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12 Lead ECG Interpretation




Anatomy Reuvisited
e RCA

— right ventricle

— inferior wall of LV

— posterior wall of LV
(75%)

— SA Node (60%)

— AV Node (>80%)

e LCA
— septal wall of LV
— anterior wall of LV
— lateral wall of LV

— posterior wall of LV
(10%)

Anatomy Reuvisited

SA node
Intra-atrial
pathways
AV node
Bundle of His
Filght bundle : : : ;
i \ Qi g1 Eabae Left and Right
Purkino fivers AR bundle branches

— left anterior fascicle
— left posterior fascicle

Purkinje fibers

His bundle —=7-
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Bipolar Leads

e 1 positive and 1 negative
electrode
— RA always negative
— LL always positive
e Traditional limb leads are
examples of these
— Lead |
— Lead Il
— Lead lll
e View from a vertical plane

Right Arm Left Arm

Unipolar Leads

e 1 positive electrode & 1
LA negative “reference point”
— calculated by using
summation of 2 negative
leads
e Augmented Limb Leads
— aVR, aVF, aVL
— view from a vertical plane
e Precordial or Chest Leads
- V1-V6
— view from a horizontal plane
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Waveform Components:
R Wave

Waveform Components:
Q Wave
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Waveform Components:
S Wave

to baseline

Waveform Components:
QRS

e Q waves
— Can occur normally in several
leads
Normal Q waves called physiologic
— Physiologic Q waves
< .04 sec (40ms)
— Pathologic Q
>.04 sec (40 ms)
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Waveform Components:
QRS

e Q wave
— Measure width

— Pathologic if greater than or equal to
0.04 seconds (1 small box)

L

Waveform Components:
QS Complex

=
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Waveform Components:
J-Point

direction

Waveform Components:
ST Segment
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Lead Groups

Limb Leads Chest Leads

Inferior Wall

e |I, Ill, aVF
— View from Left Leg ©
— inferior wall of left ventricle
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Inferior Wall

e Posterior View

— portion resting on
diaphragm

— ST elevation O suspect
inferior injury

Inferior Wall

Lateral Wall

e | and aVL
— View from Left Arm &

— |ateral wall of left
ventricle




Lateral Wall

e V5 and V6
— Left lateral chest
— lateral wall of left ventricle

Lateral Wall

e |, aVL, V5, V6
— ST elevation 4

suspect lateral wall
injury
l
' ‘/ Lateral Wall \"
/% |
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Anterior Wall

e V3, V4
— Left anterior chest

— @ electrode on anterior
chest

Anterior Wall

e V3, V4

— ST segment
elevation Q suspect
, anterior wall injury

LAY
< s
I
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Septal Wall

e V1,V2
— Along sternal borders

— Look through right ventricle &
see septal wall

Septal

e V1,V2

— septum is left
ventricular tissue

12
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[=

B EKG Leads
= EKG machines record the electrical activity

=]

= Records the electrical activity of the hearts frontal plane
and are measured from the top of the heart to the bottom of
the heart [ right to left ]

Understanding 12 Lead EKG

m EKG Leads, continued
= EKG machines record the electrical activity.

o

Understanding 12 Lead EKG
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VA —MNo Relevant

| and aVL—HigH
Lateral Wall of
Left Ventricle

1,11, and aVF—Inferior
all of the Left Ventricle:
RVMI Often Associated with
inferior Wall Infarction
3RADY: Understanding 12 Lead EKGS
Ch. 14

BRADY: Understanding 12 Lead EKGS
Ch. 14

Vector : a mark or
symbol used to
describe any force
having both
magnitude and
direction; the direction
of electrical currents in
cardiac cells that are
generated by
depolarization and
repolarization

The currents spread
from the endocardium
outward to the
epicardium

5/17/2012
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= Mean QRS axis :
the mean
[average] of all
ventricular vectors
IS a single large
vector with a
mean QRS axis,
usually pointing to
the left and
downward

BRADY: Understanding 12 Lead EKGS
(@

alteration in
normal flow of
current that

represents an
abnormal
ventricular
depolarization
pathway and may
signify death or
disease of the
myocardium
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Mean axis most
commonly flows from
top to bottom or right
to left

Mean axis commonly
flows to a point of +30
degrees

When heart is
enlarged, or due to
disease or death of
muscle, conduction
pattern is altered or
deviated = axis
deviation

ESTIMATING
QRS AXIS

Deviation

. oo
is between +90 e
degrees and + or — e ARk | psawiakng

that ara neg that are neg

= |

180 degrees

in both 1 and aVF

in aVF and upright in lead 1 \
oy

Lead 1 = - QRS

RIGHT

NORMAL

that are

axis p upright

in both | and aVF

deflection
Lead aVF = + QRS

~/+1B0Y
axis i
in lead | and mtigmi:\ avF

deflection

+80Y

AR

— i the sum of dellections is negative

e

in Leads 1 and aVF.

in either or both of these leads, axis

ORS complexes are normally upright
deviation Is suggested.

5/17/2012

17



ESTIMATING
QRS AXIS /-"'_'_ _'_"‘-\,\

. . . T
Deviation is between X

0 and — 90 degrees ans

EXTREME RIGHT | LEFT

axis

that ara

in both 1 and aVF

= Lead 1= + QRS

lha;ara gati
in aVF and upright in load |
oY

RIGHT | NORMAL

deflection

axis p upright

that are negati

= Lead aVF =- QRS
deflection

ESTIMATING
QRS AXIS /-"'_'_

BT
. ]

EXTREME RIGHT

in both | and aVF
AR

e

QRS complexes are normally upright

— i the sum of dellections is negative
+90Y  in sither or both of these leads, axis
deviation Is suggested.

n.‘_\___- in Leads 1 and aVIF,

Deviation is between

that ara neg
in both 1 and aVF

that are negati
in aVF and upright in lead 1
oy

-90 and + or — 180

RIGHT | NORMAL

degrees inatare nogaive | comptoxas it th and avF
..T.md 1 and upright in aVF T
deflection =L
QRS complexes are normally upright

Lead aVF = - QRS
deflection

\.‘_\___- in Leads | and aVF.

