,Wid) ∈ Q,w ∈Wid}.

Finally, we let the add pattern of keyword w with respect to Q
and ID be the set of all identifiers to which w was ever added
(via a add or edit+ operation) along with the indices showing
when they were added. That is,

AP(w,Q, ID) = {(id, ap(id, w,Q)) : id ∈ ID, ap(id, w,Q) -= ∅}.

8

L+ produces outputs for the initial query, edit+ and add
updates, and search queries as follows:

• On initial input DB it saves state as defined above and
outputs N =

∑

w∈W
|DB(w)|.

• For a search query w, L+ appends (i, srch, w) to Q
and increments i. Then it outputs sp(w,Q), DB(w), and
AP(w,Q, ID).

• Update queries for edit+ and add operations are han-
dled similarly. For a query (edit+/add, id,Wid), L

+ first
appends (i, edit+/add, id,Wid) to Q, adds id to ID, and
increments i. It outputs |Wid| and the (lexicographically
ordered) set of search patterns

{sp(w,Q) : w ∈Wid}.

If any of the search patterns was non-empty, then it also
outputs id.

While subtle in its formulation, L+ is essentially the best
possible leakage for an SSE scheme that generates the same
search keys on repeated searches.

In words, the search query leakage includes sp(w,Q)
and DB(w) for obvious reasons. The add pattern of w,
AP(w,Q, ID), is the set of id matching w added later along
with “history” information ap(id, w,Q) indicating when they
added. The order information represents that the server can
look at γ+ and see when each id was added by rewinding and
re-running searches. For updates Π+

bas leaks only the size of the
update if the added keywords have not been searched for. If
any of them have been searched for, then the server learns that
“a keyword with search pattern sp(w,Q) was added” via the
set of search patterns in the update leakage. Finally it learns
the id being updated because it has the ability to search for
any of its keywords. Each of these leakage components is
unavoidable for a deterministic SSE scheme, and we regard
them as minimal.

We can now state our security for the add-only scheme. A
proof will appear in the full version.

Theorem 6: Π+
bas is correct and L+-secure against non-

adaptive attacks if F is a secure PRF and (Enc,Dec) is RCPA-
secure.

STATELESS CLIENT VARIANT. Above, the client keeps a dic-
tionary δ containing one counter per keyword that is added
after initialization. We could modify the scheme so that the
client is stateless by storing δ in encrypted form at the server
and having the client download and re-encrypt all of δ for each
update (note that the size of δ is as the number of distinct
keywords added via add and edit+ and not the total number
of keywords in the set W). In this variant the server will learn
how many new keywords are added each time by watching if
δ grows. We leave a formal version of this scheme to the full
version.

DYNAMIC SCHEME Πdyn
bas . We now augment the Πbas scheme

with del and edit− operations to obtain our fully dynamic
scheme Πdyn

bas . We will implement deletions by maintaining a
revocation list and having the server discard results that have
been revoked.

To delete a record/keyword pair (id, w) from the server’s
storage, the client will generate a pseudorandom revocation
identifier and send it to the server. During searches, the client
will give the server a key that allows it to recompute revocation
identifiers, which it will then use to filter out deleted results.
This complicates our addition protocols. To add a pair that was
previously deleted, the protocol must “unrevoke” that pair by
having the server delete its revocation identifier.

We now formally specify Πdyn
bas . Setup is exactly the same

as Π+
bas, except that the server also initializes an empty set

Srev. As a data structure, Srev will support additions, deletions,
and membership testing.

Update: We first describe how to handle client inputs

with op ∈ {del, edit−}. The client takes as input
(del/edit−, id,Wid), and first derives a key K− = F (K, 4)3,
and then computes

For w ∈Wid do
K−

1 ← F (K−, w), revid← F (K−
1 , id)

Add revid to Lrev in lexicographic order
Send Lrev to the server.

The server receives Lrev and adds each revid to Srev. This
completes Update for the del and edit− operations.

Next we define Update for op ∈ {add, edit+}. On input
(add/edit+, id,Wid), the client performs a computation similar
to the list L computation in Π+

bas, except that it also includes
the appropriate revid values. It then awaits a response from the
server specifying which additions resulted in a true addition
and which caused an “unrevocation”, and uses this information
to increment the correct counters.

In code, the client sets K− ← F (K, 4) and does the
following:

For w ∈Wid:
K+

1 ← F (K+, 1‖w) ; K+
2 ← F (K+, 2‖w)

K−
1 ← F (K−, w)

c← Get(δ, w); If c = ⊥ then c← 0
"← F (K+

1 , c) ; d← Enc(K+
2 , id)

revid← F (K−
1 , id)

Add (", d, revid) to L in lexicographic order
Send L to the server.

The server generates its response r ∈ {0, 1}|L| as follows.
For the i-th pair (", d, revid) ∈ L in order, if revid ∈ Srev, it
sets the i-th bit of r to 1 and deletes revid from Srev. Else, it
clears that bit to 0 and adds (", d) to γ. Finally, it sends r to
the client.

Now the client increments the counters for keywords corre-
sponding to 0 bits in r. It processes the keywords w ∈Wid in
order of their labels in L. For the i-th keyword w in that order,
if the i-th bit of r is 0 it computes c← Get(δ, w), increments
c, and inserts (w, c) into δ. This completes the update protocol.

The last component of Πdyn
bas is the search protocol.

