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ECG SIGNAL 
RECOGNIZATION  AND 
APPLICAITIONS

ECE, UA

12 Lead ECG Interpretation
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Anatomy Revisited
 RCA

right ventricle– right ventricle

– inferior wall of LV

– posterior wall of LV 
(75%)

– SA Node (60%)

– AV Node (>80%)

 LCA LCA
– septal wall of LV

– anterior wall of LV

– lateral wall of LV

– posterior wall of LV 
(10%)

Anatomy Revisited

 SA node SA node

 Intra-atrial 
pathways

 AV node

 Bundle of His

 Left and Right 
bundle branches
– left anterior fascicle

– left posterior fascicle

 Purkinje fibers
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Bipolar Leads

 1 positive and 1 negative p g
electrode
– RA always negative

– LL always positive

 Traditional limb leads are 
examples of these
– Lead I

– Lead II

– Lead III

 View from a vertical plane

Unipolar Leads

 1 positive electrode & 11 positive electrode & 1 
negative “reference point”
– calculated by using 

summation of 2 negative 
leads

 Augmented Limb Leads
– aVR, aVF, aVL

view from a vertical plane– view from a vertical plane

 Precordial or Chest Leads 
– V1-V6

– view from a horizontal plane
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Waveform Components: 
R Wave

First positive deflection; 
R wave includes the 
downstroke returning to 
the baseline

Waveform Components: 
Q Wave

First negative deflection 
before R wave; Q wave 
includes the negative 
downstroke & return to 
baseline 
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Waveform Components:
S Wave

Negative deflection 
following the R wave; S 
wave includes 
departure from & return 
to baseline

Waveform Components:
QRS

Q Q waves
– Can occur normally in several 

leads
• Normal Q waves called physiologic

– Physiologic Q waves
• < .04 sec (40ms)

– Pathologic Q
• >.04 sec (40 ms)
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Waveform Components:
QRS

 Q waveQ wave
– Measure width
– Pathologic if greater than or equal to 

0.04 seconds (1 small box)

Waveform Components:
QS Complex

Entire complex is 
negatively 
deflected; No R 
wave present
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Waveform Components:
J-Point

Junction between end of QRS 
and beginning of ST segment; 
Where QRS stops & makes a 
sudden sharp change of 
direction

Waveform Components: 
ST Segment

Segment between J-
point and beginning of 
T wave
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Lead Groups

I aVR V1 V4

II aVL V2 V5

III VF V3 V6

Limb Leads Chest Leads

III aVF V3 V6

Inferior Wall

 II, III, aVF
– View from Left Leg 
– inferior wall of left ventricle

I aVR V1 V4I

II

III

aVR

aVL

aVF

V1

V2

V3

V4

V5

V6
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Inferior Wall

 Posterior View Posterior View
– portion resting on 

diaphragm
– ST elevation  suspect 

inferior injury

I aVR V1 V4

Inferior Wall

II

III

aVL

aVF

V2

V3

V5

V6

Lateral Wall

 I and aVL I and aVL
– View from Left Arm 
– lateral wall of left 

ventricle

I aVR V1 V4

II

III

aVL

aVF

V2

V3

V5

V6
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Lateral Wall

 V5 and V6 V5 and V6
– Left lateral chest

– lateral wall of left ventricle

I aVR V1 V4
II

III

aVL

aVF

V2

V3

V4

V5

V6

Lateral Wall

I aVL V5 V6 I, aVL, V5, V6
– ST elevation 

suspect lateral wall 
injury

I

II

III

aVR

aVL

aVF

V1

V2

V3

V4

V5

V6

Lateral Wall
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Anterior Wall

 V3 V4 V3, V4
– Left anterior chest

–  electrode on anterior 
chest

I aVR V1 V4
II

III

aVL

aVF

V2

V3

V4

V5

V6

Anterior Wall
 V3, V4

ST t– ST segment 
elevation  suspect 
anterior wall injury

I

II

aVR

VL
V1 V4

II

III

aVL

aVF
V2

V3

V5

V6
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Septal Wall

 V1, V2V1, V2
– Along sternal borders

– Look through right ventricle & 
see septal wall

I aVR V1 V4I

II

III

aVR

aVL

aVF

V1

V2

V3

V4

V5

V6

Septal

 V1 V2 V1, V2
– septum is left 

ventricular tissue

I aVR V1 V4

II

III

aVL

aVF

V2

V3

V5

V6
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 Review of Leads

EKG L d EKG Leads
 EKG machines record the electrical activity
 Bipolar limb leads and augmented limb leads [I,II,III, 

aVR,aVL,aVF] comprise the FRONTAL PLANE LEADS
 Records the electrical activity of the hearts frontal plane 

and are measured from the top of the heart to the bottom of 
the heart [ right to left ]the heart [ right to left ]

Understanding 12 Lead EKG 25

 EKG Leads, continued
EKG machines record the electrical activity EKG machines record the electrical activity.
 Precordial leads or chest leads  [ V1, V2, V3, V4, V5, 

V6 ] view the hearts horizontal plane 

 The heart acts as a central point of the cross section 
and the electrical current flows from the central point 
out to each of the V leads

Understanding 12 Lead EKG 26
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Axis Deviation

Bundle Branch Blocks

Understanding 12 Lead EKGS 27

 It is divided into 
positive and negative 
sections

 The direction of the 
left arm starts at 0 
degrees and 
continues clockwise in 
30 degree increments 
until it reaches 180 
degrees

 It then begins to 
measure in the 
negative range until it 
returns to 0

BRADY: Understanding 12 Lead EKGS  
Ch. 14 28
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 It is utilized to It is utilized to 
calculate the exact 
axis of the heart

 In the emergent 
situation, the exact 
degree of axis is 
less important 
then determiningthen determining 
the presence of 
any deviation in 
the axis

