Wavelet Tool box
 For Use with MATLA ${ }^{\text {® }}$

Michel Misiti
Yves Misiti
Georges Oppenheim
Jean-Michel Poggi

Computation

Visualization

Programming

User's Guide
Version 1

How to Contact The MathW orks:

508-647-7000
508-647-7001
Phone
Fax
The MathWorks, Inc.
Mail
24 Prime Park Way Natick, MA 01760-1500
htt p: / / mwn. mat hworks. com
ftp. mathworks.com
comp. sof t-sys. mat lab

Web
 Anonymous FTP server
 Newsgroup

(C1) support @nat hwor ks.com
suggest @nth hwor ks.com
bugs@mat hwor ks.com
Technical support
Product enhancement suggestions
Bug reports
doc@nat hworks.com
subscri be@nat hwor ks.com
Documentation error reports
Subscribing user registration
servi ce@nat hworks.com
i nf o@nt hworks.com

Order status, license renewals, passcodes

Sales, pricing, and general information

Wavlet Tool box User's Guide

© COPYRIGHT 1996-1997 by The MathWorks, Inc. All Rights Reserved.
The software described in this document is furnished under a license agreement. The software may be used or copied only under theterms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
U.S. GOVERNMENT: If Licensee is acquiring the software on behalf of any unit or agency of the U. S.

Government, the following shall apply:
(a) for units of the Department of Defense:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer SoftwareClause at DFARS 252.227-7013.
(b) for any other unit or agency:

NOTICE - Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of, the computer software and accompanying documentation, the rights of the Government regarding its use, reproduction and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR. Contractor/manufacturer is The MathWorks Inc., 24 Prime Park Way, Natick, MA 01760-1500.
MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow and Target Language Compiler are trademarks of The MathWorks, Inc.
Other product or brand names are trademarks or registered trademarks of their respective holders.
Printing History: March 1996 First printing

Preface

About the Authors XV
Acknowledgments xvi
What is the Wavelet Toolbox? xvii
How to Use This Guide xviii
For More Background xix
Installation xx
System Recommendations xx
Platform-Specific Details xx
Windows F onts xx
Other Platforms F onts xxi
Mouse Compatibility xxi
Typographical Conventions xxii
Wavelets: A New Tool for Signal Analysis
1
Fourier Analysis 1-3
Short-Time Fourier Analysis 1-4
Wavelet Analysis 1-5
What Can Wavelet Analysis Do? 1-5
What is Wavelet Analysis? 1-7
Number of Dimensions 1-7
The Continuous Wavelet Transform 1-8
Scaling 1-9
Shifting 1-10
Five Easy Steps to a Continuous Wavelet Transform 1-10
Scale and Frequency 1-13
The Scale of Nature 1-13
What's Continuous About the Continuous Wavelet Transform? 1-15
The Discrete Wavelet Transform 1-16
One-Stage Filtering: Approximations and Details 1-16
Multiple-Level Decomposition 1-19
Number of Levels 1-19
Wavelet Reconstruction 1-20
Reconstruction Filters 1-21
Reconstructing Approximations and Details 1-21
Relationship of Filters to Wavelet Shapes 1-23
The Scaling F unction 1-25
Multistep Decomposition and Reconstruction 1-25
Wavelet Packet Analysis 1-27
History of Wavelets 1-29
An Introduction to the Wavelet Families 1-30
Haar 1-31
Daubechies 1-31
Biorthogonal 1-32
Coiflets 1-33
Symlets 1-33
Morlet 1-34
Mexican Hat 1-34
Meyer 1-35
Continuous Wavelet Analysis (One-Dimensional) 2-3
Continuous Analysis Using the Command Line 2-3
Continuous Analysis Using the Graphical I nterface 2-7
Importing and Exporting Information from the Graphical Interface 2-11
Loading Signals into the Continuous Wavelet 1-D Tool 2-11
Saving Wavelet Coefficients 2-12
One-Dimensional Discrete Wavelet Analysis 2-13
Analysis Decomposition Functions: 2-13
Synthesis Reconstruction Functions: 2-13
Decomposition Structure Utilities:
Analysis Decomposition Functions: 2-14
One-Dimensional Analysis Using the Command Line 2-15
One-Dimensional Analysis Using the Graphical Interface 2-22
Importing and Exporting Information from the Graphical Interface 2-38
Saving Information to the Disk 2-38
Loading Information into the Wavelet 1-D Tool 2-40
Two-Dimensional Discrete Wavelet Analysis 2-43
Analysis-Decomposition Functions: 2-43
Synthesis-Reconstruction Functions: 2-43
Decomposition Structure Utilities: 2-43
De-noising and Compression: 2-44
Two-Dimensional Analysis Using the Command Line 2-44
Two-Dimensional Analysis Using the Graphical Interface 2-52
Importing and Exporting Information from the Graphical Interface 2-59
Saving Information to the Disk 2-59
Loading Information into the Wavelet 2-D Tool 2-62
Working with Indexed Images 2-66
Understanding Images in MATLAB 2-66
Indexed I mages 2-66
Wavelet Decomposition of Indexed Images 2-68
How Decompositions Are Displayed 2-71
Detecting Discontinuities and Breakdown Points I 3-3
Discussion 3-4
Guidelines for Detecting Discontinuities 3-4
Detecting Discontinuities and Breakdown Points II 3-6
Discussion 3-7
Detecting Long-Term Evolution 3-8
Discussion 3-9
Detecting Self-Similarity 3-10
Wavelet Coefficients and Self-Similarity 3-10
Discussion 3-11
Identifying Pure Frequencies 3-12
Discussion 3-12
Suppressing Signals 3-15
Discussion 3-16
Vanishing Moments 3-17
De-Noising Signals 3-18
Discussion 3-18
Compressing Signals 3-21
Discussion 3-22
Wavelets in Action: Examples and Case Studies
4
Illustrated Examples 4-3
Advice to the Reader 4-6
About Further Exploration 4-7
Example \#1: A Sum of Sines 4-8
Example \#2: A Frequency Breakdown 4-10
Example \#3: Uniform White Noise 4-12
Example \#4: Colored AR(3) Noise 4-14
Example \#5: Polynomial + White Noise 4-16
Example \#6: A Step Signal 4-18
Example \#7: Two Proximal Discontinuities 4-20
Example \#8: A Second-Derivative Discontinuity 4-22
Example \#9: A Ramp + White Noise 4-24
Example \#10: A Ramp + Colored Noise 4-26
Example \#11: A Sine + White Noise 4-28
Example \#l2: A Triangle + A Sine 4-30
Example \#13: A Triangle +A Sine + Noise 4-32
Example \#14: A Real Electricity Consumption Signal 4-34
A Case Study: An Electrical Signal 4-36
Data and the External Information 4-36
Analysis of the Midday Period 4-38
Analysis of the End of the Night Period 4-39
Suggestions for Further Analysis 4-42
Identify the Sensor Failure 4-42
Suppress the Noise 4-43
Identify Patterns in the Details 4-44
Locate and Suppress Outlying Values 4-46
Study Missing Data 4-47
Fast Multiplication of Large Matrices 4-48
Example 1: Effective F ast Matrix Multiplication 4-49
Example 2: Ineffective F ast Matrix Multiplication 4-51
Using Wavelet Packets
5
About Wavelet Packet Analysis 5-3
One-Dimensional Wavelet Packet Analysis 5-6
De-Noising a Signal Using Wavelet Packet 5-14
Two-Dimensional Wavelet Packet Analysis 5-19
Importing and Exporting from Graphical Tools 5-26
Saving Information to the Disk 5-26
Saving Synthesized Signals 5-26
Saving Synthesized Images 5-27
Saving One-Dimensional Decomposition Structures 5-27
Saving Two-Dimensional Decomposition Structures 5-28
Loading Information into the Graphical Tools 5-28
Loading Signals 5-29
Loading Images 5-29
Loading Wavelet Packet Decomposition Structures 5-30
Advanced Concepts
6
Mathematical Conventions 6-2
General Concepts 6-5
Wavelets: A New Tool for Signal Analysis 6-5
Wavelet Decomposition:
A Hierarchical Organization 6-5
Finer and Coarser Resolutions 6-6
Wavelet Shapes 6-6
Wavelets and Associated Families 6-8
Wavelets on a Regular Discrete Grid 6-13
Wavelet Transforms: Continuous and Discrete 6-14
Local and Global Analysis 6-16
Synthesis: An Inverse Transform 6-17
Details and Approximations 6-18
The Fast Wavelet Transform (FWT) Algorithm 6-21
Filters Used to Calculate the DWT and IDWT 6-21
Algorithms 6-24
Why Does Such an Algorithm Exist? 6-29
One-Dimensional Wavelet Capabilities 6-34
Two-Dimensional Wavelet Capabilities 6-40
Dealing with B order Distortion 6-46
Signal Extensions: Zero-Padding, Symmetrization, and Smooth Padding 6-46
Periodized Wavelet Transform 6-55
Frequently Asked Questions 6-56
Continuous or Discrete Analysis? 6-56
Why Are Wavelets Useful for Space-Saving Coding? 6-56
Why Do All Wavelets Have Zero Average and Sometimes Several Vanishing M oments? 6-57
What About the Regularity of a Wavelet ψ ? 6-57
Are Wavelets Useful in Fields Other Than Signal or Image Processing? 6-58
What Functions Are Candidates to Be a Wavelet? 6-59
Is It Easy to Build a New Wavelet? 6-59
What Is the Link Between Wavelet and F ourier Analysis? 6-60
Wavelet Families: Additional Discussion 6-62
Daubechies Wavelets: dbN 6-63
Haar 6-64
dbN 6-64
Symlet Wavelets: symN 6-65
Coiflet Wavelets: coifN 6-66
Biorthogonal Wavelet Pairs: biorNr.Nd 6-67
Meyer Wavelet: meyr 6-69
Battle-Lemarie Wavelets 6-70
Mexican Hat Wavelet: mexh 6-71
Morlet Wavelet: morl 6-72
Summary of Wavelet Families and Associated Properties 6-73
Wavelet Applications: More Detail 6-74
Suppressing Signals 6-74
Splitting Signal Components 6-77
Noise Processing 6-77
De-Noising 6-79
The Basic One-Dimensional M odel 6-80
De-Noising Procedure Principles 6-80
Soft or Hard Thresholding? 6-81
Threshold Selection Rules 6-82
Dealing with Unscaled Noise and Non-White Noise 6-84
De-Noising in Action 6-85
Extension to Image De-Noising 6-88
More About De-Noising 6-89
Data Compression 6-90
Default Values for De-Noising and Compression 6-93
De-noising. 6-93
Compression 6-93
About the Birge-M assart Strategy 6-94
Wavelet Packets 6-95
From Wavelets to Wavelet Packets: Decomposing the Details 6-95
Wavelet Packets in Action: An Introduction 6-96
Example 1: Analyzing a Sine Function 6-96
Example 2: Analyzing a Chirp Signal 6-97
Building Wavelet Packets 6-98
Wavelet Packet Atoms 6-101
Organizing the Wavelet Packets 6-104
Choosing the Optimal Decomposition 6-105
Wavelet Packets 1-D Decomposition Structure 6-111
Wavelet Packets 2-D Decomposition Structure 6-113
Wavelet Packets for Compression and De-Noising 6-113
References 6-114
Adding Your Own Wavelets
Preparing to Add a New Wavelet Family 7-3
Choose the Wavelet Family Full Name 7-3
Choose the Wavelet Family Short Name 7-3
Determine the Wavelet Type 7-4
Define the Orders of Wavelets Within the Given Family 7-4
Build a MAT-File or M-File 7-5
Type 1 (Orthogonal with FIR Filter) 7-5
Type 2 (Biorthogonal with FIR Filter) 7-5
Type 3 (Orthogonal with Scale Function) 7-6
Type 4 (No FIR Filter; No Scale Function) 7-6
Define the Effective Support 7-7
How to Add a New Wavelet Family 7-8
Example 1 7-8
Example 2 7-12
After Adding a New Wavelet Family 7-16
Reference
8
Commands Grouped by Function 8-2
GUI Reference
A
General Features A-3
Color Coding A-3
Connectedness of Plots A-3
Using the M ouse A-4
Making Selections and Activating Controls A-5
Translating Plots A-5
Displaying Position-Dependent Information A-5
Controlling the Colormap A-6
Controlling the Number of Colors A-7
Controlling the Coloration Mode A-8
Customizing Graphical Objects A-8
Customizing Print Settings A-10
Using Menus A-11
Continuous Wavelet Tool Features A-14
Wavelet 1-D Tool Features A-15
Tree Mode A-15
More Display Options A-15
Wavelet 2-D Tool Features A-17
Wavelet Packet Tool Features (1-D and 2-D) A-18
Node Action Functionality A-19
Wavelet Display Tool A-22
Wavelet Packet Display Tool A-23

Preface
\square

About the Authors

Michel Misiti, Georges Oppenheim, and J ean-Michel Poggi are mathematics professors at E coleCentralede Lyon, U niversity of MarneLa-Vallée and Paris 10 University. Y ves Misiti is a research engineer specializing in Computer Sciences at Paris 11 University.

They are members of the "Laboratoire de M athématique" Orsay-Paris 11 University F rance.

Their fields of interest are statistical signal processing, stochastic processes, adaptive control, and wavelets.

The authors group, which was constituted more than ten years ago, has published numerous theoretical papers and carried out applications in close collaboration with industrial teams. For instance:

- Robustness of the piloting law for a civilian space launcher for which an expert system was developed
- F orecasting of the electricity consumption by nonlinear methods
- F orecasting of air pollution

Acknow ledgments

The authors wish to express their gratitude to all the colleagues who directly or indirectly contributed to the making of the Wavelet Tool box.

Specifically

- For the wavelet questions to Pierre-Gilles Lemarié-Rieusset (Evry) and Y ves Meyer (Paris 9)
- For the statistical questions to Lucien Birgé (Paris 6) and Pascal Massart (Paris 11) whose last result is included as a starting point of the de-noising algorithm
- To David Donoho (Stanford) and to Anestis Antoniadis (Grenoble) who are used to giving generously so many valuable ideas

Colleagues and friends have helped us steadily: Samir Akkouche (E cole Centrale de L yon), M ark Asch (Paris 11), Patrice Assouad (Paris 11), Roger Astier (Paris 11), J ean Coursol (Paris 11), Didier Dacunha-Castelle (Paris 11), Claude Deniau (Marseille), Patrick Flandrin (E cole Normale de Lyon), Eric Galin (E cole Centrale de Lyon), Christine Graffigne (Paris 5), Anatoli J uditsky (Rennes), Gérard Kerkyacharian (Amiens), Gérard Malgouyres (Paris 11), Olivier Nowak (Ecole Centrale de Lyon), Dominique Picard (Paris 7), and Franck Tarpin-Bernard (E cole Centrale de Lyon).

Several student groups have tested preliminary versions.
One of our first opportunities to apply the ideas of wavelets connected with signal analysis and its modeling occurred during a close and pleasant cooperation with the team "Analysis and Forecast of the Electrical Consumption" of Electricité de F rance (Clamart-P aris) directed first by J ean-Pierre Desbrosses, then by Hervé Laffaye and which included Xavier Brossat, Y ves Deville, and Marie-M adeleine Martin.

Many thanks to those who tested and helped to refine the software and the printed matter and at last to The MathWorks group and specially to Roy Lurie, J im Tung, and Bruce Sesnovich.

And finally, apologies to those we may have omitted.

What is the Wavelet Toolbox?

The Wavelet Tool box is a collection of functions built on the MATLAB ${ }^{\circledR}$ Technical Computing Environment. It provides tools for the analysis and synthesis of signals and images using wavelets and wavel et packets within the framework of MATLAB.

The tool box provides two categories of tools:

- Command line functions
- Graphical interactive tools

The first category of tools is made up of functions that you can call directly from the command line or from your own applications. Most of these functions are M-files, series of statements that implement specialized wavelet analysis or synthesis al gorithms. You can view the code for these functions using the following statement:
type function_name
You can view the header of the function, the help part, using the statement:
hel p function_name
A summary list of the Wavelet Tool box functions is available to you by typing
hel p wavel et
You can change the way any tool box function works by copying and renaming the M-file, then modifying your copy. Y ou can also extend the tool box by adding your own M-files.

The second category of tool s is a collection of graphical interface tools that afford access to extensive functionality. Access these tools by typing
wavemenu
from the command line.

How to Use This Guide

If you are new to wavelet analysis and synthesis and need an overview of the concepts, read Chapter 1, "Wavelets: A New Tool for Signal Analysis." It presents the main ideas without mathematical complexity.

After this you can refer to Chapter 2 and Chapter 5, for instructions on using the wavelet and wavelet packet analysis tools, respectively; Chapter 3, which discusses practical applications of wavelet analysis; and Chapter 4, which provides examples and a case study.

If you have experience with signal analysis and wavel ets, you may want to turn directly to:

- Chapter 2 and Chapter 5, for instructions on using the wavelet and wavelet packet analysis tools, respectively.
- Chapter 6, for a discussion of the technical underpinnings of wavelet analysis.
- Chapter 7, for instructions on extending the Wavelet Tool box by adding your own wavelets.

All tool box users should look to Chapter 8 for complete reference information about the Wavelet Tool box command line functions, and to Appendix A for more detailed information on using the many functions provided by the graphical tools.

For More Background

The Wavelet Toolbox provides a complete introduction to wavel ets and assumes no previ ous knowledge of the area. The tool box allows you to use wavelet techniques on your own data immediately and devel op new insights. It is our hope that, through the use of these practical tools, you may want to explore the beautiful underlying mathematics and theory.

An excellent supplementary text that presents a complementary treatment of wavelet theory and practice is the book, Wavelets and Filter Banks by Gilbert Strang and Truong N guyen. Signal processing engineers will find this book especially useful. It offers a clear and easy-to-understand introduction to two central ideas - filter banks for discrete signals and wavel ets - and fully explains the connection between them. Many exercises in the book are drawn from the Wavelet Tool box.

Wavelets and Filter Banks Gilbert Strang and Truong N guyen Wellesley-Cambridge Press, 1996 ISBN 0-9614088-7-1

Available from
Wellesley-Cambridge Press
Box 812060, Wellesley
MA 02181, USA.
Phone: (617) 431-8488
Fax: (617) 253-4358
Email: gs @math. mit. edu
The homepage for the book is:
http://saigon.ece.wisc.edu/~waveweb/Tutorials/book.html

Installation

To install this tool box on your computer, see the appropriate platform-specific MATLAB Installation Guide To determine if the Wavelet Toolbox is already installed on your system, check for a subdirectory named wavel et within the main tool box directory or folder.

The Wavelet Tool box can perform signal or image analysis. Since M ATLAB stores most numbers in double precision, even a single image takes up a lot of memory. For instance, one copy of a 512-by-512 image uses 2 MB of memory. To avoid Out of Menory errors, it is important to allocate enough memory to process various image sizes.
The memory can be real RAM or can be a combination of RAM and virtual memory. See your operating system documentation for how to set up virtual memory.

System Recommendations

While not a requirement, we recommend you obtain the Signal Processing and I mage Processing Tool boxes to use in conjunction with the Wavel et Tool box. These tool boxes provide complementary functionality that will give you maximum flexibility in analyzing and processing signals and images.

This manual makes no assumption that your computer is running any other MATLAB toolboxes.

Platform-Specific Details

Some details of the use of the Wavelet Toolbox may depend on your hardware or operating system.

Windows Fonts

We recommend you set the system to use "Small F onts." Some of the labels in the GUI windows may be illegible if large fonts are used.
Set this option by clicking the Display icon in your desktop's Control Panel (accessible through the Settings \Rightarrow Control Panel submenu in Windows 95). Use the Font Size menu to change to Small Fonts. Y ou'll have to restart Windows for this change to take effect.

Other Platforms Fonts

We recommend you set the system to use standard default fonts. Some of the labels in the GUI windows may be illegible if other fonts are used.

Mouse Compatibility

The Wavelet Tool box was designed for three distinct types of mouse control:

Left Mouse Button	Middle Mouse Button	Right Mouse Button
Make selections,	Display a cross-hair to	Translate plots up and
activate controls	show position-dependent information	diwn, and left and

For more information, see the section "Using the M ouse" on page A-4.

Typographical Conventions

This manual uses certain typographical conventions.

Font	Use for
Monospace	Commands, function names, and screen displays; for example, conv.
Monospace It al i cs	Names of arguments that are meant to be replaced and not typed literally; for instance: cd di rect ory.
Italics	Book titles, mathematical notation, and the introduction of new terms.
Boldface Initial Cap	Names of keys, such as the Return key and menu items, such as the File menu.

Wavelets: A New Tool for Signal Analysis

1-3 Fourier Analysis
1-4 Short-Time Fourier Analysis
1-5 Wavelet Analysis
1-7 What is Wavelet Analysis?
1-8 The Continuous Wavelet Transform
1-16 The Discrete Wavelet Transform
1-20 Wavelet Reconstruction
1-27 Wavelet Packet Analysis
1-29 History of Wavelets
1-30 An Introduction to the Wavelet Families

Everywhere around us are signals that need to be anal yzed. Seismic tremors, human speech, engine vibrations, medical images, financial data, music, and many other types of signals haveto be efficiently encoded, compressed, cleaned up, reconstructed, described, simplified, modeled, distinguished, or located.

