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Abstract—Due to the high volume and velocity of big data,
it is an effective option to store big data in the cloud, because
the cloud has capabilities of storing big data and processing
high volume of user access requests. Attribute-Based Encryption
(ABE) is a promising technique to ensure the end-to-end security
of big data in the cloud. However, the policy updating has always
been a challenging issue when ABE is used to construct access
control schemes. A trivial implementation is to let data owners
retrieve the data and re-encrypt it under the new access policy,
and then send it back to the cloud. This method incurs a high
communication overhead and heavy computation burden on data
owners. In this paper, we propose a novel scheme that enabling
efficient access control with dynamic policy updating for big
data in the cloud. We focus on developing an outsourced policy
updating method for ABE systems. Our method can avoid the
transmission of encrypted data and minimize the computation
work of data owners, by making use of the previously encrypted
data with old access policies. Moreover, we also design policy
updating algorithms for different types of access policies. The
analysis show that our scheme is correct, complete, secure and
efficient.

Index Terms—Access Control, Policy Updating, ABE, Big Data,
Cloud

I. INTRODUCTION

Big data refers to high volume, high velocity, and/or high

variety information assets that require new forms of processing

to enable enhanced decision making, insight discovery and

process optimization. Due to its high volume and complexity,

it becomes difficult to process big data using on-hand database

management tools. An effective option is to store big data in

the cloud, as the cloud has capabilities of storing big data and

processing high volume of user access requests in an efficient

way. When hosting big data into the cloud, the data security

becomes a major concern as the cloud servers cannot be fully

trusted by data owners.

Attribute-Based Encryption (ABE) [1]–[5] has emerged as

a promising technique to ensure the end-to-end data security

in cloud storage system. It allows data owners to define the

access policy and encrypt the data under the policy, such

that only users whose attributes satisfying the access policies

can decrypt the data. When more and more organizations

and enterprises outsource the data into the cloud, the policy

updating becomes a significant issue as the data access policies

∗This work was supported by RGC HK [Project No. CityU 114112], NSF
China [Grant No. U1301256] and NSF US [Grant No. CNS-1262277].

may be dynamically and frequently changed by data owners.

However, this policy updating issue has not been considered

in existing attribute-based access control schemes [6]–[8].
The policy updating is a difficult issue in attribute-based ac-

cess control systems, because once the data owner outsourced

the data into the cloud, it would not keep a copy in local

systems. When the data owner wants to change the access

policy, it has to transfer the data back to the local site from

the cloud, re-encrypt the data under the new access policy, and

then move it back to the cloud server. By doing so, it incurs a

high communication overhead and heavy computation burden

on data owners. This motivates us to develop a new method

to outsource the policy updating to the cloud server.
The grand challenge of outsourcing the policy updating to

the cloud is to guarantee the following requirements:

1) Correctness: Users who possess sufficient attributes

should still be able to decrypt the data encrypted under

new access policy by running the original decryption

algorithm.

2) Completeness: The policy updating method should be

able to update any type of access policy.

3) Security: The policy updating should not break the

security of the access control system or introduce any

new security problems.

The policy updating problem has been discussed in key-

policy structure [1] and ciphertext-policy structure [9]. How-

ever, these methods cannot satisfy the completeness require-

ment, because they can only delegate key/ciphertext with a

new access policy that should be more restrictive than the

previous policy. Furthermore, they cannot satisfy the security

requirement either. For example, when a new attribute is added

into a threshold gate and the threshold gate is changed from

(t,n) to a (t + 1,n+ 1), both methods will set the share of

the new attribute to be 0. In this case, users who only holds

t attributes (excluding the new attribute) can satisfy the new

(t +1,n+1)-gate.
In this paper, we focus on solving the policy updating prob-

lem in ABE systems, and propose an efficient outsourced pol-

icy updating method. Instead of retrieving and re-encrypting

the data, data owners only send a policy updating query to

the cloud server, and the cloud server can update the policy

of the encrypted data without decrypting it. Our scheme can

not only satisfy all the above requirements, but also avoid the
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transfer of encrypted data back and forth and minimize the

computation work of the data owner by making full use of

the previously encrypted data with the old access policies in

the cloud.

The contributions of this paper include:

1) We formulate the policy updating problem in ABE

sytems and develop a new method to outsource the

policy updating to the server.

2) We propose an expressive and efficient data access

control scheme for big data, which enables efficient

dynamic policy updating.

3) We design policy updating algorithms for different types

of access policies, e.g., Boolean Formulas, LSSS Struc-

ture and Access Tree.

The remaining of this paper is organized as follows. In

Section II, we defines the system model, the framework and

the security model. Section III describes an attribute-based

access control scheme for big data based on an adapted

mutli-authority CP-ABE method in [5]. Section IV proposes

some policy updating algorithms for different types of access

policies. In Section V, we give a comprehensive analysis of

our scheme in terms of correctness, completeness, security and

performance. The related work is given in Section VI. Finally,

this paper is summarized in Section VII. In Appendix A, we

give the definition of access structures in ABE systems, and

then introduce two types of access structures that are well used

in constructing ABE schemes.

II. SYSTEM AND SECURITY MODEL

A. System Model

We consider a cloud storage system with multiple author-

ities, as shown in Fig.1. The system model consists of the

following entities: authorities (AA), cloud server (server), data

owners (owners) and data consumers (users).