BRADY: Understanding 12 Lead EKGS  
Ch. 14 29

 Terms:
 Vector : a mark or 

symbol used to 
describe any force 
having both 
magnitude and 
direction; the direction 
of electrical currents in 
cardiac cells that are 
generated by 
depolarization and 
repolarization

 The currents spread 
from the endocardium 
outward to the 
epicardium

BRADY: Understanding 12 Lead EKGS  
Ch. 14 30
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 Lead axis : the 
axis of a given 
lead

 Mean QRS axis : 
the mean 
[average] of all 
ventricular vectors 
is a single large 
vector with avector with a 
mean QRS axis, 
usually pointing to 
the left and 
downward 

BRADY: Understanding 12 Lead EKGS  
Ch. 14 31

 Axis deviation – Axis deviation 
alteration in 
normal flow of 
current that 
represents an 
abnormal 
ventricular 
depolarizationdepolarization 
pathway and may 
signify death or 
disease of the 
myocardium

BRADY: Understanding 12 Lead EKGS  
Ch. 14 32



5/17/2012

17

 Axis deviation –
Mean axis most 
commonly flows from 
top to bottom or right 
to left

 Mean axis commonly 
flows to a point of +30 
degrees

 When heart is 
enlarged, or due toenlarged, or due to 
disease or death of 
muscle, conduction 
pattern is altered or 
deviated = axis 
deviation

Understanding 12 Lead EKGS  33

 Right Axis g
deviation- Deviation 
is between     +90 
degrees and + or –
180 degrees

 Lead 1 =  - QRS
deflection

 Lead aVF = + QRS
deflection

Understanding 12 Lead EKGS  34
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 Left Axis Left Axis 
deviation–
Deviation is between 
0 and – 90 degrees

 Lead 1 =  + QRS
deflection

 Lead aVF = QRS Lead aVF = - QRS
deflection

Understanding 12 Lead EKGS  35

 Extreme right or Extreme right or 
indeterminate Axis 
deviation –
Deviation is between 
- 90 and + or – 180 
degrees

L d 1 QRS Lead 1 =  - QRS
deflection

 Lead aVF = - QRS
deflection

Understanding 12 Lead EKGS  36
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 Normal Axis Normal Axis 

 Lead 1 =  + QRS
deflection

 Lead aVF = + QRS
deflection

Understanding 12 Lead EKGS  37

 Right Axis Deviation
 COPD  Left Axis DeviationCOPD
 Pulmonary embolism
 Congenital heart 

disease
 Pulmonary 

hypertension
 Cor pulmonale

 Ischemic heart disease

 Systemic hypertension

 Aortic stenosis

 Disorders of left ventricle

 Aortic valvular diseaseCor pulmonale
 Wolff-Parkinson-White 

syndrome

Understanding 12 Lead EKGS  38
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 Right Bundle Branches 
 Runs down right side of

 Left Bundle Branches
 Shorter then the right Runs down right side of 

interventricular septum 
and terminates at papillary 
muscles

 Functions to carry 
electrical impulses to the 
right ventricle

 Shorter then the right 
bundle branch

 Divides into pathways that 
spread throughout the left 
side  of the interventricular 
septum and throughout 
the left ventricle

 Two main divisions areTwo main divisions are 
called fascicles

Understanding 12 Lead EKGS 39

 Normal Conduction Normal Conduction
 Impulse travels 

simultaneously 
through the right 
bundle branch and 
left bundle branch

 Causing 
depolarization of 
interventricular 
septum and left and 
right ventricles

Understanding 12 Lead EKGS  40
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 When one bundle branch is blocked:
 Electrical impulse will travel through intact branch Electrical impulse will travel through intact branch 

and stimulate ventricle supplied by that branch
 Ventricle effected by blocked or defective bundle 

branch is activated indirectly
 There is a delay caused by this alternate route
 QRS complex will represent widening beyond usual 

time interval of 0.12 sec
 Classified as either complete [ QRS measures 0.12 

sec  or greater ]  or incomplete blocks [ QRS
measures between 0.10 and 0.11 second]

Understanding 12 Lead 41

Understanding 12 Lead EKGS  42
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Understanding 12 Lead EKGS 43

 15% to 30% of patients experiencing MI in 15% to 30% of patients experiencing MI in 
conjunction with new-onset bundle branch 
blocks may develop complete block and 
estimated 30% to 70% may develop 
cardiogenic shock

 Cardiogenic shock carries an 85% mortality Cardiogenic shock carries an 85% mortality 
rate

 To determine presence of new-onset block, 
must have access to past 12-lead EKGs

Understandin 12 Lead EKGS 44
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Understanding 12 Lead EKGS 45

Understanding 12 Lead EKGS 46
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Understanding 12 Lead EKGS  47

Understanding 12 Lead EKGS  48
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ECG Rhythm InterpretationECG Rhythm Interpretation

Sinus Rhythms and 
Premature Beats

Arrhythmias

Si Rh th• Sinus Rhythms

• Premature Beats

• Supraventricular Arrhythmias

• Ventricular Arrhythmiasy

• AV Junctional Blocks
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Rhythm #1

30 bpm• Rate?
• Regularity? regular

normal• P waves?

0.10 s

• PR interval? 0.12 s
• QRS duration?

Interpretation? Sinus Bradycardia

Sinus Bradycardia

• Deviation from NSR

- Rate < 60 bpm
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Sinus Bradycardia

• Etiology: SA node is depolarizing slower 
than normal, impulse is conducted 
normally (i.e. normal PR and QRS 
interval).)

Rhythm #2

130 bpm• Rate?
• Regularity? regular

normal• P waves?

0.08 s

• PR interval? 0.16 s
• QRS duration?

Interpretation? Sinus Tachycardia
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Sinus Tachycardia

• Deviation from NSR

- Rate > 100 bpm

Sinus Tachycardia

• Etiology: SA node is depolarizing faster 
than normal, impulse is conducted 
normally.