Search: On client input w, it sets K− = F (K, 4),K−
1 =

F (K−, w), and then computes (K1,K2,K
+
1 ,K+

2) as in Π+
bas.

3As with K+ the input 4 is for domain separation only.

9

It sends (K1,K2,K
+
1 ,K+

2 ,K−
1) to the server. The server

computes the result identifiers using the first four keys exactly
as in Π+

bas, except before outputting each id it computes
revid = F (K−

1 , id) and tests if revid ∈ Srev. If so, it discards
id instead of outputting it.

LEAKAGE FUNCTION. We now define the leakage profile
Ldyn. It will maintain a list of query information Q and set
of identifiers ID like L+ from above. Below we use the same
definitions for sp, ap,AP as in L+, and define the following
analogous patterns dp,DP for deletions:

dp(id, w,Q) = {j : (j, del, id,Wid) ∈ Q,w ∈Wid}

∪ {j : (j, edit−, id,Wid) ∈ Q,w ∈Wid}.

and DP(w,Q, ID) =

{(id, dp(id, w,Q)) : id ∈ ID, dp(id, w,Q) -= ∅}.

Intuitively, dp(id, w,Q) is the set of indices of queries that
deleted w from id, and DP(w,Q, ID) is the set of identifiers
form which w was deleted, along with the corresponding
deletion pattern.

• On first input DB, Ldyn initializes a counter i← 0, empty
list Q, set ID to be identifiers in DB. It saves DB, i, ID, Q
as state, and outputs N =

∑

w∈W
|DB(w)|.

• On search input w, Ldyn appends (i, srch, w) to Q, in-
crements i, and outputs sp(w,Q), DB(w), AP(w,Q, ID),
and DP(w,Q, ID).

• On update input (add/edit+, id,Wid), it appends
(i, add/edit+, id,Wid) to Q, adds id to ID, and increments
i. It outputs add, |Wid| and the set

{(sp(w,Q), ap(id, w,Q), dp(id, w,Q)) : w ∈Wid}.

Finally, if any of the sp(w,Q) are non-empty, then it also
outputs id.

• On update input (del/edit−, id,Wid), it appends
(i, del/edit−, id,Wid) to Q, adds id to ID, and increments
i. Then it computes its output exactly as in the add/edit+

case above, except that it outputs del instead of add as
the first component.

The leakage on searches is minimal: It consists of all patterns
of searches, deletions, and additions that can be derived once
the server has the ability to search for a keyword and rewind
the database. For leakage on updates, the server will learn
when/if that identifier has had the same keywords added or
deleted before, and also when/if the same keywords have been
searched for. This comes from observing the revid values,
which will repeat every time the same identifier/keyword
pair is added or deleted. Note that, if same keyword is
added/deleted from two documents, then this information is
not leaked until it is searched for (contrast this with [14] which
leaks this information always).

We prove the following theorem, as well as an adaptive
variant, in the full version.

Theorem 7: Πdyn
bas is correct and Ldyn-secure against non-

adaptive attacks if F is a secure PRF and (Enc,Dec) is RCPA-
secure.

ASYMPTOTIC ANALYSIS. To add a file the client sends one
label/ciphertext/revid per record/keyword pair being changed.
For deletions, the δ dictionary is not involved. The client
just sends one revid per document/keyword to be deleted.
Assuming the dictionaries γ, γ+, and the revocation list are
fully read-parallel, and the number of deletions is much smaller
than the size of the EDB, each search operation continues to
have the same order run-time complexity as in the basic static
construction of Figure 2.

DISCUSSION AND COMPARISON TO PRIOR WORK. Our
scheme Πdyn

bas is unsatisfying in some situations as it does
not reclaim space after deletions. While this is a drawback,
all known dynamic SSE schemes [14], [15], [21] have se-
vere drawbacks in different dimensions, and no scheme has
achieved an ideal combination of leakage, index size, and full
functionality like reclaiming space.

The scheme of [21] has no security proof, and the scheme
of [14] has a worst-case quadratic size encrypted index.
The dynamic scheme in [15] has much more leakage than
our scheme, effectively leaking the pattern of all intersec-
tions of everything that is added or deleted, whether or not
the keywords were searched for. For an example, suppose
{w1, w2, w3} are added to id1, {w1, w2} are added to id2,
and {w1} is added to id3. Then [15] will leak that exactly one
common keyword was added to all three and that exactly two
common keywords were added to the first two (but not the
third) and so on. This structural “equality pattern” is the sort
of leakage that we do not leak.

Not reclaiming space allows our implementations to be
much simpler and also gives us the flexibility to apply various
efficiency optimizations (as in section III A) to the static
scheme which seem hard to achieve when in-place updates
have to be supported. As our data structures are more compact
than prior work, the overall space requirements will be lower
anyway for some number of deletes. In particular, as compared
to prior work [14] we are not forced to estimate an upper bound
(by necessity, conservative) on the maximum database size.

In some settings where SSE is used as a component, the
encrypted database is re-encrypted for security reasons [13]. In
these settings we can reclaim space and combine the auxiliary
data structure with the main static data structure while re-
encrypting.

APPLICATION TO Πptr,Πpack,Π2lev . The dynamic extensions
to Πbas can be applied as-is to other variants, resulting in
almost the same leakage Ldyn. The only difference is the size
leakage in the initial input DB, which changes according to the
different schemes. In our implementation in the next section
we consider these variants.