Authority. Every authority is independent with each other

and is responsible for managing attributes of users in its

domain. It also generates a secret/public key pair for each

attributes in its domain, and generates a secret key for each

user according to their attributes.

Server. The cloud server stores the data of data owners

and provides data access service to users. The server is also

responsible for updating ciphertexts from old access policies

to new access policies.

Owner. The data owners define the access policies and

encrypt the data under the policies before hosting them in the

cloud. They also ask the server to update the access policies

of the encrypted data stored in the cloud.

User. Each user is assigned with a global user identity and

can freely get the ciphertexts from the server. The user can

decrypt the ciphertext, only when the its attributes satisfy the

access policy defined in the ciphertext.

B. Framework

To meet all the requirements of policy updating, we define

the framework of our access control scheme as follows.

Fig. 1. System Model

Definition 1 (Framework). Our dynamic policy access con-
trol scheme is a collection of the following algorithms:
GlobalSetup, AuthoritySetup, SKeyGen, Encrypt, Decrypt,
UKeyGen and CTUpdate.

• GlobalSetup(λ )→GP. The global setup algorithm takes

no input other than the implicit security parameter λ . It

outputs global parameters GP for the system.

• AuthoritySetup(GP,AID) → (SK,PK). The authority

setup algorithm is run by each authority AID with GP
and the authority identity AID as inputs and produce its

secret/public key pair (SKAID,PKAID).
• SKeyGen(GID,GP,SGID,AID,SKAID)→ SKGID,AID. Each

authority AID runs the secret key generation algorithm

to generate a secret key SKGID,AID for user GID. It takes

as inputs the global identity GID, the global parameters,

a set of attributes SGID,AID that issued by this authority

AID and the secret key SKAID of this authority. It outputs

a secret key SKGID,AID for this user GID.

• Encrypt({PK},GP,m,A) → CT. The encryption algo-

rithm takes as inputs a set of public keys {PK} for

relevant authorities, the global parameters, the message

m and an access policy A. It outputs a ciphertext CT.

• Decrypt(CT,GP,{SKGID,AID})→ m. The decryption al-

gorithm takes as inputs the ciphertext, the global parame-

ters and a collection of secret keys from relevant author-

ities for user GID. It outputs the message m when the

user’s attributes satisfy the access policy corresponding

to the ciphertext. Otherwise, decryption fails.

• UKeyGen({PK},EnInfo(m),A,A′) → UKm. The update

key generation algorithm is run by the data owner. It

takes as inputs the relevant public keys, the encryption

information EnInfo(m) of the message m, the previous

access policy A and the new access policy A
′. It outputs

the update key UKm of m that is used to update the

ciphertext CT from the previous access policy to the new

one.

• CTUpdate(CT,UKm) → CT′. The ciphertext updating

algorithm is run by the cloud server. It takes as inputs

the previous ciphertext CT and the update key UKm. It
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3

outputs a new ciphertext CT′ corresponding to the new

access policy A
′.

C. Security Model

The cloud server is assumed to be semi-trusted (curious-but-

honest), it is curious about the data it stored and the messages

it received, but it will update the ciphertext correctly for data

owners. We also assume that the server may send the owners’

data to the users who do not have access permission. The data

owners are assumed to be fully trusted. The users are assumed

to be dishonest, i.e., they may collude to access unauthorized

data. The authorities can be corrupted or compromised by the

attackers. We assume that the adversaries can corrupt author-

ities only statically, but key queries can be made adaptively.

We now describe the security model for our system by the

following game between a challenger and an adversary:

Setup. The global setup algorithm is run. The adversary

specifies a set S′A ⊂ SA of corrupted authorities. The challenger

generates the pairs of public key and the secret key by running

the authority setup algorithm. For uncorrupted authorities in

SA − S′A, the challenger sends only the public keys to the

adversary. For corrupted authorities in S′A, the challenger sends

both the public keys and secret keys to the adversary.

Phase 1. The adversary makes secret key queries by sub-

mitting pairs (GID,SGID,AID) to the challenger, where GID
is an identity and SGID,AID is a set of attributes belonging

to an uncorrupted authority AID. The challenger gives the

corresponding secret keys SKGID,AID to the adversary.

Challenge. The adversary submits two equal length mes-

sages m0 and m1. In addition, the adversary gives a set

of challenge access structure {(M∗
1 ,ρ

∗
1 ), · · · ,(M∗

q ,ρ∗
q )} which

must satisfy the constraint that the adversary cannot ask for

a set of keys that allow decryption, in combination with

any keys that can obtained from corrupted authorities. The

challenger then flips a random coin b, and encrypts mb
under all access structures {(M∗

1 ,ρ
∗
1 ), · · · ,(M∗

q ,ρ∗
q )}. Then, the

ciphertext {CT∗
1, · · · ,CT∗

q} are given to the adversary.

Phase 2. The adversary may query more secret keys, as long

as they do not violate the constraints on the challenge access

structures. The adversary can also makes update key queries

by submitting the pair (M∗
i ,ρ∗

i ),(M
∗
j ,ρ∗

j ), the simulator returns

the update key UKmb to the adversary.

Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as

Pr[b′ = b]− 1

2
.

Definition 2. Our scheme is secure against static corruption
of authorities if all polynomial time adversaries have at most
a negligible advantage in the above security game.

