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****************************************************  

TRANS... WHAT? 

First of all, why do we need a transform, or what is a transform anyway? 

Mathematical transformations are applied to signals to obtain a further information 
from that signal that is not readily available in the raw signal. In the 
following tutorial I will assume a time-domain signal as a raw signal, and a signal that has been 
"transformed" by any of the available mathematical transformations as a processed signal. 

There are number of transformations that can be applied, among which the Fourier transforms 
are probably by far the most popular. 
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Most of the signals in practice, are TIME-DOMAIN signals in their raw format. That is, 
whatever that signal is measuring, is a function of time. In other words, when we plot the signal 
one of the axes is time (independent variable), and the other (dependent variable) is usually the 
amplitude. When we plot time-domain signals, we obtain a time-amplitude representation of 

the signal. This representation is not always the best representation of the 
signal for most signal processing related applications. In many cases, the most 
distinguished information is hidden in the frequency content of the signal. The frequency 
SPECTRUM of a signal is basically the frequency components (spectral components) of that 
signal. The frequency spectrum of a signal shows what frequencies exist in the signal.  

Intuitively, we all know that the frequency is something to do with the 
change in rate of something. If something ( a mathematical or physical variable, would 
be the technically correct term) changes rapidly, we say that it is of high frequency, where as if 
this variable does not change rapidly, i.e., it changes smoothly, we say that it is of low frequency. 
If this variable does not change at all, then we say it has zero frequency, or no frequency. For 
example the publication frequency of a daily newspaper is higher than that of a monthly 
magazine (it is published more frequently).  

The frequency is measured in cycles/second, or with a more common name, in 
"Hertz". For example the electric power we use in our daily life in the US is 60 Hz (50 Hz 
elsewhere in the world). This means that if you try to plot the electric current, it will be a sine 
wave passing through the same point 50 times in 1 second. Now, look at the following figures. 
The first one is a sine wave at 3 Hz, the second one at 10 Hz, and the third one at 50 Hz. 
Compare them. 
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So how do we measure frequency, or how do we find the frequency content of a signal? The 
answer is FOURIER TRANSFORM (FT). If the FT of a signal in time domain is taken, the 
frequency-amplitude representation of that signal is obtained. In other words, we now have a plot 
with one axis being the frequency and the other being the amplitude. This plot tells us how much 
of each frequency exists in our signal. 

The frequency axis starts from zero, and goes up to infinity. For every frequency, we have an 
amplitude value. For example, if we take the FT of the electric current that we use in our houses, 
we will have one spike at 50 Hz, and nothing elsewhere, since that signal has only 50 Hz 
frequency component. No other signal, however, has a FT which is this simple. For most 
practical purposes, signals contain more than one frequency component. The following shows 
the FT of the 50 Hz signal: 
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Figure 1.4 The FT of the 50 Hz signal given in Figure 1.3  

One word of caution is in order at this point. Note that two plots are given in Figure 1.4. The 

bottom one plots only the first half of the top one. Due to reasons that are not 
crucial to know at this time, the frequency spectrum of a real 
valued signal is always symmetric. The top plot illustrates this point. However, 
since the symmetric part is exactly a mirror image of the first part, it provides no additional 
information, and therefore, this symmetric second part is usually not shown. In most of the 
following figures corresponding to FT, I will only show the first half of this symmetric spectrum.  

Why do we need the frequency information?  

Often times, the information that cannot be readily seen in the time-domain can be seen in the 
frequency domain. 

Let's give an example from biological signals. Suppose we are looking at an ECG signal 
(ElectroCardioGraphy, graphical recording of heart's electrical activity). The typical shape of a 
healthy ECG signal is well known to cardiologists. Any significant deviation from that shape is 
usually considered to be a symptom of a pathological condition.  
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This pathological condition, however, may not always be quite obvious in the original time-
domain signal. Cardiologists usually use the time-domain ECG signals which are recorded on 
strip-charts to analyze ECG signals. Recently, the new computerized ECG recorders/analyzers 
also utilize the frequency information to decide whether a pathological condition exists. A 
pathological condition can sometimes be diagnosed more easily when the frequency content of 
the signal is analyzed. 

This, of course, is only one simple example why frequency content might be useful. Today 
Fourier transforms are used in many different areas including all branches of engineering. 

Although FT is probably the most popular transform being used (especially in electrical 

engineering), it is not the only one. There are many other transforms that are used 
quite often by engineers and mathematicians. Hilbert transform, short-
time Fourier transform (more about this later), Wigner distributions, the 
Radon Transform, and of course our featured transformation , the 
wavelet transform, constitute only a small portion of a huge list of 
transforms that are available at engineer's and mathematician's disposal. 
Every transformation technique has its own area of application, with advantages and 
disadvantages, and the wavelet transform (WT) is no exception. 

For a better understanding of the need for the WT let's look at the FT more closely. FT (as well 

as WT) is a reversible transform, that is, it allows to go back and forward 
between the raw and processed (transformed) signals. However, only either of 
them is available at any given time. That is, no frequency information is available in the time-
domain signal, and no time information is available in the Fourier transformed signal. The 

natural question that comes to mind is that is it necessary to have both the time and the 
frequency information at the same time? 

As we will see soon, the answer depends on the particular application, and the nature of the 
signal in hand. Recall that the FT gives the frequency information of the signal, which means 

that it tells us how much of each frequency exists in the signal, but it does not tell us 
when in time these frequency components exist. This 
information is not required when the signal is so-called 
stationary . 

Let's take a closer look at this stationarity concept more closely, since it is of paramount 
importance in signal analysis. Signals whose frequency content do not change in time are called 
stationary signals . In other words, the frequency content of stationary signals do not change in 
time. In this case, one does not need to know at what times frequency components exist , since 
all frequency components exist at all times !!! . 
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For example the following signal 

x(t)=cos(2*pi*10*t)+cos(2*pi*25*t)+cos(2*pi*50*t)+cos(2*pi*100*t)  

is a stationary signal, because it has frequencies of 10, 25, 50, and 100 Hz at any given 
time instant. This signal is plotted below: 

 
Figure 1.5  

And the following is its FT: 
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Figure 1.6 

The top plot in Figure 1.6 is the (half of the symmetric) frequency spectrum of the signal in 
Figure 1.5. The bottom plot is the zoomed version of the top plot, showing only the range of 
frequencies that are of interest to us. Note the four spectral components corresponding to the 
frequencies 10, 25, 50 and 100 Hz.  

Contrary to the signal in Figure 1.5, the following signal is not stationary. Figure 1.7 
plots a signal whose frequency constantly changes in time. This signal is known as 
the "chirp" signal. This is a non-stationary signal.  

 
Figure 1.7 
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Let's look at another example. Figure 1.8 plots a signal with four 
different frequency components at four different time intervals, hence a 
non-stationary signal. The interval 0 to 300 ms has a 100 Hz sinusoid, the interval 300 to 
600 ms has a 50 Hz sinusoid, the interval 600 to 800 ms has a 25 Hz sinusoid, and finally the 
interval 800 to 1000 ms has a 10 Hz sinusoid. 

 
Figure 1.8 

And the following is its FT: 



9 
 

 
Figure 1.9 

Do not worry about the little ripples at this time; they are 
due to sudden changes from one frequency component to 
another, which have no significance in this text. Note that the amplitudes of 
higher frequency components are higher than those of the lower 
frequency ones. This is due to fact that higher frequencies last 
longer (300 ms each) than the lower frequency components (200 
ms each). (The exact value of the amplitudes are not important).  

Other than those ripples, everything seems to be right. The FT has 
four peaks, corresponding to four frequencies with reasonable amplitudes... Right 

WRONG (!)  

Well, not exactly wrong, but not exactly right either... 
Here is why: 

For the first signal, plotted in Figure 1.5, consider the following question: 

At what times (or time intervals), do these frequency components occur? 

Answer: 
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At all times! Remember that in stationary signals, all frequency components that exist in the 
signal, exist throughout the entire duration of the signal. There is 10 Hz at all times, there is 50 
Hz at all times, and there is 100 Hz at all times. 

Now, consider the same question for the non-stationary signal in Figure 1.7 or in Figure 1.8.  

At what times these frequency components occur? 

For the signal in Figure 1.8, we know that in the first interval we have the highest frequency 
component, and in the last interval we have the lowest frequency component. For the signal in 

Figure 1.7, the frequency components change continuously. Therefore, for these signals 
the frequency components do not appear at all times!  

Now, compare the Figures 1.6 and 1.9. The similarity between these two spectrum should be 
apparent. Both of them show four spectral components at exactly the same frequencies, i.e., at 10, 

25, 50, and 100 Hz. Other than the ripples, and the difference in amplitude 
(which can always be normalized), the two spectrums are almost identical, 

although the corresponding time-domain signals are not even close to each other. Both of 
the signals involves the same frequency components, but the 
first one has these frequencies at all times, the second one has 
these frequencies at different intervals. So, how come the 
spectrums of two entirely different signals look very much alike? 

Recall that the FT gives the spectral content of the signal, but it 
gives no information regarding where in time those spectral 
components appear . Therefore, FT is not a suitable technique 
for non-stationary signal, with one exception:  

FT can be used for non-stationary signals, if we are only interested in what spectral 
components exist in the signal, but not interested where these occur. However, if this 
information is needed, i.e., if we want to know, what spectral component occur at what time 
(interval) , then Fourier transform is not the right transform to use. 

For practical purposes it is difficult to make the separation, since there are a lot of practical 

stationary signals, as well as non-stationary ones. Almost all biological signals, for 
example, are non-stationary. Some of the most famous ones are ECG 
(electrical activity of the heart , electrocardiograph), EEG (electrical 
activity of the brain, electroencephalograph), and EMG (electrical 
activity of the muscles, electromyogram). 
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Once again please note that, the FT gives what 
frequency components (spectral components) exist in 
the signal. Nothing more, nothing less. 