V. IMPLEMENTATION

We report on our implementations of Π2lev and Πpack

(described in Section III), with extensions for dynamic data
updates (Section IV). The former scheme is the most efficient
and scales to the largest datasets; it represents our current
prototype. The latter is a simplification of the original OXT
implementation which we introduced in [3] and is discussed
here to better illustrate the effectiveness of the ideas in Π2lev

and the improvement over prior work.

10

PRACTICAL CRITERIA. Before describing our results, we
enumerate some of the practical criteria that we optimize for
in the Π2lev prototype.

• Parallel EDB access: The server should be able to issue
concurrent access requests to EDB when processing a
search. Modern disk controllers handle thousands of
concurrent requests and optimize disk access patterns,
increasing transfer bandwidth by orders of magnitude
when compared with sequential access. Requests are
served out-of-order but the performance benefits offset
the additional implementation complexity.

• EDB goodput: EDB design should maximize I/O good-
put, i.e., the ratio of data used by the processing of a query
relative to the total amount of data retrieved from external
storage. In addition to selecting an appropriate dictionary,
we achieve this by setting the parameters b, b′, B,B′ in
Π2lev to take maximum advantage of the block device.

• Small EDB storage: The dictionary used in EDB should
minimize storage overhead while satisfying the other
constraints.

• Lightweight EDB updates: Update information will be
independent from the EDB and implemented in-memory.
This is consistent with our envisioned scenarios where
updates are either infrequent or periodically folded into
the main data structure via re-encryption of the entire
database.

INPUT DATASETS. Our implementation accepts as input both
relational databases and document collections. The latter are
mapped to relational database tables with document attributes,
such as author name, creation date, etc., stored in atomic
columns and with the document content stored in a text
column.

We target clear-text datasets (DBs) that consist of several
tens of billions of distinct (keyword, id) pairs. The EDBs
generated from such datasets take several terabytes of storage
and require several times more temp storage for Setup. We aim
to process such datasets efficiently (Setup(DB) and Search)
on medium size 64-bit x86 platforms (in our configuration, 8
cores, 96GB of RAM, and ≈ 100TB RAID volume on external
storage box).

The constructions described in this paper and their im-
plementations can be extended to support richer functional
settings than simple keyword search, such as SSE in multi-
client settings or boolean queries via the OXT protocol [3] (see
end of Section II), by storing in the EDB for each (keyword,
id) pair more data than just the encrypted document id. In
the following, we use the term tuple for the data stored per
(keyword, id) pair in any of these functional settings.

ORGANIZATION. The next two subsections describe our ex-
periences with the Πpack prototype, which is the subset of
the OXT implementation [3] relevant to this work, and the
design and implementation of our Π2lev (see Figure 4). A
particular challenging issue for both prototypes was EDB gen-
eration time; the Setup implementation for Π2lev is discussed
separately in Section V-C. Section V-D describes how these

constructs are used to support richer functional settings, such
as OXT. Finally, Section V-E describes several representative
experiments.

A. Πpack Implementation

The discussion of the Πpack implementation here is in-
tended as a preamble to our presentation of Π2lev in the
next subsection as it serves to motivate the optimizations
applied to the latter construction. Our implementation of Πpack

instantiates the EDB dictionary using a bucket hash table.
Buckets are split in equal-size locations, which are used to
store equal-size groups of tuples created by partitioning the
DB(w) sets. The location size is equal to the group size plus
the size of the attached label. Each group can be stored in any
of the free locations in the bucket determined by hashing its
label. As usual, the hash map is over-sized to allow for all
groups to be placed successfully; empty locations are filled
with random bits to mask the total number of groups in the
EDB.

Using a bucket hash for the dictionary allowed us to avoid
sorting the tuples by label (as required for security) before
creating the dictionary. This worked by ensuring the dictio-
nary is history independent, meaning the output of Create(L)
depends only on the members of L and not on the order they
were added to L.

The bucket hash table is stored in one large file on an ext4
RAID partition of attached storage. The bucket size is set to
a multiple of the RAID stripe size4, and buckets are aligned
with the pages of the underlying file system.

The two most significant drawbacks with the above con-
struction are the need for oversizing the hash table, which
translates into a much larger EDB than needed, and the poor
goodput, as one have to retrieve an entire bucket to access a
group of tuples. In experiments with configurations and data
sets similar to those described in [3], the hash table has a load
factor of ≈ 60% (i.e., over-sized by a factor of ≈ 1.6) for the
placement to be successful, and goodput is ≈ 1%, as there are
96 locations per bucket.

To achieve a higher load factor (smaller EDB), we built
another Πpack prototype which uses a Cuckoo Hash (CH)
table modeled after [8] for the dictionary; page size and
alignment are the same as for the bucket hash dictionary in
the previous construction. Although we achieve load factors a
little over 90%, the cost of handling collisions during EDB
generation is very high. Moreover, making the dictionary
history independent is much more difficult when using a CH
table and likely inefficient in our setting.

We designed a more efficient algorithm to handle collisions
during EDB generation, which leverages the server memory,
but we found its performance to be limited by its database
access patterns (see Section V-E). Finally, the need to improve
the goodput motivated the design of Πptr and Π2lev.