III. ATTRIBUTE-BASED ACCESS CONTROL WITH

DYNAMIC POLICY UPDATING FOR BIG DATA

We construct our dynamic-policy access control scheme

based on an adapted CP-ABE method in [5]. Our scheme

consists of five phases: System Initialization, Key Generation,

Data Encryption, Data Decryption and Policy Updating.

A. System Initialization

The system initialization includes the global setup and the

authority setup.

1) Global Setup: In the global setup, two multiplicative

groups G and GT are chosen with the same prime order p
and the bilinear map e :G×G→GT between them. A random

oracle H maps global identities GID to elements of G. Let g
be a generator of G, the global parameters is set to be

GP= ( p, g, H )

2) Authority Setup: Each authority AID runs the authority

setup algorithm to generate its secret/public key pair. Let SAID
denote the set of all the attributes managed by the authority

AID. For each attribute x ∈ SAID, the authority chooses two

random exponents αx,βx ∈ Zp and publishes its public key as

PKAID = { e(g,g)αx , gβx }∀x∈SAID .

It keeps SKAID = {αx,βx}∀x∈SAID .

B. Key Generation

To generate the secret key for user GID, each authority AID
will first assign a set of attributes SGID,AID to this user. Then,

it runs the secret key generation algorithm to generate a set

of secret keys as

SKGID,AID = {Kx,GID = gαx H(GID)βx}∀x∈SGID,AID .

C. Data Encryption

The owner first encrypts the data m by running the en-

cryption algorithm Encrypt. The algorithm takes as inputs a

set of public keys {PK} for relevant authorities, the global

parameters, the data m and an n× l access matrix M with ρ
mapping its rows to attributes. It chooses a random encryption

exponent s ∈Zp and a random vector �v = (s,y2, · · · ,yl) ∈Zl
p,

where y2, · · · ,yl are used to share the encryption exponent s.

For i = 1 to n, it computes λi = Mi ·�v, where Mi is the vector

corresponding to the i-th row of M. It also chooses a random

vector �w∈Zl
p with 0 as its first entry and computes wi =Mi ·�w.

For each row i of M, it chooses a random ri ∈Zp and computes

the ciphertext as

CT= ( C = m · e(g,g)s,

∀i = 1 to n : C1,i = e(g,g)λi e(g,g)αρ(i)ri ,

C2,i = gri , C3,i = gβρ(i)rigwi ).

Then, the encryption information EnInfo(m) of the data m con-

tains all the random numbers ri, i.e., EnInfo(m) = {r1, · · · ,rn}.

D. Data Decryption

To decrypt a ciphertext, the user first obtains H(GID) from

the random oracle. If the user has the secret keys {Kρ(i),GID}
for a subset of rows i of M such that (1,0, . . . ,0) is in the span

of these rows, then the user proceeds as follows. For each such

i, the user computes

C1,i · e(H(GID),C3,i)

e(Kρ(i),GID,C2,i)
= e(g,g)λi e(H(GID),g)wi .
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The user then chooses constants ci ∈ Zp such that ∑i ciMi =
(1,0, . . . ,0) and computes

∏
i

(
e(g,g)λi e(H(GID),g)wi

)ci
= e(g,g)s.

We recall that λi = Mi · �v and wi = Mi · �w, where �v ·
(1,0, . . . ,0) = s and �w · (1,0, . . . ,0) = 0. The data can then be

decrypted as

m =C/e(g,g)s.

E. Policy Updating

To update the access policy of the encrypted data in

the cloud, we delegate the ciphertext update from the data

owner to the cloud server, such that the heavy communication

overhead of the data retrieval can be eliminated and the

computation cost on data owners can also be reduced.

When the data owner wants to update the ciphertext from

the previous access policy A to the new access policy A
′, it

first generates an update key UKm by running the update key

generation algorithm UKGen and then owner sends the update

key UKm to the cloud server. Upon receiving the update key

from the data owner, the cloud server will run the ciphertext

updating algorithm CTUpdate to update the ciphertext from

the previous access policy A to the new one A
′.

However, the update key generation algorithm UKGen and

the ciphertext updating algorithm CTUpdate are related to the

relationship between the previous access policy A and the new

access policy A
′. For different types of updating operation, we

have different design of UKGen and CTUpdate, which will be

described in detail in the next section.

IV. DYNAMIC POLICY UPDATING

In this section, we first design the policy updating algo-

rithms for monotonic boolean formulas. Then, we present the

algorithms to update LSSS structures. Finally, we consider

the general threshold access tree structures by designing the

algorithms of updating a threshold gate.

A. Updating a Boolean Formula

Access policies with monotonic boolean formulas can be

represented as the simplest threshold access trees, where the

non-leaf nodes are AND and OR gates, and the leaf nodes

correspond to attributes. The monotonic boolean formulas can

be easily converted to LSSS structure, as the number of leaf

nodes in the access tree is the same as the number of rows

in the corresponding LSSS matrix. As shown in Fig. 2, there

are four basic operations: Attr2OR, Attr2AND, AttrRmOR and

AttrRmAND.

1) Converting an attribute to an OR gate (Attr2OR): This

Attr2OR operation involves converting an existing attribute

x j( j ∈ [1,n]) to an OR gate (x j ∨ xn+1) by adding a new

attribute xn+1. In this case, the new attribute xn+1 plays

the same role as the attribute x j in the new access policy.