Wavelet analysis is a new and promising set of tools and techniques for doing this.

Fourier Analysis

Signal analysts already have at their disposal an impressive arsenal of tools. Perhaps the most well-known of these is Fourier analysis, which breaks down a signal into constituent sinusoids of different frequencies. Another way to think of Fourier analysis is as a mathematical technique for transforming our view of the signal from a time-based one to a frequency-based one.

For many signals, F ourier analysis is extremely useful because the signal's frequency content is of great importance. So why do we need other techniques, like wavelet analysis?
Fourier analysis has a serious drawback. In transforming to the frequency domain, time information is lost. When looking at a Fourier transform of a signal, it is impossible to tell when a particular event took place.

If a signal doesn't change much over time - that is, if it is what is called a stationary signal - this drawback isn't very important. However, most interesting signals contain numerous non-stationary or transitory characteristics: drift, trends, abrupt changes, and beginnings and ends of events. These characteristics are often the most important part of the signal, and Fourier analysis is not suited to detecting them.

Short-Time Fourier Analysis

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the F ourier transform to analyze only a small section of the signal at a time - a technique called windowing the signal. Gabor's adaptation, called the Short-TimeF ourier Transform (STFT), maps a signal into a two-dimensional function of time and frequency.

The STFT represents a sort of compromise between the time- and frequency-based views of a signal. It provides some information about both when and at what frequencies a signal event occurs. However, you can only obtain this information with limited precision, and that precision is determined by the size of the window.
While the STFT's compromise between time and frequency information can be useful, the drawback is that once you choose a particular size for the time window, that window is the same for all frequencies. Many signals require a more flexible approach - one where we can vary the window size to determine more accurately either time or frequency.

Wavelet Analysis

Wavel et analysis represents the next logical step: a windowing technique with variable-sized regions. Wavelet analysis allows the use of long time intervals where we want more precise low frequency information, and shorter regions where we want high frequency information.

Here's what this looks like in contrast with the time-based, frequency-based, and STFT views of a signal:

Time Domain (Shannon)

Frequency Domain (Fourier)

You may have noticed that wavelet analysis does not use a time-frequency region, but rather a time-scale region. We'll have more to say about the concept of scale later.

What Can Wavelet Analysis Do?

One major advantage afforded by wavelets is the ability to perform local analysis - that is, to analyze a localized area of a larger signal.

Consider a sinusoidal signal with a small discontinuity - one so tiny as to be barely visible. Such a signal easily could be generated in the real world, perhaps by a power fluctuation or a noisy switch.

A plot of the Fourier coefficients (as provided by the fft command) of this signal shows nothing particularly interesting: a flat spectrum with two peaks representing a single frequency. However, a plot of wavelet coefficients clearly shows the exact location in time of the discontinuity.

Fourier Coefficients

Wavelet Coefficients

Wavelet analysis is capable of revealing aspects of data that other signal analysis techniques miss, aspects like trends, breakdown points, discontinuities in higher derivatives, and self-similarity. Further, because it affords a different view of data than those presented by traditional techniques, wavelet analysis can often compress or de-noise a signal without appreciable degradation.

Indeed, in their brief history within the signal processing field, wavel ets have already proven themselves to be an indispensable addition to the analyst's col lection of tools and continue to enjoy a burgeoning popularity today.

What is Wavelet Analysis?

Now that we know some situations when wavelet analysis is useful, it is worthwhile asking the questions "What is wavelet analysis?" and even more fundamentally, "What is a wavelet?"

A wavelet is a waveform of effectively limited duration that has an average value of zero.

Compare wavel ets with sine waves, which are the basis of Fourier analysis. Sinusoids do not have limited duration - they extend from minus to plus infinity. And where sinusoids are smooth and predictable, wavelets tend to be irregular and asymmetric.

Sine Wave

Wavelet (db10)

Fourier analysis consists of breaking up a signal into sine waves of various frequencies. Similarly, wavel et analysis is the breaking up of a signal into shifted and scaled versions of the original (or mother) wavelet.

J ust looking at pictures of wavelets and sine waves, you can see intuitively that signals with sharp changes might be better analyzed with an irregular wavelet than with a smooth sinusoid, just as some foods are better handled with a fork than a spoon.
It also makes sense that local features can be described better with wavelets, which have local extent.

Number of Dimensions

Thus far, we've discussed only one-dimensional data, which encompasses most ordinary signals. However, wavelet analysis can be applied to two-dimensional data - images; and, in principle, to higher-dimensional data.

This tool box uses only one- and two-dimensional analysis techniques.

The Continuous Wavelet Transform

Mathematically, the process of F ourier analysis is represented by the Fourier transform:

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t
$$

which is the sum over all time of the signal $f(t)$ multiplied by a complex exponential. (Recall that a complex exponential can be broken down into real and imaginary sinusoidal components.)

The results of the transform are the F ourier coefficients $F(\omega)$, which when multiplied by a sinusoid of appropriate frequency ω, yield the constituent sinusoidal components of the original signal. Graphically, the process looks like:

Signal
Similarly, the continuous wavel et transform (CWT) is defined as the sum over all time of the signal multiplied by scaled, shifted versions of the wavelet function ψ :

$$
C(\text { scale, position })=\int_{-\infty}^{\infty} f(t) \psi(\text { scale, position, } t) d t
$$

The result of the CWT are many wavelet coefficients C, which are a function of scale and position.

Multiplying each coefficient by the appropriately scaled and shifted wavelet yields the constituent wavelets of the original signal:

Scaling

We've already alluded to the fact that wavelet analysis produces a time-scale view of a signal, and now we're talking about scaling and shifting wavelets. What exactly do we mean by scale in this context?
Scaling a wavelet simply means stretching (or compressing) it.
To go beyond colloquial descriptions such as "stretching," we introduce the scalefactor, often denoted by the letter a. If we're talking about sinusoids, for example, the effect of the scale factor is very easy to see:

$$
\begin{array}{ll}
f(t)=\sin (t) \quad ; \quad a=1 \\
f(t)=\sin (2 t) \quad ; a=\frac{1}{2} \\
f(t)=\sin (4 t) \quad ; a=\frac{1}{4}
\end{array}
$$

The scale factor works exactly the same with wavelets. The smaller the scale factor, the more "compressed" the wavelet.

$$
\begin{array}{ll}
f(t)=\psi(t) \quad ; \quad a=1 \\
f(t)=\psi(2 t) \quad ; \quad a=\frac{1}{2} \\
f(t)=\psi(4 t) \quad ; \quad a=\frac{1}{4}
\end{array}
$$

It is clear from the diagrams that, for a sinusoid $\sin (\omega t)$, the scale factor a is rel ated (inversely) to the radian frequency ω. Similarly, with wavelet analysis, the scale is related tothe frequency of the signal. We'll return to this topic later.

Shifting

Shifting a wavelet simply means delaying (or hastening) its onset. Mathematically, delaying a function $f(t)$ by k is represented by $f(t-k)$:

Wavelet function $\psi(t)$

Shifted wavelet function $\psi(t-k)$

Five Easy Steps to a Continuous Wavelet Transform
The continuous wavelet transform is the sum over all time of the signal multiplied by scaled, shifted versions of the wavelet. This process produces wavel et coefficients that are a function of scale and position.

It's really a very simple process. In fact, here are the five steps of an easy recipe for creating a CWT:

1 Take a wavelet and compare it to a section at the start of the original signal.
2 Calculate a number, C, that represents how closely correl ated the wavelet is with this section of the signal. The higher C is, the more the similarity. N ote that the results will depend on the shape of the wavelet you choose.

3 Shift the wavelet to the right and repeat steps 1 and 2 until you've covered the wholesignal.

4 Scale (stretch) the wavelet and repeat steps 1 through 3.

5 Repeat steps 1 through 4 for all scales.

When you're done, you'll have the coefficients produced at different scales by different sections of the signal. The coefficients constitute the results of a regression of the original signal performed on the wavelets.

How to make sense of all these coefficients? Y ou could makea plot on which the x-axis represents position along the signal (time), the y-axis represents scale, and the col or at each $x-y$ point represents the magnitude of the wavel et coefficient C . These are the coefficient plots generated by the graphical tools.

These coefficient plots resemble a bumpy surface viewed from above. If you could look at the same surface from the side, you might see something like this:

The continuous wavelet transform coefficient plots are precisely the time-scale view of thesignal we referred to earlier. It is a different view of signal data than the time-frequency Fourier view, but it is not unrelated.

Scale and Frequency

Notice that the scales in the coefficients plot (shown as y-axis labels) run from 1 to 31. Recall that the higher scales correspond to the most "stretched" wavel ets. The more stretched the wavelet, the longer the portion of the signal with which it is being compared, and thus the coarser the signal features being measured by the wavelet coefficients.

Low scale
Signal
Wavelet revealed by wavelet analysis:

- Low scale a \Rightarrow Compressed wavel et \Rightarrow Rapidly changing details \Rightarrow High frequency ω.
- High scalea \Rightarrow Stretched wavelet \Rightarrow Slowly changing, coarsefeatures \Rightarrow Low frequency ω.

The Scale of Nature

It's important to understand that the fact that wavel et analysis does not produce a time-frequency view of a signal is not a weakness but a strength of the technique.

Not only is time-scale a different way to view data, it is a very natural way to view data deriving from a great number of natural phenomena.

Consider a lunar landscape, whose ragged surface (simulated below) is a result of centuries of bombardment by meteorites whose sizes range from gigantic boulders to dust specks.

If we think of this surface in cross-section as a one-dimensional signal, then it is reasonable to think of the signal as having components of different scales large features carved by the impacts of large meteorites, and finer features abraded by small meteorites.

Here is a case where thinking in terms of scale makes much more sense than thinking in terms of frequency. Inspection of the CWT coefficients plot for this signal reveals patterns among scales and shows the signal's possibly fractal nature.

Even though this signal is artificial, many natural phenomena - from the intricate branching of blood vessels and trees, to the jagged surfaces of mountains and fractured metals - lend themselves to an analysis of scale.

What's Continuous About the Continuous Wavelet Transform?

Any signal processing performed on a computer using real-world data must be performed on a discrete signal - that is, on a signal that has been measured at discrete time intervals. It is important to remember that the continuous wavelet transform is also operating in discrete time. So what exactly is "continuous" about it?

What's "continuous" about the CWT, and what distinguishes it from the discrete wavel et transform (to be discussed in the following section), are the scales at which it operates.
Unlike the discrete wavelet transform, the CWT can operate at every scale, from that of the original signal up to some maximum scale which you determine by trading off your need for detailed analysis with available computational horsepower.

The CWT is also continuous in terms of shifting: during computation, the analyzing wavel et is shifted smoothly over the full domain of the analyzed function.

The Discrete Wavelet Transform

Calculating wavel et coefficients at every possible scale is a fair amount of work, and it generates an awful lot of data. What if we choose only a subset of scales and positions at which to make our calculations?

It turns out, rather remarkably, that if we choose scales and positions based on powers of two - so-called dyadic scales and positions - then our analysis will be much more efficient and just as accurate. We obtain just such an analysis from the discrete wavel et transform (DWT).

An efficient way to implement this scheme using filters was developed in 1988 by Mallat (see [Mal89]). The Mallat algorithm is in fact a classical scheme known in the signal processing community as a two-channel subband coder (see p. 1 of the book Wavelets and Filter Banks, by Strang and Nguyen).

This very practical filtering algorithm yields a fast wavelet transform - a box into which a signal passes, and out of which wavelet coefficients quickly emerge. Let's examine this in more depth.

One-Stage Filtering: Approximations and Details

For many signals, the low-frequency content is the most important part. It is what gives the signal its identity. The high-frequency content, on the other hand, imparts flavor or nuance. Consider the human voice. If you remove the high-frequency components, the voice sounds different, but you can still tell what's being said. However, if you remove enough of the low-frequency components, you hear gibberish.

It is for this reason that, in wavelet analysis, we often speak of approximations and details.

The approximations are the high-scale, low-frequency components of the signal. The details are the low-scale, high-frequency components. The filtering process, at its most basic level, looks like this:

The original signal, s, passes through two complementary filters and emerges as two signals.

Unfortunately, if we actually perform this operation on a real digital signal, we wind up with twice as much data as we started with. Suppose, for instance, that the original signal S consists of 1000 samples of data. Then the approximation and the detail will each have 1000 samples, for a total of 2000.
To correct this problem, we introduce the notion of downsampling. This simply means throwing away every second data point. While doing this introduces aliasing (a type of error, see p. 91 of the book Wavelets and Filter Banks, by Strang and Nguyen) in the signal components, it turns out we can account for this later on in the process.

The process on the right, which includes downsampling, produces DWT coefficients.

To gain a better appreciation of this process, let's perform a one-stage discrete wavelet transform of a signal. Our signal will be a pure sinusoid with high-frequency noise added to it.

Here is our schematic diagram with real signals inserted into it:

~ 500 DWT coefficients
The MATLAB code needed to generates, cD, and cA is:

```
s = si n(20.*I i nspace( 0, pi,1000) ) + 0. 5. *rand( 1, 1000);
[cA,cD] = dwt(s,'db2');
```

where db2 is the name of the wavelet we want to use for the analysis.
Noticethat the detail coefficients cDconsist mainly of thehigh-frequency noise, while the approximation coefficients cA contain much less noise than does the original signal.

```
» [ I engt h(cA) I engt h(cD) ]
ans =
    5 0 1 5 0 1
```

You may observe that the actual lengths of the detail and approximation coefficient vectors are slightly more than half the length of the original signal. This has to do with the filtering process, which is implemented by convolving the signal with a filter. The convolution "smears" the signal, introducing several extra samples into the result.

Multiple-Level Decomposition

The decomposition process can be iterated, with successive approximations being decomposed in turn, so that one signal is broken down into many lower-resolution components. This is called the wavel et decomposition tree.

Looking at a signal's wavelet decomposition tree can yield valuable information.

Number of Levels

Since the analysis process is iterative, in theory it can be continued indefinitely. In reality, the decomposition can proceed only until the individual details consist of a single sample or pixel. In practice, you'll select a suitable number of levels based on the nature of the signal, or on a suitable criterion such as entropy (see Chapter 6 for details).

Wavelet Reconstruction

We've learned how the discrete wavel et transform can be used to analyze, or decompose, signals and images. The other half of the story is how those components can be assembled back into the original signal with no loss of information. This process is called reconstruction, or synthesis. The mathematical manipulation that effects synthesis is called the inverse di screte wavelet transform (IDWT).

To synthesize a signal in our tool box, we reconstruct it from the wavelet coefficients:

Where wavelet analysis involves filtering and downsampling, the wavelet reconstruction process consists of upsampling and filtering. Upsampling is the process of lengthening a signal component by inserting zeros between samples:

Signal component

Upsampled signal component

The wavelet toolbox includes commands, like idwt and waver ec, that perform one-level or multi-level reconstruction, respectively, on the components of one-dimensional signals. These commands have their two-dimensional analogues, i dwt 2 and waverec2.

Reconstruction Filters

The filtering part of the reconstruction process also bears some discussion, because it is the choice of filters that is crucial in achieving perfect reconstruction of the original signal.

That perfect reconstruction is even possible is noteworthy. Recall that the downsampling of the signal components performed during the decomposition phase introduces a distortion called aliasing. It turns out that by carefully choosing filters for the decomposition and reconstruction phases that are closely related (but not identical), we can "cancel out" the effects of aliasing. This was the breakthrough made possible by the work of Ingrid Daubechies.

A technical discussion of how to design these filters can be found in p. 347 of the book Wavelets and Filter Banks, by Strang and Nguyen. The low- and highpass decomposition filters (L and H), together with their associated reconstruction filters (L^{\prime} and H^{\prime}), form a system of what are called quadrature mirror filters:

Decomposition Reconstruction

Reconstructing Approximations and Details

We have seen that it is possible to reconstruct our original signal from the coefficients of the approximations and details.

It is also possible to reconstruct the approximations and details themselves from their coefficient vectors. As an example, let's consider how we would reconstruct the first-level approximation A1 from the coefficient vector cA1.

We pass the coefficient vector cA1 through the same process we used to reconstruct the original signal. However, instead of combining it with the level-one detail cD1, we feed in a vector of zeros in place of the details:

The process yields a reconstructed approximation A1, which has the same length as the original signal S and which is a real approximation of it.

Similarly, we can reconstruct the first-level detail D1, using the anal ogous process:

The reconstructed details and approximations are true constituents of the original signal. In fact, we find when we combine them that:

$$
A_{1}+D_{1}=S
$$

N ote that the coefficient vectors cA1 and cD1 - because they were produced by downsampling, contain aliasing distortion, and are only half the length of the original signal - cannot directly be combined to reproduce the signal. It is necessary to reconstruct the approximations and details before combining them.

Extending this technique to the components of a multi-level analysis, we find that similar relationships hold for all the reconstructed signal constituents. That is, there are several ways to reassemble the original signal:

Reconstructed

Signal Components

$$
\begin{aligned}
S & =A_{1}+D_{1} \\
& =A_{2}+D_{2}+D_{1} \\
& =A_{3}+D_{3}+D_{2}+D_{1}
\end{aligned}
$$

Relationship of Filters to Wavelet Shapes

In the section "Reconstruction Filters" on page 1-21, we spoke of the importance of choosing the right filters. In fact, the choice of filters not only determines whether perfect reconstruction is possible, it also determines the shape of the wavelet we use to perform the analysis.
In fact, to construct a wavelet of some practical utility, you sel dom start by drawing a waveform. Instead, it usually makes more sense to design the appropriate quadrature mirror filters and then use them to create the waveform. Let's see how this is done by focusing on an example.

Consider the lowpass reconstruction filter (L') for the db2 wavelet.

db2 wavelet

The filter coefficients can be obtained from the dbaux command:

```
# Lprime = dbaux(2)
Lprime =
```

0. 3415
1. 5915
2. 1585
-0.0915

If we reverse the order of this vector (see wr ev), and then multiply every second sample by -1 , we obtain the highpass filter H^{\prime} :
Hprime =
-0. 0915
-0. 1585
0. 5915
-0. 3415

Next, upsample Hpri me by two (see dyadup), inserting zeros in alternate positions:
HU =

$$
\begin{array}{llllllll}
-0.0915 & 0 & -0.1585 & 0 & 0.5915 & 0 & -0.3415 & 0
\end{array}
$$

Finally, convolve the upsampled vector with the original lowpass filter:

```
H2 = conv( HU, Lprime);
pl ot (H2)
```


If we iterate this process several more times, repeatedly upsampling and convolving the resultant vector with the four-element filter vector Lpri me, a pattern begins to emerge:

The curve begins to look progressively more like the db2 wavelet. This means that the wavelet's shape is determined entirely by the coefficients of the reconstruction filters.

This relationship has profound implications. It means that you cannot choose just any shape, call it a wavelet, and perform an analysis. At least, you can't choose an arbitrary wavel et waveform if you want to be able to reconstruct the original signal accurately. You are compelled to choose a shape determined by quadrature mirror decomposition filters.

The Scaling Function

We've seen the interrelation of wavelets and quadrature mirror filters. The wavelet function ψ is determined by the highpass filter, which also produces the details of the wavelet decomposition.

There is an additional function associated with some but not all wavelets. This is the so-called scaling function, ϕ. The scaling function is very similar to the wavelet function. It is determined by the lowpass quadrature mirror filters, and thus is associated with the approximations of the wavelet decomposition.

In the same way that iteratively upsampling and convol ving the highpass filter produces a shape approximating the wavelet function, iteratively upsampling and convolving the lowpass filter produces a shape approximating the scaling function.

Multistep Decomposition and Reconstruction

A multistep analysis-synthesis process can be represented as:

This process involves three aspects: breaking up a signal to obtain the wavelet coefficients, modifying the wavelet coefficients, and reassembling the signal from the coefficients.

We've already discussed decomposition and reconstruction at some length. Of course, there is no point breaking up a signal merely to have the satisfaction of immediately reconstructing it. We perform wavelet analysis because the coefficients thus obtained have many known uses, de-noising and compression being foremost among them.

But wavelet analysis is still a new and emerging field. M any uncharted uses of the wavelet coefficients no doubt lie in wait. The Wavelet Tool box can be a means of exploring possibleuses and hitherto unknown applications of wavel et analysis. Explore the tool box functions and see what you di scover.

Wavelet Packet Analysis

The wavel et packet method is a generalization of wavelet decomposition that offers a richer range of possibilities for signal analysis.