— i the sum of dellections is negative
+90Y  in sither or both of these leads, axis
deviation Is suggested.

5/17/2012
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= Lead 1= + QRS
deflection

deflection

= Lead aVF = + QRS ’”\

EXTREME RIGHT | LEFT
" ! %

axis

that ai

ra neg lha; re neg
in bath | and aVF in aVF and upright in load |
oY

RIGHT | NORMAL

that are negati in both | and aVF

in lead | and upright in aVF e .
N I

¥ """“*-..___ in Leads I and aVF,

Understanding 12 Lead EKGS

Right Axis Deviation
= COPD
Pulmonary embolism

Congenital heart
disease

Pulmonary
hypertension

Cor pulmonale

— i the sum of dellections is negative
in either or both of these leads, axis

ORS complexes are normally upright
deviation Is suggested.

Left Axis Deviation

Ischemic heart disease
Systemic hypertension
Aortic stenosis
Disorders of left ventricle
Aortic valvular disease

Wolff-Parkinson-White
syndrome

5/17/2012

19



= Runs down right side of

interventricular septum
and terminates at papillary
muscles

= Shorter then the right

bundle branch

Divides into pathways that
spread throughout the left

Functions to carry side of the interventricular
electrical impulses to the septum and throughout
right ventricle the left ventricle

Two main divisions are
called fascicles

Understanding 12 Lead EKGS

[=

= Impulse travels
simultaneously
through the right
bundle branch and
left bundle branch

Understanding 12 Lead EKGS

5/17/2012
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Electrical impulse will travel through intact branch
and stimulate ventricle supplied by that branch
Ventricle effected by blocked or defective bundle
branch is activated indirectly

Classified as either [ QRS measures 0.12

sec or greater ] or incomplete blocks [ QRS
measures between 0.10 and 0.11 second]

Understanding 12 Lead

Right Bundle Branch Block
SAnode AVnode Common bundle of His

Late abnormal electrical
vector bypasses block

Left main ks ) 4 5 N 3
bundle branch = - b 1 1 i

Total QRS complex prolonged (=0.12 sec).
Terminal broad S wave in Lead |. RSR’ complex
in Lead V,

5/17/2012
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Left Bundie Branch Block

Block of left main bundle branch
or
block of left anterior and posterior fascicles

Electrical vector directed

toward left ventricle as is

noral, but defsied and EEEEFEEE R PR B

prolonged Wide QRS complex (=0.12 sec), with
ST depressions and inverted T waves,
particularly in Leads |, aVL, Vs and Vg

Understanding 12 Lead EKGS

=

m To determine presence of new-onset block,
must have access to past 12-lead EKGs

Understandin 12 Lead EKGS

5/17/2012
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Understanding 12 Lead EKGS
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Understanding 12 Lead EKGS

Understanding 12 Lead EKGS

5/17/2012

24



5/17/2012

ECG Rhythm Interpretation

Arrhythmias

« Supraventricular Arrhythmias
« Ventricular Arrhythmias
« AV Junctional Blocks

25
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Rhythm #1

i
o fl

Rate?
Regularity?

P waves?

PR interval?
QRS duration?

Interpretation?

Sinus Bradycardia

26
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Sinus Bradycardia

§ !
| 5___/\ e

SA node is depolarizing slower
than normal, impulse is conducted
normally (i.e. normal PR and QRS
interval).

Regularity?

P waves?

PR interval?
QRS duration?

Interpretation?

27
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SA node is depolarizing faster
than normal, impulse is conducted
normally.

« Remember: sinus tachycardia is a
response to physical or psychological
stress, not a primary arrhythmia.

28



Premature Beats

(PACSs)

(PVCs)

Rhythm #3
i lﬁ 1 | | |

= NA ‘!J | MllMliMlle I|

Rate?
Regularity?
P waves?
PR interval?
* QRS duration?

Interpretation?

]

5/17/2012
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Premature Atrial Contractions

—These ectopic beats originate in the
atria (but not in the SA node),
therefore the contour of the P wave,
the PR interval, and the timing are
different than a normally generated
pulse from the SA node.

Premature Atrial Contractions

Excitation of an atrial cell
forms an impulse that is then conducted
normally through the AV node and
ventricles.

5/17/2012
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Teaching Moment

* When an impulse originates anywhere in
the atria (SA node, atrial cells, AV node,
Bundle of His) and then is conducted
normally through the ventricles, the QRS
will be narrow (0.04 - 0.12 s).

!ll!IIEg!iia!l!IHlIIIIIIIl!!!lﬁ!iﬂ!!!!ll!!ﬂll!!!

Rhythm #4

| |
e A e T N N

Rate?
Regularity?

P waves?

PR interval?
QRS duration?

Interpretation?

5/17/2012
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— Ectopic beats originate in the ventricles
resulting in wide and bizarre QRS
complexes.

— When there are more than 1 premature
beats and look alike, they are called
“‘uniform”. When they look different, they are
called “multiform”.

One or more ventricular cells
are depolarizing and the impulses are
abnormally conducting through the
ventricles.

32
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Teaching Moment

* When an impulse originates in a
ventricle, conduction through the
ventricles will be inefficient and the QRS
will be wide and bizarre.

Ventricular Conduction

Signal moves rapidly  Signal moves slowly
through the ventricles through the ventricles
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ECG Clues to Identify the Site of
Occlusion in Acute Myocardial
Ischemia/Infarction

e

Limb Leads and Augmented Limb Leads

5/17/2012
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Direction of ST Vector and ECG Changes in
Proximal LAD Occlusion

Figure 2.16

Left panel: Proximal LAD occlusion.

Global ischemia of the whole anterior and septal aspect of the left ventricle. The ST segment
vector points in a superior direction, because the anterobasal segment is the dominant ischemic

area.

Right panel: Related ECG changes.

The superiorly oriented ST vector leads to ST changes, such as ST elevation in lead AVR and V;
with reciprocal ST depression in the inferior leads and in leads Vs and V.

