IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON THEORETICAL FOUNDATIONS FOR BIG DATA APPLICATIONS:
CHALLENGES AND OPPORTUNITIES

Received March 10, 2016, accepted March 25, 2016, date of publication April 4, 2016, date of current version April 21, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2549982

A Tutorial on Secure Outsourcing of Large-scale
Computations for Big Data

SERGIO SALINAS', (Member, IEEE), XUHUI CHEN2, (Student Member, IEEE),
JINLONG JI2, (Student Member, IEEE), AND PAN LI2, (Miember, IEEE)

! Department of Electrical Engineering and Computer Science, Wichita State University, Wichita, KS 67260, USA
2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, USA

Corresponding author: P. Li (lipan@case.edu)

This work was supported by the Division of Computer and Network Systems through the U.S. National Science
Foundation under Grant CNS-1149786 and CNS-1343220.

ABSTRACT Today’s society is collecting a massive and exponentially growing amount of data that can
potentially revolutionize scientific and engineering fields, and promote business innovations. With the advent
of cloud computing, in order to analyze data in a cost-effective and practical way, users can outsource
their computing tasks to the cloud, which offers access to vast computing resources on an on-demand and
pay-per-use basis. However, since users’ data contains sensitive information that needs to be kept secret for
ethical, security, or legal reasons, many users are reluctant to adopt cloud computing. To this end, researchers
have proposed techniques that enable users to offload computations to the cloud while protecting their data
privacy. In this paper, we review the recent advances in the secure outsourcing of large-scale computations
for a big data analysis. We first introduce two most fundamental and common computational problems,
i.e., linear algebra and optimization, and then provide an extensive review of the data privacy preserving
techniques. After that, we explain how researchers have exploited the data privacy preserving techniques to

construct secure outsourcing algorithms for large-scale computations.

INDEX TERMS Big data, privacy, cloud computing, linear algebra, optimization.

I. INTRODUCTION
The amount of data that is being collected by today’s society
is exponentially growing. The digital world will increase
from 4.4 zetabytes (trillion gigabytes) in 2013 to 44 zetabytes
by 2020, more than doubling every two years [1]. Such
massive data holds the potential to rapidly advance scientific
and engineering knowledge and promote business innova-
tions [2]-[5]. For example, e-commerce companies can
improve product recommendations by mining billions of
customer transactions [6]; power engineers can monitor the
electric grid in real-time based on the enormous amount of
sensor data [7]; and financial firms can increase the returns of
their portfolios by analyzing the daily deluge of stock market
data. Obviously, we have massive data in all these fields,
which needs to be stored, managed, and more importantly,
analyzed. However, users face an enormous challenge in
trying to analyze such huge amounts of data in a timely and
cost-effective way.

Specifically, due to the limited computing and
RAM (random access memory) capacity of traditional hard-
ware, users are unable to analyze large-scale data sets in a

feasible amount of time. In fact, analyzing massive data usu-
ally requires vast and sophisticated computing infrastructure.
For example, governments and universities have successfully
employed supercomputers to solve very heavy computing
tasks, such as predicting climate change and simulating
protein folding. Unfortunately, because of the high cost of
supercomputers, e.g., hundreds of millions of dollars or even
more, most users lack access to adequate computing facilities
for big data applications. Even small in-house computing
clusters are too expensive, and their computing resources may
still be insufficient [8], [9].

Recently, cloud computing has been proposed as an effi-
cient and economical way for resource-limited users to
analyze massive data sets. In this computing paradigm,
cloud users outsource their computing tasks to a cloud
server [10]—-[14], which contains a large amount of computing
resources and offers them on an on-demand and pay-per-use
basis [15]. Therefore, users can share the cloud’s resources
with each other, and avoid purchasing, installing, and main-
taining sophisticated and expensive computing hardware and
software. For instance, the video streaming company Netflix

2169-3536 © 2016 IEEE. Translations and content mining are permitted for academic research only.

1406 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 4, 2016

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

S. Salinas et al.: Tutorial on Secure Outsourcing of Large-scale Computations for Big Data

IEEE Access

employs the cloud to accommodate users’ huge and highly
dynamic demand in a cost-effective way [16].

Although users recognize the advantages of cloud comput-
ing, many of them are reluctant to adopt it due to privacy
concerns [17]. To be more prominent, in many cases, users’
data is very sensitive and should be kept secret from the cloud
for ethical, security, or legal reasons [18]-[20]. For exam-
ple, outsourcing product recommendations in e-commerce
can give unauthorized access to users’ shopping habits [21];
a power company’s data may reveal the topology of the
system, thus enabling attacks on the electric grid [22]; and
outsourcing portfolio optimization may compromise finan-
cial firms’ market research. In fact, users’ private data is
vulnerable to malicious cloud service providers, who can
directly snoop into its users’ data, and third-party adver-
saries, who can launch a number of attacks against the
cloud [23]-[27]. Therefore, to enable scientists and engineers
to revolutionize their fields through the analysis of large-scale
data, it is important to design secure outsourcing tools that
preserve their data privacy.

We notice that two types of fundamental mathematical
computations frequently appear in large-scale data analytics
and computing: linear algebra and optimization. In particular,
linear algebra operations are arguably the most fundamen-
tal and frequently used computations in big data analysis.
For example, least-squares estimation, which is widely used
for linear regression, involves the solution of an overdeter-
mined linear system of equations; and iterative solutions for
non-linear systems, such as the Newton-Raphson method,
usually employ solving a linear system of equations as a
subroutine. Besides, to perform more sophisticated analysis,
optimization is frequently used in big data applications.
For example, scheduling routes in intelligent transporta-
tion systems can be done by solving a linear program;
and support vector machines, a commonly used machine
learning algorithm, employ both linear and quadratic
programs.

In this tutorial, we review secure outsourcing techniques
for for large-scale data analytics and computing. Specif-
ically, we first introduce linear algebra and optimization
problems and their respective solution methods. We then
review the most common privacy-preserving techniques for
large-scale data sets, and explain how researchers have used
them to securely outsource linear algebra and optimization
computations.

The rest of this paper is organized as follows. In Section II,
we introduce two most fundamental computational prob-
lems employed in large-scale data analysis. In Section III,
we introduce the cloud computing system architecture and the
threat model. In Section IV, we present privacy-preserving
techniques for secure outsourcing of large-scale computa-
tions. Section V explains how linear algebra and optimiza-
tion computations can be outsourced to the cloud while
preserving data privacy. We finally conclude this paper
in Section VI.