In wavelet analysis, a signal is split into an approximation and a detail. The approximation is then itself split into a second-level approximation and detail, and the process is repeated. For an n-level decomposition, there are $\mathrm{n}+1$ possible ways to decompose or encode the signal.

$$
\begin{aligned}
S & =A_{1}+D_{1} \\
& =A_{2}+D_{2}+D_{1} \\
& =A_{3}+D_{3}+D_{2}+D_{1}
\end{aligned}
$$

In wavelet packet analysis, the details as well as the approximations can be split. This yields $2^{\text {n }}$ different ways to encode the signal. This is the wavelet packet decomposition tree:

For instance, wavelet packet analysis allows the signal S to be represented as A1 + AAD3 + DAD3 + DD2. This is an example of a representation that is not possible with ordinary wavelet analysis.

Choosing one out of all these possible encodings presents an interesting problem. In this tool box, we use an entropy-based criterion to select the most suitable decomposition of a given signal. This means we look at each node of the decomposition tree and quantify the information to be gained by performing each split.

Simple and efficient al gorithms exist for both wavelet packet decomposition and optimal decomposition selection. This tool box uses an adaptive filtering algorithm, based on work by Coifman and Wickerhauser, with direct applications in optimal signal coding and data compression.

Such algorithms allow the Wavelet Packet 1-D and Wavelet Packet 2-D tools to include "Best Level" and "Best Tree" features that optimize the decomposition both globally and with respect to each node.

History of Wavelets

From an historical point of view, wavelet analysis is a new method, though its mathematical underpinnings date back to the work of J oseph F ourier in the nineteenth century. F ourier laid thefoundations with his theories of frequency analysis, which proved to be enormously important and influential.

The attention of researchers gradually turned from frequency-based analysis to scale-based analysis when it started to become clear that an approach measuring averagefluctuations at different scales might proveless sensitive to noise.

The first recorded mention of the term "wavelet" was in 1909, in a thesis by Alfred Haar.

The concept of wavelets in its present theoretical form was first proposed by J ean Morlet and the team at the Marseille Theoretical Physics Center working under Alex Grossmann in France.

The methods of wavel et analysis have been developed mainly by Y. Meyer and his colleagues, who have ensured the methods' dissemination. The main al gorithm dates back to the work of Stephane Mallat in 1988. Since then, research on wavelets has become international. Such research is particularly active in the U nited States, where it is spearheaded by the work of scientists such as Ingrid Daubechies, Ronald Coifman, and Victor Wickerhauser.

An Introduction to the Wavelet Families

Several families of wavelets that have proven to be especially useful are included in this tool box. What follows is an introduction to these wavelet families. To explore wavelet families on your own, check out the Wavelet Display tool:

1 Type wavemenu from the MATLAB command line. The Wavelet Tool box Main Menu appears.

2 Click on the Wavelet Display menu item. The Wavelet Display tool appears.

3 Select a family from the Wavelet menu at the top right of the tool.
4 Click the Display button. Pictures of the wavelets and their associated filters appear.

5 Obtain more information by clicking on the information buttons located at the right.

Haar

Any discussion of wavelets begins with Haar, the first and simplest. Haar is discontinuous, and resembles a step function. It represents the same wavelet as Daubechies db1. See "Haar" on page 64 for more detail.

Daubechies

Ingrid Daubechies, one of the brightest stars in the world of wavelet research, invented what are called compactly-supported orthonormal wavelets - thus making discrete wavelet analysis practicable.

The names of the Daubechies family wavelets are written dbN, where N is the order, and db the "surname" of the wavelet. The db1 wavelet, as mentioned above, is the same as Haar. Here are the next nine members of the family:

You can obtain a survey of the main properties of this family by typing wavei nf o(' db') from the MATLAB command line. See "Daubechies Wavelets: dbN " on page 6-63 for more detail.

Biorthogonal

This family of wavelets exhibits the property of linear phase, which is needed for signal and image reconstruction. By using two wavelets, one for decomposition and the other for reconstruction instead of the same single one, interesting properties are derived.

bior1.3

bior2. 2

bior3.5

bior3.9

bior1.5

bior2.4

bior2.8

bior3.7

bior4.4

bior6. 8

You can obtain a survey of the main properties of this family by typing wavei nf o(' bi or') from the MATLAB command line. See "Biorthogonal Wavelet Pairs: biorNr.Nd" on page 6-67 for more detail.

Coiflets

Built by I. Daubechies at the request of R. Coifman. The wavelet function has $2 N$ moments equal to 0 and the scaling function has $2 N-1$ moments equal to 0 . The two functions have a support of length $6 N-1$. Y ou can obtain a survey of the main properties of this family by typing wavei nf o(' coif') from the MATLAB command line. See "Coiflet Wavel ets: coifN" on page 6-66 for more detail.

coif1

coif2

coif3

coif4

coif5

Symlets

The symlets are nearly symmetrical wavelets proposed by Daubechies as modifications to the db family. The properties of the two wavelet families are similar.

sym2

sym3

sym4

sym5

sym6

sym7

sym8

You can obtain a survey of the main properties of this family by typing navei nf o('sym) from the MATLAB command line. See "Symlet Wavelets: symN" on page 6-65 for more detail.

Morlet

This wavelet has no scaling function, but is explicit.

You can obtain a survey of the main properties of this family by typing wavei nf o(' norl') from the MATLAB command line. See "Morlet Wavelet: morl" on page 6-72 for more detail.

Mexican Hat

This wavelet has no scaling function and is derived from a function that is proportional to the second derivative function of the Gaussian probability density function.

You can obtain a survey of the main properties of this family by typing wavei nf o(' mexh') from the MATLAB command line. See "Mexican Hat Wavelet: mexh" on page 6-71 for more information.

Meyer

The Meyer wavelet and scaling function are defined in the frequency domain.

You can obtain a survey of the main properties of this family by typing wavei nf o(' meyer') from the MATLAB command line. See "M eyer Wavelet: meyr" on page 6-69 for more detail.

1 W avelets: A N ew Tool for Signal Analysis

Using Wavelets

2-3 Continuous Wavelet Analysis (One-Dimensional)
2-3 Continuous Analysis Using the Command Line
2-7 Continuous Analysis Using the Graphical Interface
2-11 Importing and Exporting I nformation from the Graphical Interface

2-13 One-Dimensional Discrete Wavelet Analysis

2-15 One-Dimensional Analysis Using the Command Line
2-22 One-Dimensional Analysis Using the Graphical Interface
2-38 Importing and Exporting I nformation from the Graphical Interface

2-43 Two-Dimensional Discrete Wavelet Analysis

2-44 Two-Dimensional Analysis Using the Command Line
2-52 Two-Dimensional Analysis U sing the Graphical Interface
2-59 Importing and Exporting I nformation from the Graphical Interface
2-66 Working with Indexed I mages
2-66 Understanding I mages in MATLAB
2-66 Indexed I mages
2-68 Wavelet Decomposition of Indexed Images

The Wavelet Tool box contains graphical tools and command line functions that let you:

- Examine and explore characteristics of individual wavel ets and wavelet packet.
- Examine statistics of signals and signal components.
- Perform a continuous wavelet transform of a onedimensional signal.
- Perform discrete analysis and synthesis of one and two-dimensional signals.
- Perform wavelet packet analysis of one- and two-dimensional signals.
- Compress and remove noise from signals and images.

In addition to the above, the tool box makes it easy to customize the presentation and visualization of your data. You choose:

- Which signals to display
- A region of interest to magnify
- A coloring scheme for display of wavelet coefficient details

This chapter takes you step-by-step through examples that teach you how to use the graphical tools and command line functions. These examples include:

- Continuous Wavelet Analysis (One-Dimensional)
- OneDimensional Discrete Wavelet Analysis
- Two-Dimensional Discrete Wavelet Analysis

Chapter 5 describes using the tool box to perform wavelet packet analysis.

Continuous Wavelet Analysis (One-Dimensional)

This section takes you through the features of continuous wavel et analysis using the MATLAB Wavelet Tool box.

The Wavelet Toolbox requires only one function for continuous wavelet analysis: cut. Y ou'll find full information about this function in the Command Reference (Chapter 8).

In this section, you'll learn how to:

- Load a signal
- Perform a continuous wavelet transform of a signal
- Produce a plot of the coefficients
- Zoom in on detail
- Display coefficients in normal or absolute mode
- Choose the scales at which analysis is performed

Since you can perform analyses either from the command line or using the graphical interface tools, this section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient information between the disk and the graphical tools.

Continuous Analysis Using the Command Line

This example involves a noisy sinusoidal signal.

Loading a Signal.

1 From the MATLAB prompt, type:
» I oad noi ssi n;
You now have the signal noi ssi n in your workspace:
» whos

Name	Size	El ements	Bytes	Cl ass
noi ssin	1 by 1000	1000	8000	doubl e array

Performing a Continuous Wavelet Transform.

2 Use the cut command. Type:
» c = cut(noi ssi n, 1: 48, ' db4');
The arguments to cut specify the signal to be analyzed, the scales of the analysis, and the wavelet to be used. The returned argument c contains the coefficients at various scales. In this case, c is a 48-by-1000 matrix, each row of which corresponds to a single scale.

Plotting the Coefficients. The cut command accepts a fourth argument. This is a flag that, when present, causes cwt to produce a plot of the absolute values of the continuous wavelet transform coefficients.

3 Type

» c = cwt(noi ssi n, 1: 48, ' db4', ' pl ot');
A plot appears:

Of course, coefficient plots generated from the command line can be manipulated using ordinary MATLAB graphics commands. The col ormap for the picture above was changed to pink from the default cool by typing:
» col or map(pi nk)

Choosing Scales for the Analysis. The second argument to cut gives you fine control over the scale levels on which the continuous analysis is performed. In the previous example, we used all scales from 1 to 48, but you can construct any scale vector subject to these constraints:

- All scales must be real positive numbers.
- The initial scale must be positive.
- The scale increment must be positive.
- The highest scale cannot exceed a signal-dependent maximum.

4 Let's repeat the analysis using every other scale from 2 to 128.
Type:

```
» c = cut(noi ssi n, 2: 2: 128,' db4',' pl ot ' );
```

A new plot appears:

This plot gives a clearer picture of what's happening with the signal, highlighting the periodicity.

Continuous Analysis Using the Graphical Interface

We now use the Continuous Wavelet 1-D tool to analyze the same noisy sinusoidal signal we examined using the command line interface in the previous section.

Starting the Continuous Wavelet 1-D Tool.
1 From the MATLAB prompt, type wavemenu.
The Wavelet Toolbox Main Menu appears.

QWavelet Toolbox ... $-\mathbf{a} \boldsymbol{x}$
Wavelet 1-D
Wavelet 2-D
Wavelet Display
Wavelet Packet 1-D
Wavelet Packet 2-D
Wavelet Packet Display
Continuous Wavelet 1-D
Close

2 Click the Continuous Wavelet 1-D menu item.
The continuous wavelet analysis tool for one-dimensional signal data appears:

Loading a Signal.

3 Choose the File \Rightarrow Load Signal menu option.
4 When the Load Signal dialog box appears, select the demo MAT-file noi ssi n. mat, which should reside in the MATLAB directory tool box/ wavel et/ wavedemo. Click the OK button.

The noisy sinusoidal signal is loaded into the Continuous Wavelet 1-D tool.

Performing a Continuous Wavelet Transform.

To start our analysis, let's perform an analysis using the db4 wavelet at scales 1 through 48 , just as we did using command line functions in the previous section.

5 In the upper right portion of the Continuous Wavelet 1-D tool, select the db4 wavel et and scale levels 1-48.

6 Click the Analyze button.

After a pause for computation, the tool displays the coefficients plot.

Zooming in on Detail.

7 Drag a rubber band box (by hol ding down the left mouse button) over the portion of the signal you want to magnify.

8 Click the X+button (located at the bottom of the screen) to zoom horizontally only.

Zoom	X+	Y+	XY+	Center On	X	Position	$\begin{aligned} & X= \\ & Y= \end{aligned}$	History	<-	\rightarrow
	X-	Y -	$X Y$ -		Y					8

The Continuous Wavelet 1-D tool enlarges the displayed signal and coefficients plot.

As with the command line analysis on the preceding pages, you can change the scales or the analyzing wavelet and repeat the analysis. To do this, just edit the necessary fields and press the Analyze button.

View ing Normal or Absolute Coefficients. The Continuous Wavelet 1-D tool allows you to plot either the absolute values of the wavelet coefficients, or the coefficients themselves.

9 Choose either Absolute Mode or Normal Mode from the Coloration Mode menu, located just above the Analyze button. In normal mode, the col ors are scal ed between the minimum and maximum of the coefficients. In absolute mode, the colors are scaled between zero and the maximum absolute value of the coefficients (for more details on the Coloration Mode, (See "Continuous Wavelet Tool Features" on page A-1).

The coefficients plot is redisplayed in the mode you select.

Absolute Mode

Normal Mode

Importing and Exporting Information from the Graphical Interface

The Continuous Wavelet 1-D graphical interface tool lets you import information from and export information to your disk.

You can:

- Load signals from your disk into the Continuous Wavelet 1-D tool.
- Save wavelet coefficients from the Continuous Wavelet 1-D tool into your disk.

Loading Signals into the Continuous Wavelet 1-D Tool

To load a signal you've constructed in your M ATLAB workspace into the Continuous Wavelet 1-D tool, save the signal in a MAT-file that has the same name as the signal variable itself.

For instance, suppose you've designed a signal called warma and want to analyze it in the Continuous Wavelet 1-D tool.

[^0]The workspace variable war mast be a vector.

```
# si zwarma = size( warmm)
sizwarma =
    1000
```

To load this signal into the Continuous Wavelet 1-D tool, use the menu option File \Rightarrow Load Signal.

A dialog box appears that lets you select the appropriate M AT-file to be loaded.

Saving Wavelet Coefficients

The Continuous Wavel et 1-D tool lets you save wavel et coefficients to your disk. The tool box creates a MAT-filein the current directory with the extension wel and a name you give it.

To save the continuous wavelet coefficients from the present analysis, use the menu option File \Rightarrow Save Coefficients.

A dialog box appears that lets you specify a directory and filename for storing the coefficients.

Consider the demo analysis:

File \Rightarrow Demo Analysis \Rightarrow with haar at scales [1:1:64] --> Cantor curve.

After saving the continuous wavelet coefficients to the file cant or . wc1, load the variables into your workspace.

```
> | oad cantor.wc1 -mat
```

» whos

Name	Size	El ements	Bytes	Cl ass
coefs	64 by 2188	140032	1120256	doubl e array
scal es	1 by 64	64	512	doubl e array

Variables coefs and scal es contain the continuous wavelet coefficients and the associated scales. M ore precisely, in the above example coef s is a 64 -by- 2188 matrix, one row for each scale, and scal es is the 1-by-64 vector 1: 64.

One-Dimensional Discrete Wavelet Analysis

This section takes you through the features of one-dimensional discrete wavelet analysis using the MATLAB Wavelet Tool box.

The Wavelet Toolbox provides these functions for one-dimensional signal analysis. F or more information, see the Command Reference (Chapter 8).

Analysis Decomposition Functions:

Function Name	Purpose
dwt	One-step decomposition
wavedec	Decomposition

Synthesis Reconstruction Functions:

Function Name	Purpose
i dwt	One-step reconstruction
waverec	Full reconstruction
wr coef	Selective reconstruction
upcoef	Single reconstruction

Decomposition Structure Utilities:Analysis Decomposition

Function Name	Purpose
det coef	Extraction of detail coefficients
appcoef	Extraction of approximation coefficients
upw ev	Recomposition of decomposition structure

Functions:

Function Name	Purpose
ddencmp	Provide default values for de-noising and compression
wdencmp	Wavelet de-noising and compression
wden	Automatic wavel et de-noising

In this section, you'll learn how to:

- Load a signal
- Perform a single-level wavelet decomposition of a signal
- Construct approximations and details from the coefficients
- Display the approximation and detail
- Regenerate a signal by inverse wavelet transform
- Perform a multi-level wavelet decomposition of a signal
- Extract approximation and detail coefficients
- Reconstruct the level 3 approximation
- Reconstruct the level 1, 2, and 3 details
- Display the results of a multi-level decomposition
- Reconstruct the original signal from the level 3 decomposition
- Remove noise from a signal
- Refine an analysis
- Compress a signal
- Show a signal's statistics and histograms

Since you can perform analyses either from the command line or using the graphical interface tools, this section has subsections covering each method.
The final subsection discusses how to exchange signal and coefficient information between the disk and the graphical tools.

One-Dimensional Analysis Using the Command Line

This example involves a real-world signal - electrical consumption measured over the course of three days. This signal is particularly interesting because of noise introduced when a defect developed in the monitoring equipment as the measurements were being made. Wavelet analysis effectively removes the noise.

Loading a Signal.

1 From the MATLAB prompt, type:
» I oad I el eccum
2 Set the variables. Type:
» s = I el eccum(1: 3920);
» $\mathrm{I} \mathrm{s}=\mathrm{l}$ engt $\mathrm{h}(\mathrm{s})$;

Performing A One-Step Wavelet Decomposition of a Signal.

3 Perform a one-step decomposition of the signal using the db1 wavelet. Type: » [cA1, cD1] = dwt(s,'db1');

This generates the coefficients of the level 1 approximation (cA1) and detail (cD1).

Constructing Approximations and Details from the Coefficients.

4 To construct the level 1 approximation and detail (A1 and D1) from the coefficients cA1 and cD1, type:
» A1 = upcoef('a', cA1, 'db1', 1, ls);
» D1 = upcoef('d', cD1, 'db1', 1, ls);

Displaying the Approximation and Detail.

5 To display the results of the level-one decomposition, type:
» subpl ot (1,2,1); pl ot(A1); title('Approxi mation A1')
» subpl ot(1,2,2); pl ot(D1); title('Detail D1')

Regenerating a Signal by Inverse Wavelet Transform.

6 To find the inverse transform, type:
» $A 0=i d w t\left(c A 1, c D 1, d b l^{\prime}, l s\right)$;

Performing a Multilevel Wavelet Decomposition of a Signal.

7 To perform a level 3 decomposition of the signal (again using the db1 wavelet), type:
» [C, L] = navedec(s, 3, ' db1');

The coefficients of all the components of a third-level decomposition (that is, the third-level approximation and the first three levels of detail) are returned concatenated into one vector, C. Vector L gives the lengths of each component.

Extracting Approximation and Detail Coefficients.

8 To extract the level 3 approximation coefficients from C, type:
» cA3 $=\operatorname{appcoef}\left(\mathrm{C}, \mathrm{L},{ }^{\prime} \mathrm{db1} 1^{\prime}, 3\right)$;
9 To extract the levels 3, 2, and 1 detail coefficients from C, type:
» cD3 $=\operatorname{det} \operatorname{coef}(\mathrm{C}, \mathrm{L}, 3)$;
» cD2 $=\operatorname{det} \operatorname{coef}(\mathrm{C}, \mathrm{L}, 2)$;
» cD1 $=\operatorname{det} \operatorname{coef}(\mathrm{C}, \mathrm{L}, 1)$;

Reconstructing the Level 3 Approximation.

10 To reconstruct the level 3 approximation from C, type:
» A3 = wrcoef('a', C, L, 'db1', 3);

Reconstructing the Level 1, 2, and 3 Details.

11 To reconstruct the details at levels 1, 2 and 3, from C, type:
» D1 = wrcoef('d', C, L, ' db1', 1);
» D2 = wrcoef('d', C, L, ' db1', 2);
» D3 = wr coef('d', C, L, 'db1', 3);

Displaying the Results of a Multilevel Decomposition.

12 To display the results of the level 3 decomposition, type:
» subpl ot (2, 2, 1) ; pl ot (A3); title('Approxi mation A3')
» subpl ot(2, 2, 2); pl ot(D1); title('Detail D1')
» subpl ot(2,2,3); pl ot(D2); title('Detail D2')
» subpl ot(2, 2, 4); plot(D3); title('Detail D3')

Reconstructing the Original Signal From the Level 3 Decomposition.

13 To reconstruct the original signal from the wavel et decomposition structure, type:
» AO = waverec(C, L, ' db1');

Crude De-noising of a Signal.

Using wavelets to remove noise from a signal requires identifying which component or components contain the noise and then reconstructing the signal without those components.
In this example, we note that successive approximations become less and less noisy as more and more high-frequency information is filtered out of the signal.

The level 3 approximation, A3, is quite clean as a comparison between it and the original signal shows.

14 To compare the approximation to the original signal, type:
» subpl ot ($2,1,1$) ; pl ot(s);title('Original'); axis of f
» subpl ot (2, 1, 2) ; pl ot (A3); title('Level 3 Approxi mation');
axis of f
Original

Level 3 Approximation

Of course, in discarding all the high-frequency information, we've also lost many of the original signal's sharpest features.
Optimal de-noising requires a more subtle approach called thresholding. This involves discarding only the portion of the details that exceeds a certain limit.

Removing Noise by Thresholding.

Let's look again at the details of our level 3 analysis.
15 To display the details D1, D2, and D3, type:

Detail Level 2

Detail Level 3

M ost of the noise occurs in the latter part of the signal, where the details show their greatest activity. What if we limited the strength of the details by restricting their maximum values? This would have the effect of cutting back the noise while leaving the details unaffected through most of their durations. But there's a better way.