• Remember: sinus tachycardia is aRemember: sinus tachycardia is a 
response to physical or psychological 
stress, not a primary arrhythmia.
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Premature Beats

P t At i l C t ti• Premature Atrial Contractions
(PACs)

• Premature Ventricular Contractions
(PVCs)( )

Rhythm #3

70 bpm• Rate?
• Regularity? occasionally irreg.

2/7 different contour• P waves?

0.08 s

• PR interval? 0.14 s (except 2/7)
• QRS duration?

Interpretation? NSR with Premature Atrial 
Contractions
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Premature Atrial Contractions

• Deviation from NSR
– These ectopic beats originate in the 

atria (but not in the SA node), 
therefore the contour of the P wavetherefore the contour of the P wave, 
the PR interval, and the timing are 
different than a normally generated 
pulse from the SA node.

Premature Atrial Contractions

• Etiology: Excitation of an atrial cell 
forms an impulse that is then conducted 
normally through the AV node and 
ventricles.
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Teaching Moment

When an imp lse originates an here in• When an impulse originates anywhere in 
the atria (SA node, atrial cells, AV node, 
Bundle of His) and then is conducted 
normally through the ventricles, the QRS 
will be narrow (0.04 - 0.12 s).

Rhythm #4

60 bpm• Rate?
• Regularity? occasionally irreg.

none for 7th QRS• P waves?

0.08 s (7th wide)

• PR interval? 0.14 s
• QRS duration?

Interpretation? Sinus Rhythm with 1 PVC
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PVCs

• Deviation from NSR
– Ectopic beats originate in the ventricles 

resulting in wide and bizarre QRS 
complexes.

– When there are more than 1 premature 
beats and look alike, they are called 
“uniform”. When they look different, they are 
called “multiform”.

PVCs

• Etiology: One or more ventricular cells 
are depolarizing and the impulses are 
abnormally conducting through the 
ventriclesventricles.
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Teaching Moment

When an imp lse originates in a• When an impulse originates in a 
ventricle, conduction through the 
ventricles will be inefficient and the QRS 
will be wide and bizarre.

Ventricular Conduction

Normal
Signal moves rapidly 
through the ventricles

Abnormal
Signal moves slowly 
through the ventricles
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ECG Clues to Identify the Site of 
Occlusion in Acute Myocardial

Ischemia/Infarction

Limb Leads and Augmented Limb Leads
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Direction of ST Vector and ECG Changes in
Proximal LAD Occlusion
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Direction of ST Vector in
RCA and LCX Occlusion
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ECG Criteria for Identifying Culprit Lesion
Left main: ST depression in seven or more leads with ST elevation, aVR and 
V1 at rates less than 100bpm and no LVH

Proximal LAD: ST elevation in lead 1, aVL, V1-3, 4. ST depression in lead 3Proximal LAD: ST elevation in lead 1, aVL, V1 3, 4. ST depression in lead 3 
and sometimes lead 2

Non-proximal LAD: ST elevation V3-6 but not aVL and no ST depression in 
leads 2 or 3

Proximal RCA: ST elevation 2, 3, aVF, greater in 3 than in 2 with ST elevation 
in V4 R and V3R and ST depression in 1, aVL. ST changes in leads V1 and V2 
depend on right ventricular and posterior wall involvement.

Non-proximal RCA: ST elevation 2, 3, aVF greater in 2 than in 3  but without 
ST elevation in V4R, V3R

LCX: ST elevation in leads 2, 3 aVF. ST depression in leads V1 and V2

Test of Criteria for Identifying Culprit Lesion
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• ST segment depression is always the reciprocal 
of ST elevation and, conversely, ST elevation 
will always be accompanied by ST depression

Conclusions

will always be accompanied by ST depression 
somewhere.

• By recognizing leads with ST depression as well 
as elevation, the location of a culprit lesion can 
be predicted with considerable accuracy.p y

• Recording of Leads V3R, V4R and V8 (and/or 
V9) are very helpful and should be done in 

all

Conclusions (Continued)

all
patients with inferior infarctions.

• Visualization of the spatial orientation of the 
ST

segment vector enhances your ability to 
localize

the site of occlusion.
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Data Mining and               
Medical Informatics

The Data Pyramid

Value

Information

Knowledge 
(Information +  rules)

Wisdom 
(Knowledge + experience)

What was the lowest selling 

What made it that unsuccessful ?

How can we improve it ?

Value

Volume

Data

(Data + context)

How many units were sold
of each product line ?

product ?
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Data Mining Functions

Clustering into ‘natural’ groups (unsupervised)Clustering into natural  groups (unsupervised)
Classification into known classes; e.g. diagnosis  

(supervised)
Detection of associations; e.g. in basket analysis:

”70% of customers buying bread also buy milk”
Detection of sequential temporal patterns; e gDetection of sequential temporal patterns; e.g. 

disease development
Prediction or estimation of an outcome
Time series forecasting

Data Mining Techniques
(box of tricks)

Older,
Statistics
Linear Regression
Visualization
Cluster analysis

Decision trees

,
Data preparation,
Exploratory

Decision trees
Rule induction 
Neural networks
Abductive networksNewer, Modeling,

Knowledge Representation
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Data-based Predictive Modeling

1
Develop Model 
With Known Cases

IN OUT

2
Use Model 
For New Cases

IN OUT

Rock
Properties

IN OUT

Attributes, X Diagnosis, Y

IN OUT

Attributes
(X) 

Diagnosis
(Y)

F(X)

Y = F(X)Determine F(X)

Data-based Predictive Modeling          
by supervised Machine learning 

 Database of solved examples (input-output) Database of solved examples (input-output)
 Preparation: cleanup, transform, add new attributes...
 Split data into a training and a test set
 Training: 

Develop model on the training set
Evaluation: Evaluation: 
See how the model fares on the test set

 Actual use:
Use successful model on new input data to estimate 
unknown output
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The Neural Network (NN) Approach
Input Layer Output LayerHiddenLayp y p y