VOLUME 4, 2016

Il. FUNDAMENTAL COMPUTATIONAL

PROBLEMS IN BIG DATA

In this section, we present two most fundamental com-
putational problems, i.e., linear algebra and optimization,
employed in large-scale data analysis.

A. LINEAR ALGEBRA

Many problems that involve large-scale data analysis
are fundamentally based on solving linear systems of
equations (LSEs). For example, in image processing, power
flow estimation, and portfolio optimization, least-squares
problems can be reformulated as an LSE; in social net-
work analysis and web search engine design, the eigenvector
centrality problem is naturally posed as an LSE; and lin-
ear regression, which is a very common statistical analysis
technique, can also be computed through solving an LSE.
We formally define an LSE as follows:

Ax = Db, (1

where A € R"™™ is the coefficient matrix, x € R"*! is
the solution vector, and b € R™! is the constant vector.
We assume that A is square, i.e., m = n, non-singular,
symmetric, and positive-definite. In fact, given an arbitrary
coefficient matrix A, the user can always find an equivalent
LSE by employing A’ = AT A as the coefficient matrix and
b’ = ATb as the constant vector, where matrix A’ is guaran-
teed to be non-singular, symmetric, and positive-definite.

1) MATRIX INVERSION
To solve the large-scale LSEs in (1) by matrix inversion,
a user first finds matrix A~! such that

AA =1)

where I € R™ " is the identity matrix, and then computes
x=A"b.

By computing A~! once and storing it, the user can effi-
ciently solve several LSEs that share the same coefficient
matrix A, but have different constant vectors b. Besides,
matrix inversion often appears as a stand alone computation.
For instance, in large-scale data visualization, matrix inver-
sion is employed in 3-D rendering processes, such as screen-
to-world ray casting and world-to-subspace-to-world object
transformations [28].

Unfortunately, since the most efficient matrix inversion
algorithms are based on matrix multiplications, the complex-
ity of computing A~! is too high for the user, particularly in
big data applications.

2) ITERATIVE SOLUTION METHODS

Iterative methods can solve LSEs with lower computational
complexity by avoiding matrix multiplications. We briefly
review two of the most frequently used iterative solution

methods: the Jacobi method and the conjugate gradient
method (CGM).

1407

IEEE Access

S. Salinas et al.: Tutorial on Secure Outsourcing of Large-scale Computations for Big Data

The main idea of the Jacobi method is to iteratively update
the solution vector based on a transformed coefficient matrix.
Specifically, we replace A with D 4+ R in (1), where D and R
are the matrices containing the diagonal and the off-diagonal
elements of A, respectively. Then, by rearranging terms, we
reach the following Jacobi iteration to solve (1), i.e.,

T =Txk +¢ 3)

where T = —D~'Rand ¢ = D~'b.

To carry out the Jacobi method, the user assigns random
values to the initial solution vector x°, and computes (3) until
the following condition is met,

k _ kt1
X —x"*p <e, C))

where || - ||2 is the 2-norm and 0 < € < 1 is the tolerance
parameter. If the coefficient matrix A is diagonally dominant,
the Jacobi iteration converges in K < n iterations. Otherwise,
the algorithm may diverge [29].

Another iterative solution method is the conjugate gra-
dient method (CGM), which offers guaranteed convergence
if the coefficient matrix is symmetric and positive-definite.
To illustrate the main idea of the CGM, we first note that solv-
ing (1) is equivalent to solving the following unconstrained
optimization program

minf(x) = —x' Ax — bx 5)

1
2
when A is nonsingular, symmetric and positive-definite [30].

The CGM employs a set of vectors P = {po, P1,-- -, Pn}
that are conjugate with respect to A, that is, at iteration k the

following condition is met:
p Api=0 for i=0,...,k—1. (6)

Using the conjugacy property of vectors in P, we can find
the solution in at most n steps by computing a sequence of
solution approximations as follows:

Xp1 = Xk + 0 Pr @)

where o« 1is the one-dimensional minimizer of (5)
along x; + oxpx. The minimizer oy is given by

. —l'kTPk
P Apx
where ry = Ax; — b is called the residual.

Moreover, we can iteratively find the residual based on (7)
as follows:

®)

I+l = AXg4) — b
= A + axpik) — b = rp + o Apy.)

The CGM finds a new conjugate vector px41 at iteration k
by a linear combination of the negative residual, i.e., the
steepest descent direction of f(x), and the current conjugate
vector py, that is,

Pi+1 = —Tit+1 + Br+1Pk (10)

1408

where P41 is chosen in such a way that p,Ll and pr meet
condition (6).

Since x; minimizes f(x) along pg, it can be shown that
r/p; =0fori=0,1,...,k — 1 [30]. Using this fact and
equation (10), a more efficient computation for (8) can be
found, namely,

—r; (—rx + BiPi—1)
p{ Apk
I‘]—crl‘k
P AP
Similarly, using (9), we can find the formulation for Sy

o =

.

_ DTkl

Pr+1 = ——
I'k I

The iterations stop when the following stopping criteria is met

r] ri < v|bll. (11)

where v is a tolerance value.
To summarize the above, the CGM algorithm is as follows.
At iteration k = 0, we have

ro =Axy—b (12)
Po = —TXo (13)
k=0 (14)

and at iteration k > 0 we have the following iterative
equations:

r,jrk
= p; Aps (1
Tip1 = I + g Apg (16)
Xp+1 = XkT+ o Pk (17)
Byt = etk (18)
I‘k Iy
Pik+1 = —Tk+1 + Bet+1Pk (19)

Compared to other methods, e.g., matrix inversion, Gaussian
eliminations, QR decomposition, the Jacobi iteration and the
CGM offer a feasible algorithm for extremely large-scale
systems.

B. OPTIMIZATION

In large-scale data analysis, many computations can be
posed as an optimization problem that has a linear objec-
tive and affine constraints, i.e., a linear program (LP), or a
quadratic objective and affine constraints, i.e., a quadratic
program (QP). For example, in machine learning, support
vector machines employ both linear and quadratic pro-
grams [31]; in financial analysis, linear programs have been
successfully used to manage stock portfolios and evaluate
risk; and in power grids, linear optimization models are
used to control generation dispatch and perform real-time
monitoring [32]. In what follows, we introduce linear and
quadratic programs, and describe their respective Lagrange
dual problems.