Note that cD1, cD2, and cD3 are just MATLAB vectors, and we could directly manipulate each vector, setting each element to some fraction of the vectors' peak or average value. Then we could reconstruct new detail signals D1, D2, and D3 from the thresholded coefficients.

16 To de-noise the signal, use the ddencmp command to calculate the default parameters and the wdencmp command to perform the actual de-noising, type:

```
» [thr, sor h, keepapp] = ddencmp('den',' w'', s);
> cl ean = wdencmp('gbl',C, L,' db1', 3, thr, sorh, keepapp);
```

N ote that we pass in to wdencmp the results of the decomposition (C and L) we calculated in Step 7 on page 2-16. We also specify that we used the db1 wavelet to perform the original analysis, and we specify the global thresholding option ' gbl ' . See the ddencmp and wdencmp reference entries for more information about the use of these commands.

17 To display both the original and de-noised signals, type:
» subpl ot (2, 1, 1); pl ot (s(2000: 3920)); titl e(' Ori gi nal ')
» subpl ot (2, 1, 2) ; pl ot (cl ean(2000: 3920)) ; title(' De-noi sed')

We've plotted here only the noisy latter part of the signal. Notice how we've removed the noise without compromising the sharp detail of the original signal. This is a strength of wavelet analysis.

While using command line functions to remove the noise from a signal can be cumbersome, the Wavelet Toolbox graphical interface tool s include an easy-to-use de-noising feature that includes automatic thresholding.

One-Dimensional Analysis Using the Graphical Interface

In this section we explore the same electrical consumption signal as in the previous section, but we use the graphical interface tools to analyze the signal.

Starting the 1-D Wavelet Analysis Tool.
1 From the MATLAB prompt, type:
» wavemenu.
The Wavelet Toolbox Main Menu appears.

WWavelet Toolbox ... $-\quad$ a $\times \mid$
Wavelet 1-D
Wavelet 2-D
Wavelet Display
Wavelet Packet 1-D
Wavelet Packet 2-D
Wavelet Packet Display
Continuous Wavelet 1-D
Close

2 Click the Wavelet 1-D menu item.
The discrete wavelet analysis tool for one-dimensional signal data appears.

Loading a Signal.

3 From the File menu, choose the Load Signal option.

Whavelet 1-D
File Options Windows
Load Signal
Load Coefficients
Load Decomposition
Save Synthetized Signal
Save Coefficients
Save Decampasition
Demo Analysis
Print Settings
Print
Close

4 When the Load Signal dialog box appears, select the demo MAT-file I el eccum mat, which should reside in the MATLAB directory t ool box/ wavel et/ wavedemo. Click the OK button.

The electrical consumption signal is loaded into the Wavelet 1-D tool.

Performing A One-Step Wavelet Decomposition of a Signal.

To start our analysis, let's perform a single-level decomposition using the db1 wavelet, just as we did using command line functions in the previous section.

5 In the upper right portion of the Wavelet 1-D tool, select the db1 wavelet and single-level decomposition.
-可风

Signal	Ieleccum	
Wavelet	db - 1	
Level	1 -	
	Analyze	

6 Click the Analyze button.

After a pause for computation, the tool displays the decomposition.

Zooming in On Relevant Detail.

One advantage of using the graphical interface tools is that you can zoom in easily on any part of the signal and examine it in greater detail.

7 Drag a rubber band box (by holding down the left mouse button) over the portion of the signal you want to magnify. Here, we've sel ected the noisy part of the original signal.

8 Click the $\mathbf{X Y}+$ button (located at the bottom of the screen) to zoom both horizontally and vertically.

The Wavelet 1-D tool zooms all the displayed signals.

The other zoom controls do more or less what you'd expect them to. The X-button, for example, zooms out horizontally. The history function keeps track of all your views of the signal. Return to a previous zoom level by clicking the left arrow button.

Performing a Multi-Level Decomposition of a Signal.

Again, we'll use the graphical tools to emulate what we did in the previous section using command line functions. To perform a level 3 decomposition of the signal using the db1 wavelet:

9 Simply select " 3 " from the Level menu at the upper right, and then click the Analyze button again.

After the decomposition is performed, you'll see a new analysis appear in the Wavelet 1-D tool.

Selecting Different Views of the Decomposition.

The menu at the middle right lets you choose different views of the wavelet decomposition.

The default display mode is called "Full Decomposition Mode." Other alternatives include:

- "Separate M ode," which shows the details and the approximations in separate columns.
- "Superimpose M ode," which shows the details on a single plot superimposed in different colors. The approximations are plotted similarly.
- "Tree M ode," which shows the decomposition tree, the original signal, and one additional component of your choice. Click on the decomposition tree to select the signal component you'd like to view.
- "Show and Scroll M ode," which displays three windows. The first shows the original signal superimposed on an approximation you select. The second window shows a detail you select. The third window shows the wavelet coefficients.

Separate Mode

Tree Mode

Superimpose Mode

Show \& Scroll Mode

You can change the default display mode on a per-session basis. Select the desired mode from the Options \Rightarrow Default Display Mode submenu.

Depending on which display mode you select, you may have access to additional display options through the More Display Options button.
Display mode :
Show and Scroll
App. 4 Det.
More Display Options

These options include the ability to suppress the display of various components, and to choose whether or not to display the original signal along with the details and approximations.

Removing Noise From a Signal.

The graphical interface tools feature a de-noising option with automatic thresholding. This makes it very easy to remove noise from a signal.

10 Bring up the de-noising tool: click the De-noise button, located in the middle right of the window, underneath the Analyze button.

The Wavelet 1-D De-noising window appears.

While a number of options are available for fine-tuning the de-noising algorithm, we'll accept the defaults of soft thresholding and unscaled white noise.

11 Continue by clicking the De-noise button.
The de-noised signal appears superimposed on the original. The tool also plots the wavelet coefficients of both signals.

Zoom in on the plot of the original and de-noised signals for a closer look.

12 Drag a rubber band box around the pertinent area, then click the $\mathbf{X Y}+$ button.

The De-noise window magnifies your view. By default, the original signal is shown in red, and the de-noised signal in yellow.

13 Dismiss the Wavelet 1-D De-noising window: click the Close button.
You cannot have the De-noise and Compression windows open simultaneously, so close the Wavelet 1-D De-noising window to continue. When the Update Synthesized Signal dialog box appears, click No (if you click Yes, the Synthesized Signal is then available in the Wavelet 1-D main window).

Refining an Analysis.

The graphical tools make it easy to refine an analysis any time you want to. Up to now, we've looked at a level 3 analysis using db1. Let's refine our analysis of the electrical consumption signal using the db3 wavelet at level 5.

14 Select 5 from the Level menu at the upper right, and select the db3 wavelet. Click the Analyze button.

Compressing a Signal.

The graphical interface tools feature a compression option with automatic or manual thresholding.

15 Bring up the Compression window: click the Compress button, located in the middle right of the window, underneath the Analyze button.

The Compression window appears.

While you always have the option of choosing manual threshol ding, here we'll take advantage of the automatic thresholding feature for quick and easy compression.

Note: If you want to experiment with manual threshol ding, choose that option from the menu located at the top right of the Wavelet 1-D Compression window. The sliders located below this menu then control the level-dependent thresholds, indicated by yellow dotted lines running horizontally through the graphs on the left of the window.

16 Click the Compress button, located at the center right.
After a pause for computation, the electrical consumption signal is redisplayed in red with the compressed version superimposed in yellow. Below, we've zoomed in to get a closer look at the noisy part of the signal.

You can see that the compression process removed most of the noise, but preserved 99.74% of the energy of the signal. The automatic thresholding was very efficient, zeroing out all but 3.2% of the wavelet coefficients.

17 Dismiss the Wavelet 1-D Compression window: click the Close button. When the Update Synthesi zed Signal dialog box appears, click No.

Show ing Statistics.

You can view a variety of statistics about your signal and its components.
18 From the Wavelet 1-D tool, click the Statistics button.

The Wavelet 1-D Statistics window appears.

19 Select the signal or signal component whose statistics you want to examine. Click on the appropriate radio button, then press the Show Statistics button. Here, we've chosen to examine the original signal:

Displayed statistics include measures of tendency (mean, mode, median) and dispersion (range, standard deviation).

In addition, the tool provides frequency-distribution diagrams (histograms and cumulative histograms). Y ou can plot these histograms separately using the Histograms button from the Wavelets 1-D window.

20 Select the Approximation radio button. A menu appears from which you choose the level of the approximation you want to examine.

```
Original signal
```

Synthesized signal

- Approximation

Detail
Approximation at
Level 1 -

Coeeficients

- Reconstructed

21 Select Level 1 and again click the Show Statistics button.
Statistics appear for the level 1 approximation.

Importing and Exporting Information from the Graphical Interface

The Wavelet 1-D graphical interface tool lets you import information from and export information to your disk.

Saving Information to the Disk

You can save synthesized signals, coefficients, and decompositions from the Wavelet 1-D tool to the disk, where the information can be manipulated and later reimported into the graphical tool.

Saving Synthesized Signals.

You can process a signal in the Wavelet 1-D tool and then save the processed signal to a MAT-file.

For example, load the demo analysis: File \Rightarrow Demo Analysis \Rightarrow with db3 at level 5 --> Sum of sines, and perform a compression or de-noising operation on the original signal. When you close the De-noise or Wavelet 1-D
Compression window, update the synthesized signal by clicking Yes in the dialog box.

Then, from the Wavelet 1-D tool, select the File \Rightarrow Save Synthesized Signal menu option.

A dialog box appears allowing you to select a directory and filename for the MAT-file. For this example, choose the name synt hsi g.

To load the signal into your workspace, simply type:

```
» I oad synthsi g
» whos
```

Name	Size	El ements	Bytes	Cl ass
synthsig	1 by 1000	1000	8000	doubl e array

Saving Discrete Wavelet Transform Coefficients.

The Wavelet 1-D tool lets you save the coefficients of a discrete wavelet transform (DWT) to your disk. The toolbox creates a MAT-file in the current directory with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option File \Rightarrow Save Coefficients.

A dialog box appears that lets you specify a directory and filename for storing the coefficients.

Consider the demo analysis:
File \Rightarrow Demo Analysis \Rightarrow with db1 at level $5 \rightarrow$ Cantor curve.
After saving the wavel et coefficients to the file cant or . mat, load the variables into your workspace.
» I oad cantor
» whos

Name	Si ze	El ements	Bytes	Cl ass
coefs	1 by 2190	2190	17520	doubl e array
l ongs	1 by 7	7	56	doubl e array

Variablecoef s contains the discrete wavel et coefficients. M ore precisely, in the above example coefs is a 1-by-2190 vector of concatenated coefficients, and I ongs is a vector giving the lengths of each component of coefs.

Saving Decompositions.

The Wavelet 1-D tool lets you save the entire set of data from a di screte wavelet analysis to your disk. The toolbox creates a MAT-file in the current directory with a name you choose, followed by the extension wal (wavelet analysis 1-D).

Open the Wavelet 1-D tool and load the demo analysis: File \Rightarrow Demo Analysis \Rightarrow with db3 at level $5 \rightarrow$ Sum of sines.

To save the data from this analysis, use the menu option: File \Rightarrow Save Decomposition.
A dialog box appears that lets you specify a directory and filename for storing the decomposition data. Type the name wdec ex.

After saving the decomposition data to the file wdecex1d. wa1, load the variables into your workspace.
» I oad wdecex1d. wal - mat
» whos

Name	Si ze	El ements	Bytes	Cl ass
coefs	1 by 1023	1023	8184	double array
data_name	1 by 8	8	64	double array
I ongs	1 by 64	64	512	double array
wave_name	1 by 3	3	24	double arr

Loading Information into the Wavelet 1-D Tool

You can load signals, coefficients, or decompositions into the graphical interface. The information you load may have been previously exported from the graphical interface and then mani pulated in the workspace, or it may have been information you generated initially from the command line.

In either case, you must observethestrict file formats and data structures used by the Wavelet 1-D tool, or else errors will result when you try to load information.

Loading Signals.

To load a signal you've constructed in your MATLAB workspace into the Wavelet 1-D tool, save the signal in a MAT-file that has the same name as the signal variable itself.
For instance, suppose you've designed a signal called war ma and want to analyze it in the Wavelet 1-D tool.

```
> save war na
```

The workspace variable war ma must be a vector.

```
# si zwarma = size( warma)
sizwarmm =
    1
    1000
```

To load this signal into the Wavelet 1-D tool, use the menu option File \Rightarrow Load Signal.
A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Loading Discrete Wavelet Transform Coefficients.

To load discrete wavelet transform coefficients into the Wavelet 1-D tool, you must first save the appropriate data in a MAT-file containing only the two variables coefs and longs.

Variable coef s must be a vector of DWT coefficients (concatenated for the various levels), and variable I ongs a vector specifying the length of each component of coef s as well as the length of the original signal.

After constructing or editing the appropriate data in your workspace, type: » save myfile

Use the File \Rightarrow Load Coefficients menu option from the Wavelet 1-D tool to load the data into the graphical tool.

A dialog box appears, allowing you to choose the directory and file in which your data reside.

Loading Decompositions.

To load discrete wavelet transform decomposition data into the Wavelet 1-D graphical interface, you must first save the appropriate data in a M AT-fil e with extension wal (wavelet analysis 1-D). The MAT-file must contain these variables:

Variable	Description
coef s	Vector of concatenated DWT coefficients
dat a_name	String specifying name of decomposition
I ongs	Vector specifying lengths of components of coef s and of the original signal
wave_name	String specifying name of wavelet used for decomposition (e.g., db3)

After constructing or editing the appropriate data in your workspace, type: » save myfile. wal

Use the File \Rightarrow Load Decomposition menu option from the Wavelet 1-D tool to load the decomposition data into the graphical tool.
A dialog box appears, allowing you to choose the directory and file in which your data reside.

Two-Dimensional Discrete Wavelet Analysis

This section takes you through the features of two-dimensional discrete wavelet analysis using the MATLAB Wavelet Tool box.

The Wavelet Toolbox provides these functions for image analysis. F or more information, see the Command Reference (Chapter 8).

Analysis-Decomposition Functions:

Function Name	Purpose
dut 2	One-step decomposition
wavedec 2	Decomposition

Synthesis-Reconstruction Functions:

Function Name	Purpose
i dut 2	One-step reconstruction
waverec2	Full reconstruction
wr coef 2	Selective reconstruction
upcoef 2	Single reconstruction

Decomposition Structure Utilities:

Function Name	Purpose
det coef 2	Extraction of detail coefficients
appcoef 2	Extraction of approximation coefficients
upw ev2	Recomposition of decomposition structure

De-noising and Compression:

Function Name	Purpose
ddencmp	Provide default values for de-noising and compression
wdencmp	Wavelet de-noising and compression

In this section, you'll learn:

- How to load an image
- How to analyze an image
- How to perform one-step and multi-level image decompositions and reconstructions (command line only)
- How to use Square and Tree mode features (GUI only)
- How to zoom in on detail (GUI only)
- How to compress an image

Two-Dimensional Analysis Using the Command Line

In this example we'll show how you can use two-dimensional wavelet analysis to compress an image efficiently without sacrificing its clarity.

Note: Instead of using directly i mage(I) in order to visualize the image I, we use i mage (wcodemat (I)) which displays a rescaled version of I leading to a clearer presentation of the details and approximations (see wcodemat in Chapter 8).

Loading an Image.

1 From the MATLAB prompt, type:
» I oad wbarb;
» whos

Name	Size	El ements	Byt es	Cl ass
X	256 by 256	65536	524288	doubl e array
map	192 by 3	576	4608	doubl e array

2 Display the image. Type:
》 i mage(X); col ormp(map)

Converting an Indexed Image to a Grayscale Image.

3 If the colorbar is smooth, the wavelet transform can be directly applied to the indexed image, otherwise the indexed image should be converted to grayscale format. See "Working with Indexed Images" at the end of this chapter for more information.

Since the col ormap is smooth in this image, you can now perform the decomposition.

Performing A One-Step Wavelet Decomposition of an Image.

4 Perform a one-step decomposition of the image using the bi or 3. 7 wavelet. Type:
» [cA1, cH1, cV1, cD1] $=\operatorname{dwt} 2\left(\mathrm{X}, \mathrm{'}^{\text {b }}\right.$ or 3. 7') ;
This generates the coefficient matrices of the level-one approximation (cA1) and horizontal, vertical and diagonal details (cH1, cV1, cD1, respectively).

Constructing Approximations and Details from the Coefficients.

5 To construct the level-one approximation and details $\left(\mathrm{A}_{1}, \mathrm{H}_{1}, \mathrm{~V}_{1}\right.$, and $\left.\mathrm{D}_{1}\right)$ from the coefficients $\mathrm{cA}_{1}, \mathrm{cH}_{1}, \mathrm{cV}_{1}$, and cD_{1}, type:
» A1 = upcoef 2('a' cA1, ' bi or3. 7' , 1) ;
» H1 = upcoef 2(' h' , cH1, ' bi or3. 7' , 1);
» V1 = upcoef 2('v', cV1, ' bi or3.7', 1);
» D1 = upcoef 2('d' , cD1, ' bi or3. 7' , 1);

Displaying the Approximation and Details.

6 To display the results of the level 1 decomposition, type:
» col or map($\operatorname{map})$;
» subpl ot (2, 2, 1) ; i mage(wcodemat (A1, 192));
» title('Approxi mati on Al')
» subpl ot (2, 2, 2) ; i mage(wcodemat (H1, 192));
» title('Horizontal Detail H1')
» subpl ot (2, 2, 3) ; i mage(wcodemat (V1, 192)) ;
» title('Vertical Detail V1')
» subpl ot ($2,2,4$) ; i nage(wcodemat ($\mathrm{D} 1,192$)) ;
» title('Di agonal Detail DI')

50100150200250
Vertical Detail V1

50100150200250

Horizontal Detail H1

50100150200250
Diagonal Detail D1

50100150200250

Regenerating an Image by One-Step Inverse Wavelet Transform.

7 To find the inverse transform, type:
» Xsyn = idwt 2(cA1, cH1, cV1, cD1, ' bi or 3. 7');
This reconstructs or synthesizes the original image from the coefficients of the level 1 approximation and details.

Performing a Multi-Level Wavelet Decomposition of an Image.

8 To perform a level 2 decomposition of the image (again using the bi or 3. 7 wavelet), type:

```
» [C, S] = wavedec2(X, 2,' bi or 3. 7' );
```

where X is the original image matrix, and 2 is the level of decomposition.
The coefficients of all the components of a second-level decomposition (that is, the second-level approximation and the first two levels of detail) are returned concatenated into one vector, C. Argument S is a bookkeeping matrix that keeps track of the sizes of each component.

Extracting Approximation and Detail Coefficients.

9 To extract the level 2 approximation coefficients from C, type: » cA2 = appcoef 2(C, S, ' bi or 3. 7' , 2) ;

10 To extract the first- and second-level detail coefficients from C, type:

» cD2 = det coef 2('d', C, S, 2) ;
» $\mathrm{cH} 1=\operatorname{det} \mathrm{coef} 2\left(\mathrm{'}^{\prime} \mathrm{h}, \mathrm{C}, \mathrm{S}, 1\right) ; \mathrm{cV1}=\operatorname{det}$ coef 2(' V ', $\mathrm{C}, \mathrm{S}, 1$);
» cD1 = det coef 2('d', C, S, 1);
where the first argument (' h' , ' v' , or ' d') determines the type of detail (horizontal, vertical, diagonal) extracted, and the last argument determines the level.

Reconstructing the Level 2 Approximation.

11 To reconstruct the level 2 approximation from C, type:
» $\mathrm{A} 2=\operatorname{wrcoef} 2\left({ }^{\prime} \mathrm{a}\right.$ ', C, S, ' bi or 3. 7' , 2) ;

Reconstructing the Level 1 and 2 Details.

12 To reconstruct the level 1 and 2 details from C, type:
» $\mathrm{H} 1=\operatorname{wrcoef} 2\left({ }^{\prime} \mathrm{h}\right.$ ', C, S, ' bi or 3. 7', 1);
» V1 $=\operatorname{urcoef} 2\left({ }^{\prime} \mathrm{v}\right.$ ', C, S, ' bi or 3.7 ', 1);
» D1 = wrcoef 2('d', C, S, ' bi or3. 7' , 1);
» H2 = wrcoef 2(' h', C, S, ' bi or3. 7', 2);
» V2 = wrcoef 2('v', C, S, ' bi or3. 7' , 2) ;
» D2 = wrcoef 2('d', C, S, ' bi or3. 7' , 2);

Displaying the Results of a Multi-Level Decomposition.

Note: With all the details involved in a multi-level image decomposition, it makes sense to import the decomposition into the Wavelet 2-D graphical tool in order to more easily display it. For information on how to do this, see "L oading Decompositions" on page 67.