Age 34

2Gender

Stage 4

.6

.5

.8

2

.1

.3
.7

.2

er

0.60




.4

.2


Neurons Actual: 0.65

Error: 0 05
Weights

Independent Input 
Variables (Attributes)

Dependent   Output       
Variable

Stage .2

Weights
Transfer 
Function

Error: 0.05

Error back-propagation

Self-Organizing Abductive (Polynomial) Networks

“Double” Element:

y = w0 + w1 x1 + w2 x2
+ w3 x12 + w4 x22

- Network of polynomial functional elements- not simple neurons

No fixed a priori model structure Model evolves with training

+ w3 x1 + w4 x2
+ w5 x1 x2 
+ w6 x13 + w7 x23

- No fixed a priori model structure. Model evolves with training

- Automatic selection of: Significant inputs, Network size, Element types, Connectivity, 
and Coefficients

- Automatic stopping criteria, with simple control on complexity

- Analytical input-output relationships
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Medicine revolves on 
Pattern Recognition, Classification, and Prediction

Diagnosis:
R i d l if i l i iRecognize and classify patterns in multivariate 
patient attributes

Therapy:
Select from available treatment methods; based on
effectiveness, suitability to patient, etc.

Prognosis:
Predict future outcomes based on previous
experience and present conditions

Need for Data Mining in Medicine

Nature of medical data: noisy incomplete uncertainNature of medical data: noisy, incomplete, uncertain, 
nonlinearities, fuzziness  Soft computing

Too much data now collected due to computerization 
(text, graphs, images,…)

Too many disease markers (attributes) now available for 
decision makingg

Increased demand for health services:           (Greater 
awareness, increased life expectancy, …)

- Overworked physicians and facilities
Stressful work conditions in ICUs, etc.
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Medical Applications 

• Screening
• Diagnosis
• Therapy
• Prognosis
• Monitoring
• Biomedical/Biological Analysis
• Epidemiological Studies
• Hospital Management
• Medical Instruction and Training

Medical Screening

 Effective low-cost screening using disease models
that require easily-obtained attributes: 
(historical, questionnaires, simple measurements)

 Reduces demand for costly specialized tests     
(Good for patients medical staff facilities )(Good for patients, medical staff, facilities, …)

 Examples: 
- Prostate cancer using blood tests
- Hepatitis, Diabetes, Sleep apnea, etc.
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Diagnosis and Classification
Assist in decision making with a large number of Assist in decision making with a large number of 
inputs and in stressful situations

 Can perform automated analysis of: 
- Pathological signals (ECG, EEG, EMG) 
- Medical images (mammograms, ultrasound,        
X-ray, CT, and MRI)X ray, CT, and MRI)

 Examples:
- Heart attacks, Chest pains, Rheumatic disorders
- Myocardial ischemia using the ST-T ECG complex
- Coronary artery disease using SPECT images

Diagnosis and Classification
ECG Interpretation

R-R interval

QRS duration

AVF lead

QRS amplitude SV tachycardia

Ventricular tachycardia

LV hypertrophy

S-T elevation

P-R interval

RV hypertrophy

Myocardial infarction
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Therapy

 Based on modeled historical performance, 
select best intervention course:
e.g. best treatment plans in radiotherapy

 Using patient model, predict optimum 
medication dosage: e g for diabeticsmedication dosage: e.g. for diabetics

 Data fusion from various sensing modalities in 
ICUs to assist overburdened medical staff

Prognosis

 Accurate prognosis and risk assessment are essential 
for improved disease management and outcome 

Examples:
 Survival analysis for AIDS patients
 Predict pre-term birth risk Predict pre term birth risk
 Determine cardiac surgical risk
 Predict ambulation following spinal cord injury
 Breast cancer prognosis
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Biochemical/Biological Analysis

 Automate analytical tasks for:
- Analyzing blood and urine
- Tracking glucose levels

Determining ion levels in body fluids- Determining ion levels in body fluids
- Detecting pathological conditions

Epidemiological Studies

Study of health, disease, morbidity, injuries and 
mortality in human communities

 Discover patterns relating outcomes to exposures
 Study independence or correlation between diseases
 Analyze public health survey data
 Example Applications:

- Assess asthma strategies in inner-city children
- Predict outbreaks in simulated populations
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Hospital Management

 Optimize allocation of resources and assist in 
future planning for improved services
Examples:

- Forecasting patient volume, 
ambulance run volume etcambulance run volume, etc.

- Predicting length-of-stay for   
incoming patients

Medical Instruction and Training

 Disease models for the instruction and 
assessment of undergraduate medical and 
nursing students

 Intelligent tutoring systems for assisting in 
teaching the decision making process
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Benefits:

 Efficient screening tools reduce demand on 
costly health care resources

 Data fusion from multiple sensors
 Help physicians cope with the information 

overload
 Optimize allocation of hospital resources
 Better insight into medical survey data
 Computer-based training and evaluation

Biological ProblemBiological Problem
Heart Physiology

ECGSimultaneously ventricular activation 
(depolarization)

ventricular repolarization

Sequential atrial activation
(depolarization)

After 
depolarizations
in the ventricles

Outline
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Electrophysiology of the cardiac muscle cell
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Generation of the 
ECG complexes
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A wave of depolarization moving toward 
an electrode will cause an upward 
deflection on the ECG needle.
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Biological ProblemBiological Problem
ECG wave shape characterization

Normal
REGULAR 
RHYTHM

Difference In Wave 
Shape And 
Frequency :

Arrhythmia

Ventricular

RHYTHM 

IRREGULAR 
RHYTHM 

P ,T AND U WAVE 
INDISTINCTVentricular 

Arrhythmia

Bradycardia
REGULAR
RHYTHM 

INDISTINCT.
IRREGULAR RHYTHM

Outline

The AlgorithmThe Algorithm

Outline
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The AlgorithmThe Algorithm
Input Parameters