VOLUME 4, 2016

S. Salinas et al.: Tutorial on Secure Outsourcing of Large-scale Computations for Big Data

IEEE Access

1) LINEAR PROGRAM
An optimization problem with linear objective and linear
constraints, i.e., an LP, is defined as follows [33]:

min z=c'x (20a)

X
subjectto Ax=b (20b)
x>0 (20c)

where ¢ € R” is the cost vector and x € R” is the variable
vector. Matrix A € R™*" vector b, and (20c) describe a
set of affine constraints. The user aims to find the optimal
solution x* such that the objective in (20a) is minimized and
the constraints (20b) and (20c) are satisfied. We assume that
A is full-rank and the constraints are feasible.

Linear programs can be efficiently solved through iterative
solution methods such as the Simplex algorithm [33] and
interior point methods [34].

2) QUADRATIC PROGRAM
A QP is an optimization problem that has a quadratic objec-

tive and affine constraints [34], i.e.,
1
min f(x) = EXTQX —b'x
X
subjectto Ax <¢

(21a)
21b)

where x € R"*! is the optimization variable, and Q € R"*"
and b € R"™! are the quadratic and affine coefficients,
respectively. The matrix A € R”*", and the vector ¢ € R”*!
define the set of affine linear constraints. Similar to an LP,
the user intends to find the optimal solution x* such that the
objective in (21a) is minimized and the constraints (21b) are
satisfied. We assume that the coefficient matrix Q is positive
definite and symmetric, and hence the QP in (21) has a unique
solution. We also assume that A is full-rank.

3) THE LAGRANGE DUAL PROBLEM
The Lagrange dual problem is an equivalent optimization
problem that is often easier to solve and provides useful
insights into the original problem. For example, as we will see
later, the Lagrange dual problem usually has a much simpler
constraint set that allows us to employ more efficient solution
methods. Therefore, we can solve the Lagrange dual problem
to either verify the solution to the original problem or solve
the original problem. In what follows, we derive the Lagrange
dual problems for both LPs and QPs.

The Lagrange Dual Problem for LPs: To find the dual
problem of (20), we first form the Lagrangian £ : R"*! x
R™*1 x R 5 R as follows:

LxAv)=c x+A (Ax—b)—v'x (22)

where A € R™*! and v € R"*! are the equality and inequality
dual variable vectors, respectively.

We define the Lagrange dual function g : R"*! x R"™*1 —
R as the infimum value of (22) over x (regarding A € R”*!
andv € R™1),ie.,

g, v) = inf L(x, A, v)
X
=—b'A+infc+ATA—v)"x. (23)
X

VOLUME 4, 2016

To solve the Lagrange dual function, we observe that (23) has
a lower bound when the coefficient of x is equal to zero, and
otherwise it is unbounded, that is

—b"A ATA-— =0,
g% A, v) = { Ve (24)

—00 otherwise.

By using the first case of (24) as the objective function, and
requiring ATA —v +c¢ = 0 and v to be nonnegative, we arrive
at the dual problem of (20):

max g=—b'A
Ap

subject to ATA—v+c=0
v>0 (25)

which can be further simplified into
mflx g=-bl2
subjectto ATA+c¢>0 (26)

Since we have assumed that A is full-rank and that the
affine constraints are feasible, we have that the strong duality
holds [34] and thus

¢'x* = —b'A" (27)

The Lagrange Dual Problem for QPs: Since directly
solving the optimization problem in (21) requires expensive
solution methods such as interior point methods, it is often
preferable to solve the Lagrangian dual problem, which only
has non-negativity constraints and can be more efficiently
solved.

Following a similar procedure to the above, we first form
the Lagrangian £ : R™! x R™*! — R as follows [34]:

L(x,)) =f(X)+ AT (Ax — b) (28)

where A € R™*! is the vector of dual variables, and A and b
are defined in (21a).

We define the Lagrange dual function g : R™*! — R
as the minimum value of the Lagrangian over x
(for A € R™1) je.,

g = ir;f L(x, L) 29)

To solve the Lagrange dual function, we take the derivative of
equation (28) with respect to x and set it to zero as follows:

x'Q-b ' +12TA=0 (30)

where we have used the definition of f(-) in (21a). Taking the
transpose in (30) and solving for x, we get

x=Q !b-ATy) (31)

Then, by plugging (31) into (28) and considering that Q is
symmetric, we can rewrite the Lagrange dual function as

s0) = —%XTAQ_IATL
—2T(c—AQ 'b)
1o
~3b7Q7'b 32)

1409

IEEE Access

S. Salinas et al.: Tutorial on Secure Outsourcing of Large-scale Computations for Big Data

User's

Computing Device

Cloud

FIGURE 1. A typical architecture for secure outsourcing in big data analysis.

By using equation (32) as the objective function and requir-
ing A to be non-negative, we arrive at the dual problem of the
QPin (21), i.e.,

(33a)
(33b)

1
ExTPx +A'r
subjectto A >0

. 2 —
min g@)

where P = AQ~'AT and it is positive definite and symmet-
ric, and r = ¢ — AQ~'b. We denote the solution to (33)
as A*.

Since the problem (21) is convex and the affine constraints
are feasible, then the strong duality holds [34] and we have
that

x=Q b —ATAY). (34)

Moreover, to solve the optimization problem in (33),
we can use the Gauss-Seidel iteration as follows:

A1+ 1),
Ajs i1 (), <oy A (2)) (35)

where j € [1, m]. Intuitively, the algorithm updates A; (for all
j € [1, m]) one at a time, and uses the most recent updates as
they become available.

Let (At + 1), ..., 41 + 1), Aj, Ajp1(8), ..., Ap(2)) be
denoted as A;(¢). We can solve equation (35) analytically by
taking the partial derivative of g(A;(¢)) in (33a) with respect
to A; and setting it to zero:

g((®)
8A
where 7; is the jth element of r, and p; is the jth row of P.

Then, the unconstrained minimum of g(-) along the
Jth coordinate starting from A;(¢) is attained at

At +1) = argmm gt +1),.

J_

=71+ pAj() =0

1
Mt + 1) = xj(1) — —(r; + A1) V)€ [1,m]
Pjj
where ¢ is the iteration index.

Thus, taking into account the non-negativity constraint
and holding all the other variables constant, we get that the
Gauss-Seidel iteration, when 4, is updated, is

Aj(t + 1) = max{0, A(r + 1)}
1
= max{0, A;(¢) — IT(rj +piAie)} (36)
j.J
it +1) = A1) Vi#j. (37)

1410

After all the A;(r + 1)’s (1 < i < m) are updated, the
GSA iteration proceeds to the next. The iterations continue
until the following stopping criteria is satisfied:

@+ 1) —A@D)[l2 <€ (38)

where 0 < € < 1 is the tolerance parameter.

lll. SYSTEM ARCHITECTURE

In this section, we present the most common cloud computing
architecture for secure outsourcing of large-scale computa-
tions, and describe the threat model.