When the time localization of the spectral components are needed, a transform giving the 
TIME-FREQUENCY REPRESENTATION of the signal is needed. 

 

THE ULTIMATE SOLUTION:  

THE WAVELET TRANSFORM  

The Wavelet transform is a transform of this type. It provides the time-frequency representation. 
(There are other transforms which give this information too, such as short time Fourier transform, 
Wigner distributions, etc.) 

Often times a particular spectral component occurring at any instant can be of particular interest. 
In these cases it may be very beneficial to know the time intervals these particular spectral 

components occur. For example, in EEGs, the latency of an event-related 
potential is of particular interest (Event-related potential is the response 
of the brain to a specific stimulus like flash-light, the latency of this 
response is the amount of time elapsed between the onset of the stimulus 
and the response). 

Wavelet transform is capable of providing the time and frequency information simultaneously, 
hence giving a time-frequency representation of the signal. 

How wavelet transform works is completely a different fun story, and should be explained after 
short time Fourier Transform (STFT) . The WT was developed as an alternative to the STFT. 
The STFT will be explained in great detail in the second part of this tutorial. It suffices at this 

time to say that the WT was developed to overcome some resolution 
related problems of the STFT, as explained in Part II.  

To make a real long story short, we pass the time-domain signal from various 
highpass and low pass filters, which filters out either high frequency or 
low frequency portions of the signal. This procedure is repeated, every time some portion of the 
signal corresponding to some frequencies being removed from the signal. 
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Here is how this works: Suppose we have a signal which has frequencies up to 1000 Hz. In the 
first stage we split up the signal in to two parts by passing the signal from a highpass and a 
lowpass filter (filters should satisfy some certain conditions, so-called admissibility condition) 
which results in two different versions of the same signal: portion of the signal corresponding to 
0-500 Hz (low pass portion), and 500-1000 Hz (high pass portion).  

Then, we take either portion (usually low pass portion) or both, and do the same thing again. 
This operation is called decomposition .  

Assuming that we have taken the lowpass portion, we now have 3 sets of data, each 
corresponding to the same signal at frequencies 0-250 Hz, 250-500 Hz, 500-1000 Hz. 

Then we take the lowpass portion again and pass it through low and high pass filters; we now 
have 4 sets of signals corresponding to 0-125 Hz, 125-250 Hz,250-500 Hz, and 500-1000 Hz. 
We continue like this until we have decomposed the signal to a pre-defined certain level. Then 
we have a bunch of signals, which actually represent the same signal, but all corresponding to 
different frequency bands. We know which signal corresponds to which frequency band, and if 

we put all of them together and plot them on a 3-D graph, we will have time in 
one axis, frequency in the second and amplitude in the 
third axis. This will show us which frequencies exist at which time ( there is an issue, 

called "uncertainty principle", which states that, we cannot exactly 
know what frequency exists at what time instance , but we can 
only know what frequency bands exist at what time intervals , 
more about this in the subsequent parts of this tutorial).  

However, I still would like to explain it briefly: 

The uncertainty principle, originally found and formulated by Heisenberg, states that, the 
momentum and the position of a moving particle cannot be 
known simultaneously. This applies to our subject as follows: 

The frequency and time information of a signal at some certain point in the time-frequency plane 
cannot be known. In other words: We cannot know what spectral component exists at any 
given time instant. The best we can do is to investigate what spectral components exist at any 
given interval of time. This is a problem of resolution, and it is the main reason why researchers 

have switched to WT from STFT. STFT gives a fixed resolution at all times, 
whereas WT gives a variable resolution as follows: 
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Higher frequencies are better resolved in time, and lower 
frequencies are better resolved in frequency. This means that, a 
certain high frequency component can be located better in time 
(with less relative error) than a low frequency component. On the contrary, a low frequency 
component can be located better in frequency compared to high frequency component. 
Take a look at the following grid: 

 
    
 f ^ 
   |*******************************************         continuous  
   |*  *  *  *  *  *  *  *  *  *  *  *  *  *  *         wavelet transform 
   |*     *     *     *     *     *     *           
   |*           *           *           *           
   |*                       *  
    --------------------------------------------> time 
 
 
 

Interpret the above grid as follows: The top row shows that at 
higher frequencies we have more samples 
corresponding to smaller 
intervals of time. In other words, higher 
frequencies can be resolved 
better in time. The bottom row however, corresponds to low 

frequencies, and there are less number of points to characterize the 
signal, therefore, low frequencies are not resolved well in time. 
 
 
 
 ^frequency 
 |      
 | 
 | 
 | ******************************************************* 
 |        
 |     
 |         
 | *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *   discrete time 
 |                                                           wavelet 
transform 
 | *     *     *     *     *     *     *     *     *     *     
 |  
 | *           *           *           *           * 
 | *                       *                       * 
 |----------------------------------------------------------> time 
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In discrete time case, the time resolution of the signal works the same 
as above, but now, the frequency information has different resolutions 
at every stage too. Note that, lower frequencies are better resolved in 
frequency, where as higher frequencies are not. Note how the spacing 
between subsequent frequency components increase as frequency increases. 
 
Below , are some examples of continuous wavelet transform: 
Let's take a sinusoidal signal, which has two different frequency components 
at two different times: 
 
Note the low frequency portion first, and then the high frequency. 
 
 

 
 
 
 

Figure 1.10 
 
 
 
The continuous wavelet transform of the above signal: 
 
 



15 
 

 
 
 
 

Figure 1.11  
 
 
 

Note however, the frequency axis in these plots 
are labeled as scale . The concept of the scale will be made more 
clear in the subsequent sections, but it should be noted at this time that 

the scale is inverse of frequency. 

That is, high scales correspond to low frequencies, and 

low scales correspond to high frequencies. Consequently, the little 
peak in the plot corresponds to the high 
frequency components in the signal, and the 
large peak corresponds to low frequency 
components (which appear before the high frequency components in time) 
in the signal. 
 
 
You might be puzzled from the frequency resolution shown in the plot, 
since it shows good frequency resolution at high frequencies. Note 
however that, it is the good  scale resolution  that looks good 
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at high frequencies (low scales), and good scale resolution 
means poor frequency resolution and vice versa. More about 
this in Part II and III. 

       
 

 

THE WAVELET TUTORIAL  
PART 2 

 

 

FUNDAMENTALS:  
 

THE FOURIER TRANSFORM  
AND  

THE SHORT TERM FOURIER TRANSFORM  
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FUNDAMENTALS  

 

Let's have a short review of the first part.  
We basically need Wavelet Transform (WT) to analyze non-stationary signals, i.e., whose 
frequency response varies in time. I have written that Fourier Transform (FT) is not suitable for 
non-stationary signals, and I have shown examples of it to make it more clear. For a quick recall, 
let me give the following example.  

Suppose we have two different signals. Also suppose that they both have the same spectral 
components, with one major difference. Say one of the signals have four frequency components 
at all times, and the other have the same four frequency components at different times. The FT of 
both of the signals would be the same, as shown in the example in part 1 of this tutorial. 
Although the two signals are completely different, their (magnitude of) FT are the SAME !. 

This, obviously tells us that we can not use the FT for non-stationary 
signals.  

But why does this happen? In other words, how come both of the signals have the same FT? 
HOW DOES FOURIER TRANSFORM WORK ANYWAY?  

An	Important	Milestone	in	Signal	Processing:		

 

THE FOURIER TRANSFORM  

 

I will not go into the details of FT for two reasons:  
1. It is too wide of a subject to discuss in this tutorial.  
2. It is not our main concern anyway.  
However, I would like to mention a couple important points again for two reasons: 
1. It is a necessary background to understand how WT works.  
2. It has been by far the most important signal processing tool for many (and I mean many many) 
years.  

In 19th century (1822*, to be exact, but you do not need to know the exact time. Just trust me 

that it is far before than you can remember), the French mathematician J. Fourier, showed 
that any periodic function can be expressed as an infinite sum of 
periodic complex exponential functions. Many years after he had discovered this 
remarkable property of (periodic) functions, his ideas were generalized to first non-periodic 
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functions, and then periodic or non-periodic discrete time signals. It is after this generalization 
that it became a very suitable tool for computer calculations. In 1965, a new algorithm called fast 
Fourier Transform (FFT) was developed and FT became even more popular.  

(* I thank Dr. Pedregal for the valuable information he has provided)  

Now let us take a look at how Fourier transform works:  
FT decomposes a signal to complex exponential functions of different frequencies. The way it 
does this, is defined by the following two equations:  

 
Figure 2.1 

In the above equation, t stands for time, f stands for frequency, and x denotes the signal at hand. 
Note that x denotes the signal in time domain and the X denotes the signal in frequency domain. 
This convention is used to distinguish the two representations of the signal. Equation (1) is called 
the Fourier transform of x(t), and equation (2) is called the inverse Fourier transform of X(f), 
which is x(t).  

For those of you who have been using the Fourier transform are already familiar with this. 
Unfortunately many people use these equations without knowing the underlying principle.  

Please take a closer look at equation (1):  

The signal x(t), is multiplied with an exponential term, at some certain frequency "f" , and 

then integrated over ALL TIMES !!! (The key words here are "all times" , as 
will explained below).  

Note that the exponential term in Eqn. (1) can also be written as:  

Cos(2.pi.f.t)+j.Sin(2.pi.f.t).......(3)  

The above expression has a real part of cosine of frequency f, and an imaginary part of sine of 
frequency f. So what we are actually doing is, multiplying the original signal with a complex 
expression which has sines and cosines of frequency f. Then we integrate this product. In other 
words, we add all the points in this product. If the result of this integration (which is nothing but 
some sort of infinite summation) is a large value, then we say that : the signal x(t), has a 
dominant spectral component at frequency "f". This means that, a major portion of this signal 
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is composed of frequency f. If the integration result is a small value, than this means that the 
signal does not have a major frequency component of f in it. If this integration result is zero, then 
the signal does not contain the frequency "f" at all.  