Three InitialThree Initial
ConditionsConditions

dd00 rangerange
Signal derivativeSignal derivative

at the starting pointat the starting point

N b f S lN b f S l Mi i DiMi i Di

Signal derivative
in initial condition

point

Number of SamplesNumber of Samples
forfor

TrajectorsTrajectors

Minimum DistanceMinimum Distance
betweenbetween

TrajectoriesTrajectories

Number of couplesNumber of couples
of trajectoriesof trajectories

d  range0

Minimum Distance between trajectories

Outline

The AlgorithmThe Algorithm
From Discrete Map to dj

Discrete
Map #1
Discrete
Map #1

Matrix of
Difference #1

Matrix of
Difference #1

d  1
j

d 3

d  2
j

Discrete
Map #2
Discrete
Map #2

Discrete
M #3
Discrete
M #3

Matrix of
Difference #2

Matrix of
Difference #2

Matrix of
iff
Matrix of
iff

d  3
j

Total Matrix
of Difference
Total Matrix
of Difference

d  Totale
j

Map #3Map #3 Difference #3Difference #3

Outline
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Parametric StudyParametric Study
Initial Condition

In PIn P--wavewave

Outline

In PIn P wave wave 
choose the choose the 
points in points in 
order order to to 
extractextract

coherent coherent 
trajectoriestrajectories

Parametric StudyParametric Study
Extraction of dj parameters

From points in From points in pp
PP--wavewave extract extract 

dj that have dj that have 
asymptotic asymptotic 

behaviourbehaviour and and 
present present limited limited 

oscillationoscillation

Outline
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ResultsResults
Trend of dj

d
j ddjj have a have a similar trendsimilar trend for the for the 

three cases but with three cases but with different different 

NormalNormal

ArrhythmiaArrhythmia

valuevalue..

Ventricular
Arrhythmia
Ventricular
Arrhythmia

Initial
Slope

Results

ResultsResults
(d∞ - λMAX) vsvs Power2

|   |

Arrhythmia

Normal

Ventricular
Arrhythmia

Best proportionality 
between |d|d∞ ∞ || and λ

Results
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ResultsResults
d∞ vsvs λMAX (Patology: Normal)

Results

ResultsResults
d∞ vsvs λMAX (Patology: Arrhythmia)

Results
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ResultsResults
d∞ vsvs λMAX (Patology: Ventr. Arrhythmia)

Results

ResultsResults
d∞ vsvs λMAX (All Patology)

Results
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Future DevelopmentFuture Development

1
2

Operator Dependent

PossiblePossible
SolutionSolution

Initial conditions obtained by
visual inspection on the P-wave

Algoritm of Automatic clustering 
for 3D graphics

p p

Outline

Automatic search of initial conditions

Neural Network for P-wave
recognition

ConclusionsConclusions

The asymptotic distance between trajectories, dd∞∞, has been 
obtained from computation of ddjj

The study of the d∞ and the Lyapunov Exponent are performed
simultaneously

dj trend is similar to one reported in literature on dj trend is similar to one reported in literature on 
Chaotic SystemChaotic System

Application

Biomedical Application:
Automatic Diagnostic

Theoretical study

healthyhealthy

unhealthyunhealthy

Outline

Need more medical 
statistics and inputs!
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Algorithm for Decision Tree Induction

 Basic algorithm (a greedy algorithm)

 Tree is constructed in a top-down recursive divide-and-conquer manner

 At t t  ll th  t i i  l   t th  t At start, all the training examples are at the root

 Attributes are categorical (if continuous-valued, they are discretized in advance)

 Examples are partitioned recursively based on selected attributes

 Test attributes are selected on the basis of a heuristic or statistical measure (e.g., 
information gain)

 Conditions for stopping partitioning

 All samples for a given node belong to the same classAll samples for a given node belong to the same class

 There are no remaining attributes for further partitioning – majority voting is 
employed for classifying the leaf

 There are no samples left

May 17, 2012Data Mining: Concepts and Techniques115

Attribute Selection: Information Gain
 Select the attribute with the highest information gain
 Let pi be the probability that an arbitrary tuple in D 

b l   l  C  i d b  |C |/|Dbelongs to class Ci, estimated by |Ci, D|/|D
 Expected information (entropy) needed to classify a tuple

in D:

 Information needed (after using A to split D into v 
partitions) to classify D:

Info(D)   pi

i1

m

 log2( pi)

I f (D)
| Dj |v

  I(D )

 Information gained by branching on attribute A 

InfoA(D) j

| D |j1

  I(Dj)

Gain(A) Info(D) InfoA(D)
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Distributed Decision Tree Construction
 Adam sends Betty 

“Outlook = Rainy”
 B tt  t t   Betty constructs 

“Humidity=High & 
Play=Yes” and 
“Humidity=Normal & Play 
= Yes”

 Dot product represents 
tuples “Outlook = Rainy & 
H idit  = N l  & Humidity = Normal  & 
Play = Yes” AND “Outlook 
= Rainy & Humidity = 
High  & Play = Yes” 

Example Obtained from: C Gianella, K Liu, T Olsen and H Kargupta, “Communication 
efficient construction of decision trees over heterogeneously distributed data”, ICDM 2004

PLANET: Parallel Learning for 
Assembling Numerous Ensemble Trees
 Ref: B Panda, J. S. Herbach, 

S. Basu, R. J. Bayardo, 
“PLANET  M i l  “PLANET: Massively 
Parallel Learning of Tree 
Ensembles with Map 
Reduce”, VLDB 2009

 Components 
 Controller (maintains a 

ModelFile)ModelFile)
 MapReduceQueue and 

InMemoryQueue
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Classification Function of Ensemble 
Classifier



f1(x)
f2(x) f3(x) fn(x)

…

 Weighted 
Sum

aif(x) =  i
fi(x)

ai : weight for Tree i

fi(x) : classification of Tree i

The Distributed Boosting Algorithm
 k distributed sites storing homogeneously partitioned data
 At each local site, initialize the local distribution Δj

 Keep track of the global initial distribution by broadcasting Δjp g y g j
 For each iteration across all sites
 Draw indices from the local data set based of the global distribution
 Train a weak learner and distribute to all sites
 Create an ensemble by combining weak learners; use the ensemble 

to compute the weak hypothesis
 Compute weights, and re-distribute to all sites
 Update distribution and repeat until termination Update distribution and repeat until termination.