13 To display the results of the level 2 decomposition, type:
》 col or map(n¥p) ;
» subpl ot ($2,4,1$) ; i mage((wcodenat (A1, 192)); title('Appr oxi mati on Al')
» subpl ot (2, 4, 2) ; i mage((wcodemat ($\mathrm{H} 1,192$)) ; titl e(' Hori zont al
Detail H1')
» subpl ot (2, 4, 3) ; i mage((wcodemat (V1, 192)) ; title('Vertical
Det ai I V1')
» subpl ot (2, 4, 4) ; i mage((wcodemat (D1, 192)) ; title(' Di agonal Det ail D1')
» subpl ot (2, 4, 5) ; i mage((ucodemat (A2, 192)); title('Approxi mati on A2')
» subpl ot ($2,4,6$) ; i mage((wcodemat ($\mathrm{H} \mathrm{Z}, 192$)); title('Hori zont al
Det ail H2')
» subpl ot (2, 4, 7) ; i mage((wcodemat (V2, 192)) ; title('Vertical
Det ail V2')
» subpl ot ($2,4,8$) ; i mage((wcodemat (D2, 192)); title(' Di agonal Detail D2')

Reconstructing the Original Image from the Multilevel Decomposition.

14 To reconstruct the original image from the wavel et decomposition structure, type:
» X0 = waverec2(C, S, ' bi or 3. 7');
This reconstructs or synthesizes the original image from the coefficients C of the multi-level decomposition.

Compressing an Image.

15 To compress the original image X, use the ddencmp command to calculate the default parameters and the wdencmp command to perform the actual compression. Type:
» [thr, sor h, keepapp] = ddencmp(' cmp' , 'w' , X) ;
» [Xcomp, CXC, LXC, PERFO, PERFL2] =
» wdencmp('gbl ' , C, S, ' bi or 3. 7' , 2, thr, sorh, keepapp) ;
Note that we pass in to wdencmp the results of the decomposition (C and S) we calculated in Step 7 on page 2-47. We also specify the bi or 3.7 wavelet, because we used this wavelet to perform the original analysis. Finally, we specify the global thresholding option ' gbl ' . See the ddencmp and wdenc mp reference entries for more information about the use of these commands.

Displaying the Compressed Image.

16 To view the compressed image side by side with the original, type:

```
" col or map( map);
```

» subpl ot(121); image(X); title('Original Image');
» axis square
» subpl ot (122); image(Xcomp); title('Compressed I nage');
» axis square

» PERFO
86. 6550
» PERFL2
99. 9779

These returned values tell, respectively, what percentage of the wavelet coefficients was set to zero and what percentage of the image's energy was preserved in the compression process.
Note that, even though the compressed image is constructed from only about half as many nonzero wavelet coefficients as the original, there is almost no detectable deterioration in the image quality.

Two-Dimensional Analysis Using the Graphical Interface

In this section we explore the same image as in the previous section, but we use the graphical interface tools to analyze the image.

Starting the 2-D Wavelet Analysis Tool.

1 From the MATLAB prompt, type
» wavemenu.
The Wavelet Tool Main Menu appears.

2 Click the Wavelet 2-D menu item.
The discrete wavel et analysis tool for two-dimensional image data appears.

Loading an Image.

3 From the File menu, choose the Load Image option.

WWavelet 2-D
File Options Windows
Load Image
Load Coefficients
Load Decomposition
Save Synthesized Image
Save Coefficients
Save Decomposition
Demo Analysis
Print Settings
Print
Close

4 When the Load Image dialog box appears, select the demo MAT-file wbar b. mat, which should reside in the MATLAB directory t ool box/ wavel et/ wavedeno. Click the OK button.

The image is loaded into the Wavelet 2-D tool.

Analyzing an Image.

5 Using the Wavelet and Levels menus located to the upper right, determine the wavel et family and type as well as the number of level s to be used for the analysis.

For this analysis, select the bi or 3. 7 wavelet at level 2.

6 Click the Analyze button.
After a pause for computation, the Wavelet 2-D tool displays its analysis.

Using Square Mode Features.

By default, the analysis appears in "Square M ode." This mode includes four different displays. In the upper left is the original image. Below that is the image reconstructed from the various approximations and details. To the lower right is a decomposition showing the coarsest approximation coefficients and all the horizontal, diagonal, and vertical detail coefficients. Finally, the visualization space at the top right displays any component of the analysis that you want to look at more closely.

7 Click on any decomposition component in the lower right window.
A green border highlights the selected component. At the lower right of the Wavelet 2-D window, there is a set of three buttons labeled "Operations on selected image."

8 Click the Visualize button.
The selected image is displayed in the visualization area. Y ou are seeing the raw, unreconstructed two-dimensional wavel et coefficients. Using the other buttons, you can display the reconstructed version of the selected image component, or you can view the selected component at full screen resolution.

Visualized Approximation A_{2}

Reconstructed Approximation A_{2}

Using Tree Mode Features.

9 Choose Tree from the View Mode menu.

Your display changes to reveal:

This is the same information shown in square mode, with in addition all the approximation coefficients, but arranged to emphasize the tree structure of the decomposition. The various buttons and menus work just the same as they do in square mode.

Zooming in on Detail.

10 Drag a rubber band box (by hol ding down the left mouse button) over the portion of the image you want to magnify.

11 Click the XY+button (located at the bottom of the screen) to zoom horizontally and vertically.

Zoom	X+	Y+	$X Y+$	Center On	X	Position	$\begin{aligned} & \mathrm{X}= \\ & \mathrm{Y}= \end{aligned}$	History	4	\rightarrow
	X-	Y-	XY-		Y				<<-	

The Wavelet 2-D tool enlarges the displayed images.

To zoom back to original magnification, click the History <-- button.

Compressing an Image.

12 Click the Compress button, located to the upper right of the Wavelet 2-D window.

The Wavelet 2-D Compression window appears.

The tool automatically selects thresholding levels to provide a good initial balance between retaining the image's energy while minimizing the number of coefficients needed to represent the image.

However, you can also adjust thresholds manually using the Thresholding menu and sliders or corresponding edits. Select from the menu whether you want to adjust thresholds for horizontal, diagonal or vertical details, then use the sliders to make the actual adjustments for each level.

For this example, we'll accept the default thresholds.

13 To compress the original image, click the Compress button.
After a pause for computation, the compressed image appears beside the original. N oticethat compression eliminated almost half the coefficients, yet no more than one-half of one percent of image energy was lost in the process.

Importing and Exporting Information from the Graphical Interface

The Wavelet 2-D graphical tool lets you import information from and export information to your disk, if you adhere to the proper file formats.

Saving Information to the Disk

You can save synthesized images, coefficients, and decompositions from the Wavelet 2-D tool to the disk, where the information can be manipulated and later reimported into the graphical tool.

Saving Synthesized Images.

You can process an image in the Wavelet 2-D tool and then save the processed image to a MAT-file.
For example, load the demo analysis
File \Rightarrow Demo Analysis \Rightarrow at level 3, with sym4 - detail Durer, and perform a compression on the original image. When you close the Wavelet 2-D Compression window, update the synthesized image by clicking Yes in the dialog box that appears.

Then, from the Wavelet 2-D tool, select the File \Rightarrow Save Synthesized I mage menu option.
A dialog box appears allowing you to select a directory and filename for the MAT-file. F or this example, choose the name symage.
To load the image into your workspace, simply type:

```
» I oad symage
```

» whos

Name	Si ze	El ements	Bytes	Cl ass
map	64 by 3	192	1536	doubl e array
symage	359 by 371133189	1065512	doubl e array	

Saving Discrete Wavelet Transform Coefficients.

The Wavelet 2-D tool lets you save the coefficients of a discrete wavelet transform (DWT) to your disk. The tool box creates a M AT-file in the current directory with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option File \Rightarrow Save Coefficients.

A dialog box appears that lets you specify a directory and filename for storing the coefficients.

Consider the demo analysis
File \Rightarrow Demo Analysis \Rightarrow at level 3, with sym4 - -> Detail Durer.

After saving the continuous wavel et coefficients to the file dur er . mat, load the variables into your workspace.
» I oad durer
» whos

Name	Size	El ements	Bytes	Cl ass
coefs	1 by 142299	142299	1138392	doubl e array
sizes	5 by 2	10	80	doubl e array

Variables coef s and si zes contain the discrete wavelet coefficients and the associated matrix sizes. M ore precisely, in the above example, coef s is a 1-by-142299 vector of concatenated coefficients, and si zes gives the length of each component.

Saving Decompositions.

The Wavelet 2-D tool lets you save the entire set of data from a di screte wavelet analysis to your disk. The tool box creates a MAT-file in the current directory with a name you choose, followed by the extension wa2 (wavelet analysis 2-D).

Open the Wavelet 2-D tool and load the demo analysis File \Rightarrow Demo Analysis \Rightarrow at level 3, with sym4 --> Detail Durer.

To save the data from this analysis, use the menu option File \Rightarrow Save Decomposition.

A dialog box appears that lets you specify a directory and filename for storing the decomposition data. Type the name dur er.

After saving the decomposition data to the file dur er . wa2, load the variables into your workspace.

```
» I oad durer.wa2 -mat
» whos
```

Name	Si ze	El ements s	Bytes	Cl ass
coef s	1 by 142299	142299	1138392	doubl e array
dat a_name	1 by 6	6	48	doubl e array
map	64 by 3	192	1536	doubl e array
sizes	5 by 2	10	80	doubl e array
wave_name	1 by 4	4	32	doubl e array

Variables coef s and si zes contain the wavelet decomposition structure. Other variables contain the wavelet name, the colormap, and the filename containing the data.

Loading Information into the Wavelet 2-D Tool

Y ou can load images, coefficients, or decompositions into the graphical interface. The information you load may have been previously exported from the graphical interface and then mani pulated in the workspace, or it may have been information you generated initially from the command line.
In either case, you must observe the strict file formats and data structures used by the Wavelet 2-D tool, or else errors will result when you try to load information.

Loading Images.

This toolbox supports only indexed images. An indexed image is a matrix containing only integers from 1 to n, where n is the number of colors in the image.

This image may optionally be accompanied by a n-by-3 matrix called map. This is the col ormap associated with the image. When MATLAB displays such an image, it uses the values of the matrix to look up the desired color in this col ormap. If the col ormap is not given, the Wavelet 2-D tool uses a monotonic col ormap with $\max (\max (X))-\min (\min (X))+1$ colors.

To load an image you've constructed in your MATLAB workspace into the Wavelet 2-D tool, save the image (and optionally, the variable map) in a MAT-file that has the same name as the image matrix itself.

For instance, suppose you've created an image called br ai n and want to analyze it in the Wavelet 2-D tool. Type:
» save brain
To load this image into the Wavelet 2-D tool, use the menu option File \Rightarrow Load Image.
A dialog box appears that lets you select the appropriate MAT -file to be loaded.

Caution: The graphical tools allow you to load an image that does not contain integers from 1 to n. The computations will be correct since they act directly on the matrix, but the display of the image will be strange. The values less than 1 will be evaluated as 1 , the values greater than n will be evaluated as n, and a real value within the interval $[1, n]$ will be evaluated as the closest integer.

Note that the coefficients, approximations, and details produced by wavelet decomposition are not indexed image matrices.
In order to display these images in a suitableway, the Wavel et 2-D tool follows these rules:

- Reconstructed approximations are displayed using the colormap nap.
- The coefficients and the reconstructed details are displayed using the colormap map applied to a rescaled version of the matrices.

Loading Discrete Wavelet Transform Coefficients.

To load discrete wavel et transform (DWT) coefficients into the Wavelet 2-D tool, you must first save the appropriate data in a MAT-file containing only two variables: coefficients vector coefs and bookkeeping matrix si zes.
coef s ($3 n+1$ sections)

si zes $(n+2-b y-2)$
Variable coef s must be a vector of concatenated DWT coefficients. The coef s vector for an n-level decomposition contains $3 n+1$ sections, consisting of the level-n approximation coefficients, followed by the horizontal, vertical, and diagonal detail coefficients, in that order for each level. Variable si zes is a matrix, the rows of which specify: the size of $c A_{n}$, the size of cH_{n} (or cV_{n}, or $\left.c D_{n}\right), \ldots$, the size of $\mathrm{cH}_{1}\left(\right.$ or cV_{1}, or $\left.\mathrm{c}_{1}\right)$ and the size of the original image X . The sizes of vertical and diagonal details are the same as the horizontal detail.

After constructing or editing the appropriate data in your workspace, type:

```
» save myfile
```

Use the File \Rightarrow Load Coefficients menu option from the Wavelet 2-D tool to load the data into the graphical tool.
A dialog box appears, allowing you to choose the directory and file in which your data reside.

Loading Decompositions.

To load discrete wavel et transform decomposition data into the Wavelet 2-D tool, you must first save the appropriate data in a MAT-file with extension wa2 (wavelet analysis 2-D).

The MAT-file must contain these variables:

Variable	Description
coef s	Vector of concatenated DWT coefficients
dat a_name	String specifying name of decomposition
map	Optional n-by-3 col ormap matrix.
si zes	Matrix specifying sizes of components of coef s and of the original image
wave_name	String specifying name of wavelet used for decomposi- tion (e.g., db3)

After constructing or editing the appropriate data in your workspace, type:
» save myfile. wa2
Use the File \Rightarrow Load Decomposition menu option from the Wavelet 2-D tool to load the image decomposition data.

A dialog box appears, allowing you to choose the directory and file in which your data reside.

Working with Indexed Images

This section provides additional information about working with images in the Wavelet Toolbox. It describes the types of supported images and how MATLAB represents them, as well as techniques for analyzing color images.

Understanding Images in MATLAB

The basic data structure in MATLAB is the rectangular matrix, an ordered set of real or complex elements. This object is naturally suited to the representation of images, which are real-valued, ordered sets of color or intensity data. (This tool box does not support complex-valued images.)
In this supplement, the word pixel denotes a single element in an image matrix. Y ou can select a single pixel from an image matrix using normal matrix subscripting. For example,

I $(2,15)$
returns the value of the pixel at row 2 and column 15 of the image I. Pixel is derived from picture element and usually denotes a single dot on a computer display. By default, MATLAB scales images to fill the display axes; therefore, an image pixel may use more than a single pixel on the screen.

Indexed Images

A typical color image requires two matrices: a colormap and an image matrix. The col ormap is an ordered set of values that represent the col ors in the image. F or each image pixel, the imagematrix contains a corresponding index into the col ormap. (The elements of the image matrix are floating-point integers, or flints, which MATLAB stores as double-precision values.)

The size of the col ormap matrix is n-by- 3 for an image containing n col ors. E ach row of the colormap matrix is a 1-by-3 red, green, blue (RGB) color vector

$$
\text { col or }=\left[\begin{array}{lll}
R & G & B
\end{array}\right]
$$

that specifies the intensity of the red, green, and blue components of that col or. R, G, and B are real scalars that range from 0.0 (black) to 1.0 (full intensity). MATLAB translates these values into display intensities when you display an image and its colormap.

When MATLAB displays an indexed image, it uses the values in the image matrix to look up the desired col or in the colormap. For instance, if the image matrix contains the value 18 in matrix location $(86,198)$, then the col or for pixel $(86,198)$ is the color from row 18 of the col ormap.

Outside MATLAB, indexed images with n colors often contain values from 0 to $\mathrm{n}-1$. These values are indices into a col ormap with 0 as its first index. Since MATLAB matrices start with index 1 , you must increment each value in the image, or shift up the image, to create an image that you can manipulate with tool box functions.

Wavelet Decomposition of Indexed Images

The Wavelet Tool box supports only indexed images with linear, monotonic col ormaps. These images can be thought of as scaled intensity images, with matrix elements containing only integers from 1 to n, where n is the number of discrete shades in the image.

If the col ormap is not provided, the graphical user interface tools display the image and processing results using a monotonic colormap with $\max (\max (X))-\min (\min (X))+1$ colors.
Since the image colormap is only used for display purposes, some indexed images may need to be preprocessed in order to achieve the correct results from the wavelet decomposition.
In general, color indexed images do not have linear, monotonic colormaps and need to converted into the appropriate gray scale indexed image before performing a wavel et decomposition. Thel mage Processing Toolbox provides a comprehensive set of functions that let you easily convert between imagetypes.

Should you not have the Image Processing Tool box, the example below demonstrates how this conversion may be performed, using basic MATLAB commands.
» I oad xpmdrl।
» whos

Name	Si ze	El ements	Byt es	Cl ass
X2	192 by 200	38400	307200	doubl e array
map	64 by 3	192	1536	doubl e array

```
» i mage(X2), title('Origi nal Col or Indexed Image')
> col ormap(map), col or bar
```


The color bar to the right of the image is not smooth and does not monotonically progress from dark to light. This type of indexed image is not suitable for direct wavelet decomposition with the tool box and needs to be preprocessed.
First we separate the color indexed image into its RGB components,
» $R=\operatorname{map}(X 2,1) ; \quad R=r$ eshape(R, size($X 2)$);
» $G=\operatorname{mpp}(X 2,2) ; \quad G=r e s h a p e(G$ size($X 2))$;
» $B=\operatorname{map}(X 2,3) ; B=r e s h a p e(B$, size($X 2))$;
Now we convert the RGB matrices into a gray scale intensity image, using the standard perceptual weightings for the three col or components,
» Xrgb $=0.2990 * R+0.5870 * G+0.1140 * B ;$

Next，we convert the gray scale intensity image back to a gray scale indexed image with 64 distinct levels，and create a new colormap with 64 levels of gray．

```
» n = 64; %Nunber of shades in new i ndexed i mage
» X = round( Xrgb*(n-1)) + 1;
» map2 = gray(n);
" figure
» i m⿴囗十, (X), title('Processed Gray Scal e I ndexed I mage')
> col ormmp(map2), col or bar
```

Processed Gray Scale Indexed Image

The col or bar of the converted image is now linear and has a smooth transition from dark to light．The image is now suitable for wavelet decomposition．

Finally，we save the converted image in a form compatible with the Wavel et Toolbox graphical user interface，
» baboon＝ X ；
» map＝map2；
» save baboon baboon map

How Decompositions Are Displayed

Note that the coefficients，approximations，and details produced by wavelet decomposition are not indexed image matrices．

In order to display these images in a suitable way，the graphical user interface tools follow these rules：
－Reconstructed approximations are displayed using the colormap nap．
－The coefficients and the reconstructed details are displayed using the col ormap n⿴囗十 applied to a rescaled version of the matrices．

2 Using W avelets

Wavelet Applications

3-3 Detecting Discontinuities and Breakdown Points I3-4 Discussion
3-6 Detecting Discontinuities and B reakdown Points II
3-7 Discussion
3-8 Detecting Long-Term Evolution
3-9 Discussion
3-10 Detecting Self-Similarity
3-10 Wavelet Coefficients and Self-Similarity
3-11 Discussion
3-12 Identifying Pure Frequencies
3-12 Discussion
3-15 Suppressing Signals
3-16 Discussion
3-18 De-Noising Signals
3-18 Discussion
3-21 Compressing Signals
3-22 Discussion

This chapter explores various applications of wavelets by presenting a series of sample analyses dealing with:

- Detecting Discontinuities and Breakdown Points (I and II)
- Detecting Long-Term Evolution
- Detecting Self-Similarity
- Identifying Pure Frequencies
- Suppressing Signals
- De-Noising Signals
- Compressing Signals

Each example is followed by a discussion of the usefulness of wavel et analysis for the particular application area under consideration.

Use the graphical interface tools to follow along:
1 From the MATLAB command line, type:
» wavemenu.
2 Click on Wavelets 1-D (or other tool as appropriate).
3 Load the sample analysis by selecting the appropriate submenu item from File \Rightarrow Demo Analysis.

Feel free to explore on your own - use the different options provided in the graphical interface to look at different components of the signal, to compress or de-noise the signal, to examine signal statistics, or to zoom in and out on different signal features.

If you want, try loading the corresponding MAT-file from the MATLAB command line, and use the wavelet tool box functions to investigate further the sample signals. The MAT-files are located in the directory: tool box/ wavel et / wavederm.

There are also other signals in the wavedemo directory that you can analyze on your own.

Detecting Discontinuities and Breakdown Points I

The purpose of this example is to show how analysis by wavelets can detect the exact instant when a signal changes. The discontinuous signal consists of a "slow" sine wave abruptly followed by a "medium" sine wave.

Demo Analysis:
Frequency breakdown
MAT-file:
freqbrk. mat
Wavelet:
db5
Level:
5

The first- and second-level details (D_{1} and D_{2}) show the discontinuity most clearly, because the rupture contains the high frequency part. Note that if we were only interested in identifying the discontinuity, db1 would be a more useful wavelet to use for the analysis than db5.

The discontinuity is localized very precisely: only a small domain around time $=500$ contains any large first- or second-level details.

Here is a noteworthy example of an important advantage of wavelet analysis over F ourier. If the same signal had been analyzed by the F ourier transform, we would not have been able to detect the instant when the signal 's frequency changed, whereas it is clearly observable here.