B. Π2lev Implementation

In order to meet the criteria stated at the beginning of this
section and avoid the drawbacks of Πpack, we developed the

4Stripe is the smallest amount of data that can be addressed within the
RAID. This is functionally equivalent to a block for an individual disk.

11

Π2lev construction (see Figure 4) which uses different database
patterns to speed-up Setup, can be configured to run Setup
efficiently on platforms with a wide range of internal memory,
and supports much faster retrieval as a result of higher goodput.

Recall that in Π2lev, the EDB consists of two data struc-
tures: a dictionary γ and an array A. The dictionary is again
implemented as a bucket hash, but now with exactly one
labeled location per keyword w. The bucket address and
location label are derived from w, but the location within the
bucket is selected at random to ensure history independence.
A γ location stores up to b tuples or b′ pointers, i.e. indices
in array A.

The second data structure is the array A whose entries are
called tuple blocks. Setup uses tuple blocks to store tuples, or
tuples and pointers, for medium or large DB(w), respectively.
Each tuple block stores up to B tuples or B′ pointers, with
B 0 b and B′ 0 b′ in most settings. In contrast to the
dictionary γ, which is a bucket hash, the array A needs not be
over-sized except for the purpose of masking the total number
of tuples in EDB. Empty locations in γ and A, if any, are filled
with random bits.

For all w with more than |DB(w)| > b, the tuple blocks
used for DB(w) are allocated at random in the array using
an AES-based pseudorandom permutation and the tuple list
in DB(w) is split into tuple blocks (see medium/large cases
in Figure 4). For any given w, if the number of tuple blocks
needed to store DB(w) is larger than the number of pointers
that fit in a dictionary location, we use additional tuple blocks
to store pointers (see large case Figure 4).

The dictionary γ and the array A are realized as two
separate files on the same or separate ext4 RAID partitions.
The location, bucket and tuple block sizes are configurable,
but for efficiency the bucket and tuple block sizes must be a
multiple of the RAID stripe size. Similarly, buckets and tuple
blocks must be aligned with the pages of the underlying file
system.

In our experiments, we use a low single digit number
of tuples per location and 32KB or 64KB for buckets and
tuple blocks. Pointers are 3 or 4 bytes long, depending on the
size of the array A, and tuples are between 16 and 91 bytes
long, depending on the functional setting. For the document
collections and relational databases in our experiments, the
dictionary is between one and two orders of magnitude smaller
than the array.

Unpadded, the size of the dictionary leaks the approximate
number of keywords while the size of the array leaks the
approximate number of EDB tuples. Therefore, masking the
dictionary size, which is sensitive in many scenarios, is inex-
pensive given its relative small size. Leaking the total number
of tuples is less sensitive, which means that the larger data
structure requires less or no padding in most common cases.

This construction has several important advantages for
very large datasets, in particular for those having multi-modal
distributions, e.g., some DB(w) sets that are very large and
a very large number of very small DB(w) as commonly
encountered. For instance, for datasets of tens of millions of
documents, each English word that is not rare can be found
in millions or more documents. On the other hand, ISBN

or SSN values are associated with only one book or person,
respectively, independent of how many books or persons the
dataset describes.

Π2lev can be configured to be disk-efficient in both ex-
tremes. For rare keywords, configurations with small location
sizes, corresponding to a low single digit number of tuples,
allow the search engine to retrieve all the relevant tuples with
only one disk access. Using a small location size helps reduce
the dictionary size, potentially to less than the amount of the
available RAM.

For the rest of the keywords, after one access (or a few
disk accesses for very common keywords), the addresses of
all the relevant tuple blocks are known. At this point, the
query execution engine issues as many concurrent tuple block
requests as the RAID controller can handle. After less than
the average disk access time, because of the large number
of pending requests, tuple blocks are read at close to the
maximum rate of the RAID controller. The rate at which tuples
are retrieved from storage determines the throughput of search
engine. Note that goodput is 100% when accessing tuple blocks
filled with tuples and that for frequent keywords, the goodput
of a Search operation grows asymptotically to 100%.

In contrast, and by way of comparison, the Πpack con-
struction computes the location addresses of all their tuple
groups from the keyword value and a running counter. Thus it
can precompute a large number of group addresses and issue
requests for tuple groups immediately, i.e. no additional disk
accesses to retrieve pointers are needed. But without a priori
knowledge of DB(w) size, which is the common case, Πpack

issues many more requests than necessary. Even worse, to
achieve the lowest access latency for a CH-based construction,
one always needs to issue two requests per expected tuple
group, as the group can be stored in two positions (pages) in
the CH table. Finally, these disk accesses have low goodput
as each bucket contains multiple tuple groups. Thus it appears
that low I/O goodput is inherent to Πpack. For large sets, the
superior goodput of our construction (due to large tuple blocks)
more than compensates for the extra initial storage access(es)
for pointers.

For keywords with just a few tuples that fit in one
dictionary location, the performance is the same. However,
one could accelerate the performance of Π2lev by storing the
dictionary, which is relatively small even for large data sets,
in main memory. Dictionaries used by previous work, which
use one large bucket hash for all tuple sets, are too large for
this optimization.

The two-level Π2lev construction allows for a very efficient
EDB generation process. As an example, during the longest
phase of EDB generation from a database with ≈ 25 billion
(w, id) pairs in the context of multi client OXT [3], which
took 40 hours, all cores performed crypto operations at close
to 100% utilization while at the same time reading 100 million
records from a MySQL DB and writing to the file system
the tuple blocks and the temp dictionary files. Overall, the
two-level construction is much closer to our requirements than
any previous ones and the experimental results confirm our
expectations.