 Reference: A. Lazarevic and Z. Obradovic, “The Distributed 
Boosting Algorithm”, KDD 2001.
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esp. Principal Component Analysis (PCA&ICA)

Factor and Component Analysis

• We have too many observations and dimensions

– To reason about or obtain insights from

– To visualize

Why Factor or Component Analysis?

– To visualize

– Too much noise in the data

– Need to “reduce” them to a smaller set of factors

– Better representation of data without losing much information

– Can build more effective data analyses on the reduced-dimensional space: 
classification, clustering, pattern recognition

• Combinations of observed variables may be more effective bases for insights, even if physical 
meaning is obscure
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Basic Concept

 What if the dependences and correlations are not so strong or direct? 

 And suppose you have 3 variables, or 4, or 5, or 10000?

 Look for the phenomena underlying the observed covariance/co-
dependence in a set of variables
 Once again, phenomena that are uncorrelated or independent, and especially those 

along which the data show high variance

 These phenomena are called “factors” or “principal components” or These phenomena are called factors  or principal components  or 
“independent components,” depending on the methods used
 Factor analysis: based on variance/covariance/correlation
 Independent Component Analysis: based on independence

Principal Component Analysis
 Most common form of factor analysis

 The new variables/dimensions
 Are linear combinations of the original ones
 Are uncorrelated with one another
 Orthogonal in original dimension space

 Capture as much of the original variance in the data as possible
 Are called Principal Components
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What are the new axes?

B
O

ri
gi

na
l V

ar
ia

bl
e 

B

PC 1
PC 2

Original Variable A

• Orthogonal directions of greatest variance in data
• Projections along PC1 discriminate the data most along any one axis

Principal Components
 First principal component is the direction of greatest 

variability (covariance) in the datay ( )

 Second is the next orthogonal (uncorrelated) direction 
of greatest variability
 So first remove all the variability along the first component, and 

then find the next direction of greatest variability

 And so on …
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Computing the Components
 Data points are vectors in a multidimensional space
 Projection of vector x onto an axis (dimension) u is u.x
 Direction of greatest variability is that in which the average square of the 

j i  i  projection is greatest
 I.e. u such that E((u.x)2) over all x is maximized
 (we subtract the mean along each dimension, and center the original axis system at 

the centroid of all data points, for simplicity)
 This direction of u is the direction of the first Principal Component

Computing the Components
 E((u.x)2)  = E ((u.x) (u.x)T) = E (u.x.x T.uT)

 The matrix C = x.xT contains the correlations (similarities) of the 
i i l  b d  h  h  d  l  j   horiginal axes based on how the data values project onto them

 So we are looking for w that maximizes uCuT, subject to u being unit-
length

 It is maximized when w is the principal eigenvector of the matrix C, in 
which case
 uCuT = uuT =  if u is unit-length, where  is the principal eigenvalue of g , p p g

the correlation matrix C
 The eigenvalue denotes the amount of variability captured along that dimension
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Why the Eigenvectors?
Maximise uTxxTu s.t uTu = 1 

Construct Langrangian  uTxxTu λuTu Construct Langrangian  uTxxTu – λuTu 

Vector of partial derivatives set to zero

xxTu – λu = (xxT – λI) u = 0

As u ≠ 0 then u must be an eigenvector of xxT with eigenvalue  λ

Singular Value Decomposition
The first root is called the prinicipal eigenvalue which has an associated 

orthonormal (uTu = 1) eigenvector u ( ) g
Subsequent roots are ordered such that λ1> λ2  >… > λM  with rank(D) 

non-zero values.
Eigenvectors form an orthonormal basis i.e. ui

Tuj = δij 

The eigenvalue decomposition of xxT = UΣUT

where U = [u1, u2, …, uM] and Σ = diag[λ 1, λ 2, …, λ M] 
Similarly the eigenvalue decomposition of xTx = VΣVTSimilarly the eigenvalue decomposition of x x  VΣV
The SVD is closely related to the above x=U Σ1/2 VT

The left eigenvectors U, right eigenvectorsV, 
singular values = square root of eigenvalues.
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Computing the Components
 Similarly for the next axis, etc. 
 So, the new axes are the eigenvectors of the matrix of correlations 

of the original variables, which captures the similarities of the g p
original variables based on how data samples project to them

• Geometrically: centering followed by rotation

– Linear transformation

Computing and Using LSI

Documents Documents

=

=

mxn
A

mxr
U

rxr
D

rxn
VT

Terms

Documents

=

=

mxn

Âk

mxk
Uk

kxk
Dk

kxn
VT

k

Terms

Documents



Recreate Matrix:

M U S Vt Uk Sk
Vk

t

Singular Value
Decomposition

(SVD):
Convert term-document

matrix into 3matrices
U, S and V

Reduce Dimensionality:
Throw out low-order

rows and columns

Recreate Matrix:
Multiply to produce
approximate term-
document matrix.
Use new matrix to

process queries
OR, better,  map query to

reduced space
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What LSI can do
 LSI analysis effectively does

 Dimensionality reduction

 Noise reduction

 Exploitation of redundant data

 Correlation analysis and Query expansion (with related words)

 Some of the individual effects can be achieved with simpler techniques 
(e.g. thesaurus construction). LSI does them together.