Exampie 1: (#0073) 38 years old male, Asian, chest pain g h, Tnl 3.4 at
admission, LAD occlusion, EF 35%

0073a 20030406 male 38 yrs

Anterolateral infarct, acute (LAD)

[SR ] Sinus rhychm

. [LAD ) Left axis deviation. >>> Acute Ml <<€€.ceecsssssansnnsss
Axis: [ALIAD ) Ancerolateral infarct, ac
P/QRS/T. .78/-38/34 [ACUTHI] 3> ACUEE MI S€€.00nnntinesonnersineannesonsneanssmnnseroneoineessnmenseeanssens

...unconfirmed diagnosis...

7] e b

5/17/2012
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Direction of ST Vector in
RCA and LCX Occlusion

Figure 2.4
Schematic
presentation of the
ST-segment vector in
inferior wall
infarction. In RCA-
occlusion an inferior
and rightward
orientation towards
lead III and in CX
occlusion an inferior
and leftward
orientation towards
lead IT is present.

ST SEGMENT VECTOR IN RIGHT CORONARY ARTERY
VS CIRCUMFLEX MYOCARDIAL INFARCTION

1'SKEHT CORONARY ARTERY MI CIRCUMFLEX CORONARY ARTERY MI

Example 8: (#103) 72 years old male, Asian, Chest pain 5 hours,
TnL < 0.1 at admission, proximal RCA occlusion

Inferior infarct, acute (RCA)
Rate. . ... 1) ecgdb) longbeach) study1) 0B\ 414D5902 . 933
N oate 92 yre >>> Acute MI <<<. .. ueennenas
aRsd. .
|AT/QTc. ..398/385 SR 1 Sinus rhythm. wmal P axis, V-rate 50- 99
: [2aVB ] Prolonged PR interval..... ...PR 3220, V-rate SO- 5O
P/ QRS/T. .55/73/101 [INIAR ] Inferior infarce, asute (RCA) .ST30.10mW in ITT > 1T
S U
I avR

avE w3 V& e

5/17/2012
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ECG Criteria for Identifying Culprit Lesion
Left main: ST depression in seven or more leads with ST elevation, aVR and
V1 at rates less than 100bpm and no LVH

Proximal LAD: ST elevation in lead 1, aVL, V1-3, 4. ST depression in lead 3
and sometimes lead 2

Non-proximal LAD: ST elevation V3-6 but not aVL and no ST depression in
leads 2 or 3

Proximal RCA: ST elevation 2, 3, aVF, greater in 3 than in 2 with ST elevation
in V4 R and V3R and ST depression in 1, aVL. ST changes in leads V1 and V2
depend on right ventricular and posterior wall involvement.

Non-proximal RCA: ST elevation 2, 3, aVF greater in 2 than in 3 but without
ST elevation in V4R, V3R

LCX: ST elevation in leads 2, 3 aVF. ST depression in leads V1 and V2

Test of Criteria for Identifying Culprit Lesion

Specificity | Sensitivity

LM 100%

LADP 95%

LADN

LCX

RCAP

RCAN

LM/LADP

LM/LADP/RCAP

5/17/2012
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Conclusions

- ST segment depression is always the reciprocal
of ST elevation and, conversely, ST elevation
will always be accompanied by ST depression
somewhere.

- By recognizing leads with ST depression as well
as elevation, the location of a culprit lesion can
be predicted with considerable accuracy.

P

Conclusions (Continued)

- Recording of Leads V3R, V4R and V8 (and/or
V9) are very helpful and should be done in
all
patients with inferior infarctions.

« Visualization of the spatial orientation of the
ST

segment vector enhances your ability to
localize

the site of occlusion.

.
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Data Mining and
Medical Informatics

iThe Data Pyramid

Value
A How can we improve it ?
v Knowledge What made it that unsuccessful ?
Volume (Information + rules)
Information What was the lowest selling
(Data + context) product ?
Data How many units were sold
of each product line ?

5/17/2012
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i Data Mining Functions

Clustering into ‘natural’ groups (unsupervised)
Classification into known classes; e.g. diagnosis
(supervised)

Detection of associations; e.g. in basket analysis:

”70% of customers buying bread also buy milk”
Detection of sequential temporal patterns; e.qg.
disease development
Prediction or estimation of an outcome
Time series forecasting

Data Mining Techniques

i (box of tricks)

Statistics Data preparation,
Linear Reg ression Exploratory
Visualization
Cluster analysis

Decision trees

Rule induction

Newer Modeling Neural _networks
Knowlédge Représentation Abductive networks

5/17/2012
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‘L Data-based Predictive Modeling

Develop Model Use Model
With Known Cases For New Cases

> N OUT [ | EEEEPN  OUT ——b

Attributes, X F(X) Diagnosis, Y | Attributes Diagnosis
) )

Determine F(X) Y =F(X)

Data-based Predictive Modeling
i by supervised Machine learning

Database of solved examples (input-output)

Preparation: cleanup, transform, add new attributes...

Split data into a training and a test set
Training:

Develop model on the training set
Evaluation:

See how the model fares on the test set
Actual use:

Use successful model on new input data to estimate
unknown output

5/17/2012
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The Neural Network (NN) Approach

HiddenLay

Input Layer Output Layer
er
Age 4 Neurons Actual: 0.65
0.60
Gender l
Stage Error: 0.05

Transfer

Weights Function

Weights Dependent Outjfit
Independent Input Variable

Variables (Attributes)

Error back-propagation

Self-Organizing Abductive (Polynomial) Networks

Input Layer First Layer Second Layer Third Layer Oulput Layer
(Mermalizers) {Unitizers)

X1 oty “Double” Element:

y =w0 + wl x1 + w2 x2

X2
o outpur + w3 x12 + w4 x22
epandent Bnden
Var\:blss — LT Szfiabtz + W5 Xl X2

*3 ow{ ——  White Single 11 Tripte (w0 ¥ + w6 X13 + w7 X23

peeo

= Network of polynomial functional elements- not simple neurons
- No fixed a priori model structure. Model evolves with training

- Automatic selection of: Significant inputs, Network size, Element types, Connectivity,
and Coefficients

- Automatic stopping criteria, with simple control on complexity

- Analytical input-output relationships

5/17/2012
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Medicine revolves on
Pattern Recognition, Classification, and Prediction

Diagnosis:
Recognize and classify patterns in multivariate
patient attributes

Therapy:
Select from available treatment methods; based on
effectiveness, suitability to patient, etc.