Details D_{3} and D_{4} contain the "medium" sine wave. The "slow" sine is clearly isolated in approximation A_{5}, from which the higher-frequency information has been filtered.

Discussion

The deterministic part of the signal may undergo abrupt changes such as a jump, or a sharp change in the first or second derivative. In image processing, one of the major problems is edge detection, which also invol ves detecting abrupt changes. Also in this category, we find signals with very rapid evolutions such as transient signals in dynamic systems.

The main characteristic of these phenomena is that the change is localized in time or in space.

The purpose of the analysis is to determine:

- The site of the change (e.g., time or position),
- The type of change (a rupture of the signal, or an abrupt change in its first or second derivative),
- The amplitude of the change.

The local aspects of wavelet analysis are well adapted for processing this type of event, as the processing scales are linked to the speed of the change.

Guidelines for Detecting Discontinuities

Short wavelets are often more effective than long ones in detecting a signal rupture. In the initial analysis scales, the support is small enough to allow fine analysis. The shapes of discontinuities that can be identified by the smallest wavelets are simpler than those that can be identified by the longest wavelets.

Therefore, to identify:

- A signal discontinuity, use the haar wavelet.
- A rupture in the j-th derivative, select a sufficiently regular wavelet with at least j vanishing moments. (See Detecting Discontinuities and Breakdown Points II on page 3-6.)

The presence of noise, which is after all a fairly common situation in signal processing, makes identification of discontinuities more complicated. If the first levels of the decomposition can be used to eliminate a large part of the noise, the rupture is sometimes visible at deeper levels in the decomposition.
Check, for example, the sample analysis File \Rightarrow Demo Analysis \Rightarrow ramp + white noise (MAT-file unoi sl op). The rupture is visible in the level-six approximation $\left(A_{6}\right)$ of this signal.

Detecting Discontinuities and Breakdown Points II

The purpose of this example is to show how analysis by wavelets can detect a discontinuity in one of a signal's derivatives. The signal, while apparently a single smooth curve, is actually composed of two separate exponentials that are connected at time $=500$. The discontinuity occurs only in the second derivative, at time $=500$.

Demo Analysis:
Second derivative breakdown
MAT-file:
scddvbrk. nat
Wavelet:
db4
Level:
2

We have zoomed in on the middle part of the signal to show more clearly what happens around time $=500$. The details are high only in the middle of the signal and are negligible elsewhere. This suggests the presence of high-frequency information - a sudden change or discontinuity - around time $=500$.

Discussion

Regularity can be an important criterion in selecting a wavelet. We have chosen to use db4, which is sufficiently regular for this analysis. Had we chosen the haar wavel et, the discontinuity would not have been detected. If you try repeating this analysis using haar at level two, you'll notice that the details are equal to zero at time $=500$.

Note that in order to detect a singularity the selected wavelet must be sufficiently regular, which implies a longer filter impulse response.

See Chapter 6, "Advanced Topics" for a discussion of the mathematical meaning of regularity and a comparison of the regularity of various wavelets.

Detecting Long-Term Evolution

The purpose of this example is to show how analysis by wavel ets can detect the overall trend of a signal. The signal in this case is a ramp obscured by "col ored" (limited-spectrum) noise. (We have zoomed in along thex-axis to avoid showing edge effects.)

Demo Analysis:
Ramp + colored noise
MAT-file:
cnoi slop. mat
Wavelet:
db3
Level:
6

There is so much noise in the original signal, s, that its overall shape is not apparent upon visual inspection. In this level-six analysis, we note that the trend becomes more and more clear with each approximation, A1 to A6. Why is this?

The trend represents the slowest part of the signal. In wavelet analysis terms, this corresponds to the greatest scale value. As the scale increases, the resolution decreases, producing a better estimate of the unknown trend.

Another way to think of this is in terms of frequency. Successive approximations possess progressively less high-frequency information. With the higher frequencies removed, what's left is the overall trend of the signal.

Discussion

Wavelet analysis is useful in revealing signal trends, a goal that is complementary to the one of revealing a signal hidden in noise. It's important to remember that the trend is the slowest part of the signal. If the signal itself includes sharp changes, then successive approximations look less and less similar to the original signal.

Consider the demo analysis File \Rightarrow Demo Analysis \Rightarrow Step signal (MAT-file wst ep. mat). It is instructive to analyze this signal using the Wavelet 1-D tool and to see what happens to the successive approximations. Try it.

Detecting Self-Similarity

The purpose of this example is to show how analysis by wavelets can detect a self-similar, or fractal, signal. The signal here is the Koch curve - a synthetic signal that is built recursively.

Demo Analysis:
Koch curve
:---
vonkoch. mat
Wavelet: coi f 3
Level: Continuous, 2:2:128

This analysis was performed with the Continuous Wavelet 1-D graphical tool. A repeating pattern in the wavelet coefficients plot is characteristic of a signal that looks similar on many scales.

Wavelet Coefficients and Self-Similarity

From an intuitive point of view, the wavelet decomposition consists of calculating a "resemblance index" between the signal and the wavelet. If the index is large, the resemblance is strong, otherwise it is slight. The indices are the wavelet coefficients.

If a signal is similar to itself at different scales, then the "resemblance index," or wavel et coefficients also will be similar at different scales. In the coefficients plot, which shows scale on the vertical axis, this self-similarity generates a characteristic pattern.

Discussion

The work of many authors and the trials that they have carried out suggest that wavel et decomposition is very well adapted to the study of the fractal properties of signals and images.
When the characteristics of a fractal evolve with time and become local, the signal is what is known as a multifractal. The wavelets then are an especially suitable tool for practical analysis and generation.

Identifying Pure Frequencies

The purpose of this example is to show how analysis by wavelets can effectively perform what is thought of as a F ourier-type function - that is, resolving a signal into constituent sinusoids of different frequencies. The signal is a sum of three pure sine waves.

Discussion

The signal is a sum of three sines: "slow," "medium," and "rapid," which have periods (relative to the sampling period of 1) of 200, 20, and 2 , respectively.

The "slow," "medium," and "rapid" sinusoids appear most clearly in approximation A4, detail D4, and detail D1, respectively. The slight differences that can be observed on the decompositions can be attributed to the sampling period.

Detail D1 contains primarily the signal components whose period is between 1 and 2 (i.e., the "rapid" sine), but this period is not visible at the scale which is used for the graph. Zooming in on detail D1 (see bel ow) reveals that each "belly" is composed of 10 oscillations, and this can be used to estimate the period. We indeed find that it is close to 2.

The detail D3, and to an even greater extent, detail D4, contain the "medium" sine frequencies. We notice that there is a breakdown between approximations A3 and A4, from which the medium frequency information has been subtracted. We should therefore use approximations A1 to A3 to estimate the period of the "medium" sine. Zooming in on A1 reveals a period of around 20.

Now only the period of the "slow" sine remains to be determined. Examination of approximation A4 (see the figure on the previous page) shows the distance between two successive maximums to be 200.

This "slow" sine still is visible in approximation A5, but were we to extend this analysis to further levels, we would find that it disappears from the approximation and move into the details at level 8.

Signal Component	Found in	Period	Frequency
"Slow sine"	Approximation A4	200	0.005
"Medium sine"	Detail D4	20	0.05
"Rapid sine"	Detail D1	2	0.5

In summation, we have used wavel et analysis to determine the frequencies of pure sinusoidal signal components. We were able to do this because the different frequencies predominate at a different scales, and each scale is taken account of by our analysis.

Suppressing Signals

The purpose of this example is to illustrate the property that causes the decomposition of a polynomial to produce null details, provided the number of "vanishing moments" of the wavelet (N for a Daubechies wavelet dbN) exceeds the degree of the polynomial. The signal here is a second-degree polynomial combined with a small amount of white noise.

Note that only the noise comes through in the details. The peak-to-peak magnitude of the details is about 2, while the amplitude of the polynomial signal is on the order of 10^{5}.

The db3 wavelet, which has three vanishing moments, was used for this analysis. Note that a wavelet of the Daubechies family with fewer vanishing moments would fail to suppress the polynomial signal. F or more information, see that section, Daubechies Wavelets: dbN on page 6-63.

Here is what the first three details look like when we perform the same analysis with db2.

The peak-to-peak magnitudes of the details D1, D2, and D3 are 2, 10, and 40, respectively. These are much higher detail magnitudes than those obtained using db3.

Discussion

For the db2 analysis, the details for levels 2 to 4 show a periodic form that is very regular, and that increases with the level. This is explained by the fact that the detail for level j takes into account primarily the fluctuations of the polynomial function around its mean value on dyadic intervals that are 2^{j} long. The fluctuations are periodic and very large in relation to the details of the noise decomposition.

On the other hand, for the db3 analysis, we find the presence of white noise thus indicating that the polynomial does not come into play in any of the details. The wavelet suppresses the polynomial part and analyzes the noise.

Suppressing part of a signal allows us to highlight the remainder.

Vanishing Moments

The ability of a wavelet to suppress a polynomial depends on a crucial mathematical characteristic of the wavelet called its number of vanishing moments. A technical discussion of vanishing moments appears in Chapter 6, "Advanced Concepts." F or the present discussion, it suffices to think of "moment" as an extension of "average." If a wavelet's average value is zero, then it has (at least) one vanishing moment.
More precisely, if the average value of $x^{k} \psi(x)$ is zero (where $\psi(x)$ is the wavelet function), for $k=0, \ldots, n$, then the wavelet has $n+1$ vanishing moments and polynomials of degree n are suppressed by this wavelet.

De-Noising Signals

The purpose of this example is to show how to de-noise a signal using wavelet analysis. This example also gives us an opportunity to demonstrate the automatic thresholding feature of the Wavelet 1-D graphical interface tool. The signal to be analyzed is a Doppler-shifted sinusoid with some added noise.

Demo Analysis:
Noisy Doppler
MAT-file:
noi sdopp. mat
Wavelet:
sym4

Level:

5

Discussion

We note that the highest frequencies appear at the start of the original signal. The successive approximations appear less and less noisy; however, they also lose progressively more high-frequency information. In approximation A5, for example, about the first 20% of the signal is truncated.

Click the De-noise button to bring up the Wavelet 1-D De-noising window. This window shows each detail along with its automatically set de-noising threshold.

Press the De-noise button. On the screen, the original and de-noised signals appear superimposed in red and yellow, respectively. In this figure, the de-noised signal is shown in blue for better contrast.

Note that the de-noised signal is flat initially. Some of the highest-frequency signal information was lost during the de-noising process, though less was lost here than in the higher-level approximations A4 and A5.

For this signal, wavelet packet analysis does a better job of removing the noise without compromising the high-frequency information. Explore on your own: try repeating this analysis using the Wavelet Packet 1-D tool. Select the menu item File \Rightarrow Demo Analysis \Rightarrow noisdopp.

Compressing Signals

The purpose of this example is to show how to compress an image using two-dimensional wavelet analysis. Compression is one of the most important applications of wavelets. The image to be compressed is a fingerprint.

For this example, open the Wavelet 2-D tool and select the menu item File \Rightarrow Demo Analysis \Rightarrow at level 3, with haar - -> finger.

Demo Analysis: finger
MAT-file:
det f i ngr . nat
Wavelet: haar
Level: 3

The analysis appears in the Wavelet 2-D tool. Click the Compress button (located at the middle right) to bring up the Wavelet 2-D Compression window.

Discussion

The graphical tool provides an automatically-generated threshold, which for this example is 3.5. Values under the threshold are forced to zero, achieving about 42% zeros while retaining al most all (99.95\%) the energy of the original image.

The automatic threshol d usually achieves a reasonable balance between number of zeros and retained image energy. Depending on your data and your analysis criteria, you may find setting more aggressive thresholds achieves better results.

Here we've set the individual thresholds to around 30 . This results in a compressed image consisting of 91.8% zeros with 97.7% retained energy.

Wavelets in Action: Examples andCaseStudies

4-3 Illustrated Examples
4-6 Advice to the Reader
4-8 Example \#1: A Sum of Sines
4-10 Example \#2: A Frequency Breakdown
4-12 Example \#3: Uniform White Noise
4-14 Example \#4: Colored AR(3) N oise
4-16 Example \#5: Polynomial + White N oise
4-18 Example \#6: A Step Signal
4-20 Example \#7: Two Proximal Discontinuities
4-22 Example \#8: A Second-Derivative Discontinuity
4-24 Example \#9: A Ramp + White Noise
4-26 Example \#10: A Ramp + Colored Noise
4-28 Example \#11: A Sine + White N oise
4-30 Example \#12: A Triangle + A Sine
4-32 Example \#13: A Triangle + A Sine + N oise
4-34 Example \#14: A Real Electricity Consumption Signal
4-36 A Case Study: An Electrical Signal
4-36 Data and the External Information
4-38 Analysis of the Midday Period
4-39 Analysis of the End of the Night Period
4-42 Suggestions for Further Analysis
4-48 Fast Multiplication of Large Matrices

This chapter presents the different possibilities offered by wavelet decomposition in the form of examples you can work with on your own. Suggested areas for further exploration follow most examples, along with a summary of the topics addressed by that example.
This chapter also includes a case study that examines the practical uses of wavelet analysis in even greater detail, as well as a demonstration of the application of wavelets for fast multiplication of large matrices.

An extended discussion of many of the topics addressed by the examples can be found in Chapter 6, "Advanced Concepts."

Illustrated Examples

Fourteen illustrated examples are included in this section, organized as shown:

Figure	Page	Description of the Signal	Signal Name	MAT-file
Figure 4-1:	page 4-9	A sum of sines: $s_{1}(t)=\sin (3 t)+\sin (0.3 t)+\sin (0.03 t)$	$\mathrm{s}_{1}(\mathrm{t})$	sumsin
Figure 4-2:	page 4-11	A frequency breakdown: $\begin{aligned} 1 \leq t \leq 500, & s_{2}(t)=\sin (0.03 t) \\ 501 \leq t \leq 1000, & s_{2}(t)=\sin (0.3 t) \end{aligned}$	$\mathrm{s}_{2}(\mathrm{t})$	freqbrk
Figure 4-3:	page 4-12	A uniform white noise: on the interval $\left[\begin{array}{ll}-0.5 & 0.5\end{array}\right]$	$\mathrm{b}_{1}(\mathrm{t})$	whit nois
Figure 4-4:	page 4-14	A colored AR(3) noise $\begin{aligned} b_{2}(t)= & -1.5 b_{2}(t-1)-0.75 b_{2}(t-2) \\ & -0.125 b_{2}(t-3)+b_{1}(t)+0.5 \end{aligned}$	$\mathrm{b}_{2}(\mathrm{t})$	war ma
Figure 4-5:	page 4-17	A polynomial +a white noise: on the interval $\left.\begin{array}{ll}1 & 1000\end{array}\right]$ $s_{3}(t)=t^{2}-t+1+b_{1}(t)$	$\mathrm{S}_{3}(\mathrm{t})$	noi spol
Figure 4-6:	page 4-19	A step signal: $\begin{aligned} 1 \leq t \leq 500, & s_{4}(t)=0 \\ 501 \leq t \leq 1000, & s_{4}(t)=20 \end{aligned}$	$\mathrm{S}_{4}(\mathrm{t})$	ustep

Figure	Page	Description of the Signal	Signal Name	MAT-file
Figure 4-7:	page 4-21	Two proximal discontinuities: $\begin{array}{rlrl} 1 \leq t \leq 499, & & s_{5}(t)=3 t \\ 500 & \leq t \leq 510, & & s_{5}(t)=1500 \\ 511 & \leq t, & & s_{5}(t)=3 t-30 \end{array}$	$\mathrm{S}_{5}(\mathrm{t})$	near brk
Figure 4-8:	page 4-23	A second-derivative discontinuity: $\begin{aligned} & t \in[-0.5 \quad 0.5] \subset R ; \\ & t<0, f_{3}(t)=\exp \left(-4 t^{2}\right) \\ & t \geq 0, f_{3}(t)=\exp \left(-t^{2}\right) \end{aligned}$ s_{6} is f_{3} sampled at 10^{-3}	$\mathrm{S}_{6}(\mathrm{t})$	scddvbr k
Figure 4-9:	page 4-25	A ramp + a white noise: $\begin{array}{rlrl} 1 \leq t \leq 499, & & s_{7}(t)=\frac{3 t}{500}+b_{1}(t) \\ 500 & \leq t \leq 1000, & & s_{7}(t)=3+b_{1}(t) \end{array}$	$\mathrm{S}_{7}(\mathrm{t})$	wnoi sl op
Figure 4-10:	page 4-28	A ramp + a colored noise:	$\mathrm{S}_{8}(\mathrm{t})$	cnoi sl op
Figure 4-11:	page 4-30	A sine + a white noise: $s_{9}(t)=\sin (0.03 t)+b_{1}(t)$	$\mathrm{S}_{9}(\mathrm{t})$	noi ssin
Figure 4-12:	page 4-21	A triangle + a sine: $\begin{aligned} 1 & \leq t \leq 500, \quad s_{10}(t)=\frac{t-1}{500}+\sin (0.3 t) \\ 501 & \leq t \leq 1000, \quad s_{10}(t)=\frac{1000-t}{500}+\sin (0.3 t) \end{aligned}$	$\mathrm{s}_{10}(\mathrm{t})$	trsin

Figure	Page	Description of the Signal	Signal Name	MAT-file
Figure 4-13:	page 4-34	A triangle + a sine + a noise: $501 \leq t \leq 1000$, $s_{11}(t)=\frac{1000-t}{500}+\sin (0.3 t)+b_{1}(t)$	$\mathrm{s}_{11}(\mathrm{t})$	wnt rsin
$1 \leq t \leq 500, s_{11}(t)=\frac{t-1}{500}+\sin (0.3 t)+b_{1}($.				
Figure 4-14:	page 4-36	A real electricity consumption signal	-	I el eccum

Please note that:

- All the decompositions use Daubechies wavelets.
- The examples show the signal, the approximations, and the details.

The examples include specific comments and feature distinct domains - for instance if the level of decomposition is 5 :

- The left column contains the signal and the approximations A_{5} to A_{1}.
- The right column contains the signal and the details D_{5} to D_{1}.
- The approximation A_{1} is located under A_{2}, A_{2} under A_{3} and so on. The same is true for the details.
- The abscissa axis represents the time. The unit for the ordinate axis for approximations and details is the same as that of the signal.
- When the approximations do not provide enough information, they are replaced by details obtained by changing wavelets.
- The examples include questions for you to think about:
- What can be seen on the figure?
- What additional questions can be studied?

Advice to the Reader

You should follow along and process these examples on your own, using either the graphical interface or the command line functions.

Use the graphical interfacefor immediate signal processing. To execute the analyses included in the figures:
1 To bring up the Wavelet Toolbox Main Menu type: » waverrenu

2 Select the Wavelet 1-D menu option to open the Wavelet 1-D tool.
3 From the Wavelet 1-D tool, choose the File_Demo Analysis menu option.
4 From the dialog box, select the sample analysis in question.
This triggers the execution of the examples.

When using the command line, follow the process illustrated in this M-file to conduct calculations:

```
% Load origi nal 1-D si gnal.
    l oad sumsi n; s = sumsin;
%Performthe decomposition of s at level 5, using coif3.
    w = ' coif f3'
    [c,l] = wavedec(s, 5,w);
```

\% Reconstruct the approxi mation si gnal s and detail si gnal s at
\% l evel s 1 to 5, using the wavel et decomposition structure [c,l].
for $\mathrm{i}=1$: 5
eval(['a(',int2str(i),',:) = wrcoef(''a'', c, l,w,i);']);
eval(['d(',int $2 \operatorname{str}(i), ',:)=\operatorname{wrcoef(''d'',~c,~l,~w,~i);']);~}$
end

Note: This loop replaces 10 separate wr coef statements defining variables a1 through a5, and d1 through d5.

```
% PI ots.
    t = 100: 900;
    subpl ot(621); pl ot(t,s(t),'r');
    title('Orig. signal and approx. 1 to 5.');
    subpl ot(622); pl ot(t,s(t),'r`);
    title('Orig. signal and details 1 to 5.');
    for i = 1:5,
        subpl ot(6, 2, 2*i +1); pl ot(t,a(i,t),'b`);
        subpl ot(6, 2, 2*i +2); pl ot(t,d(i,t),'g');
    end
```


About Further Exploration

Tip 1: On all figures, visually check that for $j=0,1, \ldots, A_{j}=A_{j+1}+D_{j+1}$.
Tip 2: Don't forget to change wavelets. Test the shortest ones first.

Tip 3: I dentify edge effects. They will create problems for a correct analysis. At present, there is no easy way to avoid them perfectly. You can use tools described in the section Dealing with Border Distortion on page 6-46 and see also the dut mode function in Chapter 8, "Reference". They should eliminate or greatly reduce these effects.

Tip 4: As much as possible, conduct calculations manually to cross-check results with the values in thegraphic representations. Manual calculations are possible with the db1 wavelet.
For the sake of simplicity in the following examples, we use only the haar and db family wavelets, which are the most frequently used wavelets.