 LSI handles synonymy well, not so much polysemy

 Challenge: SVD is complex to compute (O(n3))
 Needs to be updated as new documents are found/updated

Limitations of PCA

Should the goal be finding independent rather than pair-wise 
uncorrelated dimensions

•Independent Component Analysis (ICA)

ICA PCA
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PCA vs ICA

PCA
(orthogonal coordinate)

ICA
(non-orthogonal coordinate)

PCA applications -Eigenfaces
To generate a set of eigenfaces:

1. Large set of digitized images of human faces is taken under the 
same lighting conditions.

2. The images are normalized to line up the eyes and mouths. 

3. The eigenvectors of the covariance matrix of the statistical 
distribution of face image vectors are then extracted.

4 These eigenvectors are called eigenfaces4. These eigenvectors are called eigenfaces.
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Source Separation Using ICA

Microphone 1 Separation 1

W11

W21

W12

+

W22 +

Microphone 2 Separation 2

The ICA model

s1 s2
s3 s4

(t) = * (t) +s2

a11

a12
a13

a14

xi(t) = ai1*s1(t) +
ai2*s2(t) + 
ai3*s3(t) + 
ai4*s4(t)

Here, i=1:4.

In vector-matrix notation, and 
dropping index t, this is 
x = A * s

x1 x2 x3 x4

  s
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Application domains of ICA
 Blind source separation 

I  d i i Image denoising
 Medical signal processing – fMRI, ECG, EEG
 Modelling of the hippocampus and visual cortex 
 Feature extraction, face recognition
 Compression, redundancy reduction
 Watermarking
 Clustering
 Time series analysis (stock market, microarray data)
 Topic extraction
 Econometrics: Finding hidden factors in financial data

Feature Extraction in ECG data 
(Raw Data)
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Feature Extraction in ECG data 
(PCA)

Feature Extraction in ECG data 
(Extended ICA)
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Feature Extraction in ECG data 
(flexible ICA)

PCA vs ICA

• Linear Transform
– CompressionCompression

– Classification

• PCA
– Focus on uncorrelated and Gaussian components

– Second-order statistics

– Orthogonal transformation

• ICA
– Focus on independent and non-Gaussian components

– Higher-order statistics

– Non-orthogonal transformation
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Gaussians and ICA

• If some components are gaussian and some are• If some components are gaussian and some are 
non-gaussian.
– Can estimate all non-gaussian components 

– Linear combination of gaussian components can be 
estimated.

– If only one gaussian component, model can be 
estimated

• ICA sometimes viewed as non-Gaussian factor 
analysis

Detection of Ischemic ST segment Deviation 
Episode in the ECG

R fl ti f I h i i ECGReflection of Ischemia in ECG:
• ST segment deviation 
i. Elevation

ii. Depression

T I i• T wave Inversion
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System Architecture

QRS detection Baseline removalECG Signal QRS detection Baseline removal

Baseline removed
signal

isoelectriclevel removal feature extraction

extracted features

feature reduction
(PCA)

neural network training
testing and results calculation

Detection of Ischemic ST segment Deviation 
Episode in the ECG

QRS detectionQRS detection
In order to proceed with ST deviation:

•QRS onset

•QRS offset

•QRS fudicial point. 

•DWT (discrete wavelet transform) based QRS 
detector .



5/17/2012

75

Detection of Ischemic ST segment Deviation 
Episode in the ECG

EDC Database Subject #e0103 QRS pointsEDC Database Subject #e0103  QRS points 

300

350

400

450

500

1 .20 5 1 .21 1 .21 5 1 .22 1 .22 5

x  10
5

100

150

200

250

Detection of Ischemic ST segment Deviation 
Episode in the ECG

EDC Database Subject #e0509 QRS pointsEDC Database Subject #e0509 QRS points 

-350

-300

-250

-200

-150

3 .395 3.4 3.405 3 .41 3 .415

x  10
5

-600

-550

-500

-450

-400
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Detection of Ischemic ST segment Deviation 
Episode in the ECG

I l t i l lIsoelectric level: 
• Flattest region on the signal

• Value equal or very close to zero.

• Region starts 80ms before the QRS on

• Ends at QRS on.

Detection of Ischemic ST segment Deviation 
Episode in the ECG

EDC Database Subject #e0515 Isoelectric levelEDC Database Subject #e0515 Isoelectric level

900

950

1000

4 .358 4 .36 4.362 4 .364 4 .366 4 .368 4.37

x  10
5

750

800

850
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Detection of Ischemic ST segment Deviation 
Episode in the ECG

EDC Database Subject #e1301 Isoelectric levelEDC Database Subject #e1301 Isoelectric level

40

60

80

100

120

3 .89 3 .892 3 .89 4 3 .896 3 .898 3 .9 3 .902

x  10
5

-80

-60

-40

-20

0

20

Detection of Ischemic ST segment Deviation 
Episode in the ECG

Feat re e traction:Feature extraction:
•ST region refers as ROI (region of interest)

•ROI (26 samples after the qrs_off)

•Subtraction Isoelectric level from ROI

•ST deviation
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Detection of Ischemic ST segment Deviation 
Episode in the ECG

Feat re Space:Feature Space: 
•Size of the features is 26 X no. of beats of each 
subject

•Which is more time consuming when it comes to 
classify or train a neural network for itclassify or train a neural network for it.

Detection of Ischemic ST segment Deviation 
Episode in the ECG

PCA( Principal component analysis):PCA( Principal component analysis):
Procedure: 

1. Project the data as 1-dimensional Data sets

2. Subtract mean of the data from each data set

3 C bi h d d (3. Combine the mean centered data sets (mean 
centered matrix)

4. Multiply the mean centered matrix by it’s 
transpose (Covariance matrix)
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Detection of Ischemic ST segment Deviation 
Episode in the ECG

PCA( Principal component analysis):PCA( Principal component analysis):
Procedure: 

5.   This covariance matrix has up to P eigenvectors
associated with non-zero eigenvalues.

6.   Assuming P<N. The eigenvectors are sorted high to 
low.

7.   The eigenvector associated with the largest eigenvalue 
is the eigenvector that finds the greatest variance in the 
data.