A. SYSTEM ARCHITECTURES

As shown in Fig 1, the system architecture for secure
outsourcing of large-scale computations consists of a
resource-constrained user and a remote resource-rich cloud
server. The user aims to solve one of the large-scale problems
described in Section II. However, due to the massive data
involved in the problem, the user is unable to solve it by itself
in a feasible amount of time. Therefore, the user outsources
its most computationally expensive tasks to the cloud.

B. THREAT MODELS

The literature assumes two threat models for the cloud,
i.e., a semi-honest model and a malicious model. In the semi-
honest model, the cloud attempts to learn the user’s private
data from its outsourced data and from the results of its
own computations. In the malicious model, the cloud has the
additional ability to deviate from the proposed protocols or
return erroneous results.

Before the cloud can help perform any computations, the
user first needs to upload some of its data to the cloud.
However, to prevent the cloud from learning private informa-
tion, the user’s data must be well protected. In particular, in
the user’s data, the non-zero elements’ values and positions
both carry private information. Besides, we usually need
to keep the zeros’ in users’ data, which can enable more
efficient computations, e.g., sparse matrix computations or
parallel computations [35]. In the following, we adopt the
privacy notion of computational indistinguishability [36], and
introduce a few similar but different definitions.

First, in the computational problems described
in Section II, we observe that the numerical values in the
matrices and vectors are private. Specifically, in LSEs,

VOLUME 4, 2016

S. Salinas et al.: Tutorial on Secure Outsourcing of Large-scale Computations for Big Data

IEEE Access

the values of the elements in the coefficient matrix A
and constant vector b are private. Similarly, in LPs,
the cost function ¢, and the constraint set defined by A and b
should be kept secret from the cloud. In the case of QPs,
the objective coefficients Q and b, as well as the constraint
set defined by A and c are private. In all the LSE, LP, and
QP problems, the solution x* is private. We have the follow-
ing two definitions of computational indistinguishability in
value.

Definition 1: Computational Indistinguishability in Value:
Let R € R™" be a random matrix with entries in its
Jjth column sampled from a uniform distribution with interval
[—R;j, Rj] ¥j € [1, n]. Matrices R and Q are computationally
indistinguishable in value if for any probabilistic polynomial
time distinguisher D(-) there exists a negligible function pi(-)
such that [37]

|P[D(rij) =11 = Pr[D(gij) = Il = Vij (39

where r; ; is the element in the ith row and jth column of R,
and g;; is the element in the ith row and jth column of Q.
Distinguisher D(-) outputs 1 when it identifies the input as
a non-uniform distribution in the range [—R;, R;], and zero
otherwise.

Definition 2: Computational Indistinguishability in Value
under a CPA: We say that a matrix transformation scheme has
indistinguishable transformations in value under a chosen-
plaintext attack (or is CPA-secure in value) if for all
probabilistic polynomial-time adversaries 4 there exists a
negligible function u, such that the probability of distinguish-
ing two matrix transformations in value in a CPA indistin-
guishability experiment is less than 1/2 4 u [35].

Note that if a matrix transformation scheme results in a
matrix satisfying Definition 1, then it satisfies Definition 2
as well.

Moreover, the positions of the non-zero elements in a
matrix (i.e., the matrix’s structure) contain private informa-
tion that should also be hidden from the cloud. For example,
in power system state estimation, the system matrix contains
the topology of the network, which can be used to launch an
attack against the grid [22]. To protect a matrix’s structure,
we can permute its rows and columns in such a way that the
non-zero elements occupy positions that are indistinguishable
from those of the non-zero elements in another permuted
matrix. We give the definition of secure permutation below.

Definition 3: Indistinguishability in Structure under a
CPA: We say that a permutation scheme has indistinguish-
able permutations under a chosen-plaintext attack (or is
CPA-secure) if for all probabilistic polynomial-time adver-
saries .4 there exists a negligible function u, such that the
probability of distinguishing two permutations in a CPA
indistinguishability experiment is less than 1/2 + p [35].

IV. DATA PRIVACY PRESERVING APPROACHES

To delegate a computing task to the cloud, the user first needs
to perform some computations on its data. These computa-
tions should require a moderate effort from the user, hide the

VOLUME 4, 2016

data from the cloud, and allow the cloud to return a mean-
ingful result. To this end, researchers have proposed mainly
two kinds of approaches: cryptography-based techniques and
perturbation-based techniques. In this section, we describe
the state-of-the-art of privacy-preserving approaches.

A. CRYPTOGRAPHY-BASED APPROACHES

In their seminal work, Gennaro et. al [38] develop the first
fully homomorphic encryption (FHE) scheme which allows
users to securely outsource any computations to the cloud.
However, it requires an expensive preprocessing phase at the
user and adds significant computing overhead at the cloud.
Although some efforts have been made to improve the prac-
ticality of FHE [39], it remains very expensive for big data
applications.

To overcome this challenge, a user can employ partially
homomorphic encryption (PHE) to conceal its data and allow
the cloud to securely carry out a specific computational task.
In other words, compared with FHE that supports arbitrary
computation on ciphertexts, PHE only allows homomorphic
computation of some operations on ciphertexts (e.g., addi-
tions, multiplications, quadratic functions, etc.) and hence
is usually less complex. For example, consider the Paillier
homomorphic cryptosystem, a frequently used PHE. Letting
E(-) denote the encryption function, we have that

E(m +mp) = E(my) - E(mp)
and
E(my - ¢) = E(my)*

where mj and my are plaintexts, and ¢ is a constant.
Other PHE cryptosystems include El-Gamal [40] and
Goldwasser and Micali [41].

Notice that although FHE and PHE schemes satisfy
Definition 2, they may still not be applicable for big data
applications due to the expensive encryptions/decryptions as
well as the complex operations on ciphertexts.

B. PERTURBATION-BASED APPROACHES
Perturbation-based approaches conceal a user’s sensitive
data by performing linear algebra operations between its
private matrices and carefully designed random matrices.
In this section, we introduce three main perturbation-
based approaches employed to protect the user’s privacy:
matrix addition, matrix multiplication, and row and column
permutations.