Example \#1: A Sum of Sines

Analyzing wavelet: db3
Decomposition levels: 5
The signal is composed of the sum of three sines: "slow", "medium" and "rapid" with regard to the sampling period equal to 1 , the periods are approximately 200, 20 and 2 respectively. We should therefore see this later period in D_{1}, the medium sine in D_{4}, and the slow sine in A_{4}. The slight differences that can be observed on the decompositions can be attributed to the sampling period. The scale of the approximation charts is 2,4 or 10 times larger than that of the details. D_{1} contains primarily the components whose period is situated between 1 and 2 (i.e., the "rapid" sine), but this period is not visible at the scale which is used for the graph. Zooming in on D_{1} reveals that each "belly" is composed of 10 oscillations, and can be used to estimate the period. We find that the period is close to 2. D_{2} is very small. This is also seen in the approximations: the first two resemble one another, since $A_{1}=A_{2}+D_{2}$
The detail D_{3}, and to an even great extent D_{4}, contain the "medium" sine. We notice that there is a breakdown between approximations 3 and 4 .
Approximations A_{1} to A_{3} can be used to estimate the period of the medium sine. Now, only the "slow" sine, which appears in A_{4} remains to be determined. The distance between two successive maximums is equal to 200, which is the period of the slow sine. This latter sine is still visible in A_{5}, but will disappear from the approximation and move into the details at level 8.

Figure 4-1: A Sum of Sines

	Example \#1: A Sum of Sines
Addressed topics	- Detecting breakdown points - Detecting long-term evolution - Identifying pure frequencies
	- The effect of a wavelet on a sine - Details and approximations: a signal moves from an approximation to a detail
• The level at which characteristics appear	

Example \#2: A Frequency Breakdown

Analyzing wavelet: db5
Decomposition levels: 5
The signal is formed of a "slow" sine and a "medium" sine, on either side of 500. These two sines are not connected in a continuous manner: D_{1} and D_{2} can be used to detect this discontinuity. It is localized very precisely: only a small domain around 500 contains large details. This is because the rupture contains the high frequency part; thefrequencies in the rest of the signal are not as high. It should be noted that if we are interested only in identifying the discontinuity, db1 is more useful than db5.
D_{3} and D_{4} contain the "medium" sine as in the previous analysis. The "slow" sine appears clearly al one in A_{5}. It is more regular than in the s_{1} analysis, since $\mathrm{db5}$ is more regular than db3. If the same signal had been analyzed by the Fourier transform, we would not have been able to detect the instant corresponding to the signal's frequency change, whereas it is clearly observable here.

Figure 4-2: A Frequency Breakdown

	Example \#2: A Frequency Breakdown
Addressed topics	• Suppressing signals • Detecting long-term evolution
Further exploration	• Compare to the signal s_{1} • On a longer signal, have the slow sinusoid moved into the details
	- Compare with a F ourier analysis • Compare with a windowed Fourier analysis

Example \#3: Uniform White Noise

Analyzing wavelet: db3
Decomposition levels: 5
At all levels we encounter noise-type signals, which are clearly irregular. This is due to the fact that all the frequencies carry the same energy. The variances however, decrease regularly between one level and the next as can be seen reading the detail chart (on the right) and the approximations (on the left). The variance decreases two-fold between one level and the next, i.e. variance $\left(D_{\mathrm{j}}\right)=\operatorname{variance}\left(D_{\mathrm{j}-1}\right) / 2$. Lastly, it should be noted that the details and approximations are not white noises, and that these signals are increasingly interdependent as the resolution decreases. On the other hand, the wavelet coefficients are random, non-correlated variables. This property is not evident on the reconstructed signals shown here, but it can be guessed at from the representation of the coefficients.

Figure 4-3: Uniform White Noise

	Example \#3: Uniform White Noise
Addressed topics	- Processing noise - The shapes of the decomposition values - The evolution of these shapes according to level: the correlation increases, the variance decreases - Compare the frequencies included in the details with those in the approximations
Further exploration	- Study the values of the coefficients and their distribution - On the continuous analysis, identify the chaotic aspect of the col ors
- Replace the uniform white noise by a Gaussian	
white noise or other noise.	

Example \#4: Colored AR(3) Noise

Analyzing wavelet: db3
Decomposition levels: 5

Note: AR(3) means AutoRegressive model of order 3.

This figure can be examined in view of the previous figure, since we are confronted here with a non-white noise whose spectrum is mainly at the higher frequencies. It is therefore found primarily in D_{1}, which contains the major portion of the signal. In this situation, which is commonly encountered in practice, the effects of the noise on the analysis decrease considerably more rapidly than in the case of white noise. In A_{3}, A_{4} and A_{5}, we encounter the same scheme as that in the analysis of b_{1} (see the table on page 4-3), the noise from which b_{2} is built using linear filtering.

Figure 4-4: Colored AR(3) Noise

	Example \#4: Colored AR(3) Noise
Addressed topics	- Processing noise - The relative importance of different details - The comparative importance of D_{1} and A_{1}. - Compare the detail frequencies with those in the approximations.
Further exploration	- Compare approximations A_{3}, A_{4}, and A_{5} with those shown in Figure 4-3. - Replace AR(3) with an ARM A (AutoRegressive Moving Average) model noise. F or instance: $\begin{aligned} b_{3}(t)=- & 1.5 b_{3}(t-1)-0.75 b_{3}(t-2)-0.125 b_{3}(t-3) \\ & +b_{1}(t)-0.7 b_{1}(t-1) \end{aligned}$ - Study an ARIMA (Integrated ARMA) model noise. For instance: $b_{4}(t)=b_{4}(t-1)+b_{3}(t)$ - Check that each detail can be modeled by an ARMA process.

Example \#5: Polynomial + White Noise

Analyzing wavelets: db2 and db3
Decomposition levels: 4
The purpose of this analysis is to illustrate the property which causes the decomposition by dbN of a p-degree polynomial to produce null details as long as $N>p$. In this case, $p=2$ and we examine the first four levels of details for two values of N : one is too small, $\mathrm{N}=2$ on the left, and the other is sufficient, $\mathrm{N}=3$ on the right. The approximations are left out since they differ very little from the signal itself.
For db2 (on the left), we obtain the decomposition of $t^{2}+b_{1}(t)$, since the $-t+1$ part of the signal is suppressed by the wavel et. In fact, with the exception of level 1, where noise-generated irregularities can be seen, the details for levels 2 to 4 show a periodic form that is very regular, and which increases with the level. This is explained by the fact that the detail for level j takes into account primarily the fluctuations of the function around its mean value on dyadic intervals that are long. The fluctuations are periodic and very large in relation to the details of the noise decomposition.

On the other hand, for db3 (on the right) we again find the presence of white noise thus indicating that the polynomial does not come into play in any of the details. The wavelet suppresses the polynomial part and analyzes the noise.

Figure 4-5: Polynomial + White Noise

	Example \#5: Polynomial + White Noise
Addressed topics	- Suppressing signals - Compare the results of the processing for the foll lowing wavelets: the short db2 and the longer db3. - Explain the regularity that is visible in D_{3} and D_{4} in the analysis by db2.

Example \#6: A Step Signal

Analyzing wavelet: db2
Decomposition levels: 5
In this case we are faced with the simplest example of a rupture (i.e., a step). The time instant when the jump occurs is equal to 500 . The break is detected at all levels, but it is obviously detected with greater precision in the higher resolutions (levels 1 and 2) than in the lower ones (levels 4 and 5). It is very precisely localized at level 1, where only a very small zone around the jump time can be seen.

It should be noted that the reconstructed details are primarily composed of the basic wavelet represented in the initial time.
What is more, the rupture is all the more precisely localized when the wavel et corresponds to a short filter.

Figure 4-6: A Step Signal

	Example \#6: A Step Signal
Addressed topics	- Detecting breakdown points - Suppressing signals
	- Detecting long-term evolution - Identify therangewidth of the variations of details and approximations.
Further exploration	- Use the coefficients of the FIR filter associated with the wavelet to check the values of D_{1} - Replace the step by an impulse - Add noise to the signal and repeat the analysis

Example \#7: Two Proximal Discontinuities

Analyzing wavelet: db2 and db7
Decomposition levels: 5
The signal is formed of two straight lines with identical slopes, extending across a very short plateau. On the initial signal, the plateau is in fact barely visible to the naked eye. Two analyses are thus carried out, one on a well localized wavelet with the short filter (db2) on the left and the other on a wavelet having a longer filter (db7) on the right. In both analyses, the plateau is detected clearly; with the exception of a fairly limited domain, D_{1} is equal to zero. The regularity of the signal in the plateau however is clearly distinguished for db2 (for which plateau beginning and end time are distinguished), whereas for db7 both discontinuities are fused and only the entire plateau can said to be "visible." This example suggests that the selected wavelets should be associated with short filters to distinguish proximal discontinuities of the first derivative. A look at the other detail levels again shows the lack of precision when detecting at low resolutions. The wavelet filters the straight line and anal yzes the discontinuities.

Figure 4-7: Two Proximal Discontinuities

	Example \#7: Two Proximal Discontinuities
Addressed topics	• Detecting breakdown points - Move the discontinuities closer together and further apart
Further exploration	• Add noise to the signal until the rupture is no Ionger visible
• Try using other wavelets, haar for instance.	

Example \#8: A Second-Derivative Discontinuity

Analyzing wavelet: db1 and db4
Decomposition levels: 2
This figure shows that the regularity can be an important criterion in selecting a wavelet. The basic function is composed of two exponentials that are connected at 0 , and the analyzed signal is the sampling of the continuous function with increments of 10^{-3}. The sampled signal is analyzed using two different wavelets: Haar which is insufficiently regular, on the left, and db4 which is sufficiently regular, on the right.

On the left we notice that the singularity has not been detected in the extent that the details are equal to 0 at 0 . The black areas correspond to very rapid oscillations of the details. These values are equal to the difference between the function and an approximation using a constant function. Close to 0 , the slow decrease of the details absolute values followed by a slow increase is due to the fact that the function derivative is zero and continuous at 0 . The value of the details is very small (close to 10^{-3} for Haar and 10^{-4} for db4) since the signal is very smooth and does not contain any high frequency. This value is even smaller for db4, since the wavelet is more regular than db1.
However with db4 (on the right), the discontinuity is well detected: the details are high only close to 0 and are 0 everywhere else. This is the only element that can be derived from the analysis. In this case, as a conclusion, we notice that the selected wavelet must be sufficiently regular, which thus implies a longer filter impulse response in order to detect the singularity.

Figure 4-8: A Second-Derivative Discontinuity

	Example \#8: A Second-Derivative Discontinuity
Addressed topics	• Detecting breakdown points - Suppressing signals - Identifying a difficult discontinuity
	- Carefully selecting a wavel et in order to reveal an effect
Further exploration	- Calculate the detail values for the Haar wavelet - Beware of parasitic effects: rapid detail fluctuations may be artifacts
- Add noi se to the signal until the rupture is no	
longer visible	

Example \#9: A Ramp + White Noise

Analyzing wavelet: db3
Decomposition levels: 6
The signal is built from a trend plus noise. The trend is a slow linear rise from 0 to 3 , up to $t=500$ and becoming constant afterwards. The noise is a uniform zero mean white noise, varying between -0.5 and 0.5 (see the analyzed signal b_{1}).
In the charts on the right, we again find the decomposition of noise in the details. In the charts on the left, the approximations form increasingly precise estimates of the ramp with less and less noise. These approximations are quite acceptable from level 3, and the ramp is well reconstructed at level 6.

We can therefore separate the ramp from the noise. Although the noise affects all scales, its effect decreases sufficiently quickly for the low-resolution approximations to restore the ramp. It should al so be noted that the breakdown point of the ramp is shown with good precision. This is due to the fact that the ramp is recovered at too low a resolution.

The uniform noise indi cates that the ramp might be best estimated using half sums for the higher and lower portions of the signal. This approach is not applicable for other noises.

Figure 4-9: A Ramp + White Noise

	Example \#9: A Ramp + White Noise
Addressed topics	• Detecting breakdown points
	- Processing noise
	• Detecting long-term evolution
	- Splitting signal components - Identifying noises and approximations - Compare with the white noise b 1 (t) shown in Figure 4-3.
	- Identify the number of levels needed to suppress the noise almost entirely.
Further exploration	• Change the noise

Example \#10: A Ramp + Colored Noise

Analyzing wavelet: db3
Decomposition levels: 6
The signal is built in the same manner as the previous example, using a trend plus a noise. The trend is a slow linear increase from 0 to 1 , up to $t=500$. Beyond this time, the value remains constant. The noise is a zero mean AR(3) noise, varying between -3 and 3 (see the analysed signal b_{2}). The scale of the noise is indeed six times greater than that of the ramp. At first glance, the situation seems a little bit less favorable than in the previous example, in terms of the separation between the ramp and the noise. This is actually a misconception, since the two signal components are more precisely separated in frequency.

The charts on the right show the detail decomposition of the col ored noise. The charts on the left show a decomposition that resembles the one in the previous analysis. Starting at level 3, the curves provide satisfactory approximations of the ramp.

Figure 4-10: A Ramp + Colored Noise

	Example \#10: A Ramp + Colored Noise
Addressed topics	- Detecting breakdown points - Processing noise
	- Detecting long-term evolution
	- Splitting signal components - Compare with the s7
	- Id $)$ signal shown in Figure 4-9. the noise almost entirely
Further exploration	- Identify the noise characteristics. Use the coefficients and the command line mode.

Example \#11: A Sine + White Noise

Analyzing wavelet: db5
Decomposition levels: 5
The signal is formed of the sum of two previously analyzed signals: the slow sine with a period close to 200 and the uniform white noise b_{1}. This example is an illustration of the linear property of decompositions: the analysis of the sum of two signals is equal to the sum of analyses.

The details correspond to those obtained during the decomposition of the white noise.

The sine is found in the approximation A_{5}. This is a high enough level for the effect of the noise to be negligible in relation to the amplitude of the sine.

Figure 4-11: A Sine + White Noise

	Example \#11: A Sine + White Noise
Addressed topics	- Processing noise - Detecting Iong-term evolution
- Splitting signal components	
- Identifying the frequency of a sine	

Example \#12: A Triangle + A Sine

Analyzing wavelet: db5
Decomposition levels: 6
The signal is the sum of a sine having a period of approximately 20 and of a "triangle".
D_{1} and D_{2} are very small. This suggests that the signal contains no components with periods that are short in relation to the sampling period.
D_{3} and especially D_{4} can be attributed to the sine. The jump of the sine from A_{3} to D_{4} is clearly visible.

The details for the higher levels D_{5} and D_{6} are small, especially $D_{5} . D_{6}$ exhibits some edge effects.
A_{6} contains the triangle which includes only low frequencies.

Figure 4-12: A Triangle + A Sine

	Example \#12: A Triangle + A Sine
Addressed topics	• Detecting long-term evolution - Splitting signal components - Identifying the frequency of a sine
Further exploration	- Try using sinusoids whose period is a power of 2.

Example \#13: A Triangle + A Sine + Noise

Noise Analyzing wavelet: db5
Decomposition levels: 7
The signal examined here is the same as the previous signal plus a uniform white noise divided by 3. The analysis can therefore be compared to the previous analysis. All differences are due to the presence of the noise.
D_{1} and D_{2} are due to the noise.
D_{3} and especially D_{4} are due to the sine.
The higher-level details are increasingly low, and originate in the noise.
A_{7} contains a triangle, although it is not as well reconstructed as in the previous example.

Figure 4-13: A Triangle + A Sine + Noise

	Example \#13: A Triangle + A Sine + Noise
Addressed topics	- Detecting long-term evolution • Splitting signal components
Further exploration	• Increase the amplitude of the noise - Replace the triangle by a polynomial - Replace the white noise by an ARMA noise

Example \#14: A Real Electricity Consumption Signal

Analyzing wavelet: db3
Decomposition levels: 5
The series presents a peak in the center, followed by two drops, a shallow drop, and then a considerably weaker peak.

The details for levels 1 and 2 are of the same order of magnitude and give a good expression of the local irregularities caused by the noise. The detail for level 3 presents high values in the beginning and at the end of the main "peak," thus allowing us to locate the corresponding drops. The detail D_{4} shows coarser morphological aspects for the series i.e., three successive peaks. This fits the shape of the curve remarkably well, and includes the essential signal components for periods of less than 32 time-units. The approximations show this effect clearly: A_{1} and A_{2} bear a strong resemblance; A_{3} forms a reasonably accurate approximation of the original signal. A look at A_{4}, however, shows that a considerable amount of information has been lost.

In this case, as a conclusion, the multi-scale aspect is the most interesting and the most significant feature: the essential components of the electrical signal used to complete the description at 32 time-units (homogeneous to A_{5}) are the components with a period between 8 to 16 time-units.

Figure 4-14: A Real Electricity Consumption Signal

	Example \#14: A Real Electricity Consumption Signal
Addressed topics	- Detecting long-term evolution
	- Splitting signal components
	- Detecting breakdown points
- Multiscale analysis	

This signal is explored in much greater detail in A Case Study: An Electrical Signal on page 4-37.

A Case Study: An Electrical Signal

Thegoal of this section is to provide a statistical description of an electrical load consumption using the wavelet decompositions as a multiscale analysis.
Two problems are addressed. They both deal with signal extraction from the load curve corrupted by noise:

1 What information is contained in the signal, and what pieces of information are useful?

2 Are there various kinds of noises, and can they be distinguished from one another?

The context of the study is the forecast of the electrical load. Currently, short-term forecasts are based on the data sampled over 30 minutes. After eliminating certain components linked to weather conditions, calendar effects, outliers and known external actions, a SARIMA parametric model is devel oped. The model delivers forecasts from half-an-hour to two days. The quality of the forecasts is very high at least for 90% of all days, but the method fails when working with the data sampled over 1 minute.

Data and the External Information

The data consist of measurement of a complex, highly-aggregated plant: the electrical load consumption, sampled minute by minute, over a 5-week period. This time series of 50,400 points is partly plotted at the top of the Figure 4-17.

External information is given by electrical engineers, and additional indications can be found in several papers. This information, used to define reference situations for the purpose of comparison, includes these points:

- The load curveis theaggregation of hundreds of sensors measurements, thus generating measurement errors.
- Roughly speaking, the consumption is accounted for by industry for 50% and by individual consumers for the other half. The component of the load curve produced by industry has a rather regular profile and exhibits low-frequency changes. On the other hand, the consumption of individual consumers may be highly irregular, leading to high-frequency components.
- There are more than 10 millions individual consumers.
- The fundamental periods are the weekly-daily cycles, linked to economic rhythms.
- Daily consumption patterns also change according to rate changes at different times (e.g. relay-switched water heaters to benefit from special night rates).
- Missing data have been replaced.
- Outliers have not been corrected.
- F or the observations 2400 to 3400, the measurement errors are unusually high, due to sensors failures.

From a methodological point of view, the wavelet techniques provide a multiscale analysis of the signal as a sum of orthogonal signals corresponding to different time scales, allowing a kind of time-scale analysis.

Because of the absence of a model for the one minute data, the description strategy proceeds essentially by successive uses of various comparative methods applied to signals obtained by the wavelet decomposition.

Without modeling, it is impossible to define a signal or a noise effect. Nevertheless, we say that any repetitive pattern is due to signal and is meaningful.

Finally it is known that two kinds of noise corrupt the signal: sensors errors and the state noise.

We shall not report here the complete analysis which is included in a paper. Instead, we illustrate the contribution of wavelet transforms to the local description of time series. We choose two small samples: one taken at midday, and the other at the end of the night.

In the first period the signal structure is complex, in the second one, much simpler. The midday period has a complicated structure because the intensity of the electricity consumers activity is high and it presents very large changes. At the end of the night the activity is low and changes slowly.
For the local analysis, the decomposition is taken up to the level $j=5$, because $2^{5}=32$ is very close to half an hour. We are then able to study the components of the signal for which the period is less than half an hour.
The analyzing wavelet used here is db3.
The results are described similarly for the two periods.

Analysis of the Midday Period

This signal (see Figure 4-14) is also analyzed in Example \#14: A Real Electricity Consumption Signal on page 4-35 more crudely.
The shape is a middle mode between 00 h 30 pm and 01 h 00 pm , preceded and followed by a hollow off-peak, and next a second smoother mode at 01 h 15 pm . The approximation A_{5} corresponding to the time scale of 32 minutes, is a very crude approximation, particularly for the central mode: there is a peak time lag and an underestimation of the maximum value. So at this level the most essential information is missing. We have to look at lower scales (4 for instance).

Let us examine the corresponding details.
The details D_{1} and D_{2} have small values and may be considered as local short-period discrepancies caused by the high frequency components of sensor and state noises. In this bandpass, these noises are essentially due to measurement errors and fast variations of the signal induced by millions of state changes of personal electrical appliances.

The detail D_{3} exhibits high values at times corresponding to the start and the end of the original middle mode. It allows time localization of the local minima.