It is of particular interest here to see how this integration works: The signal is multiplied with the 
sinusoidal term of frequency "f". If the signal has a high amplitude component of frequency "f", 
then that component and the sinusoidal term will coincide, and the product of them will give a 
(relatively) large value. This shows that, the signal "x", has a major frequency component of "f".  

However, if the signal does not have a frequency component of "f", the product will yield zero, 
which shows that, the signal does not have a frequency component of "f". If the frequency "f", is 
not a major component of the signal "x(t)", then the product will give a (relatively) small value. 
This shows that, the frequency component "f" in the signal "x", has a small amplitude, in other 
words, it is not a major component of "x".  

Now, note that the integration in the transformation equation (Eqn. 1) is over time. The left hand 

side of (1), however, is a function of frequency. Therefore, the integral in (1), is 
calculated for every value of f.  

IMPORTANT(!) The information provided by the integral, 
corresponds to all time instances, since the integration is 
from minus infinity to plus infinity over time. It follows that no 
matter where in time the component with frequency "f" appears, it will affect the result of the 
integration equally as well. In other words, whether the frequency component "f" appears at time 
t1 or t2 , it will have the same effect on the integration. This is why Fourier transform is not 
suitable if the signal has time varying frequency, i.e., the signal is non-stationary. If only the 
signal has the frequency component "f" at all times (for all "t" values), then the result obtained 
by the Fourier transform makes sense.  

Note that the Fourier transform tells whether a certain frequency component exists or not. 

This information is independent of where in time this component appears. It is therefore 
very important to know whether a signal is stationary or not, prior to 
processing it with the FT.  

The example given in part one should now be clear. I would like to give it here again:  

Look at the following figure, which shows the signal:  

x(t)=cos(2*pi*5*t)+cos(2*pi*10*t)+cos(2*pi*20*t)+cos(2*pi*50*t)  

that is , it has four frequency components of 5, 10, 20, and 50 Hz., all occurring at all times.  
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Figure 2.2  

And here is the FT of it. The frequency axis has been cut here, but theoretically it extends to 

infinity (for continuous Fourier transform (CFT). Actually, here we calculate the discrete 
Fourier transform (DFT), in which case the frequency axis goes up to (at 
least) twice the sampling frequency of the signal, and the transformed 
signal is symmetrical. However, this is not that important at this time.)  

 
Figure 2.3  
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Note the four peaks in the above figure, which correspond to four different frequencies.  

Now, look at the following figure: Here the signal is again the cosine signal, and it has the same 
four frequencies. However, these components occur at different times.  

 
Figure 2.4  

And here is the Fourier transform of this signal:  

 
Figure 2.5  

What you are supposed to see in the above figure, is it is (almost) same with the previous FT 
figure. Please look carefully and note the major four peaks corresponding to 5, 10, 20, and 50 Hz. 
I could have made this figure look very similar to the previous one, but I did not do that on 

purpose. The reason of the noise like thing in between peaks show that, 
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those frequencies also exist in the signal. But the reason they have a 
small amplitude , is because, they are not major spectral components of the 

given signal, and the reason we see those, is because of the sudden 
change between the frequencies. Especially note how time domain signal 

changes at around time 250 (ms) (With some suitable filtering techniques, the 
noise like part of the frequency domain signal can be cleaned, but this has 
not nothing to do with our subject now. If you need further information please send me an e-
mail).  

By this time you should have understood the basic concepts of Fourier transform, when we can 
use it and we can not. As you can see from the above example, FT cannot distinguish the two 
signals very well. To FT, both signals are the same, because they constitute of the same 

frequency components. Therefore, FT is not a suitable tool for analyzing 
non-stationary signals, i.e., signals with time varying spectra.  

Please keep this very important property in mind. Unfortunately, many people using the FT do 
not think of this. They assume that the signal they have is stationary where it is not in many 
practical cases. Of course if you are not interested in at what times these frequency 
components occur, but only interested in what frequency components exist, then FT can be a 
suitable tool to use.  

So, now that we know that we can not use (well, we can, but we shouldn't) FT for non-stationary 
signals, what are we going to do?  

Remember that, I have mentioned that wavelet transform is only (about) a decade old. You may 
wonder if researchers noticed this non-stationarity business only ten years ago or not.  

Obviously not.  

Apparently they must have done something about it before they figured out the wavelet 
transform....?  
 
Well..., they sure did... 
 
They have come up with ... 
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THE SHORT TERM FOURIER TRANSFORM  
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So, how are we going to insert this time business into our frequency plots? Let's look at the 
problem in hand little more closer.  

What was wrong with FT? It did not work for non-stationary signals. Let's think this: Can we 

assume that , some portion of a non-stationary signal is stationary?  

The answer is yes.  
Just look at the third figure above. The signal is stationary every 250 time unit intervals.  

You may ask the following question?  

What if the part that we can consider to be stationary is very small?  

Well, if it is too small, it is too small. There is nothing we can do about that, and actually, there is 
nothing wrong with that either. We have to play this game with the physicists' rules.  

If this region where the signal can be assumed to be stationary is too small, then we look at that 
signal from narrow windows, narrow enough that the portion of the signal seen from these 
windows are indeed stationary.  

This approach of researchers ended up with a revised version of the Fourier transform, so-called : 

The Short Time Fourier Transform (STFT) .  

There is only a minor difference between STFT and FT. In STFT, the signal is divided into small 
enough segments, where these segments (portions) of the signal can be assumed to be stationary. 
For this purpose, a window function "w" is chosen. The width of this window must be equal to 
the segment of the signal where its stationarity is valid.  

This window function is first located to the very beginning of the signal. That is, the window 
function is located at t=0. Let's suppose that the width of the window is "T" s. At this time 
instant (t=0), the window function will overlap with the first T/2 seconds (I will assume that all 
time units are in seconds). The window function and the signal are then multiplied. By doing this, 
only the first T/2 seconds of the signal is being chosen, with the appropriate weighting of the 
window (if the window is a rectangle, with amplitude "1", then the product will be equal to the 
signal). Then this product is assumed to be just another signal, whose FT is to be taken. In other 
words, FT of this product is taken, just as taking the FT of any signal.  

The result of this transformation is the FT of the first T/2 seconds of the signal. If this portion of 
the signal is stationary, as it is assumed, then there will be no problem and the obtained result 
will be a true frequency representation of the first T/2 seconds of the signal.  

The next step, would be shifting this window (for some t1 seconds) to a new location, 
multiplying with the signal, and taking the FT of the product. This procedure is followed, until 
the end of the signal is reached by shifting the window with "t1" seconds intervals.  
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The following definition of the STFT summarizes all the above explanations in one line:  

 

Figure 2.6  

Please look at the above equation carefully. x(t) is the signal itself, w(t) is the window 
function, and * is the complex conjugate. As you can see from the 
equation, the STFT of the signal is nothing but the FT of the signal 
multiplied by a window function.  

For every t' and f a new STFT coefficient is computed (Correction: The "t" in the parenthesis of 
STFT should be "t'". I will correct this soon. I have just noticed that I have mistyped it).  

The following figure may help you to understand this a little better:  

 

Figure 2.7  

The Gaussian-like functions in color are the windowing functions. The red one shows the 
window located at t=t1', the blue shows t=t2', and the green one shows the window located at 

Tao
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t=t3'. These will correspond to three different FTs at three different times. Therefore, we will 
obtain a true time-frequency representation (TFR) of the signal.  

Probably the best way of understanding this would be looking at an example. First of all, since 
our transform is a function of both time and frequency (unlike FT, which is a function of 

frequency only), the transform would be two dimensional (three, if 
you count the amplitude too). Let's take a non-stationary signal, such as the 
following one:  

 
Figure 2.8 

In this signal, there are four frequency components at different times. The interval 0 to 250 ms is 
a simple sinusoid of 300 Hz, and the other 250 ms intervals are sinusoids of 200 Hz, 100 Hz, and 
50 Hz, respectively. Apparently, this is a non-stationary signal. Now, let's look at its STFT:  
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Figure 2.9  

As expected, this is two dimensional plot (3 dimensional, if you count the amplitude too). The 
"x" and "y" axes are time and frequency, respectively. Please, ignore the numbers on the 
axes, since they are normalized in some respect, which is not of any interest to us at this 
time. Just examine the shape of the time-frequency representation.  

First of all, note that the graph is symmetric with respect to midline of the frequency axis. 

Remember that, although it was not shown, FT of a real signal is always symmetric, 
since STFT is nothing but a windowed version of the FT, it should come 
as no surprise that STFT is also symmetric in frequency. The symmetric part 
is said to be associated with negative frequencies, an odd concept which is difficult to 
comprehend, fortunately, it is not important; it suffices to know that STFT and FT are symmetric.  

What is important, are the four peaks; note that there are four peaks corresponding to four 
different frequency components. Also note that, unlike FT, these four peaks are located at 
different time intervals along the time axis . Remember that the original signal had four 
spectral components located at different times.  

Now we have a true time-frequency representation of the signal. We not only know what 
frequency components are present in the signal, but we also know where they are located in time.  

It is grrrreeeaaatttttt!!!! Right?  
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Well, not really!  

You may wonder, since STFT gives the TFR of the signal, why do we need the wavelet 
transform. The implicit problem of the STFT is not obvious in the above example. Of course, an 
example that would work nicely was chosen on purpose to demonstrate the concept.  

The problem with STFT is the fact whose roots go back to what is known as the Heisenberg 
Uncertainty Principle . This principle originally applied to the momentum and location of 
moving particles, can be applied to time-frequency information of a signal. Simply, this principle 
states that one cannot know the exact time-frequency representation of a signal, i.e., one cannot 
know what spectral components exist at what instances of times. What one can know are the 
time intervals in which certain band of frequencies exist, which is a resolution problem.  

The problem with the STFT has something to do with the width of the window function that is 
used. To be technically correct, this width of the window function is known as the support of 
the window. If the window function is narrow, than it is known as compactly supported . This 
terminology is more often used in the wavelet world, as we will see later.  