1) MATRIX ADDITION

A user can hide the values of the elements in its private
matrix H € R"™*" by performing the following matrix
addition [37]:

H=H+Z (40)

where Z € R™ " is a random matrix, and h;; = h;j + z;;
(Vie[l,m], jel[l,n].

1411

IEEE Access

S. Salinas et al.: Tutorial on Secure Outsourcing of Large-scale Computations for Big Data

To reduce the user’s computational complexity, the random
matrix Z is formed by a vector outer-product, i.e.,

Z=uv' (41)

where u € R™*! is a vector of uniformly distributed random
variables and vector v € R™! is a vector of arbitrary
positive constants. Note that element z; j = w;v; (Vi € [1, m],
Jj € [1, n]), is the product of a random variable and a positive
constant, and hence also a random variable.

It has been proven that the above matrix addition scheme
is computationally indistinguishable in value as defined
in Definition 1 [37]. Note that this scheme does not pre-
serve the zeros in matrix H during the matrix transformation
process.

2) MATRIX MULTIPLICATION

Consider a user’s private matrix H € R"™", with
non-zero elements h; ; for (i, /) € Su, where Sy is the set
of the coordinates of non-zero elements in H. Then, the user
can hide H’s non-zero values by performing the following
multiplications [35]:

H = DHF (42)

where D € R"*™ is a diagonal matrix with non-zero elements
generated by a pseudorandom function, and F € R"*" is also
a diagonal matrix but with non-zero elements set to arbitrary
positive constants.

Salinas er al. [35] prove that this matrix multiplication
scheme is computationally indistinguishable in value under
a CPA as defined in Definition 2. Note that this scheme does
preserve the zeros in matrix H during the matrix transforma-
tion process.

3) MATRIX PERMUTATION
Although the matrix transformation in equation (42) hides the
values of the non-zero elements in H, it reveals their original
positions, i.e., H’s structure, which are also private. _

By randomly permuting the rows and columns of H, the
user can conceal H’s structure. Specifically, the user performs
the following multiplications [35]:

H = EHU (43)

where E € R™ and U € R™" are pseudorandom permu-
tation matrices, and their elements are defined by

Vie[l,m],je[l,m]
Vie[l,n],je[l,n]

eij = Sx(i)j

Uij = S,
where i and j are the row and column indexes, respectively,
and the function 7 (-) maps an original index i to its pseu-
dorandomly permuted index, i.e., 7 (i) = ¢; (for i € [1,m])
and (i) = u; (for i € [1, n]). Besides, the Kronecker delta
function is given by

s L i=i
Yo, i

1412

The user is able to recover the original structure by apply-
ing the inverse permutation, i.e.,

A=E"HU'

where T denotes the matrix transpose operation. To reach
this result, we have used the orthogonality property of the
permutation matrices, i.e., E'E = Iand UUT = I, where I
is the identity matrix.

Note that [35] shows that this matrix permutation scheme
is computationally indistinguishable in structure under a CPA
as defined in Definition 3.

Therefore, taking advantage of both matrix multiplication
and matrix permutation, the user can hide the values of the
non-zero elements in H as well as its structure as follows:

H = LHR (44)
where L = ED and R = FU.

V. SECURE OUTSOURCING OF LARGE-SCALE
COMPUTATIONS

In this section, we review how researchers have employed the
data privacy preserving techniques in Section IV to securely
outsource large-scale computations introduced in Section II.

A. LINEAR ALGEBRA

Lei et al. [42] construct a method for securely outsourcing
matrix inversion described in (2). In particular, the user first
conceals the values and structure of a private matrix A by
computing matrix multiplications and permutations, i.e.,

A = MAN (45)

where M and N are essentially both the multiplication of
a random diagonal matrix and a permutation matrix, and
then uploads A to the cloud. After computing the inverse
matrix A~!, the cloud returns the result to the user, who
recovers A~ as follows:

A~ =NA"'M.

Thus, this secure matrix inversion outsourcing by Lei et al.
can be used to solve LSEs of the form (1) as described
in Section II-A1l. Besides, Chen et al. [43] employ a simi-
lar procedure to solve linear regression problems. Note that
neither of these schemes provides formal proof for privacy
preservation.

Since it may still be a very challenging task for the cloud
to solve LSEs in (1) with the matrix inversion method,
researchers have proposed secure outsourcing algorithms for
large-scale LSEs based on iterative procedures, which are
introduced below.

Wang et al. [44] develop an algorithm based on the Jacobi
iteration and partial homomorphic encryption, where the user
and the cloud collaborate to solve an LSE. Specifically,
the user computes matrix T as described in Section II-A2,
encrypts its values using the Paillier cryptosystem described
in Section IV-A, and uploads it to the cloud. To protect the

VOLUME 4, 2016

S. Salinas et al.: Tutorial on Secure Outsourcing of Large-scale Computations for Big Data

IEEE Access

solution vector’s values, the user replaces x with X = x +r
in (1), where r is an n x 1 random matrix.

The user and the cloud collaboratively carry out the Jacobi
iteration (3) as follows. At the iteration step k = 0, the user
computes the initial solution vector X* = x° + r and sends it
to the cloud, who then computes

n
E(T) = [TE@p)Y
j=1
where (Tf(o)i is the ith element in TX?, and tij is the ele-
ment in the ith row and jth column of T. The user down-
loads E((T%");)’s and finds %' by computing the rest of
equation (3). At the end of the kth iteration, the user trans-
mits XF to the cloud for the next iteration k + 1. The iterations
continue until the sequence of solution vectors meets the
stopping criteria (4). Finally, to find the solution of (1), the
user computes x* = X* —r.

Although encrypting the values of matrix T is a
one-time operation, it is a computationally expensive task,
especially in big data applications, and common users may
lack resources to compute it. To overcome this problem, the
user may employ a private cloud, e.g., a trusted computing
infrastructure within its organization, to carry out the encryp-
tion. Besides, there is no formal proof for privacy preservation
in [44] either.

To relax the assumption of a trusted private cloud and
further reduce computational complexity, Salinas et al. [37]
construct a secure outsourcing algorithm for large-scale LSEs
that only employs perturbation-based approaches. In particu-
lar, the user generates a masked coefficient matrix A=A +7Z
where Z is an n x n random matrix constructed as described
in Section IV-B1, and sends it with the initial solution vector
Xo = q to the cloud, where q is a random n x 1 vector. Then,
the cloud computes the following secure version of (12):

h() = AX()
= (A 4+ Z)xo.