Prognosis:
Predict future outcomes based on previous
experience and present conditions

Need for Data Mining in Medicine

Nature of medical data: noisy, incomplete, uncertain,
nonlinearities, fuzziness = Soft computing

Too much data now collected due to computerization
(text, graphs, images,...)

Too many disease markers (attributes) now available for
decision making

Increased demand for health services: (Greater
awareness, increased life expectancy, ...)

- Overworked physicians and facilities
Stressful work conditions in ICUs, etc.

5/17/2012
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i Medical Applications

Screening
. Diagnosis
. Therapy

. Prognosis

. Monitoring

. Biomedical/Biological Analysis

. Epidemiological Studies

. Hospital Management

. Medical Instruction and Training

i Medical Screening

» Effective low-cost screening using disease models
that require easily-obtained attributes:

(historical, questionnaires, simple measurements)

» Reduces demand for costly specialized tests
(Good for patients, medical staff, facilities, ...)

= Examples:
- Prostate cancer using blood tests
- Hepatitis, Diabetes, Sleep apnea, etc.

44



i Diagnosis and Classification

» Assist in decision making with a large number of
inputs and in stressful situations

m Can perform automated analysis of:
- Pathological signals (ECG, EEG, EMG)

- Medical images (mammograms, ultrasound,
X-ray, CT, and MRI)

= Examples:

- Heart attacks, Chest pains, Rheumatic disorders
- Myocardial ischemia using the ST-T ECG complex

- Coronary artery disease using SPECT images

Diagnosis and Classification
ECG Interpretation

<. SR Interval
QRS amplitudee”™""
H QRS duration
/\J e
S-T elevation
<Gy

P-R interval

v

@l SV tachycardia
Ventricular tachycardia

LV hypertrophy

QA
N~
A‘&“‘ ASA
1"\\\\ e RV hypertrophy

Myocardial infarction

5/17/2012

45



i Therapy

» Based on modeled historical performance,
select best intervention course:
e.g. best treatment plans in radiotherapy

= Using patient model, predict optimum
medication dosage: e.g. for diabetics

= Data fusion from various sensing modalities in
ICUs to assist overburdened medical staff

i Prognosis

= Accurate prognosis and risk assessment are essential
for improved disease management and outcome

Examples:
= Survival analysis for AIDS patients
Predict pre-term birth risk
Determine cardiac surgical risk
Predict ambulation following spinal cord injury
Breast cancer prognosis

5/17/2012
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i Biochemical/Biological Analysis

= Automate analytical tasks for:
- Analyzing blood and urine
- Tracking glucose levels
- Determining ion levels in body fluids
- Detecting pathological conditions

i Epidemiological Studies

Study of health, disease, morbidity, injuries and
mortality in human communities

Discover patterns relating outcomes to exposures
Study independence or correlation between diseases
Analyze public health survey data

Example Applications:

- Assess asthma strategies in inner-city children

- Predict outbreaks in simulated populations

5/17/2012
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i Hospital Management

» Optimize allocation of resources and assist in
future planning for improved services

Examples:

- Forecasting patient volume,
ambulance run volume, etc.

- Predicting length-of-stay for
incoming patients

i Medical Instruction and Training

» Disease models for the instruction and
assessment of undergraduate medical and
nursing students

» Intelligent tutoring systems for assisting in
teaching the decision making process

5/17/2012
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i Benefits:

» Efficient screening tools reduce demand on
costly health care resources

= Data fusion from multiple sensors

= Help physicians cope with the information
overload

» Optimize allocation of hospital resources
= Better insight into medical survey data
» Computer-based training and evaluation

[ Biiological Problem
| Heatiiy |

5
=
g
5
(]
]
c
@,

<
<
=
=
=3
=
-

Si

(depolarization)
Sequential atrial activation
(depolarization)

After
depolarizations

in the ventricles \
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Electrophysiology of the cardiac muscle cell

Vo V]
&0

0

-100-
£ Diraction of conduction Time Eo»

INTERSTITIAL SPACE

ionic balance

Vs

++++ et
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)

1

+HH+ FHE

J

Generation of the

+H++

J

ECG complexes

mee —mmm ==+t b4

———= TTFF Tt

A wave of depolarization moving toward
an electrode will cause an upward

++++
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/

deflection on the ECG needle. N

e [ e o
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<

ifference In Wave

Shape And

Frequency :

REGULAR
Normal RHYTHM
. IRREGULAR
Arrhythmia RHYTHM
"

P, TAND U WAVE
I INDISTINCT.
~-—~_JRREGULAR RHYTH}

Biiological Problem

Ventricular i | | | LT

o~ _~—_ =~

Arrhythmia

REGULAR
Bradycardia RHYTHM
\ ©
[ The Algorithm
Z | r;]l ’_f._i]ll
j
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MEDICAID) 0 S
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The Algorithm h
Input Para
Three Initial d. range Signal derivative
Conditions o Fang at the starting point
Number of Samples ~ Minimum Distance
Number of couples
for between . .
. X . of trajectories
Trajectors Trajectories
25 T T T T T T T T T
Signal derivative
2r in initial condition b
point
15 —
=
§' e « range |
H
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[ Parametric Study N

Initial Cond

[ Parametric Study h

. From points 111

~ P-wave extract

| dj that have ;

asymptoticf

| behaviour and

present Hi_lm"‘l'ted
osciltation
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i
Results

dj have a similar trend for the
three cases but with different

value.
Normal

| RSt g W i e VG

|
Results

DJ ! Potenza 2 Piaxt / Potenza 2

Ventricular
Arrhythmia

Potenza 7 [myisec.