Here is what happens:  

Recall that in the FT there is no resolution problem in the frequency domain, i.e., we know 
exactly what frequencies exist; similarly we there is no time resolution problem in the time 
domain, since we know the value of the signal at every instant of time. Conversely, the time 
resolution in the FT, and the frequency resolution in the time domain are zero, since we have no 
information about them. What gives the perfect frequency resolution in the FT is the fact that the 
window used in the FT is its kernel, the exp{jwt} function, which lasts at all times from minus 
infinity to plus infinity. Now, in STFT, our window is of finite length, thus it covers only a 

portion of the signal, which causes the frequency resolution to get poorer. What I mean by 
getting poorer is that, we no longer know the exact frequency 
components that exist in the signal, but we only know a band of 
frequencies that exist:  

In FT, the kernel function, allows us to obtain perfect frequency resolution, because the kernel 
itself is a window of infinite length. In STFT is window is of finite length, and we no longer 
have perfect frequency resolution. You may ask, why don't we make the length of the window in 
the STFT infinite, just like as it is in the FT, to get perfect frequency resolution? Well, than you 
loose all the time information, you basically end up with the FT instead of STFT. To make a long 
story real short, we are faced with the following dilemma:  

If we use a window of infinite length, we get the FT, which gives perfect frequency resolution, 
but no time information. Furthermore, in order to obtain the stationarity, we have to have a short 
enough window, in which the signal is stationary. The narrower we make the window, the better 
the time resolution, and better the assumption of stationarity, but poorer the frequency resolution:  
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Narrow window ===>good time resolution, poor 
frequency resolution.  
Wide window ===>good frequency resolution, poor time 
resolution.  

In order to see these effects, let's look at a couple examples: I will show four windows of 
different length, and we will use these to compute the STFT, and see what happens:  

The window function we use is simply a Gaussian function in the form:  

w(t)=exp(‐a*(t^2)/2);  

where a determines the length of the window, and t is the time. The following 
figure shows four window functions of varying regions of support, determined by the value of a . 
Please disregard the numeric values of a since the time interval where this function is computed 
also determines the function. Just note the length of each window. The above example given was 
computed with the second value, a=0.001 . I will now show the STFT of the same signal given 
above computed with the other windows.  

 
Figure 2.10 
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First let's look at the first most narrow window. We expect the STFT to have a 
very good time resolution, but relatively poor frequency resolution:  

 
Figure 2.11 

The above figure shows this STFT. The figure is shown from a top bird-eye view with an angle 
for better interpretation. Note that the four peaks are well separated from each other in time. Also 

note that, in frequency domain, every peak covers a range of 
frequencies, instead of a single frequency value. Now let's 
make the time window wider, and look at the third window (the second 
one was already shown in the first example).  

 
Figure 2.12 
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Note that the peaks are not well separated from each other in time, unlike the previous case, 

however, in frequency domain the resolution is much better. Now let's 

further increase the time width of the window, and see what happens:  

 
Figure 2.13 

Well, this should be of no surprise to anyone now, since we would expect a terrible (and I mean 
absolutely terrible) time resolution.  

These examples should have illustrated the implicit problem of resolution of the STFT. Anyone 
who would like to use STFT is faced with this problem of resolution. What kind of a window to 

use? Narrow windows give good time resolution, but poor 
frequency resolution. Wide windows give good frequency 
resolution, but poor time resolution; furthermore, wide 
windows may violate the condition of stationarity. The 
problem, of course, is a result of choosing a window 
function, once and for all, and use that window in the 
entire analysis. The answer, of course, is application dependent: If the frequency 
components are well separated from each other in the original signal, than we may sacrifice some 
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frequency resolution and go for good time resolution, since the spectral components are already 
well separated from each other. However, if this is not the case, then a good window function, 
could be more difficult than finding a good stock to invest in.  

By now, you should have realized how wavelet transform comes into play. The Wavelet 

transform (WT) solves the dilemma of resolution to a certain 
extent, as we will see in the next part.  

This completes Part II of this tutorial. The continuous wavelet transform is the subject of the Part 
III of this tutorial. If you did not have much trouble in coming this far, and what have been 
written above make sense to you, you are now ready to take the ultimate challenge in 
understanding the basic concepts of the wavelet theory.  
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MULTIRESOLUTION ANALYSIS  

Although the time and frequency resolution problems are results of a physical phenomenon (the 
Heisenberg uncertainty principle) and exist regardless of the transform used, it is possible to 
analyze any signal by using an alternative approach called the multiresolution analysis (MRA) . 
MRA, as implied by its name, analyzes the signal at different frequencies with different 

resolutions. Every spectral component is not resolved equally as was the 
case in the STFT.  

MRA is designed to give good time resolution and poor 
frequency resolution at high frequencies and good frequency 
resolution and poor time resolution at low frequencies. This 
approach makes sense especially when the signal at hand has high 
frequency components for short durations and low frequency 
components for long durations. Fortunately, the signals that are 
encountered in practical applications are often of this type. For example, the 
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following shows a signal of this type. It has a relatively low frequency 
component throughout the entire signal and relatively high 
frequency components for a short duration somewhere around 
the middle.  

 

 

 

THE CONTINUOUS WAVELET TRANSFORM 

 

The continuous wavelet transform was developed as an alternative approach to the short time 
Fourier transform to overcome the resolution problem. The wavelet analysis is done in a similar 
way to the STFT analysis, in the sense that the signal is multiplied with a function, {\it the 
wavelet}, similar to the window function in the STFT, and the transform is computed separately 
for different segments of the time-domain signal. However, there are two main differences 
between the STFT and the CWT:  

1. The Fourier transforms of the windowed signals are not taken, and therefore single peak will 
be seen corresponding to a sinusoid, i.e., negative frequencies are not computed.  
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2. The width of the window is changed as the transform is computed for 
every single spectral component, which is probably the most significant characteristic 
of the wavelet transform.  

The continuous wavelet transform is defined as follows 

 

Equation 3.1 

As seen in the above equation , the transformed signal is a function of two 
variables, tau and s , the translation and scale parameters, 
respectively. psi(t) is the transforming function, and it is called the mother wavelet . The 
term mother wavelet gets its name due to two important properties of the wavelet analysis as 
explained below:  

The term wavelet means a small wave . The smallness refers to the 
condition that this (window) function is of finite length ( compactly supported). The wave 

refers to the condition that this function is oscillatory . The term mother implies 
that the functions with different region of support that are used in the transformation process 
are derived from one main function, or the mother wavelet. In other words, the mother wavelet is 
a prototype for generating the other window functions.  

The term translation is used in the same sense as it was used in the 
STFT; it is related to the location of the window, as the window is 
shifted through the signal. This term, obviously, corresponds to time information in the 

transform domain. However, we do not have a frequency parameter, as we 
had before for the STFT. Instead, we have scale parameter which is 
defined as 1/frequency. The term frequency is reserved for the STFT. Scale is described 
in more detail in the next section.  

 

The	Scale		
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The parameter scale in the wavelet analysis is similar to the scale used in maps. As in the 
case of maps, high scales correspond to a non-detailed global 
view (of the signal), and low scales correspond to a detailed 
view. Similarly, in terms of frequency, low frequencies (high scales) 
correspond to a global information of a signal (that 
usually spans the entire signal), whereas high frequencies 
(low scales) correspond to a detailed information of a 
hidden pattern in the signal (that usually lasts a relatively 
short time). Cosine signals corresponding to various scales are given as examples in the 
following figure .  

Figure 3.2 
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Fortunately in practical applications, low scales (high frequencies) do not last for the entire 
duration of the signal, unlike those shown in the figure, but they usually appear from time to time 
as short bursts, or spikes. High scales (low frequencies) usually last for the entire duration of the 
signal.  

Scaling, as a mathematical operation, either dilates or compresses a signal. Larger scales 
correspond to dilated (or stretched out) signals and small scales 
correspond to compressed signals. All of the signals given in the figure are derived 

from the same cosine signal, i.e., they are dilated or compressed 
versions of the same function. In the above figure, s=0.05 is the smallest 
scale, and s=1 is the largest scale.  

In terms of mathematical functions, if f(t) is a given function f(st) corresponds to a contracted 
(compressed) version of f(t) if s > 1 and to an expanded (dilated) version of f(t) if s < 1 .  

However, in the definition of the wavelet transform, the scaling term is used in the denominator, 
and therefore, the opposite of the above statements holds, i.e., scales s > 1 dilates the signals 
whereas scales s < 1 , compresses the signal. This interpretation of scale will be used throughout 
this text.  

 

COMPUTATION OF THE CWT  

 

 

Interpretation of the above equation will be explained in this section. Let x(t) is the signal to be 
analyzed. The mother wavelet is chosen to serve as a prototype for all windows in the process. 

All the windows that are used are the dilated (or compressed) 
and shifted versions of the mother wavelet. There are a number of 

functions that are used for this purpose. The Morlet wavelet and the Mexican hat 
function are two candidates, and they are used for the wavelet analysis of the examples 
which are presented later in this chapter.  

Once the mother wavelet is chosen the computation starts with s=1 and the 
continuous wavelet transform is computed for all values of s , smaller and larger than ``1''. 
However, depending on the signal, a complete transform is usually not necessary. For all 
practical purposes, the signals are bandlimited, and therefore, computation of the transform for a 
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limited interval of scales is usually adequate. In this study, some finite interval of values for s 
were used, as will be described later in this chapter.  

For convenience, the procedure will be started from scale s=1 and will continue for 
the increasing values of s , i.e., the analysis will start from high 
frequencies and proceed towards low frequencies. This first value of s will 
correspond to the most compressed wavelet. As the value of s is increased, the wavelet will dilate.  

The wavelet is placed at the beginning of the signal at the point which corresponds to time=0. 
The wavelet function at scale ``1'' is multiplied by the signal and then integrated over all times. 
The result of the integration is then multiplied by the constant number 1/sqrt{s} . This 
multiplication is for energy normalization purposes so that the transformed signal will have the 
same energy at every scale. The final result is the value of the transformation, i.e., the value of 
the continuous wavelet transform at time zero and scale s=1 . In other words, it is the value that 
corresponds to the point tau =0 , s=1 in the time-scale plane. 