12

C. EDB Generation

For our largest datasets, EDB is on the order of 2TB. Thus
EDB generation time is sensitive to implementation details and
is the dominant factor determining the practical scalability of
all our constructions. This section describes the parallel Setup
algorithm used in the Π2lev prototype.

Before EDB generation starts we process the input files
into an index of the form expected by Π2lev. For each text
column ’t’ in the clear-text database table create a new ’text t’
table with columns ind and word. For each clear-text record
and for each word ’xxxx’ in its text column, add the pair
(id, xxxx) to ’text t’, where id is the unique identifier of the
clear-text record. The number of pairs in ’text t’ is equal to the
number of clear-text records multiplied by the average number
of words in column ’t’. At the end, we create an index on the
column ’word’, which is used during Setup to retrieve DB(w)
for all w = (t, xxxx), where ’xxxx’ is a word in column ’t’.

Unfortunately, for our largest databases, ’table t’ is too
large for the index to fit in RAM, which makes building the
index impractical. To overcome this obstacle, for each text
column ’t’ we create multiple tables ’text t nn’, such that
(1) id-word pairs are somewhat evenly distributed across the
new tables, (2) all the pairs with the same ’word’ value are in
the same table, and (3) the new tables are small enough for
their indexes to be built efficiently on our platforms. Note that
the atomic columns of the original table can undergo a similar
transformation if the number of records in the clear-text table
is too large for indexing.

EDB is generated in three phases. The first phase counts
the number of distinct keywords wi in the clear-text table and
other statistics needed for sizing the dictionary γ and array A
(or for masking the sizes of these data structures if so desired).
This phase uses full-index scans and takes a small fraction of
the total EDB generation time.

For performance reasons, the dictionary γ, realized as a
bucket hash, is partitioned in equal size groups of consecutive
buckets and its generation is split across the second and third
phases. The tuple block array A is fully generated in the next
phase.

The second phase generates the tuples in DB(w), for all
keywords w = (i, val) using full-index scans on atomic col-
umn i. For each text column ’t’, the newly created ’text t nn’
tables are scanned. Columns are processed in parallel worker
threads, with approximately 1.5 workers per CPU core to
hide database access latencies. For each value val such that
w = (i, val), the thread processing column i retrieves the all
the ids corresponding to the records with val in column i
and applies a random permutation to the resultant id sequence
(i.e., DB(w)). For each id in the permuted sequence, the
worker generates tuple elements with the encrypted id (and
the additional tuple values rdk and y when implementing the
more advanced features of the OXT protocol from [3]).

During this phase, each worker thread creates one temp file
per dictionary partition in which it stores the content of the
locations (tuples or pointers) assigned to any of the buckets
in the partition. For better performance, the location content
is buffered and appended to the partition file in 64KB data
chunks. At the same time, for medium and large DB(w), the

worker threads create all the necessary tuple blocks in the array
A (see Figure 4).

During the third phase, the dictionary γ is created from the
partition files generated in the previous phase. Each partition
is constructed by a separate worker thread. Each worker thread
reads the files generated by phase-two workers for its partition,
merges their contents and creates the label and content of each
dictionary entry in the partition. Next, for each bucket in its
partition, the worker assigns the dictionary entries to random
locations in the bucket, fills in empty locations with random
bits, and writes the bucket to disk. For a typical census table,
the dictionary file is almost two orders of magnitude smaller
than the tuple block file.

Note that for the creation of the dictionary, the file system
is accessed using append calls (to temp files in the second
phase) and sequential read calls (from the temp files in the
third phase), which are the most efficient ways to access large
files.

However, worker threads still issue a large number of
random write calls during the second phase, with one call for
each tuple block generated. To reduce the disk head movements
associated with these writes, we extended the parallel EDB
generation algorithm to confine concurrent workers to a tuple
block window sliding across the array. As a result, tuple
blocks that are closely located on the disk are generated
near simultaneously. This optimization reduces seek overheads
noticeably for our largest EDBs.

During the third phase, threads issue another set of ran-
dom writes when writing the dictionary buckets. These disk
movements generated by these writes do not represent a major
bottleneck because these writes are already clustered to the
bucket hash partitions under constructions, which we always
select in increasing order.

D. Complex Functional Settings

As already mentioned at the end of Section II, our con-
structs can be used to support richer encrypted-search settings
than SSE, such as those in [3], [13]. In particular, all (single-
keyword) SSE schemes presented here can be used, almost
‘out-of-the-box’, to instantiate the “TSet functionality” under-
lying the OXT protocol in the above works. The main change
is on the size of tuples that increases in order to accommodate
additional OXT information such as the xind and y values (see
Section 3.2 of [3]), and the key to decrypt the actual documents
(as required in multi-client settings [13]).

Storing larger tuples requires minor configuration changes
but no alteration of the original construct. More specifically,
hash table buckets need to be made large enough to accom-
modate enough entries for all the tuples to be inserted into
the table with high enough probability, i.e., without any of the
buckets overflowing.