Therefore, we can easily construct the ciphertext component

Cn+1 = (C1,n+1,C2,n+1,C3,n+1) for the new attribute xn+1 from

the component Cj corresponding to the existing attribute x j.

Fig. 2. Operations of Boolean Formula

To achieve this Attr2OR operation on data m, the update key

generation algorithm UKGen takes the encryption information

EnInfo(m) of the data m and the public keys. It chooses

random am,rn+1 ∈Zp and generates the update key as

UKm = ( am, UK1,m =
e(g,g)αxn+1

rn+1

e(g,g)αx j r jam
,

UK2,m = grn+1−r j , UK3,m =
gβxn+1

rn+1

gβx j r jam
)

Then, the data owner will send the tuple (Attr2OR, UKm)
to the server and ask the server to update the ciphertext

CT corresponding to m. The ciphertext updating algorithm

CTUpdate constructs the new ciphertext component Cxn+1
as

follows.

C1,n+1 = (C1, j)
am ·UK1,m = e(g,g)λn+1 · e(g,g)αxn+1

rn+1 ;

C2,n+1 =C2, j ·UK2,m = grn+1 ;

C3,n+1 = (C3, j)
am ·UK3,m = gβxn+1

rn+1 ·gwn+1 ,

where λn+1 = am ·λ j and wn+1 = am ·w j.

2) Converting an attribute to an AND gate (Attr2AND):
This Attr2AND operation involves converting an existing

attribute x j( j ∈ [1,n]) to an AND gate (x j ∧ xn+1) by adding

a new attribute xn+1. In this case, the combination of the new

attribute xn+1 and the attribute x j in the new access policy

plays the same role as the attribute x j in the previous policy.

Therefore, we can modify the previous ciphertext component

Cj corresponding to x j into a new version C′
j, and construct

the new ciphertext component Cn+1 = (C1,n+1,C2,n+1,C3,n+1)
for the new attribute xn+1.

To achieve this Attr2AND operation on data m, the update

key generation algorithm UKGen takes the encryption infor-

mation EnInfo(m) of the data m and the public keys as inputs.

It chooses random am,λ ′,w′,rn+1 ∈Zp, such that λ ′
j = λ j +λ ′

and λn+1 = am ·λ ′, as well as w′
j = w j +w′ and wn+1 = am ·w′.

Then, the update key can be generated as

UKm = ( UK1,m = e(g,g)λ ′
, UK2,m = gw′

, Cn+1 ),

where the new ciphertext component Cn+1 is constructed as

Cn+1 = ( C1,n+1 = e(g,g)λn+1 · e(g,g)αxn+1
rn+1 ,

C2,n+1 = grn+1 , C3,n+1 = gβxn+1
rn+1 ·gwn+1 )

Then, the data owner will send the tuple (Attr2AND, UKm)
to the server and ask the server to update the ciphertext CT
corresponding to m. The server first adds the new ciphertext
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component Cn+1 to the ciphertext CT , and then runs the ci-

phertext updating algorithm CTUpdate to update the previous

ciphertext component Cj to the new version C′
j as

C′
j = ( C′

1, j =C1, j ·UK1,m = e(g,g)λ ′
j · e(g,g)αx j r j ,

C′
2, j =C2, j, C′

3, j =C3, j ·UK2,m = gβx j rn+1 ·gw′
j ).

3) Removing an attribute from an OR gate (AttrRmOR):
To remove an attribute x j from an OR gate, the data owner can

simply send a tuple (AttrRM, m, j), where ρ( j) = x j to ask

the server to delete the corresponding ciphertext component

Cj in the ciphertext.

4) Removing an attribute from an AND gate
(AttrRmAND): To remove an attribute from an AND

gate, all the shares should be re-randomized, such that the

correctness requirement can be satisfied. This can be easily

achieved by using the method of converting a (t, t)-gate to a

(t −1, t)-gate which will be described later.

B. Updating a LSSS Structure

Access policies can also be expressed in LSSS structure as

in our access control scheme. To convert a LSSS structure

(M,ρ) to a new LSSS structure (M′,ρ ′), it is too costly to

choose a new encryption secret s′ and re-encrypt the data under

the new access policy. In order to save the communication cost

and the computation cost on data owners, in our method, we

do not change the encryption secret s, such that we can make

full use of the previous ciphertext encrypted under the old

policy (M,ρ).
To enable the data owner to re-randomize the encryption

secret s, the encryption information EnInfo(m) of the data

m should also contain two random vectors �v and �w, and the

public key of each attribute x is known to the data owner as

(gαx ,gβx). The data owner will run the update key generation

algorithm to construct the update keys and send them to the

cloud server. Upon receiving the update keys, the cloud server

will run the ciphertext update algorithm to update ciphertext

from the previous access policy to the new policy. The update

key algorithm and the ciphertext update algorithm are designed

as follows.

1) Update Key Generation: The update key generation al-

gorithm UKGen takes as inputs the public keys, the encryption

information of data m, and the previous access policy (M,ρ)
and the new one (M′,ρ ′). Suppose the new access policy is

described as an n′ × l′ access matrix M′ with ρ ′ mapping

its rows to attributes. Since the mapping functions ρ and ρ ′
are non-injective, we let numρ(i),M and numρ(i),M′ denote the

number of attribute ρ(i) in M and M′ respectively.