2, | Potenza 2 i / Potenza 2 " Ay

D1 100)) D51V, ey

wy -
Type of B
Folynomial {th degres)

MAX2 MAXI

Custom Fit .
(A=l b )

200 100 ] 200
Patenza 2 [m\Wsec |

200 -100
Potanza 2 [misec |

A -%2""’:""& %
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Riesults h

2 T T T T T
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Do
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Do
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Riesults

15

D

Do

1
100

I I
150 200

1
300

I
350

400

Do

150

200
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Future Development

Algoritm of Automatic clustering
for 3D graphics

ossible
olution

Initial conditions obtained by
on the P-wave

P-wave

recognition

Conclusions

The asymptotic distance between trajectories, d_, has been
obtained from computation of d;

The study of the d, and the Lyapunov Exponent are performed

simultaneously
Theoretical study Need more medical
statistics and inputs!
Application
Biomedical Application: v
Automatic Diagnostic Ry ety & éa

5/17/2012
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ra
Algorithm for Decision Tree Induction

® Basic algorithm (a greedy algorithm)
® Tree is constructed in a
At start, all the training examples are at the root
e Attributes are categorical (if continuous-valued, they are discretized in advance)
® Examples are partitioned recursively based on selected attributes
e Test attributes are selected on the basis of a heuristic or statistical measure (e.g.,
)
¢ Conditions for stopping partitioning
¢ All samples for a given node belong to the same class

® There are no remaining attributes for further partitioning — is

employed for classifying the leaf

® There are no samples left

Data Mining: Concepts and Techniques May 17,2012

/

Attribute Selection: Information Gain

o Select the attribute with the highest information gain

® Let p, be the probability that an arbitrary tuple in D
belongs to class C;, estimated by | C; |/ |D

* Expected information (entropy) needed to classify a tuple
in D: N
Info(D) = =2 p;log. (p,)

i1
® Information needed (after using A to split D into v
partitions) to classify D: v D |
Info,(D)=) - x1(D,)
i1 | D

® Information gained by branching on attribute A

Gain(A)= Info(D)- Info,(D)

5/17/2012
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Distributed Decision Tree Construction

e Adam sends Betty
“Outlook = Rainy”

° Betty constructs

B 7. — .
—= 1AM “Humidlty—ngh &
Humidity |Play{[ | I _ A
aem  [mgn [N |[o] [0 o] Play=Yes” and
_—— Hgh Yes |0V LY “Humidity=Normal & Play
._ w |0 High Yos |01} |0] il — ”»
Sunny . || Normal | Yes ||1 | L] |1 _YeS
i Normal | N 0 1 ]
Ry e == H D ® Dot product represents
Rainy fYes |1 e T[] O [ tuples “Outlook = Rainy &
| 1\@ S A Humidity = Normal &
Rainy No 1_ High Yes 1 1+ ]_ l - ”A ¢« l k
High  |ves |11 | [1]>2 P ay =Yes” AND “Outloo
Normal |Yes [l0| (L} |0] = Rainy & Humidity =
Normal |No i l_ i

High & Play =Yes”

Example Obtained from: C Gianella, K Liu, T Olsen and H Kargupta, “Communication
\ efficient construction of decision trees over heterogeneously distributed data”, ICDM ZOOU

PLANET: Parallel Learning for
Assembling Numerous Ensemble Trees

® Ref: B Panda, J. S. Herbach,
S. Basu, R. ]. Bayardo,
“PLANET: Massively
Parallel Learning of Tree

Ensembles with Map
Reduce”, VLDB 2009

=45
TH:

° Components Iug{%zs qug

=30

¢ Controller (maintains a

ModelFile)

® MapReduceQueue and
InMemoryQueue
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Classification Function of Ensemble
Classifier

@ @ @
/ / /N e N
90 60 00 ® O
f(x) f3(x)

f(x

Weighted
Sum

The Distributed Boosting Algorithm

® k distributed sites storing homogeneously partitioned data
e At each local site, initialize the local distribution Aj
® Keep track of the global initial distribution by broadcasting Aj
® For each iteration across all sites
® Draw indices from the local data set based of the global distribution
® Train a weak learner and distribute to all sites

¢ Create an ensemble by combining weak learners; use the ensemble
to compute the weak hypothesis

® Compute weights, and re-distribute to all sites
¢ Update distribution and repeat until termination.

® Reference: A. Lazarevic and Z. Obradovic, “The Distributed
Boosting Algorithm”, KDD 2001.
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Factor and Component Analysis
esp. Principal Component Analysis (PCA&ICA)

Why Factor or Component Analysis?

* We have too many observations and dimensions
— To reason about or obtain insights from
— To visualize
— Too much noise in the data
— Need to “reduce” them to a smaller set of factors
— Better representation of data without losing much information

— Can build more effective data analyses on the reduced-dimensional space:
classification, clustering, pattern recognition

*  Combinations of observed variables may be more effective bases for insights, even if physical
meaning is obscure
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Basic Concept

What if the dependences and correlations are not so strong or direct?
And suppose you have 3 variables, or 4, or 5, or 10000?

Look for the phenomena underlying the observed covariance/ co-
dependence in a set of variables

® Once again, phenomena that are uncorrelated or independent, and especially those
along which the data show high variance

These phenomena are called “factors” or “principal components” or
“independent components,” depending on the methods used
® Factor analysis: based on variance/ covariance/ correlation

¢ Independent Component Analysis: based on independence

Principal Component Analysis

® Most common form of factor analysis

e The new variables/dimensions
® Are linear combinations of the original ones
¢ Are uncorrelated with one another
Orthogonal in original dimension space
® Capture as much of the original variance in the data as possible

® Are called Principal Components
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What are the new axes?

A
PC2
PC1
Original Variable A
* Orthogonal directions of greatest variance in data
* Projections along PC1 discriminate the data most along any one axis

Principal Components

® First principal component is the direction of greatest
variability (covariance) in the data

® Second is the next orthogonal (uncorrelated) direction
of greatest variability
® So first remove all the variability along the first component, and

then find the next direction of greatest variability

® Andsoon ...
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Computing the Components

® Data points are vectors in a multidimensional space
® Projection of vector x onto an axis (dimension) u is u.x
* Direction of greatest variability is that in which the average square of the
projection is greatest
¢ Ie. u such that E((u.x)?) over all x is maximized
¢ (we subtract the mean along each dimension, and center the original axis system at
the centroid of all data points, for simplicity)
® This direction of u is the direction of the first Principal Component

A

Computing the Components

* E((u.x)?) =E ((u.x) (u.x)") = E (u.x.x"u")

T

® The matrix C = x.x' contains the correlations (similarities) of the

original axes based on how the data values project onto them

* So we are looking for w that maximizes uCu’, subject to u being unit-

length

e It is maximized when w is the principal eigenvector of the matrix C, in
which case
* uCu’=ulu"= A if u is unit-length, where A is the principal eigenvalue of
the correlation matrix C

¢ The eigenvalue denotes the amount of variability captured along that dimension
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Why the Eigenvectors?