Another challenge in more complex protocols, such as
OXT, is for the server to efficiently perform a two party
computation which takes in-order generated data by the client
and out-of-order the tuples, as retrieved from the disk by
the Πpack or Π2lev prototypes. Maximizing the throughput of
such a computation requires using complex buffer management

13

DB Name Records (w, id) pairs EDB size

CW-MC-OXT-1 408,450 143,488,496 69.6 GB
CW-MC-OXT-2 1,001,695 316,560,959 99.8 GB
CW-MC-OXT-3 3,362,993 1,084,855,372 242.4 GB
CW-MC-OXT-4 13,284,801 2,732,311,945 903.9 GB

LL-MC-SKS-1 100,000 114,482,724 15.0 GB
LL-MC-SKS-2 1,000,000 1,145,547,173 52.0 GB
LL-MC-SKS-3 10,000,000 11,465,515,716 394.0 GB
LL-MC-SKS-4 100,000,000 114,633,641,708 3,961.3 GB

TABLE I. DATABASES

algorithms that optimize the use of available RAM between
tokens and tuple block buffers.

E. Experimental Results

Our prototype implementation measures roughly 65k lines
of C code, including test programs. Measurements reported
here were performed on blades with dual Intel Xeon 2.4GHz
E5620 processors having 4 cores each and running Linux.
Storage consists of 6 1TB SAS disks configured as a RAID-
0 with a 64KB stripe and attached via a 3 Gb/s to an LSI
1064e SAN controller and formatted as an ext4 file system with
an 8KB page size. Clear-text databases are stored in MySQL
version 5.5.

The experiments reported in this section use databases
derived from the ClueWeb Collection [18] or synthetically
generated by an engine trained on US-census data. The key
attributes of these databases and derived encrypted indices
are summarized in Table I. The CW-* databases were ex-
tracted from the ClueWeb Collection while the LL-* databases
emulate the US-census data. Both database families contain
atomic type and text columns. The ClueWeb databases were
encrypted for a multi-client setting supporting conjunctions
(OXT) [3] and the census database where processed for single
keyword search (SKS), also in multi-client settings [13] (see
Section V-D).

As already mentioned, EDB generation is the dominant
factor determining the practical scalability of all our con-
structions. The two plots called CW (PH) and CW (2L)

in Figure 5 show how long it takes to generate the EDBs
corresponding to the four CW-* databases when using the
Πpack and Π2lev prototypes, respectively.

The results clearly show the Π2lev construction outper-
forming the Πpack one. The Πpack prototype is consistently
slower because its database access patterns are more expensive
than those of the Π2lev prototype. For larger datasets, the
performance of the Πpack prototype collapses as soon as its
RAM requirements, which are proportional with the database
size, approach the available RAM. The Π2lev prototype does
not exhibit a similar pattern because its RAM requirements
are roughly proportional with the size of the database columns
currently being processed.

In separate experiments with the Π2lev prototype, prepro-
cessing for the LL-* family of databases also proved to scale
linearly, with roughly a rate of 3µs per (w, id) pair for the
largest database and 8.9µs per (w, id) pair for the smallest one.
This translates to roughly 92 hours for biggest LL-MC-SKS-4
database as shown in Figure 6. This compares very favorably

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09 3e+09

Ti
m

e
(m

in
)

(w,id) pairs

CW (2L)
CW (PH)

Fig. 5. ClueWeb09 Pre-processing: Scaling Database Size

to the experimental results published by Kamara et al [15],
who report a cost of approximately 35µs per (w, id) pair on a
computing platform with similar capabilities.

 10

 100

 1000

 10000

 1e+08 1e+09 1e+10 1e+11 1e+12

Ti
m

e
(m

in
)

(w,id) pairs

End-to-end

Fig. 6. LL SKS Pre-processing: Scaling Database Size

Measurements on query performance are shown in Figure 7
for queries CW-* databases with varying result set sizes and
for both constructions. The graph demonstrates even more
dramatic improvements for query processing compared to pre-
processing as the Π2lev construction outperforms the Πpack

one by almost two orders of magnitude for queries returning
1% of the database.Experiments with the Πpack prototype
returning 13% of the database are much slower and they were
not included in the figure to improve the visibility of the
existing curves. Experiments with OXT demonstrate similar
performance gains on conjunction queries. This illustrates that
even though OXT performance seemingly is dominated by
exponentiation costs (see [3] for the details), optimizing disk-
resident data-structures are crucial for good performance due
to the high I/O latency costs.5

5Using highly optimized (common-base) NIST P-224 exponentiation and
multi-threading, we can achieve almost 500,000 exponentiation/sec on the
mentioned test bed. The storage system provided only, depending on block
size, 500-1,500 random I/O requests/sec and single request latencies is around
10ms.

14

Figure 8 shows the execution times of two queries returning
a constant, i.e., independent of the size of the input dataset,
result set of 10 and 10,000 record ids, respectively. The gap
between the two lines corresponding to the Πpack prototype is
much larger than the gap between the lines for corresponding
to the Π2lev prototype. The difference between the disk layouts
of the two constructs help explain the difference. To retrieve
the 10 or the 10,000 ids, the Πpack prototype needs to access
one or one thousand hash table buckets, respectively, which
means it will issue one thousand times more disk access
requests for the second query. In contrast, for the same two
queries, the Π2lev prototype needs to access one dictionary
entry in both cases and one or eleven tuple blocks, which
means it will issue only six times more disk access requests
for the second query. Πpack hash table buckets and the Π2lev

dictionary buckets and tuple blocks are all 64KB but tuple
groups store only ten tuples in this Πpack prototype while
tuple blocks store a little under one thousand tuples. Note
that since Πpack and Π2lev experiments are using SKS and
OXT, respectively, the gap between the 2L and PH plots for
experiments returning 10 tuples is explained by the initial
computational overhead of OXT.