Upon receiving hg, the user computes the residual vector as
follows:

rop = AXO —b
=hp—u (VTXO) —b.
At the end of the initialization step, the user sets the conjugate
vector po = —ro, and transmits it with rg to the cloud.
To protect the user’s privacy, the cloud carries out computa-
tions with the transformed matrix A, instead of A, as follows.
To compute ak, the user and the cloud carry out equation (15)

in two steps. First, based on the p received from the user, the
cloud computes an intermediate vector

i = Pl Api = p{ (A + Z)pi. (46)
Second, the user finds « using #; as follows
_ r,;r Tk
= (W)

VOLUME 4, 2016

Similarly, the user exploits the cloud’s resources to
find ry4q1. The cloud first calculates an intermediate
vector:

fi = Api = (A + Z)px (47)
which allows the user to compute ry as follows:
et = Ik + o (B —uv pp)).

Since equations (17)-(19) only require vector-vector oper-
ations, they all can be computed efficiently by the user
itself. At the end of the kth iteration, the user transmits
Pi+1 to the cloud for the next iteration & + 1. When the
condition (11) is met, the algorithm converges and the user
recovers the solution vector x*. Noticeably, [37] proves that
the proposed scheme is computationally indistinguishable in
value as defined in Definition 1.

B. OPTIMIZATION

1) LINEAR PROGRAMS

To securely outsource an LP of the form in (20),
Wang et al. [45] propose the following equivalent LP, i.e.,

~ AT A

minimize z=¢ X (48a)
X
subjectto AXx=bh (48b)
Bk >0 (48¢)
where ¥ = N™!(x + r) and r is a random n x 1 vector,

¢ = yN'c (y is a random number), A = MAN with M
and N being random dense matrices, and b = M(b + Ar)
(with b 4 Ar # 0). Note that the bound constraint is Bx > 0
instead of x > 0 in (20c). The authors propose to find a
Ir}atrix A such that Ab = Br, and set B = (B — AMA)N for
IB| # 0.

The user can outsource the transformed problem (48a) to
the cloud. The cloud then solves (48a) and its Lagrange dual
problem, and sends the results to the user, who computes
x* = NX* — r. To verify the correctness of the cloud’s
computations, the user can check if the objective of (48a) is
equal to that of the Lagrange dual problem. No formal proof
for privacy preservation is provided. Besides, Wang et al. [46]
and Nie et al. [47] propose similar techniques to securely
outsource LPs.

2) QUADRATIC PROGRAMS
To securely outsource a QP of the form in (21), Zhou and Li
derive an equivalent QP as follows:

mAin f(x) 5 Q —b'x

subject to A% <

(49a)

(49b)

where * = N~ I(x + 1) is the secure optlmlzatlon variable,
risa raqdom n x 1 vector, Q NTQN, b = (r"QN +
b'N)", A = MAN, and ¢ = M(b + Ar) (with b + Ar # 0).
Matrices M and N are random matrices that can be con-
structed as in equation (44). After receiving the transformed

1413

IEEE Access

S. Salinas et al.: Tutorial on Secure Outsourcing of Large-scale Computations for Big Data

problem (49), the cloud solves it and returns the solution X* to
the user. The user can find the solution to (21) by computing
x* = NX* —r. In addition, the user can verify the correctness
of x* by verifying if the Karush-Khun-Tucker conditions
hold. Note that this scheme does not provide formal privacy
proof.

Salinas et al. [35] design a secure outsourcing algorithm
by first finding the dual problem of (21), and then conceal-
ing the dual problem’s matrices via the perturbation-based
approaches in Section IV-B. Specifically, in collaboration
with the cloud, the user first computes P and r in (33) and
then conceals them as follows:

p LR,PL"! (50)
i = LR, (51)
A Lo (52)

where L is the same as that in (44), R, > 0 is a diagonal
matrix whose elements are generated by a pseudorandom
function, and the elements of A(are non-negative which satis-
fies the constraints of (21). After the cloud receives the above
matrix and vector, it carries out the Gauss-Seidel iteration
in (36) as follows:

. . 1 .
Akt + 1) = max{0, Ar (1) — er (T + PeA (1))}

where):k and 7y are the kth elements of X and I, respectively,
P is the kth row of P, and the iteration step is denoted by ¢.
To allow the cloud to enforce the non-negativity constraints
in (37), the user also shares the signs of the elements in L.
The iterations continue until the stopping criteria in (38) is
satisfied.

The user can find the solution to the original QP problem
by first computing A* = L~!'A" and then x* = Q!
(b — AL*) where Q_l can be efficiently calculated with the
help of the cloud. Furthermore, the authors have developed
a parallel computing algorithm that can enable the cloud to
complete the Gauss-Seidel iterations in a parallel manner.
Finally, the user verifies the correctness of the computation
by checking whether the Karun-Khun-Tucker optimality con-
ditions hold.

Moreover, the authors formally prove that the proposed
scheme is CPA-secure both in value and in structure as
defined in Definition 2 and Definition 3, respectively.

C. SECURITY VALIDATION

In addition to constructing secure outsourcing algorithms,
previous works describe the security properties of their
schemes with respect to the threat models presented
in Section III-B. Specifically, in works that are based on
homomorphic encryption such as [44], the authors base the
security properties of their algorithms on the employed cryp-
tosystem. To show the security of outsourcing schemes based
on perturbation techniques, the works in [42], [45], and [48]
briefly describe how an attacker would need an infeasible

1414

amount of computing resources and time to extract informa-
tion from the user’s outsourced matrices and vectors, but no
formal proof for privacy is given. The works in [35] and [37]
state theorems about the security of their outsourcing algo-
rithms and formally show that they are computationally
indistinguishable.

D. COMPLEXITY ANALYSIS

To preserve the computational gains offered by cloud comput-
ing, secure outsourcing schemes require the user to perform
computing tasks that are less expensive than solving the
original computations. In this section, we review the compu-
tational complexity of solving linear algebra and optimization
problems, and report the user’s computational complexity in
the secure outsourcing algorithms.

We define the computational complexity as the num-
ber of floating-point (flops) operations (additions, subtrac-
tions, multiplications, and divisions), bitwise operations, and
encryptions that the party needs to perform. We note that an
encryption takes many flops, and a flop takes some bitwise
operations.

Matrix inversion has complexity O(n”) for 2 < p < 3,
given an n x n matrix. In the secure outsourcing scheme for
matrix inversion by Lei et al. [42], the user computes sparse
matrix multiplications, which have complexity O(n?).