It first calls the policy comparing algorithm PolicyCompare
to compare the new access policy (M′,ρ ′) with the pre-

vious one (M,ρ), and outputs three sets of row indexes

I1,M′ , I2,M′ , I3,M′ of M′. Both I1,M′ and I2,M′ denote the set of

indexes j such that ρ ′( j) exists in M. But the total number of

index j in I1,M′ will not exceed the total number of attribute

ρ(i)(ρ(i) = ρ ′( j)) in M. If numρ ′( j),M′ ≥ numρ ′( j),M , those

exceeding numρ ′( j),M′ − numρ ′( j),M indexes j will be put in

Algorithm 1 PolicyCompare

Input: new policy (M′,ρ ′) with l′ × k′ matrix

Input: previous policy (M,ρ) with l × k matrix

Output: I1,M′ , I2,M′ , I3,M′ � three subsets of row indexes in

M′
1: IM ← index set of rows in M
2: for j = 1 to l′ do
3: if ρ ′( j) in M then
4: if IM! = Ø & ∃i ∈ IM s.t. ρ(i) == ρ ′( j) then
5: add ( j, i) into I1,M′
6: delete i from IM
7: else
8: find any i ∈ [1, l] s.t. ρ(i) == ρ ′( j)
9: add ( j, i) into I2,M′

10: end if
11: else
12: add ( j,0) into I3,M′
13: end if
14: end for

I2,M′ . I3,M′ denotes the set of indexes j such that ρ ′( j) does

not exist in M, i.e., ρ ′( j) is a new attribute.

The algorithm first constructs two new random vectors:
�v′ ∈ Zl′

p with s as its first entry and �w′ ∈ Zl′
p with 0 as its

first entry. It then computes λi = Mi ·�v and wi = Mi ·�w, where

Mi is the vector corresponding to the i-th row of M. It also

computes λ ′
i = M′

i ·�v′, and w′
j = M′

j ·�w′, where M′
j is the vector

corresponding to the j-th row of M. Let IM = {1, · · · , l} be the

index set of the rows of M.

For each j ∈ [1, l′], if ( j, i) ∈ I1,M′(Type1), the algorithm

generates the update key component as

UK j,i,m = ( UK
(1)
j,i,m = gλ ′

j−λi , UK
(2)
j,i,m = gw′

j−wi )

and set r′j = ri.

If ( j, i)∈ I2,M′(Type2), the algorithm chooses random num-

bers r′j,a j ∈Zp and generates the update key component as

UK j,i,m = ( a j, UK
(1)
j,i,m = gλ ′

j−a jλi , UK
(2)
j,i,m = gw′

j−a jwi ).

If ( j, i)∈ I3,M′(Type3), the algorithm chooses a random r′j ∈
Zp and generates the update key component as

UK j,i,m = ( UK
(1)
j,i,m = gλ ′

j ·gαρ ′( j)r
′
j , UK

(2)
j,i,m = gr′j ,

UK
(3)
j,i,m = gβρ(i)r

′
j gw′

j ).

The update key UKm is constructed as

UKm = ( (Type1, {UK j,i,m}( j,i)∈I1,M′ ),

(Type2, {UK j,i,m}( j,i)∈I2,M′ ),

(Type3, {UK j,i,m}( j,i)∈I3,M′ ) ).

Then, the data owner sends the update key UKm to the cloud

server.

2) Ciphertext Update: Upon receiving the update key UKm,

for each j ∈ [1, l′] , the server runs the ciphertext updating al-
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Fig. 3. Updating a (t,n)-gate to a (t ′,n′)-gate

gorithm to compute each ciphertext component C′
j as follows.

If Type1( j ∈ I1,M′), the ciphertext component C′
j is com-

puted as

C′
j = ( C′

1, j =C1,i · e(g,UK(1)
j,i,m) = e(g,g)λ ′

j · e(g,g)αρ ′( j)r
′
j ,

C′
2, j =C2,i, C′

3, j =C3,i ·UK(2)
j,i,m = gβρ ′( j)r

′
j ·gw′

j ),

where r′j = ri.

If Type2( j ∈ I2,M′), the ciphertext component C′
j is com-

puted as

C′
j = ( C′

1, j = (C1,i)
a j · e(g,UK(1)

j,i,m) = e(g,g)λ ′
j · e(g,g)αρ ′( j)r

′
j ,

C′
2, j = (C2,i)

a j = gr′j ,

C′
3, j = (C3,i)

a j ·UK(2)
j,i,m = gβρ ′( j)r

′
j ·gw′

j ),

where r′j = a jri.

If Type3( j ∈ I3,M′), the ciphertext component C′
j is com-

puted as

C′
j = ( C′

1, j = e(g,UK(1)
j,i,m) = e(g,g)λ ′

j · e(g,g)αρ ′( j)r
′
j ,

C′
2, j = UK

(2)
j,i,m, C′

3, j = UK
(3)
j,i,m = gβρ ′( j)r

′
j ·gw′

j ).

The new ciphertext CT′ can be constructed as

CT′ = (m · e(g,g)s, C′
j ∀ j ∈ [1, l′]).

As we can see, in our method, all the pairing computations

are moved to the cloud server, while the data owner only does

the minimum computation.

C. Updating a Threshold Gate

The problem of updating a threshold gate from (t,n)-gate to

(t ′,n′)-gate has been discussed in key-policy structure [1] and

ciphertext-policy structure [9]. However, the existing methods

would introduce a security problem in the new threshold gate.