 100

 1000

 10000

 100000

 1e+08 1e+09 1e+10

Ti
m

e
(m

s)

Database size as total number of (w,id) pairs

PH: 10,000
2L: 10,000

PH: 1% of db
2L: 1% of db

2L: 13% of db

Fig. 7. Clueweb09 SKS Query: Scaling Database Size, comparing Πpack vs
Π2lev for various result set sizes.

 1

 10

 100

 1000

 10000

 1e+08 1e+09 1e+10

Ti
m

e
(m

s)

Database size as total number of (w,id) pairs

2L: constant small (10) result set
2L: constant medium-size (10,000) result set

PH: constant small (10) result set
PH: constant medium-size (10,000) result set

Fig. 8. Clueweb09 SKS Query: Scaling Database Size, comparing Πpack vs
Π2lev for constant (10 and 10,000) result set sizes.

Lastly, to illustrate how space efficient the Π2lev construc-
tion is, we achieve load-factors of 58.5% for the bucket hash
dictionary, 91.9% for the much larger array and 91.6% overall

for our largest LL-MC-SKS-4 database. The load-factor of
the array A is less than 100% because although all its entries
are used for tuple blocks, some of these tuple blocks store
pointers or are only partially filled with tuples.

F. Comparison with Prior Implementations

The only previous work that stores the encrypted index on
external storage is [3], which uses a construction similar to
SSE-2 in [7] but adapted to external storage. It corresponds,
roughly, to our Πpack prototype discussed in Section V-A.
The other previous works assume that the encrypted index
is stored in main memory and that access to the index data
structure is uniform (i.e., constant cost/latency). None of
these constructions admit straightforward extensions to ’block
device’-resident data structures that can be practical. This is
particularly the case for constructions using linked lists, such
as SSE-1 in [7] or its extension to dynamic SSE in [15].

Recent work by Kamara et. al in [14] discusses an ex-
tension of their main memory index to a storage-resident B-
tree. This system suffers from using a large index (worst-
case quadratic) and their achieved CPU parallelism does not
automatically translate to efficient I/O parallelism given the
different characteristics of storage sub-systems. The work of
[14] does not measure implementation performance and it does
not discuss how it would address the I/O challenges faced
when building a large scalable system. In contrast, we identify
parallel I/O access from the outset as one of the most impor-
tant performance requirements for scaling to large encrypted
indexes. In addition, we also achieve excellent CPU parallelism
during search because we parallelize our application-level im-
plementation and because a large fraction of the I/O code path
is run in parallel kernel threads. We also validate our approach
with experimental results, paramount given the intricacies of
storage sub-systems. Finally, our construction does not require
a fixed keyword set and is asymptotically faster by log n than
the tree construction in [14], as we use hash instead of tree
indexing.

VI. CONCLUSIONS

The tension between security and performance require-
ments for SSE systems pose non-trivial challenges for both the
cryptographic design and the data structures needed to support
this design, as well as for their implementation. Leakage
minimization calls for randomization of data locations in the
encrypted database, EDB, in order to obscure any relations
in the original clear-text database. This results in the need to
randomize access to EDB elements even when these elements
are logically correlated (e.g., the set of documents containing
a given keyword). This random-order access is affordable for
RAM-resident EDB but becomes prohibitive for disk-resident
ones; on the other hand, restricting an implementation to a
RAM-resident EDB means limiting the database sizes one
can support. Thus, much of the work reported here, both
at the abstract data structure level and the specifics of their
implementation, are driven by the need to bridge over this
security-performance conundrum, and is intended to find a
balance between randomized ordering of data, locality of
access and parallel processing. In particular, our two-level
scheme seems to achieve a desirable trade-off between these
competing requirements.

15

As a result we are able to demonstrate the practicality of
search on encrypted data for very large datasets (at terabytes-
scale and 10s of billions of record-keyword pairs) and with
strong security guarantees. Moreover, our implementation ex-
perience shows that even complex queries, as those supported
in the work of [3], that go well beyond the single-keyword
search capability of traditional SSE schemes, can be supported
in practical ways for these very large databases. The same is
true for the complex operational settings of [13] that support
delegation and authorization of queries to multiple clients as
well as providing query privacy from the data owner.

Regarding the security of our schemes, it is important to
highlight that while the leakage of our constructions compares
well with related work, there is non-trivial information being
disclosed to the server about result sets (e.g., the size of these
sets and their intersections). When the server has a priori
information on the database and queries, various statistical
attacks are plausible as illustrated, for instance, in [12]. To
mitigate such attacks one can apply various generic masking
counter-measures such as padding the sets DB(w) with dummy
elements or batching multiple updates to obfuscate update
patterns. Hopefully, future work will shed more light on the
best ways to design such masking techniques. In particular, one
confronts the hard problem of how the syntactically-defined
leakage can be captured in a semantic way such that for real
world data sets and query distributions one can decide how
much and what type of masking approaches are effective.