Maximise u"xxTus.t ulu = 1

Construct Langrangian u'xx"u - AuTu

Vector of partial derivatives set to zero
xxX'u-Au=(xx"-AD)u=0

As u # 0 then u must be an eigenvector of xxT with eigenvalue A

Singular Value Decomposition

The first root is called the prinicipal eigenvalue which has an associated
orthonormal (u'u = 1) eigenvector U

Subsequent roots are ordered such that A,> A, >... > A, with rank(D)
non-zero values.

Eigenvectors form an orthonormal basis i.e. uiTuj = 511

The eigenvalue decomposition of xx! =Uuzu”

where U = [u, u,, ..., uy]and Z =diag[A |, A ,, ..., A ]

Similarly the eigenvalue decomposition of x'x = VZIVT

The SVD is closely related to the above x=U 212yt

The left eigenvectors U, right eigenvectorsV,

singular values = square root of eigenvalues.
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Computing the Components

® Similarly for the next axis, etc.

® So, the new axes are the eigenvectors of the matrix of correlations
of the original variables, which captures the similarities of the
original variables based on how data samples project to them

A1

*  Geometrically: centering followed by rotation

— Linear transformation

Computing and Using LSI

Documents Documents
]
M U \ t U | [ K
Terms = \S\\ v = k ! : Vil |- Terms
) [ S L A
mxn mxr rxr rxn mxk ’ kxk kxn mxn
= \ - A
. Reduce Di onality: Recreate Matrix:
Singular Value ?fhuce H?Tnswni‘jl Y Multiply to produce
Decomposition row oud 0\;v-0r er approximate term-
(SVD): Tows and columns document matrix.

Convert term-document
matrix into 3matrices
U,Sand V

Use new matrix to
process queries
OR, better, map query to
reduced space
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What LS| can do

® LSIanalysis effectively does
¢ Dimensionality reduction
e Noise reduction
 Exploitation of redundant data

¢ Correlation analysis and Query expansion (with related words)

* Some of the individual effects can be achieved with simpler techniques
(e.g. thesaurus construction). LSI does them together.

¢ LSI handles synonymy well, not so much polysemy

* Challenge: SVD is complex to compute (O(n?))

® Needs to be updated as new documents are found/updated

Va

Limitations of PCA

Should the goal be finding independent rather than pair-wise
uncorrelated dimensions

*Independent Component Analysis (ICA)
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PCA applications -Eigenfaces

To generate a set of eigenfaces:

1. Large set of digitized images of human faces is taken under the

same lighting conditions.
2. The images are normalized to line up the eyes and mouths.

3. The eigenvectors of the covariance matrix of the statistical

distribution of face image vectors are then extracted.

4. These eigenvectors are called eigenfaces.
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68



5/17/2012

Source Separation Using ICA

Microphone 1

Separation 1

Wi O
Wa
Wi

Microphone 2

Separation 2

. b~ N\

The ICA model

s, S5 N
%2 P ; x;(t) = a;*s, (1) +
6 =0 ¥y ’ﬁ;i« ay%sy(0) +
t@\?%] ‘ 1 |H L [\ l ag¥sy(t) +
=i O i % Ly 4
— [
Here,i=1:4.
ap 43
a In vector-matrix notation, and
11 a

dropping index t, this is
x=A*s

&
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Application domains of ICA

Blind source separation

Image denoising

Medical signal processing — fMRI, ECG, EEG
Modelling of the hippocampus and visual cortex
Feature extraction, face recognition

Compression, redundancy reduction

Watermarking

Clustering

Time series analysis (stock market, microarray data)
Topic extraction

Econometrics: Finding hidden factors in financial data

Feature Extraction in ECG data
(Raw Data)

ECG raw data

x 1k J.._Fl‘ﬂ_'-ﬁ—lknv-—.‘.itma_.—.l'-,_ R 41'--,1..1'-o-o At Il-a_m .\-;- 4.“:&_»4-]" Aeredil b s

| | | l | | 1 | | . | |

, 2|. R L P T e FU ¥ IR R

%_3[- .‘.H.I‘._,...‘. PR NP NURIEE WS W PRI NIPSIE NS A N Y __1-\4.,___

| | | | | | | I l | !
x_4 r_,..w,-l-wr.wa,,l.__,_w_.lk“_dlw‘r J-n—fr»-—«-v'l—mvsl.\_"_«;l .-Im'r.‘.‘,-_,,.,_,b,l_ﬁ.“

] B B B e e e e B e A

] | | | | | 1T | | |

w6 L . . N — P I e e L P A
- [ | [ R R I
| | | P | | | | | |

| | |
x 7 lf"v-*'v‘-“-f"-—- i e e i i e e e E

| | | | | | | | | | |
¥ 8 .r.-.._-._ﬂ._..J,.‘....J,_\._._r-\._..r\._..,_ﬁ(“,«,u,wjﬂ._,'ﬂ__'r‘,_._m.,.,A
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Feature Extraction in ECG data
(PCA)

Feature Extraction in ECG data
(Extended ICA)

ICs (elCA)

[V I T IS U RN U SR U O PR T T S [ T W P B R S A

y_2 W}MWWMWWMW4WWW

y_3 Pt sy

) ,walwwmlw_ﬁwlwlm-.,,.w\,‘._.-k.—.ﬁ._.-,_,...__\_.w..,.....\.
=4 1 | | | 1 I

V5 P an A WA ittt oo P AN it NP
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Feature Extraction in ECG data
(flexible ICA)

ICs (fICA)

VIR | PRI T

v.2 A S S SR U [ (R R SO SN SO [ R

v 3 """-"""‘Il" -..\L,._..,.T.\_-,,L b S bt MM e ""‘HM:NH“M"\W o e T B o

PCA vs ICA

e Linear Transform
— Compression
— Classification

« PCA
— Focus on uncorrelated and Gaussian components
— Second-order statistics
— Orthogonal transformation

 ICA
— Focus on independent and non-Gaussian components
— Higher-order statistics
— Non-orthogonal transformation
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Gaussians and ICA

 |If some components are gaussian and some are
non-gaussian.
— Can estimate all non-gaussian components

— Linear combination of gaussian components can be
estimated.