The wavelet at scale s=1 is then shifted towards the right by tau amount to the location t=tau , 
and the above equation is computed to get the transform value at t=tau , s=1 in the time-
frequency plane.  

This procedure is repeated until the wavelet reaches the end of the signal. One row of points on 
the time-scale plane for the scale s=1 is now completed. 

Then, s is increased by a small value. Note that, this is a continuous transform, and therefore, 
both tau and s must be incremented continuously . However, if this transform needs to be 
computed by a computer, then both parameters are increased by a sufficiently small step size. 
This corresponds to sampling the time-scale plane.  

The above procedure is repeated for every value of s. Every computation for a given value of s 
fills the corresponding single row of the time-scale plane. When the process is completed for all 
desired values of s, the CWT of the signal has been calculated.  

The figures below illustrate the entire process step by step.  
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Figure 3.3  

In Figure 3.3, the signal and the wavelet function are shown for four different values of tau . The 
signal is a truncated version of the signal shown in Figure 3.1. The scale value is 1 , 
corresponding to the lowest scale, or highest frequency. Note how compact it is (the blue 
window). It should be as narrow as the highest frequency component that exists in the signal. 

Four distinct locations of the wavelet function are shown in the 
figure at to=2 , to=40, to=90, and to=140 . At every location, it is multiplied by the signal. 
Obviously, the product is nonzero only where the signal falls in the region of support of the 
wavelet, and it is zero elsewhere. By shifting the wavelet in time, the signal is localized in time, 
and by changing the value of s , the signal is localized in scale (frequency). 

If the signal has a spectral component that corresponds to the 
current value of s (which is 1 in this case), the product of the 
wavelet with the signal at the location where this spectral 
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component exists gives a relatively large value. If the spectral 
component that corresponds to the current value of s is not present in the signal, the product 

value will be relatively small, or zero. The signal in Figure 3.3 has spectral 
components comparable to the window's width at s=1 around t=100 ms. 

The continuous wavelet transform of the signal in Figure 3.3 will yield large values for low 
scales around time 100 ms, and small values elsewhere. For high scales, on the other hand, the 
continuous wavelet transform will give large values for almost the entire duration of the signal, 
since low frequencies exist at all times. 

Figure 3.4  
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Figure 3.5  

 

Figures 3.4 and 3.5 illustrate the same process for the scales s=5 and s=20, respectively. Note 
how the window width changes with increasing scale (decreasing frequency). As 
the window width increases, the transform starts picking up the lower frequency 
components. 

As a result, for every scale and for every time (interval), one point of the time-scale plane is 

computed. The computations at one scale construct the rows of the time-scale plane, and the 

computations at different scales construct the columns of the time-scale plane. 

Now, let's take a look at an example, and see how the wavelet transform really looks like. 
Consider the non-stationary signal in Figure 3.6. This is similar to the example given for the 
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STFT, except at different frequencies. As stated on the figure, the signal is composed of four 
frequency components at 30 Hz, 20 Hz, 10 Hz and 5 Hz.  

 
Figure 3.6  

Figure 3.7 is the continuous wavelet transform (CWT) of this signal. Note that the axes 
are translation and scale, not time and frequency. However, 
translation is strictly related to time, since it indicates where the 
mother wavelet is located. The translation of the mother wavelet can be thought of 
as the time elapsed since t=0 . The scale, however, has a whole different story. Remember that 

the scale parameter s in equation 3.1 is actually inverse of frequency. In other words, 
whatever we said about the properties of the wavelet transform 
regarding the frequency resolution, inverse of it will appear on 
the figures showing the WT of the time-domain signal.  

 
Figure 3.7  
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Note that in Figure 3.7 that smaller scales correspond to higher frequencies, i.e., frequency 

decreases as scale increases, therefore, that portion of the graph with 

scales around zero, actually correspond to highest frequencies in the 

analysis, and that with high scales correspond to lowest frequencies. Remember that the signal had 

30 Hz (highest frequency) components first, and this appears at the lowest scale at a translations of 0 to 

30. Then comes the 20 Hz component, second highest frequency, and so on. The 5 Hz component 

appears at the end of the translation axis (as expected), and at higher scales (lower frequencies) again as 

expected.  

 

Figure 3.8  

Now, recall these resolution properties: Unlike the STFT which has a constant resolution at all times and 

frequencies, the WT has a good time and poor frequency resolution at high 

frequencies, and good frequency and poor time resolution at low 

Time 
resolut
ion is 
Good 
in high 
freque
ncies 

Time 
resolut
ion is  
NOT 
Good 
in low 
freque
ncies 
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frequencies. Figure 3.8 shows the same WT in Figure 3.7 from another angle to better illustrate the 

resolution properties: In Figure 3.8, lower scales (higher frequencies) have 

better scale resolution (narrower in scale, which means that it 

is less ambiguous what the exact value of the scale) which 

correspond to poorer frequency resolution . Similarly, higher scales have 

scale frequency resolution (wider support in scale, which means it is more ambitious what the exact 

value of the scale is) , which correspond to better frequency resolution of lower frequencies.  

The axes in Figure 3.7 and 3.8 are normalized and should be evaluated accordingly. Roughly 

speaking the 100 points in the translation axis correspond to 1000 ms, and 
the 150 points on the scale axis correspond to a frequency band of 40 Hz 

(the numbers on the translation and scale axis do not 
correspond to seconds and Hz, respectively , they are just the 
number of samples in the computation).  

 

TIME	AND	FREQUENCY	RESOLUTIONS		

 

In this section we will take a closer look at the resolution properties of the wavelet transform. 
Remember that the resolution problem was the main reason why we switched from STFT to WT.  

The illustration in Figure 3.9 is commonly used to explain how time and frequency resolutions 
should be interpreted. Every box in Figure 3.9 corresponds to a value of the wavelet transform in 
the time-frequency plane. Note that boxes have a certain non-zero area, which implies that the 
value of a particular point in the time-frequency plane cannot be known. All the points in the 
time-frequency plane that falls into a box is represented by one value of the WT.  
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Figure 3.9  

 

Let's take a closer look at Figure 3.9: First thing to notice is that although the widths and heights of the 

boxes change, the area is constant. That is each box represents an equal portion of the time‐frequency 

plane, but giving different proportions to time and frequency. Note that at low 

frequencies, the height of the boxes are shorter (which 

corresponds to better frequency resolutions, since there is less 

ambiguity regarding the value of the exact frequency), but their 

widths are longer (which correspond to poor time resolution, 

since there is more ambiguity regarding the value of the exact 
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time). At higher frequencies the width of the boxes decreases, i.e., the time resolution gets better, 

and the heights of the boxes increase, i.e., the frequency resolution gets poorer.  

Before concluding this section, it is worthwhile to mention how the partition looks like in the 
case of STFT. Recall that in STFT the time and frequency resolutions are determined by the 
width of the analysis window, which is selected once for the entire analysis, i.e., both time and 
frequency resolutions are constant. Therefore the time-frequency plane consists of squares in the 
STFT case.  

Regardless of the dimensions of the boxes, the areas of all boxes, both in STFT and WT, are the 
same and determined by Heisenberg's inequality . As a summary, the area of a box is fixed for 
each window function (STFT) or mother wavelet (CWT), whereas different windows or mother 

wavelets can result in different areas. However, all areas are lower 
bounded by 1/4 \pi . That is, we cannot reduce the areas of the 
boxes as much as we want due to the Heisenberg's uncertainty 
principle. On the other hand, for a given mother wavelet the 
dimensions of the boxes can be changed, while keeping the area 
the same. This is exactly what wavelet transform does. 

 

THE WAVELET THEORY: A MATHEMATICAL APPROACH  

 

This section describes the main idea of wavelet analysis theory, which can also be considered to 
be the underlying concept of most of the signal analysis techniques. The FT defined by Fourier 
use basis functions to analyze and reconstruct a function. Every vector in a vector space can 

be written as a linear combination of the basis vectors in that vector space , i.e., by 
multiplying the vectors by some constant numbers (coefficients), and then by taking the 
summation of the products. The analysis of the signal involves the estimation of these constant 
numbers (transform coefficients, or Fourier coefficients, wavelet coefficients, etc). 
The synthesis, or the reconstruction, corresponds to computing the linear 
combination equation.  

All the definitions and theorems related to this subject can be found in Keiser's book, A Friendly 
Guide to Wavelets but an introductory level knowledge of how basis functions work is 
necessary to understand the underlying principles of the wavelet theory. Therefore, this 
information will be presented in this section. 
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Basis	Vectors		

 

Note: Most of the equations include letters of the Greek alphabet. These letters are written out 
explicitly in the text with their names, such as tau, psi, phi etc. For capital letters, the first letter 
of the name has been capitalized, such as, Tau, Psi, Phi etc. Also, subscripts are shown by the 

underscore character _ , and superscripts are shown by the ^ character. Also note that all 
letters or letter names written in bold type face represent vectors, 
Some important points are also written in bold face, but the meaning should be clear from the 
context.  

A basis of a vector space V is a set of linearly independent vectors, such that any vector v in V 
can be written as a linear combination of these basis vectors. There may be more than one basis 
for a vector space. However, all of them have the same number of vectors, and this number is 
known as the dimension of the vector space. For example in two-dimensional space, the basis 
will have two vectors. 

 
Equation 3.2 

Equation 3.2 shows how any vector v can be written as a linear combination of the basis vectors 
b_k and the corresponding coefficients nu^k . 

This concept, given in terms of vectors, can easily be generalized to functions, by replacing the 
basis vectors b_k with basis functions phi_k(t), and the vector v with a function f(t). Equation 
3.2 then becomes  

 
Equation 3.2a 

The complex exponential (sines and cosines) functions are the basis 
functions for the FT. Furthermore, they are orthogonal functions, which provide some 
desirable properties for reconstruction. 