As mentioned in the introduction, an attractive alternative
to achieve more secure solutions to the SSE problem is the use
of Oblivious RAM (ORAM) for which we have seen tremen-
dous progress recently in terms of practical performance.
However, nobody to our knowledge has yet systematically
assessed on how to implement leakage-free search algorithms
on top of ORAM servers. Even if we would tolerate the
amount of leakage equivalent to our constructions, it is not
clear whether one could achieve a similar level of performance
for ORAM when considering critical practical aspects such
as parallelism and interleaving of I/O and computation as
exploited in our approach. Furthermore, the extensibility of
ORAM-based solutions to scenarios such as multi-client poses
even further challenges.

ACKNOWLEDGMENT

Supported by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of Interior National Business
Center (DoI / NBC) contract number D11PC20201. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
annotation thereon. Disclaimer: The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of IARPA,
DoI/NBC, or the U.S. Government.

REFERENCES

[1] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93,
pages 62–73, Fairfax, Virginia, USA, Nov. 3–5, 1993. ACM Press. 3

[2] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public
key encryption with keyword search. In C. Cachin and J. Camenisch,
editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 506–522,
Interlaken, Switzerland, May 2–6, 2004. Springer, Berlin, Germany. 2

[3] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner. Highly-scalable searchable symmetric encryption with
support for boolean queries. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 353–373, Santa
Barbara, CA, USA, Aug. 18–22, 2013. Springer, Berlin, Germany. 1,
2, 4, 10, 11, 12, 13, 14, 15, 16

[4] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. In J. Ioannidis, A. Keromytis, and
M. Yung, editors, ACNS 05, volume 3531 of LNCS, pages 442–455,
New York, NY, USA, June 7–10, 2005. Springer, Berlin, Germany. 1

[5] M. Chase and S. Kamara. Structured encryption and controlled
disclosure. In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 577–594, Singapore, Dec. 5–9, 2010. Springer, Berlin, Germany.
1, 2, 3, 4, 5

[6] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private informa-
tion retrieval. Journal of the ACM, 45(6):965–981, 1998. 2

[7] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions.
In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages
79–88, Alexandria, Virginia, USA, Oct. 30 – Nov. 3, 2006. ACM Press.
1, 2, 3, 4, 15

[8] M. Dietzfelbinger, M. Mitzenmacher, and M. Rink. Cuckoo hashing
with pages. Technical Report abs/1104.5111, arXiv, 2011. 11

[9] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216,
2003. http://eprint.iacr.org/. 1

[10] O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious RAMs. Journal of the ACM, 43(3):431–473, 1996. 2

[11] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Oblivious ram simulation with efficient worst-case access overhead. In
CCSW, pages 95–100, 2011. 3

[12] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation. In
Proceedings of the Symposium on Network and Distributed Systems
Security (NDSS 2012), San Diego, CA, Feb. 2012. Internet Society. 16

[13] S. Jarecki, C. Jutla, H. Krawczyk, M. C. Rosu, and M. Steiner.
Outsourced symmetric private information retrieval. In ACM CCS 13,
Berlin, Germany, Nov. 4–8, 2013. ACM Press. 2, 4, 10, 13, 14, 16

[14] S. Kamara and C. Papamanthou. Parallel and dynamic searchable
symmetric encryption. In A.-R. Sadeghi, editor, FC 2013, volume 7859
of LNCS, pages 258–274, Okinawa, Japan, Apr. 1–5, 2013. Springer,
Berlin, Germany. 1, 2, 3, 10, 15

[15] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable
symmetric encryption. In T. Yu, G. Danezis, and V. D. Gligor, editors,
ACM CCS 12, pages 965–976, Raleigh, NC, USA, Oct. 16–18, 2012.
ACM Press. 1, 2, 3, 4, 10, 14, 15

[16] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman
& Hall/Crc Cryptography and Network Security Series). Chapman &
Hall/CRC, 2007. 3

[17] K. Kurosawa and Y. Ohtaki. UC-secure searchable symmetric encryp-
tion. In A. D. Keromytis, editor, FC 2012, volume 7397 of LNCS,
pages 285–298, Kralendijk, Bonaire, Feb. 27 – Mar. 2, 2012. Springer,
Berlin, Germany. 1, 3

[18] Lemur Project. ClueWeb09 dataset.
http://lemurproject.org/clueweb09.php/. 14

[19] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches
on encrypted data. In 2000 IEEE Symposium on Security and Privacy,
pages 44–55, Oakland, California, USA, May 2000. IEEE Computer
Society Press. 1, 2

[20] E. Stefanov, E. Shi, and D. X. Song. Towards practical oblivious
RAM. In NDSS 2012, San Diego, California, USA, Feb. 5–8, 2012.
The Internet Society. 3

[21] P. van Liesdonk, S. Sedhi, J. Doumen, P. H. Hartel, and W. Jonker.
Computationally efficient searchable symmetric encryption. In Proc.
Workshop on Secure Data Management (SDM), pages 87–100, 2010.
1, 3, 10

16

http://eprint.iacr.org/
http://lemurproject.org/clueweb09.php/

	Introduction
	Definitions and Tools
	Static Constructions
	Efficient extensions

	Dynamic Constructions
	Implementation
	pack Implementation
	2lev Implementation
	EDB Generation
	Complex Functional Settings
	Experimental Results
	Comparison with Prior Implementations

	Conclusions
	References