— If only one gaussian component, model can be
estimated

* ICA sometimes viewed as non-Gaussian factor
analysis

Detection of Ischemic ST segment Deviation
Episode in the ECG

Reflection of Ischemia in ECG:

» ST segment deviation
1. Elevation
ii.  Depression

« T wave Inversion
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System Architecture

ECG Signal QRS detection Baseline removal

[~ A~

isoelectriclevel removal feature extraction

Baseline removed

feature reduction

neural network training

PCA testing and results calculation
extracted features I:E

Detection of Ischemic ST segment Deviation
Episode in the ECG

QRS detection

In order to proceed with ST deviation:
*QRS onset

*QRS offset

*QRS fudicial point.

*DWT (discrete wavelet transform) based QRS
detector .
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Detection of Ischemic ST segment Deviation

Epi

sode in the ECG

EDC Database Subject #¢0103 QRS points

2
B f\wm A/\MWM !
bt b o .
b
L L L L L
1.205 1.21 1.215 1.22 1.225
x 10°

Detection of Ischemic ST segment Deviation

Epi

sode in the ECG

EDC Database Subject #¢0509 QRS points

-150 T

pf

EARa
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Detection of Ischemic ST segment Deviation
Episode in the ECG

Isoelectric level:

 Flattest region on the signal

» Value equal or very close to zero.

* Region starts 80ms before the QRS on
* Ends at QRS on.

Detection of Ischemic ST segment Deviation

Episode in the ECG
EDC Database Subject #¢0515 Isoelectric level

Rt O S
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Detection of Ischemic ST segment Deviation

Episode in the ECG
EDC Database Subject #e1301 Isoelectric level

100
80 —
60 —
20 —
0

Detection of Ischemic ST segment Deviation
Episode in the ECG

Feature extraction:

ST region refers as ROI (region of interest)
*ROI (26 samples after the qrs_off)
*Subtraction Isoelectric level from ROI

ST deviation
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Detection of Ischemic ST segment Deviation
Episode in the ECG
Feature Space:

*Size of the features 1s 26 X no. of beats of each
subject

*Which 1s more time consuming when it comes to
classify or train a neural network for it.

Detection of Ischemic ST segment Deviation
Episode in the ECG

PCA( Principal component analysis):
Procedure:

1. Project the data as 1-dimensional Data sets
2. Subtract mean of the data from each data set

3. Combine the mean centered data sets (mean
centered matrix)

4. Multiply the mean centered matrix by it’s
transpose (Covariance matrix)
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Detection of Ischemic ST segment Deviation
Episode in the ECG

PCA( Principal component analysis):
Procedure:

5. This covariance matrix has up to P eigenvectors
associated with non-zero eigenvalues.

6. Assuming P<N. The eigenvectors are sorted high to
low.

7. The eigenvector associated with the largest eigenvalue
is the eigenvector that finds the greatest variance in the
data.

Detection of Ischemic ST segment Deviation
Episode in the ECG

PCA( Principal component analysis):
Procedure:

8. Smallest eigenvalue is associated with the
eigenvector that finds the least variance in the
data.

9. According to a threshold Variance, reduce the
dimensions by discarding the eigenvectors with
variance less than that threshold.
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Detection of Ischemic ST segment Deviation
Episode in the ECG
Training of MLIII Data
*Total beats: 184246
*Used for Training NN: 52493
*Used for Cross-validation: 20123
*Used for Testing: 110595

Detection of Ischemic ST segment Deviation

Episode in the ECG
Training Results

Lead Total Beats | Training Cross- Cross-
Beats Validation Validation
Beats Error
MLIII 73651 52493 20123 0.068%
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Detection of Ischemic ST segment Deviation
Episode in the ECG
Accuracy Parameters
TP (True Positives)

Target and predicted value both are positives.

FN (False Negative)

Target value 1s +ive and predicted one —ive.

FP (False Positive)

Target value 1s —ive and predicted one +ive.

TN (True Negative)
Target and predicted both are —ive.

Detection of Ischemic ST segment Deviation
Episode in the ECG
Accuracy Parameters

Sensitivity
TP/(TP+FN)*100

Specificity
TN/(TN+FP)*100
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Detection of Ischemic ST segment Deviation
Episode in the ECG

MLIII Data

Lead Total beats | Normal Ischemic
MLIII 184246 174830 9416
Training 73651 68939 4712
Testing 110595 105891 4704

Detection of Ischemic ST segment Deviation
Episode in the ECG

MLIII Testing Results
Lead No.Of |Sensiti |Specifi | Thresh
Beats |vity city old
MLIIT 110595 |21% 99% 0
MLIIT | 110595 4% 99% 0.7
MLIIT | 110595 | 76% 72% -0.7
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Detection of Ischemic ST segment Deviation
Episode in the ECG
MLIII Results s smmarmss e

eeeeeeeeeeeeeeeeeeee

Application of the Discrete Wavelet
transform in Beat Rate Detection
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Qutline

» Introduction to Wavelet Transform
» Applications of the Discrete Wavelet
Transform in Beat Rate Detection

- DWT Based Beat Rate Detection in ECG Analysis.

> Improved ECG Signal Analysis Using Wavelet and
Feature.

» Conclusion
» Reference

P

16

/2

Introduction to wavelet transform

» Fourier transform is the well-known tool for

signal processing. X(D)=] xedt

One limitation is that a Fourier transform can’t deal
effectively with non-stationary signal.

» Short time Fourier transform

X, f)= f w(t—7)x(r)e **dz  where w(t) is mask function

P

16
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Introduction to wavelet transform

» Gabor Transform

o The mask function is satisfied with Gaussian
distribution.