Let f(t) and g(t) be two functions in L^2 [a,b]. ( L^2 [a,b] denotes the set of square integrable 
functions in the interval [a,b]). The inner product of two functions is defined by Equation 3.3:  
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Equation 3.3 

 

According to the above definition of the inner product, the CWT can be thought of as the inner 
product of the test signal with the basis functions psi_(tau ,s)(t): 

 
Equation 3.4 

 

where,  

 
Equation 3.5 

 

This definition of the CWT shows that the wavelet analysis is a measure of similarity between 
the basis functions (wavelets) and the signal itself. Here the similarity is in the sense of similar 
frequency content. The calculated CWT coefficients refer to the closeness of the signal to the 
wavelet at the current scale .  

This further clarifies the previous discussion on the correlation of the signal with the wavelet at a 
certain scale. If the signal has a major component of the frequency corresponding to the current 
scale, then the wavelet (the basis function) at the current scale will be similar or close to the 
signal at the particular location where this frequency component occurs. Therefore, the CWT 
coefficient computed at this point in the time-scale plane will be a relatively large number. 

 

Inner	Products,	Orthogonality,	and	Orthonormality		

 

Two vectors v , w are said to be orthogonal if their inner product equals zero: 
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Equation 3.6 

 

Similarly, two functions $f$ and $g$ are said to be orthogonal to each other if their inner product 
is zero:  

 
Equation 3.7 

 

A set of vectors {v_1, v_2, ....,v_n} is said to be orthonormal , if 
they are pairwise orthogonal to each other, and all have length 
``1''. This can be expressed as: 

 
Equation 3.8 

 

Similarly, a set of functions {phi_k(t)}, k=1,2,3,..., is said to be orthonormal if  

 
Equation 3.9 

 

and  

 
Equation 3.10 
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or equivalently  

 
Equation 3.11 

 

where, delta_{kl} is the Kronecker delta function, defined as:  

 
Equation 3.12 

 

As stated above, there may be more than one set of basis functions (or vectors). Among them, the 
orthonormal basis functions (or vectors) are of particular importance because of the nice 
properties they provide in finding these analysis coefficients. The orthonormal bases allow 
computation of these coefficients in a very simple and straightforward way using the 
orthonormality property. 

For orthonormal bases, the coefficients, mu_k , can be calculated as  

 
Equation 3.13 

 

and the function f(t) can then be reconstructed by Equation 3.2_a by substituting the mu_k 
coefficients. This yields  
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Equation 3.14 

 

Orthonormal bases may not be available for every type of 
application where a generalized version, biorthogonal bases can 
be used. The term ``biorthogonal'' refers to two different bases 
which are orthogonal to each other, but each do not form an 
orthogonal set. 

In some applications, however, biorthogonal bases also may not 
be available in which case frames can be used. Frames constitute an 
important part of wavelet theory, and interested readers are referred to Kaiser's book mentioned 
earlier. 

Following the same order as in chapter 2 for the STFT, some examples of continuous wavelet 
transform are presented next. The figures given in the examples were generated by a program 
written to compute the CWT.  

Before we close this section, I would like to include two mother wavelets 
commonly used in wavelet analysis. The Mexican Hat wavelet 
is defined as the second derivative of the Gaussian function:  

 
Equation 3.15  

 

which is  
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Equation 3.16  

 

The Morlet wavelet is defined as 

 
Equation 3.16a  

 

where a is a modulation parameter, and sigma is the scaling parameter that affects the width of 
the window.  

 

EXAMPLES  

 

All of the examples that are given below correspond to real-life non-stationary signals. These 
signals are drawn from a database signals that includes event related potentials of normal 
people, and patients with Alzheimer's disease. Since these are not test signals like simple 
sinusoids, it is not as easy to interpret them. They are shown here only to give an idea of how 
real-life CWTs look like.  

The following signal shown in Figure 3.11 belongs to a normal person.  
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Figure 3.11  

and the following is its CWT. The numbers on the axes are of no importance to 
us. those numbers simply show that the CWT was computed at 350 translation and 60 
scale locations on the translation-scale plane. The important point to note here is 

the fact that the computation is not a true continuous WT, as it is 
apparent from the computation at finite number of locations. 
This is only a discretized version of the CWT, which is explained later on 

this page. Note, however, that this is NOT discrete wavelet transform 
(DWT) which is the topic of Part IV of this tutorial. 
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Figure 3.12  

 

and the Figure 3.13 plots the same transform from a different angle for better visualization.  
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Figure 3.13  

 

Figure 3.14 plots an event related potential of a patient diagnosed with Alzheimer's disease  

 
Figure 3.14  
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and Figure 3.15 illustrates its CWT:  

 
Figure 3.15  

 

and here is another view from a different angle  
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Figure 3.16  

 

 

THE WAVELET SYNTHESIS 

 

The continuous wavelet transform is a reversible transform, provided that Equation 3.18 is 
satisfied. Fortunately, this is a very non-restrictive requirement. The continuous wavelet 
transform is reversible if Equation 3.18 is satisfied, even though the basis functions are in 
general may not be orthonormal. The reconstruction is possible by using the following 
reconstruction formula:  
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Equation 3.17 Inverse Wavelet Transform 

 

where C_psi is a constant that depends on the wavelet used. The success of the reconstruction depends 

on this constant called, the admissibility constant , to satisfy the following admissibility condition :  

 
Equation 3.18 Admissibility Condition 

 

where psi^hat(xi) is the FT of psi(t). Equation 3.18 implies that psi^hat(0) = 0, which is  

 
Equation 3.19  

 

As stated above, Equation 3.19 is not a very restrictive requirement since many wavelet 
functions can be found whose integral is zero. For Equation 3.19 to be 
satisfied, the wavelet must be oscillatory.  

 

Discretization	of	the	Continuous	Wavelet	Transform:	The	Wavelet	Series		

 

In today's world, computers are used to do most computations (well,...ok... almost all 
computations). It is apparent that neither the FT, nor the STFT, nor the CWT can be practically 
computed by using analytical equations, integrals, etc. It is therefore necessary to discretize the 

transforms. As in the FT and STFT, the most intuitive way of doing this is simply 
sampling the time-frequency (scale) plane. Again intuitively, sampling the plane 
with a uniform sampling rate sounds like the most natural choice. However, in the case of WT, 
the scale change can be used to reduce the sampling rate.  
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At higher scales (lower frequencies), the sampling rate can be decreased, 
according to Nyquist's rule. In other words, if the time-scale plane needs to be sampled with a 
sampling rate of N_1 at scale s_1 , the same plane can be sampled with a sampling rate of N_2 , 
at scale s_2 , where, s_1 < s_2 (corresponding to frequencies f1>f2 ) and N_2 < N_1 . The actual 
relationship between N_1 and N_2 is  

 
Equation 3.20  

 

or  

 
Equation 3.21  

 

In other words, at lower frequencies the sampling rate can be 
decreased which will save a considerable amount of 
computation time.  

It should be noted at this time, however, that the discretization can be done in any way without 
any restriction as far as the analysis of the signal is concerned. If synthesis is not required, even 

the Nyquist criteria does not need to be satisfied. The restrictions on the 
discretization and the sampling rate become important if, and only if, the 
signal reconstruction is desired. Nyquist's sampling rate is the minimum sampling rate 
that allows the original continuous time signal to be reconstructed from its discrete samples. 
The basis vectors that are mentioned earlier are of particular importance for this reason.  

As mentioned earlier, the wavelet psi(tau,s) satisfying Equation 3.18, allows reconstruction of 
the signal by Equation 3.17. However, this is true for the continuous transform. The question is: 

can we still reconstruct the signal if we discretize the time and 
scale parameters? The answer is ``yes'', under certain conditions 
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(as they always say in commercials: certain restrictions 
apply !!!).  

The scale parameter s is discretized first on a logarithmic grid. 
The time parameter is then discretized with respect to the scale 
parameter , i.e., a different sampling rate is used for every scale. 
In other words, the sampling is done on the dyadic sampling grid shown in Figure 3.17 :  

 

Figure 3.17  

 

Think of the area covered by the axes as the entire time-scale plane. The CWT assigns a value to 

the continuum of points on this plane. Therefore, there are an infinite number 
of CWT coefficients. First consider the discretization of the scale axis. Among that 
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infinite number of points, only a finite number are taken, using a logarithmic rule. The base of 
the logarithm depends on the user. The most common value is 2 because of its convenience. If 2 
is chosen, only the scales 2, 4, 8, 16, 32, 64,...etc. are computed. If the value was 3, the scales 3, 
9, 27, 81, 243,...etc. would have been computed. The time axis is then discretized according to 
the discretization of the scale axis. Since the discrete scale changes by factors of 2 , the sampling 
rate is reduced for the time axis by a factor of 2 at every scale.  

Note that at the lowest scale (s=2), only 32 points of the time axis are 
sampled (for the particular case given in Figure 3.17). At the next scale value, s=4, the 
sampling rate of time axis is reduced by a factor of 2 since the scale is increased by a factor of 2, 
and therefore, only 16 samples are taken. At the next step, s=8 and 8 samples are taken in time, 
and so on.  

Although it is called the time-scale plane, it is more accurate to call it the translation-scale plane, 
because ``time'' in the transform domain actually corresponds to the shifting of the wavelet in 
time. For the wavelet series, the actual time is still continuous.  

Similar to the relationship between continuous Fourier transform, Fourier series and the discrete 

Fourier transform, there is a continuous wavelet transform, a semi-discrete 
wavelet transform (also known as wavelet series) and a discrete 
wavelet transform.  

Expressing the above discretization procedure in mathematical terms, the scale discretization is s 
= s_0^j , and translation discretization is tau = k.s_0^j.tau_0 where s_0>1 and tau_0>0 . Note, 
how the translation discretization is dependent on scale discretization with s_0 .  