For example, when increasing the threshold value from t to

t + 1, existing methods will set the t + 1 share λt+1 of the

secret s to be 0, such that the secret s can be reconstructed

by using t +1 shares as ∑t+1
i=1 λi = ∑t

i=1 λi +λt+1 = s+0 = s.

In this case, any t shares are still be able to reconstruct the

secret, which should not be allowed in a (t +1,n)-gate.

To solve the security problem, instead of setting the value of

new share to be 0, our method is to re-randomize the secret s
under the new policy (t ′,n′)-gate, as shown in Fig. 3. The data

owner first transforms the threshold gate into LSSS structure

by running the policy converting algorithm Threshold2LSSS,

Algorithm 2 DNF2LSSS

Input: A � an access structure A

Input: s � the secret to be shared

Output: M � Monotone Span Program

1: let sss be DNF2SSS(s,A);
2: let M be SSS2MSP(s,sss);
3: return s, M;

i.e., transforming (t,n)-gate and (t ′,n′)-gate to (M,ρ) and

(M′,ρ ′) respectively. Then, we can apply the above algorithms

to update the LSSS structure (M,ρ) to the new one (M′,ρ ′).
To convert a threshold gate to LSSS structure, the algorithm

Threshold2LSSS first converts the threshold gate into DNF

boolean formulas, and then converts the DNF boolean formu-

las into LSSS structure by calling the algorithm DNF2LSSS.

For example, a (2,3)-gate on attributes A, B, C can be simply

represented as (A∧B)∨ (B∧C)∨ (A∧C).
The algorithm DNF2LSSS used to change DNF boolean for-

mulas to LSSS structures is a combination of two algorithms:

.

• DNF2SSS. The algorithm is adapted from [10] and used

to construct a Secret Sharing Scheme from monotone

DNF boolean formula.

• SSS2MSP: The algorithm is adapted from [11] and used

to convert Secret Sharing Scheme into Monotone Span

Program (LSSS Structure).

When converting (t,n)-gate to (M,ρ), we can derive the

size of the access matrix M as m× l, where m = n ·Ct−1
n−1 and

l = (t −1) ·Ct
n +1.

V. ANALYSIS OF OUR SCHEME

In this section, we give the analysis of our scheme to show

that it can satisfy all the three requirements we defined. Then,

we also give the performance analysis of our scheme.

Algorithm 3 DNF2SSS

Input: An � a node n from an access structure A

Input: s � the secret to be shared

Output: {s1, · · · ,sl} � a set of shares

1: IM ← index set of rows in M;

2: if Node Type = OR then
3: for each child c of An do
4: DNF2SSS(s, c); � pass the s to child nodes

5: end for
6: end if
7: if Node Type = AND then
8: let gate have t inputs;

9: select r1, · · · ,rt−1 ∈R Zp;

10: for all ri do
11: DNF2SSS(ri, ith child of An);
12: end for
13: let rt = s− r1 −·· ·− rt−1 (mod p);
14: DNF2SSS(ri, tth child of An);
15: end if
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Algorithm 4 SSS2MSP

Input: {�Vi} � Set of piece vectors for each attribute Attri
Input: s � the secret to be shared

Output: M � Monotone Span Program

1: let �Z be a vector and set �Z(0) = s;

2: let M be a matrix;

3: let ρ be a labelling function;

4: for all Attri do
5: for each piece vector �Vi for Attri; do
6: apppend each random value in �Vi to �Z;

7: construct the position vector �vi for Attri;

8: append �vi to M;

9: let ρ(Mvi) to Attri;

10: end for
11: end for
12: pad M with the same row size;

13: return (�Z,M,ρ);

A. Correctness Proof

Theorem 1. Our access control scheme is still correct after
the policy updating.

Proof: We prove the correctness for each operation in our

scheme as follows.

• LSSS Structure/Threshold Gate Updating: The secret s is

re-randomized under the new access policy, such that the

correctness is guaranteed by the secret sharing scheme.

• Attr2OR: Suppose c j is the coefficient chosen for x j
during the decryption. We can simply get the coefficient

cn+1 = c j/am for xn+1 when the new attribute xn+1 is

chosen instead of x j during the decryption.

• Attr2AND: Suppose c j is the coefficient chosen for x j
during the decryption under the previous access policy.

To decrypt the ciphertext under the new access policy,

we still choose c j as the coefficient for x j and set the

coefficient cn+1 =− c j
am

for xn+1.

• AttrRmOR: This operation will not affect the coefficient

choices of the remaining attributes in the OR gate.

• AttrRmAND: The same as threshold gate updating.

B. Completeness Proof

Theorem 2. Our scheme is complete for updating any types
of access policies.

Proof: The proposed policy updating method is designed

based on access policies with LSSS structures, i.e., it can

convert any (M,ρ) LSSS structure to a new one (M′,ρ ′).
For any access tree policy, which is constructed with several

threshold gates and a set of attributes, we have proposed an

operation to update a threshold gate to any other threshold gate

by converting the threshold gates into LSSS structure. Thus,

our scheme can also update any access tree policy. Considering

the boolean formula is a special access tree only with AND and

OR gates, we propose a more efficient method to update the

policy with boolean formulas. Any new boolean formulas can

be derived from the previous boolean formulas by iteratively

doing the operations Attr2AND, Attr2OR, AttrRmAND and

AttrRmOR. Therefore, our proposed operations are complete

for updating any access policies.