In general, solving an LSE takes complexity O@?). In the
scheme by Wang et al. [44], the user only performs vector
computations with complexity O(n) and outsources On?)
Paillier encryptions to a private cloud. The secure outsourcing
algorithm by Salinas et al. [37] requires the user to perform
operations with complexity O(n?), and do not need the help
of a private cloud.

Solving LPs and QPs requires O(n*) computing opera-
tions. The algorithm for secure outsourcing of linear pro-
grams presented by Wang et al. [45] requires the user to
perform operations with complexity O(n”) for2 < p < 3.
The user’s complexity when securely outsourcing QPs
using the algorithms proposed by Zhou et al. [48] and
Salinas et al. [35] is O(n?).

VI. CONCLUSIONS

Scientists and engineers have the opportunity to revolutionize
their fields of study by analyzing the massive data collected
by today’s society. To analyze such large-scale data sets,
cloud computing has been proposed as a cost-effective and
practical computing paradigm. However, since the data car-
ries private information, it should be kept secret from the
cloud and external attackers for ethical, security, or legal rea-
sons. Moreover, we notice that many large-scale data analysis
techniques are based on two most fundamental computational
problems, i.e., linear algebra and optimization. In this tuto-
rial, we have described the most frequently employed linear
algebra and optimization computations in large-scale data
analysis. We have presented an extensive tutorial of privacy-
preserving techniques, and how they are used to securely
outsource large-scale computations.

VOLUME 4, 2016

S. Salinas et al.: Tutorial on Secure Outsourcing of Large-scale Computations for Big Data

IEEE Access

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

191

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J. E. Gantz, D. Reinsel, S. Minton, and V. Turner. (2014). The digital
universe of opportunities: Rich data and the increasing value of the Internet
of Things. IDC. [Online]. Available: http://idcdocserv.com/1678

National Research Council, Frontiers in Massive Data Analysis.
‘Washington, DC, USA: The National Academies Press, 2013.

Q. Hardy. (2015). IBM, G.E. and Others Create Big Data Alliance.
[Online]. Available: http://bits.blogs.nytimes.com/2015/02/17/ibm-g-e-
and-others-create-big-data-alliance/

Big Data: Seizing Opportunities, Preserving Values. [Online]. Available:
https://www.whitehouse.gov/sites/default/files/docs/big_data_privacy_
report_may_1_2014.pdf

A. McAfee and E. Brynjolfsson, Big Data: The Management Revolution.
Boston, MA, USA: Harvard Business Review, Oct. 2012.

G. Adomavicius and A. Tuzhilin, “Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible exten-
sions,” IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp.734-749,
Jun. 2005.

A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power Energy Mag.,
vol. 7, no. 2, pp. 52-62, Mar./Apr. 2009.

President’s Council of Advisors on Science and Technology. (May 2014).
Big Data and Privacy: A Technological Perspective. [Online]. Available:
http://www.whitehouse.gov/sites/default/files/microsites/ostp/PCAST/
pcast_big_data_and_privacy_-_may_2014.pdf

T. Kraska, “Finding the needle in the big data systems haystack,” /IEEE
Internet Comput., vol. 17, no. 1, pp. 84-86, Jan./Feb. 2013.

Y. Simmhan et al., “Cloud-based software platform for big data ana-
lytics in smart grids,” Computing Sci. Eng., vol. 15, no. 4, pp. 38-47,
Jul./Aug. 2013.

E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan,
“Computational solutions to large-scale data management and analysis,”
Nature Rev. Genet., vol. 11, no. 9, pp. 647-657, Sep. 2010.

H. Demirkan and D. Delen, “Leveraging the capabilities of service-
oriented decision support systems: Putting analytics and big data in cloud,”
Decision Support Syst., vol. 55, no. 1, pp. 412-421, 2013.

E. Kohlwey, A. Sussman, J. Trost, and A. Maurer, “Leveraging the
cloud for big data biometrics: Meeting the performance requirements of
the next generation biometric systems,” in Proc. IEEE World Congr.
Services (SERVICES), Washington, DC, USA, Jul. 2011,
pp. 597-601.

U. Kang, D. H. Chau, and C. Faloutsos, ‘‘Pegasus: Mining billion-
scale graphs in the cloud,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Kyoto, Japan, Mar. 2012,
pp. 5341-5344.

S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey of
large scale data management approaches in cloud environments,”
IEEE Commun. Surveys Tuts., vol. 13, mno. 3, pp. 311-336,
Mar. 2011.

Amazon Web Services. (2015). Netflix Case Study. [Online]. Available:
https://aws.amazon.com/solutions/case-studies/netflix/

Cloud Security Allliance. (2011). Security Guidance for Critical

Areas of Focus in Cloud Computing V3.0. [Online]. Available:
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf
A. Gumbus and F. Grodzinsky, “Era of big data: Danger of

descrimination,” SIGCAS Comput. Soc., vol. 45, no. 3, pp. 118-125,
Sep. 2015.

H. K. Patil and R. Seshadri, “Big data security and privacy issues in
healthcare,” in Proc. IEEE Int. Congr. Big Data, Anchorage, AK, USA,
Jun./Jul. 2014, pp. 762-765.

D. Eckhoff and C. Sommer, “Driving for big data? Privacy concerns in
vehicular networking,” IEEE Security Privacy, vol. 12, no. 1, pp. 77-79,
Jan. 2014.

A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in Proc. IEEE Symp. Secur. Privacy, Oakland, CA, USA,
May 2008, pp. 111-125.

Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state
estimation in electric power grids,” in Proc. ACM Conf. Comput. Commun.
Secur., Chicago, IL, USA, 2009, pp. 21-32.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds,” in Proc. ACM Conf. Comput. Commun. Secur., Chicago, IL, USA,
Nov. 2009, pp. 199-212.

VOLUME 4, 2016

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]
(33]
(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

(43]

[44]

(45]

[46]

(47]

(48]

S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” J. Netw. Comput. Appl., vol. 34,
no. 1, pp. 1-11, 2011.

D. Perez-Botero, J. Szefer, and R. B. Lee, “Characterizing hypervisor
vulnerabilities in cloud computing servers,” in Proc. Int. Workshop Secur.
Cloud Comput., Hangzhou, China, 2013, pp. 3-10.

R. Miao, R. Potharaju, M. Yu, and N. Jain, “The dark menace: Character-
izing network-based attacks in the cloud,” in Proc. Conf. Internet Meas.,
Tokyo, Japan, 2015, pp. 169-182.