The continuous wavelet function  

 
Equation 3.22  

 

 
Equation 3.23  
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by inserting s = s_0^j , and tau = k.s_0^j.tau_0 .  

If {psi_(j,k)} constitutes an orthonormal basis, the wavelet series transform becomes  

 
Equation 3.24  

 

or  

 
Equation 3.25  

 

A wavelet series requires that {psi_(j,k)} are either orthonormal, biorthogonal, or frame. If 
{psi_(j,k)} are not orthonormal, Equation 3.24 becomes  

 
Equation 3.26  

 

where hat{ psi_{j,k}^*(t)} , is either the dual biorthogonal basis or dual frame (Note that * denotes the 

conjugate).  

If {psi_(j,k) } are orthonormal or biorthogonal, the transform will be non-redundant, where as if 
they form a frame, the transform will be redundant. On the other hand, it is much easier to find 
frames than it is to find orthonormal or biorthogonal bases.  

The following analogy may clear this concept. Consider the whole process as looking at a 
particular object. The human eyes first determine the coarse view which depends on the distance 

of the eyes to the object. This corresponds to adjusting the scale parameter s_0^(-j). When 
looking at a very close object, with great detail, j is negative and large 
(low scale, high frequency, analyses the detail in the signal). Moving the head (or eyes) very 
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slowly and with very small increments (of angle, of distance, depending on the object that is 
being viewed), corresponds to small values of tau = k.s_0^j.tau_0 . Note that when j is negative 
and large, it corresponds to small changes in time, tau , (high sampling rate) and large changes in 
s_0^-j (low scale, high frequencies, where the sampling rate is high). The scale parameter can be 
thought of as magnification too.  

How low can the sampling rate be and still allow reconstruction of the signal? This 
is the main question to be answered to optimize the procedure. The most convenient value (in 
terms of programming) is found to be ``2'' for s_0 and "1" for tau. Obviously, when the sampling 
rate is forced to be as low as possible, the number of available orthonormal wavelets is also 
reduced.  

The continuous wavelet transform examples that were given in this chapter were actually the 
wavelet series of the given signals. The parameters were chosen depending on the signal. Since 
the reconstruction was not needed, the sampling rates were sometimes far below the critical 
value where s_0 varied from 2 to 10, and tau_0 varied from 2 to 8, for different examples.  

This concludes Part III of this tutorial. I hope you now have a basic understanding of what the 
wavelet transform is all about. There is one thing left to be discussed however. Even though the 

discretized wavelet transform can be computed on a computer, 
this computation may take anywhere from a couple seconds to 
couple hours depending on your signal size and the resolution 
you want. An amazingly fast algorithm is actually available to 
compute the wavelet transform of a signal. The discrete wavelet 
transform (DWT) is introduced in the final chapter of this tutorial, in Part IV.  

Let's meet at the grand finale, shall we?  
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PART IV 

MULTIRESOLUTION ANALYSIS: THE DISCRETE WAVELET 
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Why is the Discrete Wavelet Transform Needed?  

Although the discretized continuous wavelet transform enables the computation of the 
continuous wavelet transform by computers, it is not a true discrete transform. As a matter of fact, 

the wavelet series is simply a sampled version of the CWT, and the 
information it provides is highly redundant as far as the 
reconstruction of the signal is concerned. This redundancy, on the other hand, 

requires a significant amount of computation time and resources. The discrete wavelet 
transform (DWT), on the other hand, provides sufficient information 
both for analysis and synthesis of the original signal, with a significant 
reduction in the computation time. 

The DWT is considerably easier to implement when compared to the CWT. The basic concepts 
of the DWT will be introduced in this section along with its properties and the algorithms used to 
compute it. As in the previous chapters, examples are provided to aid in the interpretation of the 
DWT. 

 THE DISCRETE WAVELET TRANSFORM (DWT)  

 The foundations of the DWT go back to 1976 when Croiser, Esteban, and Galand devised a 
technique to decompose discrete time signals. Crochiere, Weber, and Flanagan did a similar 
work on coding of speech signals in the same year. They named their analysis scheme as 
subband coding. In 1983, Burt defined a technique very similar to subband coding and named it 

pyramidal coding which is also known as multiresolution analysis. Later in 1989, 
Vetterli and Le Gall made some improvements to the subband coding scheme, removing the 
existing redundancy in the pyramidal coding scheme. Subband coding is explained below. A 
detailed coverage of the discrete wavelet transform and theory of multiresolution analysis can be 
found in a number of articles and books that are available on this topic, and it is beyond the 
scope of this tutorial.  

 The Subband Coding and The Multiresolution 
Analysis  

 The main idea is the same as it is in the CWT. A time-scale representation of a digital signal is 

obtained using digital filtering techniques. Recall that the CWT is a 
correlation between a wavelet at different scales and the 
signal with the scale (or the frequency) being used as a 
measure of similarity. The continuous wavelet transform 
was computed by changing the scale of the analysis 
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window, shifting the window in time, multiplying by the 
signal, and integrating over all times. In the discrete case, 
filters of different cutoff frequencies are used to analyze the signal at 
different scales. The signal is passed through a series of high pass filters 
to analyze the high frequencies, and it is passed through a series of low 
pass filters to analyze the low frequencies. 

The resolution of the signal, which is a measure of the amount of detail information in 

the signal, is changed by the filtering operations, and the scale is changed by 

upsampling and downsampling (subsampling) operations. Subsampling a 
signal corresponds to reducing the sampling rate, or removing some of 
the samples of the signal. For example, subsampling by 2 refers to dropping 
every other sample of the signal. Subsampling by a factor n reduces the number of 
samples in the signal n times. 

Upsampling a signal corresponds to increasing the sampling rate of a signal by adding new 

samples to the signal. For example, upsampling by two refers to adding a new 
sample, usually a zero or an interpolated value, between every two 
samples of the signal. Upsampling a signal by a factor of n increases the number of 
samples in the signal by a factor of n. 

Although it is not the only possible choice, DWT coefficients are usually sampled from the CWT 
on a dyadic grid, i.e., s0 = 2 and  0 = 1, yielding s=2j and  =k*2j, as described in Part 3. Since 
the signal is a discrete time function, the terms function and sequence will be used 
interchangeably in the following discussion. This sequence will be denoted by x[n], where n is 
an integer. 

The procedure starts with passing this signal (sequence) through a half band digital 
lowpass filter with impulse response h[n]. Filtering a signal 
corresponds to the mathematical operation of convolution of the 
signal with the impulse response of the filter. The convolution operation in 
discrete time is defined as follows: 
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A half band lowpass filter removes all frequencies that are above 
half of the highest frequency in the signal. For example, if a signal has a 
maximum of 1000 Hz component, then half band lowpass filtering removes all the frequencies 
above 500 Hz.  

The unit of frequency is of particular importance at this time. In discrete signals, 
frequency is expressed in terms of radians. Accordingly, the sampling 
frequency of the signal is equal to 2 radians in terms of radial frequency. 

Therefore, the highest frequency component that exists in a signal 
will be  radians, if the signal is sampled at Nyquist’s rate (which is twice the maximum 
frequency that exists in the signal); that is, the Nyquist’s rate corresponds to  rad/s in the 
discrete frequency domain. Therefore using Hz is not appropriate for discrete signals. However, 
Hz is used whenever it is needed to clarify a discussion, since it is very common to think of 

frequency in terms of Hz. It should always be remembered that the unit of 
frequency for discrete time signals is radians. 

After passing the signal through a half band lowpass filter, half of 
the samples can be eliminated according to the Nyquist’s rule, since the 

signal now has a highest frequency of /2 radians instead of  radians. Simply 
discarding every other sample will subsample the signal by two, 
and the signal will then have half the number of points. The scale of 

the signal is now doubled. Note that the lowpass filtering removes the high 
frequency information, but leaves the scale unchanged. Only the 
subsampling process changes the scale. Resolution, on the other hand, is related to 
the amount of information in the signal, and therefore, it is affected by the filtering operations. 
Half band lowpass filtering removes half of the frequencies, which can be interpreted as losing 
half of the information. Therefore, the resolution is halved after the filtering operation. Note, 
however, the subsampling operation after filtering does not affect the resolution, since removing 
half of the spectral components from the signal makes half the number of samples redundant 
anyway. Half the samples can be discarded without any loss of information. In summary, the 
lowpass filtering halves the resolution, but leaves the scale unchanged. The signal is then 
subsampled by 2 since half of the number of samples are redundant. This doubles the scale.  

This procedure can mathematically be expressed as 
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Having said that, we now look how the DWT is actually computed: The DWT analyzes 
the signal at different frequency bands with different resolutions by 
decomposing the signal into a coarse approximation and detail 
information. DWT employs two sets of functions, called scaling functions and 
wavelet functions, which are associated with low pass and 
highpass filters, respectively.  

 

 

 

The decomposition of the signal into different frequency bands is simply obtained by successive 
highpass and lowpass filtering of the time domain signal. The original signal x[n] is first 

passed through a halfband highpass filter g[n] and a lowpass filter h[n]. 
After the filtering, half of the samples can be eliminated 
according to the Nyquist’s rule, since the signal now has a 
highest frequency of  /2 radians instead of  . The signal can 
therefore be subsampled by 2, simply by discarding every other 
sample. This constitutes one level of decomposition and can mathematically be expressed as 
follows:  
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where yhigh[k] and ylow[k] are the outputs of the highpass and lowpass filters, respectively, after 
subsampling by 2.  