C. Security Proof

Our access control scheme is constructed on prime order

groups, because the group operations on prime order groups

are much faster than the ones on composite order groups. In

this section, we will prove that our dynamic policy access

control scheme is secure in the generic bilinear group model

[2], [12], [13] and random oracle model [14]. However, our

scheme can also be easily extended to be provable secure in the

random oracle model by using groups with composite orders.

Theorem 3. Our scheme is secure in the generic bilinear
group model and random oracle model, if no polynomial time
adversary can get non-negligible advantage in the security
game defined in Section II-C.

Proof: Our access control scheme is constructed based

on the CP-ABE method with primer group order (CP-ABE-

Primer) in [5], which is proved to be secure under generic

bilinear group model and random oracle model. At an intuitive

level, this means that if there are any vulnerabilities in the

scheme, then these vulnerabilities must exploit specific math-

ematical properties of elliptic curve groups or cryptographic

hash functions used when instantiating the scheme. Let A be

an adversary who can break our scheme with non-negligible

advantage. and we will construct an A′ such that it can

break the CP-ABE-Primer scheme in [5] with non-negligible

advantage.

Different with the security game in [5], in our se-

curity game, the adversary returns a tuple of poli-

cies {(M∗
1 ,ρ

∗
1 ), · · · ,(M∗

q ,ρ∗
q )} together with two messages

(m0,m1), and the adversary receives an encryption of Mb under

each of these policies. Moreover, our security game also allows

the update key query for the challenging messages (m0,m1)
between two access policies (M∗

i ,ρ∗
i ) and (M∗

j ,ρ∗
j ).

A′ initializes the CP-ABE-Primer security game and for-

wards the public key PK to A. To simulate the key generation

oracle of A, A′ queries its key generation oracle for all x ∈ S
to respond to a SK(GID,S) query. The simulation of challenge

ciphertext of A is the same with the one of A′.
Now, we prove that the update key query in our secu-

rity game will not increase the advantage of A′. Consider-

ing two update key queries UK(m0,(M∗
i ,ρ∗

i ),(M
∗
j ,ρ∗

j )) and

UK(m1,(M∗
i ,ρ∗

i ),(M
∗
j ,ρ∗

j )), the update key generation oracle

returns the same update keys which do not involve with the

challenge data, if we consider the encryption random numbers

are the same in encrypting m0 and m1 (this is because only

one challenge message is chosen by the simulator by tossing

a coin in the security game). Therefore, the update key will

not reveal any information on the chosen challenging message.

This completes the proof.
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TABLE I
SIZE OF UPDATE KEY

Operation Attr2OR Attr2AND Type1 Type2 Type3
Size(UK) 4|p| 5|p| 2|p| 3|p| 3|p|

D. Performance Analysis

In our method, the data owner only needs to send the

update keys to the cloud server, instead of the whole encrypted

big data. Therefore, our method can significantly reduce the

communication cost during the policy updating. Suppose |p|
is the element size in the G,GT ,Zp. Table I shows the size of

update keys in our scheme. We can see that Type1 operation

incurs the smallest size of update keys. When updating an

access policy to a new one, the most common operations

are Type1 operations, such that our scheme incurs a small

communication cost.

Compared with Sahai, Seyalioglu and Waters’s Scheme

(SSW’s scheme) [9], our scheme makes full use of the previous

ciphertexts encrypted under the old access structure. That is

if an attribute in the new access policy has ever appeared

in the previous access policy, the new ciphertext component

of this attribute can be derived from the previous ciphertext

component with the update key. The data owner only needs to

compute ciphertext components for new attributes. Moreover,

in our scheme, we also delegate all the pairing operations to

the server, such that the workload of the data owner can be

further reduced.

We also simulate the operation time for each type of opera-

tion, including Attr2OR, Attr2AND for Boolean Formulas Up-

dating and Type1, Type2, Type3 for LSSS Structure/Threshold

Gates Updating, as described in Fig. 4. The simulation is

run on a Linux system with an Intel Core 2 Duo CPU at

3.16GHz and 4.00GB RAM. The code uses the Pairing-Based

Cryptography library version 0.5.12 to simulate the access

control schemes. We use a symmetric elliptic curve α-curve,

where the base field size is 512-bit and the embedding degree

is 2. The α-curve has a 160-bit group order, which means p is

a 160-bit length prime. All the simulation results are the mean

of 20 trials. From Fig. 4, we can see that Type1 operations

incurs less computation cost on data owners, as well as less

total computation cost. We know that the Type1 operation

is the most common operation when converting an access

policy to a new one. Therefore, our scheme can minimize the

workload of data owners, as well as the one of cloud servers.

VI. RELATED WORK

Recently, some attribute-based access control schemes [6]–

[8] were proposed to ensure the data confidentiality in the

cloud. It allows data owners to define an access structure on

attributes and encrypt the data under this access structure, such

that data owners can define the attributes that the user needs

to possess in order to decrypt the ciphertext. However, the

policy updating becomes a difficult issue when applying ABE

methods to construct access control schemes, because once

data owner outsource the data into cloud, they won’t store in

Fig. 4. Comparison of Computation Cost for Different Operations

local systems. To change the access policies of encrypted data

in the cloud, a trivial method is to let data owners retrieve the

data and re-encrypt it under the new access policy, and then

send it back to the cloud server. But this method will incur a

high communication overhead and heavy computation burden

on data owners.