Detection of Ischemic ST segment Deviation 
Episode in the ECG

PCA( Principal component analysis):PCA( Principal component analysis):
Procedure: 

8. Smallest eigenvalue is associated with the 
eigenvector that finds the least variance in the 
datadata.

9. According to a threshold Variance, reduce the 
dimensions by discarding the eigenvectors with 
variance less than that threshold.
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Detection of Ischemic ST segment Deviation 
Episode in the ECG

Training of MLIII DataTraining of MLIII Data
•Total beats: 184246

•Used for Training NN: 52493

•Used for Cross-validation: 20123

•Used for Testing: 110595

Detection of Ischemic ST segment Deviation 
Episode in the ECG

Training ResultsTraining Results

Lead Total Beats Training 
Beats

Cross-
Validation 
Beats

Cross-
Validation 
Error

MLIII 73651 52493 20123 0.068%
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Detection of Ischemic ST segment Deviation 
Episode in the ECG

Accuracy ParametersAccuracy Parameters
TP (True Positives)
Target and predicted value both are positives.
FN (False Negative)
Target value is +ive and predicted one –ive.g p
FP (False Positive)
Target value is –ive and predicted one +ive.
TN (True Negative)
Target and predicted both are –ive.

Detection of Ischemic ST segment Deviation 
Episode in the ECG

Accuracy ParametersAccuracy Parameters

Sensitivity
TP/(TP+FN)*100

Specificity
TN/(TN+FP)*100
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Detection of Ischemic ST segment Deviation 
Episode in the ECG

MLIII DataMLIII Data
Lead Total beats Normal Ischemic

MLIII 184246 174830 9416

Training 73651 68939 4712

Testing 110595 105891 4704

Detection of Ischemic ST segment Deviation 
Episode in the ECG

MLIII Testing ResultsMLIII Testing Results

Lead No.0f 
Beats

Sensiti
vity

Specifi
city

Thresh
old

MLIII 110595 21% 99% 0

MLIII 110595 4% 99% 0.7

MLIII 110595 76% 72% -0.7
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Detection of Ischemic ST segment Deviation 
Episode in the ECG

MLIII ResultsMLIII Results

8

10

12

14

16
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ha
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Red orginal beat labels
B lue NN detec ted labels

0 2 4 6 8 10 12

x  10
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h

l f h lApplication of the Discrete Wavelet 
transform in Beat Rate Detection
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 Introduction to Wavelet Transform
 Applications of the Discrete Wavelet Applications of the Discrete Wavelet 

Transform in Beat Rate Detection
◦ DWT Based Beat Rate Detection in ECG Analysis.
◦ Improved ECG Signal Analysis Using Wavelet and 

Feature.
 Conclusion

R f Reference

16
7

/2
2

 Fourier transform is the well-known tool for 
signal processing. dtetxfX ftj 2)()( 


g p g

 One limitation is that a Fourier transform can’t deal 
effectively with non-stationary signal.

 Short time Fourier transform

dtetxfX )()(  


fj2



16
8

/2
2

functionmaskistwwheredextwftX fj )()()(),( 2  

 
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 Gabor Transform
◦ The mask function is satisfied with Gaussian 

distribution.
 Uncertainly principle 





 



dffX

dffXf
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dttxt
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 We expected to occur a high resolution in time domain, 
and then adjust       or       .

16
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 dffXdttx )()(

2
t

2
f

 The principle of wavelet transform is based 
on the concept of  STFT and  Uncertainly p y
principle.
◦ A mother wavelet        .
◦ Scaling                and translating             .
 Sub-wavelets

 Fourier transform
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Fourier transform 
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 Continuous wavelet transform(CWT)

 ICWT
dt
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 Discrete wavelet transform(DWT)

◦ Sub-wavelets

 IDWT
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 DWT Based Beat Rate Detection in ECG Analysis
◦ The purpose of this paper is to detect heart beat rate by the p p p p y

concept of discrete wavelet transform, which is suitable for 
the non stationary ECG signals as it has adeuate scale 
values and shifting in time.

17
3

/2
2

 ECG(Electrocardiogram) signal

17
4

/2
2
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 Preprocessing
◦ Denoise
 Baseline wandering

 Moving average method and subtraction procedure.

17
5

/2
2



5/17/2012

89

 Preprocessing
◦ Denoising : The wavelet transform is used pre-filtering step g p g p

for subsequent R spike detection by thresholding of the 
coefficients. 
 Decomposition.

 Thresholding detail coefficients.

 Reconstruction.

17
7

/2
2

 Feature extraction using DWT
◦ Detect R-waves.
◦ Thresholding.
 Positive threshold.

 Negative threshold.

17
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2
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 Improved ECG Signal Analysis Using Wavelet and 
Feature.
◦ This paper introduced wavelet to extract features and then 

distinguish several heart beat condition, such as normal 
beats, atrial premature beats, and premature ventricular 
contractions.

17
9
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2

 Some kinds of ECG signal:

Atrial premature beat

18
0

/2
2

Normal beat
Premature ventricular 

contractions
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 ECG signal analysis flow

18
1

/2
2

 Feature Extraction
◦ Matlab : wpdec function, the wavelet ‘bior5.5’.p ,

18
2

/2
2
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 Feature Extraction
◦ Energygy

◦ Normal Energy

◦ Entorpy
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 Feature Extraction
◦ Clusteringg
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 Method 1
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wavelet: bior5.5, decomposition level: 1  and 3 with Method 1(●: normal 
beats, □: atrial premature beats, ○ : premature ventricular contractions)

 Method 2
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wavelet: bior5.5, decomposition level: 1  and 3 with Method 2(●: normal 
beats, □: atrial premature beats, ○ : premature ventricular contractions)
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 Wavelet analysis is widely used in many 
application. Because it provides both time andapplication. Because it provides both time and 
frequency information, can overcome the 
limitation of Fourier transform.

 We can learn about the wavelet transform which 
is able to detect beat rate of signals and to classify 
the difference of signals.

 We also use the wavelet transform on the other beat 
rate detection.
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