A. Duncan, S. Creese, M. Goldsmith, and J. S. Quinton, “Cloud com-
puting: Insider attacks on virtual machines during migration,” in Proc.
12th IEEE Int. Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom),
Melbourne, VIC, Australia, Jul. 2013, pp. 493-500.

S. E. F. Gibson and B. Mirtich, “A survey of deformable modeling in
computer graphics,” Mitsubishi Electr. Res. Lab., Cambridge, MA, USA,
Tech. Rep. TR-97-19, 1997.

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Englewood Cliffs, NJ, USA: Prentice-Hall,
1989.

J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY, USA:
Springer, 2006.

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge, U.K.:
Cambridge Univ. Press, 2000.

A. Monticelli, State Estimation in Electric Power Systems: A Generalized
Approach. Norwell, MA, USA: Kluwer, 1999.

R. J. Vanderbei, Linear Programming: Foundations and Extensions. New
York, NY, USA: Springer, 2007.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

S. Salinas, C. Luo, W. Liao, and P. Li, “Efficient secure outsourcing
of large-scale quadratic programs,” in Proc. ACM Asia Conf. Comput.
Commun. Secur., Xi’an, China, 2016.

J. Katz and Y. Lindell, Introduction to Modern Cryptography. London,
U.K.: Chapman & Hall, 2008.

S. Salinas, C. Luo, X. Chen, and P. Li, “Efficient secure outsourcing
of large-scale linear systems of equations,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Hong Kong, Apr./May 2015, pp. 1035-1043.

R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Proc. 30th
Annu. Conf. Adv. Cryptol. (CRYPTO), Santa Barbara, CA, USA, 2010,
pp. 465-482.

K.-M. Chung, Y. Kalai, and S. Vadhan, “Improved delegation of computa-
tion using fully homomorphic encryption,” in Proc. 30th Annu. Conf. Adv.
Cryptol., Santa Barbara, CA, USA, 2010, pp. 483-501.

T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” [EEE Trans. Inf. Theory, vol. 31, no. 4,
pp. 469472, Jul. 1985.

S. Goldwasser and S. Micali, “Probabilistic encryption & how to
play mental poker keeping secret all partial information,” in Proc.
ACM Symp. Theory Comput., San Francisco, CA, USA, 1982,
pp. 365-377.

X. Lei, X. Liao, T. Huang, H. Li, and C. Hu, “Outsourcing large matrix
inversion computation to a public cloud,” IEEE Trans. Cloud Comput.,
vol. 1, no. 1, p. 1, Jan./Jun. 2013.

F. Chen, T. Xiang, X. Lei, and J. Chen, “Highly efficient linear regres-
sion outsourcing to a cloud,” IEEE Trans. Cloud Comput., vol. 2, no. 4,
pp. 499-508, Oct. 2014.

C. Wang, Q. Wang, K. Ren, and J. Wang, “Harnessing the cloud for
securely outsourcing large-scale systems of linear equations,” IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 6, pp. 1172-1181, Jun. 2013.

C. Wang, K. Ren, and J. Wang, “Secure optimization computation out-
sourcing in cloud computing: A case study of linear programming,” /[EEE
Trans. Comput., vol. 65, no. 1, pp. 216-229, Jan. 2016.

C. Wang, B. Zhang, K. Ren, and J. M. Roveda, “‘Privacy-assured outsourc-
ing of image reconstruction service in cloud,” IEEE Trans. Emerg. Topics
Comput., vol. 1, no. 1, pp. 166—177, Jun. 2013.

H. Nie, X. Chen, J. Li, J. Liu, and W. Lou, “Efficient and verifiable
algorithm for secure outsourcing of large-scale linear programming,” in
Proc. IEEE 28th Int. Conf. Adv. Inf. Netw. Appl. (AINA), Victoria, BC,
Canada, May 2014, pp. 591-596.

L. Zhou and C. Li, “Outsourcing large-scale quadratic program-
ming to a public cloud,” IEEE Access, vol. 3, pp. 2581-2589,
Dec. 2015.

1415

IEEE Access

S. Salinas et al.: Tutorial on Secure Outsourcing of Large-scale Computations for Big Data

computing, and big data.

1416

SERGIO SALINAS (M’09) received the B.S. degree
in telecommunications engineering from Jackson
State University, Jackson, in 2010, and the
Ph.D. degree in electrical and computer engineer-
ing from Mississippi State University, Starkville,
MS, in 2015. He is currently an Assistant Professor
with the Department of Electrical Engineering
and Computer Science, Wichita State University,
Wichita, KS. His research interests include secu-
rity and privacy in cyberphysical systems, cloud

XUHUI CHEN (S’ 14) received the B.E. degree in
information engineering from Xidian University,
China, in 2012, and the M.E. degree in electrical
and computer engineering from Mississippi State
University, Starkville, in 2015. She is currently
pursuing the Ph.D. degree with the Department
of Electrical Engineering and Computer Science,
Case Western Reserve University. Her research
interests include big data, and mobile cloud
computing.

/

JINLONG JI (S’16) received the B.E. and
M.E. degrees from Xidian University, China, in
2010 and 2013, respectively. He is currently pursu-
ing the Ph.D. degree with the Department of Elec-
trical Engineering and Computer Science, Case
Western Reserve University. His research inter-
ests include cybersecurity, big data computing, and
smart health systems.

PAN LI (S’06-M’09) received the B.E. degree in
electrical engineering from the Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 2005, and the Ph.D. degree in electrical and
computer engineering from the University of
Florida, Gainesville, in 2009. Since Fall 2015,
he has been with the Department of Electrical
Engineering and Computer Science, Case Western
Reserve University. He was an Assistant Professor
with the Department of Electrical and Computer

Engineering, Mississippi State University, in 2009 and 2015. His research
interests include network science and economics, energy systems, security
and privacy, and big data. He has served as an Editor of the IEEE JourNAL
ON SELECTED AREAS IN COMMUNICATIONS—COGNITIVE RaDIO SERIES and the
IEEE CoMMUNICATIONS SURVEYS AND TuToRIALS, a Feature Editor of the IEEE
WireLEss ComMmuNIcaTIONS, and a Technical Program Committee Co-Chair
for Ad-hoc, Mesh, Machine-to-Machine and Sensor Networks Track, IEE
VTC 2014, Physical Layer Track, Wireless Communications Symposium,
WTS 2014, the Wireless Networking Symposium, and the IEEE ICC 2013.
He received the NSF CAREER Award in 2012 and is a member of ACM.

VOLUME 4, 2016