In [1], the authors proposed a Key-Policy Attribute-Based

Encryption method and discussed on how to change the

policies on keys. In [9], the authors also proposed a ciphertext

delegation method to update the policy of ciphertext. However,

these methods cannot satisfy the completeness requirement,

because they can only delegate key/ciphertext with a new

access policy which is more restrictive than the previous pol-

icy. Furthermore, they cannot satisfy the security requirement

either. For example, when a new attribute is added into a

threshold gate and the threshold gate is changed from (t,n) to a

(t+1,n+1), both of their methods will set the share of the new

attribute to be 0. In this case, users who only holds t attributes

(excluding the new attribute) can satisfy new (t+1,n+1)-gate.

Thus, a new outsourced policy updating method is desired for

ABE systems.

VII. CONCLUSION

In this paper, we investigated the policy updating problem in

ABE systems and formulated some challenging requirements

of this problem. We developed an efficient method to outsource

the policy updating to the cloud server, which can satisfy all

the requirements. We also proposed an expressive attribute-

based access control scheme for big data in the cloud, which

enables efficient dynamic policy updating. Furthermore, we

designed policy updating algorithms for different types of

access policies. We also analyzed our scheme in terms of cor-

rectness, completeness, security and performance. Although

the policy updating algorithms were designed based on Lewko

and Waters’ scheme, our ideas and methods of outsourced

policy updating can also be applied to other ABE systems.
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APPENDIX A

STRUCTURE OF ACCESS POLICY IN ABE SYSTEM

We first give the definition of access structures in ABE

systems, then we introduce two types of access structures that

are well used in constructing ABE schemes: LSSS Structure

and Access Tree Structure.

Definition 3 (Access Structure). Let {P1,P2, · · · ,Pn} be a set
of parties. A collection A⊆ 2{P1,P2,··· ,Pn} is monotone if ∀B,C if
B∈A and B⊆C then C ∈A. An access structure (respectively,
monotone access structure) is a collection (respectively, mono-
tone collection) A of non-empty subsets of {P1,P2, · · · ,Pn}, i.e.,
A⊆ 2{P1,P2,··· ,Pn}\{Ø}. The sets in A are called the authorized
sets, and the sets not in A are called the unauthorized sets.

In attribute-based encryption scheme, the role of the parties

is taken by the attributes. Thus, the access structure A will

contain the authorized sets of attributes. We restrict our

attention to monotone access structures.

A. LSSS Structure

Definition 4 (Linear Secret-Sharing Schemes (LSSS)). A
secret-sharing scheme Π over a set of parties P is called linear
(over Zp) if

1) The shares for each party form a vector over Zp.
2) There exists a matrix M called the share-generating

matrix for Π. The matrix M has l rows and n columns.

Algorithm 5 AccessTree

Input: T � A threshold tree

Input: s � The secret to be shared

Output: a set of shares {s1, · · · ,sl}
1: Let qx be a polynomial for node x;

2: Set qroot(0) := s;

3: Set degree droot := kroot −1; � kroot is the threshold value

of the root

4: Let rest of points in qroot be randomly chosen;

5: for all x ∈ T do
6: Set degree of qx as dx := kx −1;

7: Set qx(0) = qparent(x)(index(x));
8: Let rest of points in qx be chosen randomly;

9: end for

For all i = 1, · · · , l, the i-th row of M is labeled by a
party ρ(i) (ρ is a function from {1, · · · , l} to P). When
we consider the column vector v = (s,r2, · · · ,rn), where
s ∈Zp is the secret to be shared and r2, · · · ,rn ∈Zp are
randomly chosen, then Mv is the vector of l shares of
the secret s according to Π. The share (Mv)i belongs to
party ρ(i).

Every linear secret sharing-scheme according to the above

definition also enjoys the linear reconstruction property: Sup-

pose that Π is a LSSS for the access structure A. Let S ∈ A

be any authorized set, and let I ⊂ {1,2, · · · , l} be defined as

I = {i : ρ(i)∈ S}. Then, there exist constants {w∈Zp}i∈I such

that, for any valid shares {λi} of a secret s according to Π, we

have ∑i∈I wiλi = s. These constants {wi} can be found in time

polynomial in the size of the share-generating matrix M. We

note that for unauthorized sets, no such constants {wi} exist.

B. Access Tree Structure

An access tree is defined as a tree T, where every no-

leaf node x represents a threshold gate (kx,numx) (numx is

the number of its children), and every leaf x is described

by an attribute att(x) and a threshold value kx. The function

parent(x) denotes the parent of the node x in the tree. T
also defines an ordering number for each child node and the

function index(x) returns such a number associated with the

node x.

Policy Checking: To determine whether or not an access

tree T is satisfied by a set of attributes S, the policy checking

algorithm recursively computes as follows. If node x is a non-

leaf node, it returns 1 iff at least kx children return 1, otherwise

returns 0; If x is a leaf node, then it returns 1 iff att(x) ∈ S,

otherwise returns 0.

Tree Implementing: The secret s to be shared is first

assigned to the root node of the tree by using a random

polynomial qroot with qroot(0) = s. The rest of the nodes

are used to distributed this root polynomial amongst the

other nodes as smaller degree polynomials, as illustrated in

Algorithm 5.
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