This decomposition halves the time resolution since only half 
the number of samples now characterizes the entire signal. However, 
this operation doubles the frequency resolution, since the frequency 
band of the signal now spans only half the previous frequency band, 
effectively reducing the uncertainty in the frequency by half. The above 

procedure, which is also known as the subband coding, can be repeated for further 

decomposition. At every level, the filtering and subsampling will 
result in half the number of samples (and hence half the time 
resolution) and half the frequency band spanned (and hence 
double the frequency resolution). Figure 4.1 illustrates this procedure, where 

x[n] is the original signal to be decomposed, and h[n] and g[n] are lowpass and 
highpass filters, respectively. The bandwidth of the signal at every level is marked on the 
figure as "f".  
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Figure 4.1. The Subband Coding Algorithm As an example, suppose that the original signal x[n]  

has 512 sample points, spanning a frequency band of zero 
to  rad/s. At the first decomposition level, the signal is 
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passed through the highpass and lowpass filters, followed 
by subsampling by 2. The output of the highpass filter has 
256 points (hence half the time resolution), but it only 
spans the frequencies /2 to  rad/s (hence double the 
frequency resolution). These 256 samples constitute the 
first level of DWT coefficients. The output of the lowpass filter also 
has 256 samples, but it spans the other half of the frequency band, 
frequencies from 0 to /2 rad/s. This signal is then passed through 
the same lowpass and highpass filters for further decomposition. 
The output of the second lowpass filter followed by subsampling has 128 
samples spanning a frequency band of 0 to /4 rad/s, and the output of the 
second highpass filter followed by subsampling has 128 samples spanning a frequency band of 
/4 to /2 rad/s. The second highpass filtered signal constitutes the second level of DWT 
coefficients. This signal has half the time resolution, but twice the frequency resolution of the 
first level signal. In other words, time resolution has decreased by a factor of 4, and frequency 
resolution has increased by a factor of 4 compared to the original signal. The lowpass filter 

output is then filtered once again for further decomposition. This process continues 
until two samples are left. For this specific example there would be 8 levels of 

decomposition, each having half the number of samples of the previous level. The DWT of 
the original signal is then obtained by concatenating all coefficients 
starting from the last level of decomposition (remaining two samples, in 
this case). The DWT will then have the same number of coefficients as 
the original signal.  

The frequencies that are most prominent in the original 
signal will appear as high amplitudes in that region of the 
DWT time domain signal that includes those particular 
frequencies.  

 

Note: different from CWT, DWT cannot show you a 3-D 
result; however, it shows you a series of coefficients (how 
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many coefficients? 2+4+8+…+128 for a 256-sample 
signal); Higher amplitude coefficients means strong 
frequency components.  

 

Note:  

  

 

 

 

 

Therefore: Each DWT coefficient corresponds to a Time-
Scale point (based on the above formula) 
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The difference of this transform from the Fourier 
transform is that the time localization of these 
frequencies will not be lost. However, the time localization will have a 
resolution that depends on which level they appear. If the main information of the signal lies in 
the high frequencies, the time localization of these frequencies will be more precise, since they 
are characterized by more number of samples. If the main information lies only at very low 
frequencies, the time localization will not be very precise, since few samples are used to 
express signal at these frequencies. This procedure in effect offers a good 
time resolution at high frequencies, and good frequency resolution at 
low frequencies. Most practical signals encountered are of this type.  

The frequency bands that are not very prominent in the original signal 
will have very low amplitudes, and that part of the DWT signal can be 
discarded without any major loss of information, allowing data reduction. 
Figure 4.2 illustrates an example of how DWT signals look like and how data reduction is 

provided. Figure 4.2a shows a typical 512-sample signal (time domain) that is normalized 
to unit amplitude. The horizontal axis is the number of samples, whereas the vertical axis is the 

normalized amplitude. Figure 4.2b shows the 8 level DWT of the signal in Figure 4.2a. The 
last 256 samples in this signal correspond to the highest 
frequency band in the signal, the previous 128 samples correspond to the 

second highest frequency band and so on. It should be noted that only the 
first 64 samples, which correspond to lower frequencies of the 
analysis, carry relevant information and the rest of this signal 
has virtually no information. Therefore, all but the first 64 
samples can be discarded without any loss of information. This 
is how DWT provides a very effective data reduction scheme. 
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Figure 4.2 Example of a DWT 

We will revisit this example, since it provides important insight to how DWT should be 
interpreted. Before that, however, we need to conclude our mathematical analysis of the DWT.  

One important property of the discrete wavelet transform is the relationship between the impulse 

responses of the highpass and lowpass filters. The highpass and lowpass 
filters are not independent of each other, and they are 
related by  

 

where g[n] is the highpass, h[n] is the lowpass filter, and L is the filter 
length (in number of points). Note that the two filters are odd index alternated reversed 
versions of each other. Lowpass to highpass conversion is provided by the (-1)n term. Filters 
satisfying this condition are commonly used in signal processing, and they are known as the 
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Quadrature Mirror Filters (QMF). The two filtering and 
subsampling operations can be expressed by  

 

The reconstruction in this case is very easy since halfband filters form orthonormal 
bases. The above procedure is followed in reverse order for the reconstruction. The signals at 
every level are upsampled by two, passed through the synthesis filters g’[n], and h’[n] (highpass 

and lowpass, respectively), and then added. The interesting point here is 
that the analysis and synthesis filters are identical to 
each other, except for a time reversal. Therefore, the 
reconstruction formula becomes (for each layer) 

 

However, if the filters are not ideal halfband, then perfect reconstruction cannot be achieved. 

Although it is not possible to realize ideal filters, under certain conditions it is 
possible to find filters that provide perfect reconstruction. The 
most famous ones are the ones developed by Ingrid 
Daubechies, and they are known as Daubechies’ 
wavelets.  

Note that due to successive subsampling by 2, the signal length must be a 
power of 2, or at least a multiple of power of 2, in order 
this scheme to be efficient. The length of the signal 
determines the number of levels that the signal can be 
decomposed to. For example, if the signal length is 1024, 
ten levels of decomposition are possible.  
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Interpreting the DWT coefficients can sometimes be rather difficult because the way DWT 

coefficients are presented is rather peculiar. To make a real long story real short, DWT 
coefficients of each level are concatenated, starting with 
the last level. An example is in order to make this concept clear:  

Suppose we have a 256-sample long signal sampled at 10 MHZ and we wish to obtain its DWT 
coefficients. Since the signal is sampled at 10 MHz, the highest frequency component that exists 
in the signal is 5 MHz. At the first level, the signal is passed through the lowpass filter h[n], and 
the highpass filter g[n], the outputs of which are subsampled by two. The highpass filter output is 
the first level DWT coefficients. There are 128 of them, and they represent the signal in the [2.5 
5] MHz range. These 128 samples are the last 128 samples plotted. The lowpass filter output, 

which also has 128 samples, but spanning the frequency band of [0 2.5] MHz, are further 
decomposed by passing them through the same h[n] and g[n]. The 
output of the second highpass filter is the level 2 DWT coefficients and these 64 samples precede 
the 128 level 1 coefficients in the plot. The output of the second lowpass filter is further 
decomposed, once again by passing it through the filters h[n] and g[n]. The output of the third 
highpass filter is the level 3 DWT coefficiets. These 32 samples precede the level 2 DWT 
coefficients in the plot.  

The procedure continues until only 1 DWT coefficient can be 
computed at level 9. This one coefficient is the first to be plotted 
in the DWT plot. This is followed by 2 level 8 coefficients, 4 level 
7 coefficients, 8 level 6 coefficients, 16 level 5 coefficients, 32 level 4 coefficients, 64 level 3 

coefficients, 128 level 2 coefficients and finally 256 level 1 coefficients. Note that less and 
less number of samples is used at lower frequencies, therefore, the time 
resolution decreases as frequency decreases, but since the frequency 
interval also decreases at low frequencies, the frequency resolution 
increases. Obviously, the first few coefficients would not carry a whole lot of information, 
simply due to greatly reduced time resolution. To illustrate this richly bizarre DWT 
representation let us take a look at a real world signal. Our original signal is a 256-sample long 
ultrasonic signal, which was sampled at 25 MHz. This signal was originally generated by using a 
2.25 MHz transducer, therefore the main spectral component of the signal is at 2.25 MHz. The 
last 128 samples correspond to [6.25 12.5] MHz range. As seen from the plot, no information is 
available here, hence these samples can be discarded without any loss of information. The 
preceding 64 samples represent the signal in the [3.12 6.25] MHz range, which also does not 
carry any significant information. The little glitches probably correspond to the high frequency 
noise in the signal. The preceding 32 samples represent the signal in the [1.5 3.1] MHz range. As 
you can see, the majority of the signal’s energy is focused in these 32 samples, as we expected to 
see. The previous 16 samples correspond to [0.75 1.5] MHz and the peaks that are seen at this 
level probably represent the lower frequency envelope of the signal. The previous samples 



76 
 

probably do not carry any other significant information. It is safe to say that we can get by with 
the 3rd and 4th level coefficients, that is we can represent this 256 sample long signal with 
16+32=48 samples, a significant data reduction which would make your computer quite happy.  

 One area that has benefited the most from this particular property of the wavelet transforms is 
image processing. As you may well know, images, particularly high-resolution images, claim a 
lot of disk space. As a matter of fact, if this tutorial is taking a long time to download, that is 

mostly because of the images. DWT can be used to reduce the image 
size without losing much of the resolution. Here is how:  

For a given image, you can compute the DWT of, say each row, and discard all 
values in the DWT that are less than a certain threshold. We then save only 
those DWT coefficients that are above the threshold for each row, and when we need to 
reconstruct the original image, we simply pad each row with as many zeros as the number of 
discarded coefficients, and use the inverse DWT to reconstruct each row of the original image. 
We can also analyze the image at different frequency bands, and reconstruct the original image 
by using only the coefficients that are of a particular band. I will try to put sample images 
hopefully soon, to illustrate this point. 

Another issue that is receiving more and more attention is carrying out the decomposition 

(subband coding) not only on the lowpass side but on both sides. In other words, 
zooming into both low and high frequency bands of the signal 
separately. This can be visualized as having both sides of the 
tree structure of Figure 4.1. What result is what is known as the 
wavelet packages. We will not discuss wavelet packages in this here, since it is beyond 
the scope of this tutorial. Anyone who is interested in wavelet packages, or more information on 
DWT can find this information in any of the numerous texts available in the market. 
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