» Uncertainly principle
1

0,0 22—
4
t2[x(t)|" dt f2)X () df
where afz—J | ()2| ; ?=—I X( 2)|
[Ix)dt [Ix (o) df
- We expected to occur a high resolution in time domain,
and then adjust or
o; or

P

Introduction to wavelet transform

» The principle of wavelet transform is based
on the concept of STFT and Uncertainly
principle.
> A mother wavelet 40)

- Scaling ﬁ'//(g)and translating w(t+b)

+ Sub-wavelets i

t—b
Wap () =Tt//(—)
- Fourier transform a a

p(t) = Fly ()]

I 0., () =Fly,, (]
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Introduction to wavelet transform

» Continuous wavelet transform(CWT)

1 = t—b
Wop = abﬁx(t) == X(t)v/a b(_)dt
» ICWT W)= Lo

x(t)——jj W, 0 22

where C, = dw and j:|¢)(w)|dw<oo

(W)
Lo
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Intreduction to wavelet transform

» Discrete wavelet transform(DWT)

P IDWT 0 =al?p (@ (t)-nb) mnez

X)) =" W W (D)

.

- Sub-wavelets W, =(X(®).y,.) =87 [ f(ty(a] (t)—nb,)dt
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DWT applications for
beat rate detection

» DWT Based Beat Rate Detection in ECG Analysis
> The purpose of this paper is to detect heart beat rate by the
concept of discrete wavelet transform, which is suitable for
the non stationary ECG signals as it has adeuate scale
values and shifting in time.

DWT Based Beat Rate
Detection in ECG Analysis

» ECG(Electrocardiogram) signal

=
QRS Complex g g

[JPm

s s .
PR Interval (w) GRS 3
L Q complox: Vontricios
s ::ﬁp‘l:‘liﬂﬁ repolarize
QT Interval X
@ i Depolarization

= Repolarization
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DWT Based Beat Rate
Detection in ECG Analysis
» Preprocessing

> Denoise

* Baseline wandering

_%WJHHWHWJ%

* Moving aver i

Bl &=
-1
5 [l

ocedure.

0 200 400 600 GO0 1000 1200 1400 9GO0 180D 20K
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ECG signal [ bottom] and the

Wavelet transform [top]
1
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DWT Based Beat Rate
Detection in ECG Analysis

» Preprocessing
> Denoising : The wavelet transform is used pre-filtering step
for subsequent R spike detection by thresholding of the
coefficients.

* Decomposition.
* Thresholding detail coefficients.
* Reconstruction.

*E A [ p(Vo D,
(e p( @5’
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DWT Based Beat Rate
Detection in ECG Analysis
» Feature extraction using DWT
> Detect R-waves.
o Thresholding.
+ Positive threshold.
. Negative threshold. 'EU WUEU 2UEU ggi?gmedﬂ‘ughmmic‘l;cg ED‘DU FUEU 5000
-ED 1 DEU ZDED 3UIEIEI _ADED SUIEIEI EDEU FDED 8000
g . WRWRHRE
Bl
VED WDEU ZDED 3UIEIREIde1E§ID;DdDS‘ mg‘EIIEIEI EDEU YDED 8000
20 T T T T Tat Rate =70y T T
& H}HM ‘iu‘xHHH“mhh i HLH\‘ il
o 200 400 B00  BO0 1000 1200 1400 1800 1800 2000
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DWT applications for
beat rate detection

» Improved ECG Signal Analysis Using Wavelet and

Feature.

> This paper introduced wavelet to extract features and then
distinguish several heart beat condition, such as normal
beats, atrial premature beats, and premature ventricular
contractions.

.

Impreved ECG Signal Analysis Using
Wavelet and Feature.

» Some kinds of ECG signal:

R
T QRS Complex
[ T }
u
a a
s i

Atrial premature beat

ML\,MF

Normal beat

P

Premature ventricular
contractions
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Improved ECG Signal Analysis Using
Wavelet and Feature.

» ECG signal analysis flow

ECG Signals

i

Wavelet
Decomposition

|

‘ Feature Classification:

- Energy
- Entropy

Classifying ECG Signals

Improved ECG Signal Analysis Using
Wavelet and Feature.

» Feature Extraction
° Matlab : wpdec function, the wavelet ‘bior5s.5°.

Original Signals

Wavelet Function

1 Filters I

lowpass highpass

Approximations Details
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Improved ECG Signal Analysis Using
Wavelet and Feature.

» Feature Extraction
° Energy

N
o Normal Energ)E(j)n :ﬁz(xi _m)z
— 15

° Entorpg(j)norm_n _ - E-(j)n :
VE(D +E(J)3 +++E(j)

N
Ent( j)login = z log(xlz)
i=1

Improved ECG Signal Analysis Using
Wavelet and Feature.

» Feature Extraction
° Clustering

13+

12¢

-

Entropy (log energy)

° o
o| W

071

06 . . . ' L . . ,
0.8 085 0.9 0.95 1 1.0 11 1.15 1.2
Normalised Energy
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Improved ECG Signal Analysis Using
Wavelet and Feature.

» Method 1

Entropy (log enargy)

1.5 15
14 © 14 o
1.3 13
12 5z
5
1.1 1.1
g
1 = 1
09 § 09
08 s 08 .
07 07 .
08 085 08 085 1 105 11 115 12 05 06 07 08 08 1 11 12 13
Normalised Energy Normalised Energy

wavelet: bior5.5, decomposition level: 1 and 3 with Method 1(@®: normal
beats, O: atrial premature beats, O : premature ventricular contractions)

Improved ECG Signal Analysis Using
Wavelet and Feature.

» Method 2

Entropy (log energy)

1.5 15
14f © 14 o
13 13
12 512
1 :
1. 11
g
1 = 1
2
09 g oo
08 0.8
07 oF
0.6 06
0& 085 08 095 1 108 11 115 1.2 05 0.6 0.7 0.8 0.8 1 1.1 1.2 1.3
Normalised Energy Normalised Energy

wavelet: bior5.5, decomposition level: 1 and 3 with Method 2(@®: normal
beats, O: atrial premature beats, O : premature ventricular contractions)
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Conclusion

» Wavelet analysis is widely used in many
application. Because it provides both time and
frequency information, can overcome the
limitation of Fourier transform.

» We can learn about the wavelet transform which
is able to detect beat rate of signals and to classify
the difference of signals.

» We also use the wavelet transform on the other beat
rate detection.
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