The detail D_{4} contains the main patterns: three successive modes. It is remarkably close to the shape of the curve. The ratio of the values of this level to the other levels is equal to 5 . The detail D_{5} does not bear much information. So the contribution of the level 4 is the highest one, both in qualitative and quantitative aspects. It captures the shape of the curve in the concerned period.

In conclusion, with respect to the approximation A_{5}, the detail D_{4} is the main additional correction: the components of period 8 to 16 minutes contain the crucial dynamics.

Figure 4-15: Analysis of the Midday Period

Analysis of the End of the Night Period

See Figure 4-16.
The shape of the curve during the end of the night is a slow descent globally smooth but locally highly irregular. One can hardly distinguish two successive local extrema in the vicinity of time $t=1600$ and $t=1625$. The approximation A_{5} is quite good except at these two modes.

The accuracy of the approximation can be explained by the fact that there remains only a low frequency signal corrupted by noises. The massive and simultaneous changes of personal electric appliances are absent.

The details D_{1}, D_{2}, and D_{3} show the kind of variation and have, roughly speaking, similar shape and mean value. They contain the local short period irregularities caused by noises and the inspection of D_{2} and D_{3} allows one to detect the local minimum around $\mathrm{t}=1625$.

The details D_{4} and D_{5} exhibit the slopechanges of theregular part of the signal and A_{4} and A_{5} are piecewise linear.

In conclusion, none of the time scales brings a significant contribution, sufficiently different from the noise level, and no additional correction is needed. The retained approximation is A_{4} or A_{5}.

Figure 4-16: Analysis of the End of the Night Period

All the figures in this paragraph have been generated using the Graphical User Interface tools, but the user can also process the analysis using the command line mode. The fol lowing example gives some indications and corresponds to a command line equivalent of producing Figure 4-17.

```
%Load the origi nal 1-D signal, decompose, reconstruct details in
% original time and plot.
%load the signal.
l oad I el eccum s = I el eccum
% Decompose the signal s at l evel 5 using the wavel et w.
w = ' db3' ; [ c, l] = wavedec( s,5,w);
% Reconstruct the details using the coefficients.
for i = 1:5
    eval(['d(',int2str(i),',:) = wrcoef(''d'',c,l,w,i);']);
end
```

Note: This loop replaces 5 separate wr coef statements defining variables D_{1} through D_{5}.

```
% Avoid edge effects by suppressing edge val ues and plot.
tt = 1+100: I engt h(s)-100;
subpl ot(611); pl ot(tt,s(tt),'r`);
title(`El ectrical Si gnal and Details');
for i = 1:5, subpl ot(6,1,i+1); pl ot(tt,d(i,tt),'g'); end
```


Figure 4-17: Decomposition of Three-Day Electrical Signal at Level 5 Using db3

Suggestions for Further Analysis

Let us now make some suggestions for possible further analysis starting from the details of the decomposition at level 5 of three days (see Figure 4-17).

Identify the Sensor Failure

Focus on the wavelet decomposition and try to identify the sensor failure directly on the details D_{1}, D_{2} and D_{3} and not the other ones. Try to identify the other part of the noise.

Indication: see Figure 4-18.

Figure 4-18: Identification of Sensor Failure

Suppress the Noise

Suppress measurement noise. Try by yourself and use, afterwards, the de-noising tools.

Indication: study the approximations and compare two successive days, the first without sensor failure and the second corrupted by failure (see Figure 4-19).

Figure 4-19: Comparison of Smoothed Versions of the Signal

Identify Patterns in the Details

The idea here is to identify a pattern in the details typical of relay-switched water heaters.

Indication: the Figure $4-20$ gives an example of such a period. Focus on details D_{2}, D_{3} and D_{4} around abscissa 1350, 1383, and 1415 in order to detect abrupt changes of the signal induced by automatic switches.

Figure 4-20: Location of the Water Heaters and Identification of the Effects on the Details

Locate and Suppress Outlying Values

Suppress the outliers by setting the corresponding values of the details to 0 .
Indi cation: the Figure 4-21 gives two examples of outliers around $t=1193$ and $t=1215$, the effect produced on the details is clear when focusing on the low levels. As far as outliers are concerned, D_{1} and D_{2} are synchronized with s, D_{3} shows a delayed effect.

Figure 4-21: Location of the Outliers and Identification of the Effects on the Details

Study Missing Data

Missing data have been crudely substituted (around observation 2870) by estimation of half an hour sampled data and spline smoothing for the intermediatetime points. Improvetheinterpolation by using an approximation and portions of the details taken elsewhere, thus implementing a sort of "graft."
Indication: see Figure 4-22 focusing around time 2870, and use the small variations part of D_{1} in order to detect the missing data.

Figure 4-22: Detection of Missing Data Replaced Using Splines

Fast Multiplication of Large Matrices

This section illustrates matrix-vector multiplication in the wavelet domain.

- The problem is:
let m be a dense matrix of Iarge size (n, n). We want to perform a large number L of multiplications of m by vectors v .
- Theidea is:

Stage 1: (executed once) compute the matrix approximation $s m$ at a suitable level k, the matrix being assimilated with an image.
Stage 2: (executed L times) divided in the following three steps:
1 Compute vector approximation.
2 Compute multiplication in wavelet domain.
3 Reconstruct vector approximation.
It is clear that when $s m$ is a sufficiently good approximation of m, the error with respect to ordinary multiplication can be small. This is the case in the first example bel ow where m is a magic square. Conversely, when the wavelet representation of the matrix m is dense, for example if all the coefficients have the same order of magnitude, the error will be large. This is the case in the second examplebelow where m is a two-dimensional Gaussian white noise. The Figure 4-23 compares for $n=512$, the number of flops required by wavelet based method and by ordinary method versus L.

Example 1: Effective Fast Matrix Multiplication

```
n = 512; lev = 5; wav = 'db1`;
% Wavel et based matrix multiplication by a vector:
% a "good" exampl e
% Matrix is magi c(512) Vector is (1:512)
m= magic(n); v = (1:n)`;
[LoF_D,Hi F_D, LoF_R,Hi F_R] = wfilters(wav);
% ordinary matrix multiplication by a vector.
flops(0), p = m* v; flomv = flops
flomv =
    524288
% Compute matrix approximation at l evel 5.
flops(0)
sm=m
for i = 1:lev
    sm = dyaddown(conv2(sm LoF_D) , ' c' );
    sm = dyaddown(conv2(sm LoF_D' ), 'r');
end
flmapp = flops
flmapp =
    2 0 9 5 1 0 4
% The three steps:
% 1. Compute vector approxi mation.
% 2. Compute multiplication in wavel et domain.
% 3. Reconstruct vector approxi mation.
```

```
fl ops(0)
sv = v;
for i = 1:lev, sv = dyaddown(conv(sv,LoF_D) ); end
sp = sm* sv;
for i = 1:lev, sp = conv(dyadup(sp),LoF_R); end
sp = wkeep(sp,l ength(v));
fl urv = fl ops
fl wnv =
8958
```

\% Pl ot ordinary versus wavel et based n*v flops in loglog.

Figure 4-23: Wavelet Based Matrix Multiplication by a Vector
\% Rel ative square normerror in percent when using wavel ets.

rnrm =
2. $9744 \mathrm{e}-06$

Example 2: Ineffective Fast Matrix Multiplication

The commands used are the same as in Example 1.

```
% Wavel et based matrix multiplication by a vector:
% a "bad" exampl e
% Matrix is randn(512,512) Vector is (1:512)
% Rel ati ve square normerror in percent
rnrm=100 * (norm(p-sp)/norm(p))
rnrm =
    98.8839
```

4 W avelets in Action: Examples and Case Studies

Using Wavelet Packets

5-3 About Wavelet Packet Analysis

5-6 One-Dimensional Wavelet Packet Analysis
 5-14 De-Noising a Signal Using Wavelet Packet

5-19 Two-Dimensional Wavelet Packet Analysis

5-26 Importing and Exporting from Graphical Tools

5-26 Saving Information to the Disk
5-28 Loading Information into the Graphical Tools

The Wavelet Tool box contains graphical tools and command line functions that let you:

- Examine and explore characteristics of individual wavelet packets.
- Perform wavelet packet analysis of one- and two-dimensional signals.
- Use wavelet packets to compress and remove noi se from signals and images.

This chapter takes you step-by-step through examples that teach you how to use the Wavelet Packet 1-D and Wavelet Packet 2-D graphical tools. The last section discusses how to transfer information from the graphical tools into your disk, and back again.
Because of the inherent complexity of packing and unpacking complete wavelet packet decomposition tree structures, we recommend using the Wavelet Packet 1-D and Wavelet Packet 2-D graphical tools for performing exploratory analyses.
The command line functions are also available and provide the same capabilities. However, it is most efficient to use the command line only for performing batch processing.

About Wavelet Packet Analysis

This chapter takes you through the features of one- and two-dimensional wavelet packet analysis using the MATLAB Wavelet Toolbox. You'll learn how to:

- Load a signal or image
- Perform a wavelet packet analysis of a signal or image
- Remove noise from a signal
- Compress an image
- Show statistics and histograms

The Wavelet Tool box provides these functions for wavelet packet analysis. F or more information, see the Command Reference (Chapter 8). The reference entries for these functions include examples showing how to perform wavelet packet analysis via the command line.

Analysis-Decomposition Functions:

Function Name	Purpose
updec and updec2	Full decomposition
upspl t	Decompose packet

Synthesis-Reconstruction Functions:

Function Name	Purpose
upr coef	Reconstruct coefficients
mprec	Full reconstruction
upj oi n	Recompose packet

Decomposition Structure Utilities:

Function Name	Purpose
best tree	Find best tree
best I evt	Find best level tree
went ropy	Entropy
ent rupd	Update wavelet packets entropy

De-noising and Compression:

Function Name	Purpose
ddencmp	Default values for de-noising and compression
upt hcoef	Wavelet packets coefficients thresholding
updencmp	De-noising and compression using wavelet packets

In the wavelet packet framework, compression and de-noising ideas areexactly the same as those developed in the wavelet framework. The only difference is that wavelet packets offer a more complex and flexible analysis, because in wavelet packet analysis, the details as well as the approximations are split:

A single wavelet packet decomposition gives a lot of bases from which you can look for the best representation with respect to a design objective. This can be done by finding the "best tree" based on an entropy criterion.

De-noising and compression are interesting applications of wavelet packet analysis. The wavelet packet de-noising or compression procedure involves four steps:

1 Decomposition
For a given wavelet, compute the wavelet packet decomposition of signal x at level N .

2 Computation of the best tree
F or a given entropy, compute the optimal wavel et packet tree. Of course, this step is optional. The graphical tools provide a Best Tree button for making this computation quick and easy.

3 Thresholding of wavelet packet coefficients
F or each packet (except for the approximation), select a threshold and apply thresholding to coefficients.

The graphical tools automatically provide an initial threshold based on balancing the amount of compression and retained energy. This threshold is a reasonable first approximation for most cases. However, in general you will have to refine your threshold by trial and error so as to optimize the results to fit your particular analysis and design criteria.

The tools facilitate experimentation with different thresholds, and make it easy to alter the trade-off between amount of compression and retained signal energy.

4 Reconstruction
Computewavelet packet reconstruction based on the original approximation coefficients at level N and the modified coefficients.

In this example we'll show how you can use one-dimensional wavelet packet analysis to compress and to de-noise a signal.

One-Dimensional Wavelet Packet Analysis

We now turn to the Wavelet Packet 1-D tool to analyze a synthetic signal that is the sum of two linear chirps.

Starting the Wavelet Packet 1-D Tool.
1 From the MATLAB prompt, type wavenenu.
The Wavelet Toolbox Main Menu appears.

2 Click the Wavelet Packet 1-D menu item.
The tool appears on the desktop.

Loading a Signal.

3 From the File menu, choose the Load Signal option.

图 Wavelet Packets 1-D
File Options Windows
Load Signal
Load Decomposition
Save Synthesized Signal
Save Decompasition

4 When the Load Signal dialog box appears, select the demo MAT-file suml i chr. mat, which should reside in the MATLAB directory t ool box/ wavel et/ wavedeno. Click the OK button.

The sumb i chr signal is loaded into the Wavelet Packet 1-D tool.

Analyzing a Signal.

5 Make the appropriate settings for the analysis. Select the db2 wavelet, level 4, entropy type thr eshol d, and threshold parameter 1. Click the Analyze button.

The available entropy types are:

Type	Description
Shannon	Non-normalized entropy involving the logarithm of the squared value of each signal sample - or, more formally:
	$-\sum s_{i}{ }^{2} \log \left(s_{i}^{2}\right)$
Threshold	The number of samples for which the absolute value of the signal exceeds a threshold ε.
Norm	The concentration in l^{p} norm with $1 \leq p<2$.
Log Energy	The logarithm of "energy," defined as the sum over all samples: $\sum \log \left(s_{i}^{2}\right)$

Type	Description
SURE (Stein's Unbi-	A threshold-based method in which the threshold
ased Risk Estimate)	equals:
	$\sqrt{2 \log _{e}\left(n \log _{2}(n)\right)}$
	where n is the number of samples in the signal.
User	An entropy type criterion you define in an M-file.

F or more information about the available entropy types, user-defined entropy, and threshold parameters, see the reference entry for went ropy, and Chapter 6.

Note: Many capabilities are available using the command area on the right of the Wavelet Packet 1-D window. Some of them are used in the sequel. Please refer to the Appendix A, "GUI Reference" for a more complete description.

Computing the Best Tree.

Because there are so many ways to reconstruct the original signal from the wavel et packet decomposition tree, we select the best tree before attempting to compress the signal.

6 Click the Best Tree button.

After a pause for computation, the Wavelet Packet 1-D tool displays the best tree. Use the top and bottom sliders to spread nodes apart and pan over to particular areas of the tree, respectively.

Observe that, for this analysis, the best tree and the initial tree are almost the same. One branch at the far right of the tree was eliminated.

Selecting a Threshold for Compression.

7 Click the Compress button.
The Wavelet Packet 1-D Compression window appears with an approximate threshold value automatically selected.

The left most graph shows how the threshold (vertical yellow dotted line) has been chosen automatically (1.482) to balance the number of zeros in the compressed signal (blue curve that increases as the threshold increases) with the amount of energy retained in the compressed signal (purple curve that decreases as the threshold increases).

This threshold means that any signal element whose value is less than 1.482 will be set to zero when we perform the compression.

Threshold controls are located to the right (see red box in figure). Note that the automatic threshold of 1.482 results in a retained energy of only 81.49\%. This may cause unacceptable amounts of distortion, especially in the peak values of the oscillating signal. Depending on your design criteria, you may want to choose a threshold that retains more of the original signal's energy.

8 Adjust the threshold by typing 0. 8938 in thetext field oppositethethreshold slider, then press the E nter key.

The value 0.8938 is a number that we have discovered through trial and error yields more satisfactory results for this analysis.

After a pause, the Wavelet Packet 1-D Compression window displays new information.

Note that, as we have reduced the threshold from 1.482 to 0.8938 :

- The vertical yellow dotted line has shifted to the left.
- The retained energy has increased from 81.49% to 90.96%.
- The number of zeros (equivalent to the amount of compression) has decreased from 81.55% to 75.28%.

Compressing a Signal.

9 Click the Compress button.
The Wavelet Packet 1-D tool compresses the signal using the threshol ding criterion we selected.

The original (red) and compressed (yellow) signals are displayed superimposed. Visual inspection suggests the compression quality is quite good.

Looking more closely at the compressed signal, we see that the number of zeros in the wavelet packets representation of the compressed signal is about 75.3\%, and the retained energy about 91%.
If you try to compress the same signal using wavelets with exactly the same parameters, only 89% of the signal energy is retained, and only 59% of the wavelet coefficients set to zero. This illustrates the superiority of wavelet packets for performing compression, at least on certain signals.

You can demonstrate this to yourself by returning to the main Wavelet Packet 1-D window, computing the wavelet tree, and then repeating the compression.

De-Noising a Signal Using Wavelet Packet

We now use the Wavelet Packet 1-D tool to analyze a noisy chirp signal. This analysis illustrates the use of Stein's Unbiased Estimate of Risk (SURE) as a principle for selecting a threshold to be used for de-noising.

This technique calls for setting the threshold T to

$$
T=\sqrt{2 \log _{e}\left(n \log _{2}(n)\right)}
$$

where n is the length of the signal.
A more thorough discussion of the SURE criterion appears in Chapter 6. F or now, suffice it to say that this method works well if your signal is normalized in such a way that the data fit the model $x(t)=f(t)+e(t)$, where $e(t)$ is a Gaussian white noise with zero mean and unit variance.

If you've already started the Wavelet Packet 1-D tool and it is active on your computer's desktop, skip to step 3.

Starting the Wavelet Packet 1-D Tool.
1 From the MATLAB prompt, type wavenenu.
The Wavelet Toolbox Main Menu appears.

2 Click the Wavelet Packet 1-D menu item.
The tool appears on the desktop.

Loading a Signal.

3 From the File menu, choose the Load Signal option.

Wavelet Packets 1-D
File \quad Options Windows
Load Signal
Load Decomposition
Save Sinnthesized Signal
Save Decampasition

4 When the Load Signal dialog box appears, select the demo MAT-file noi schi r. mat, which should reside in the MATLAB directory t ool box/ wavel et/ wavedem. Click the OK button.

The noi schi r signal is loaded into the Wavelet Packet 1-D tool. N otice that the signal's length is 1024. This means we should set the SURE criterion threshold equal to sqrt ($2 .{ }^{*} \log \left(1024 .{ }^{*} \log 2(1024)\right.$)), or 4.2975.

Analyzing a Signal.

5 Make the appropriate settings for the analysis. Select the db2 wavelet, level 4, entropy type sur e, and threshold parameter 4.2975. Click the Analyze button.

There is a pause while the wavelet packet analysis is computed.

Note: Many capabilities are available using the command area on the right of the Wavel et Packet 1-D window. Some of them are used in the sequel. Please refer to the Appendix A, "GUI Reference" for a more complete description.

Computing the Best Tree and Performing De-Noising.

6 Click the Best Tree button.
Computing the best tree makes the de-noising calculations more efficient.

7 Click the De-noise button, bringing up the Wavelet Packet 1-D De-Noising window.

8 Click the De-noise button located at the center right side of the Wavelet Packet 1-D De-Noising window.

The results of the de-noising operation are quite good, as can be seen by looking at the thresholded coefficients. The frequency of the chirp signal increases quadratically over time, and the thresholded coefficients essentially capture the quadratic curve in the time-frequency plane.

You can also use the M -file updencmp to perform wavelet packet de-noising or compression from the command line.

Two-Dimensional Wavelet Packet Analysis

In this section, we employ the Wavelet Packet 2-D tool to analyze and compress an image of a fingerprint. This is a real-world problem: the Federal Bureau of I nvestigation (FBI) maintains a large database of fingerprints about 30 million sets of them. The cost of storing all this data runs to hundreds of millions of dollars. By turning to wavelets, the FBI has achieved a 15:1 compression ratio. In this application, wavelet compression is better than the more traditional J PEG compression, as it avoids small square artifacts, and is particularly well suited to detect discontinuities (lines) in the fingerprint.

Starting the Wavelet Packet 2-D Tool.
1 From the MATLAB prompt, type:
» wavemenu.
The Wavelet Toolbox Main Menu appears.

	Wavelet 1-D
	Wavelet 2-D
	Wavelet Display
	Wavelet Packet 1-D
	Wavelet Packet 2-D
	Wavelet Packet Display
	Continuous Wavelet 1-D
	Close

2 Click the Wavelet Packet 2-D menu item.
The tool appears on the desktop.

Loading an Image.

From the File menu, choose the L oad I mage option.

回 Wavelet Packets 2-D
File Options Windows
Load Image
Load Decomposition
Save Synthesized Image
Save Decomposition

3 When the Load Image dialog box appears, select the demo MAT-file det fi ngr. mat, which should reside in the MATLAB directory t ool box/ wavel et/ wavedeno. Click the OK button.

The fingerprint image is loaded into the Wavelet Packet 2-D tool.

Analyzing an Image.

4 Make the appropriate settings for the analysis. Select the haar wavelet, level 3, and entropy type shannon. Click the Analyze button.

There is a pause while the wavelet packet analysis is computed.

Note: Many capabilities are available using the command area on the right of the Wavelet Packet 2-D window. Some of them are used in the sequel. Please refer to the Appendix A, "GUI Reference" for a more complete description.

5 Click the Best Tree button to compute the best tree before compressing the image.

Compressing an image.

6 Click the Compress button to bring up the Wavelet Packet 2-D Compression window.

N otice that the default threshold (7.25) provides about 64\% compression while retaining virtually all the energy of the original image. Depending on your criteria, it may be worthwhile experimenting with more aggressive thresholds to achieve a higher degree of compression. Recall that we are not doing any quantization of the image, merely setting specific coefficients to zero. This can be considered a pre-compression step in a broader compression system.

7 Alter the threshold: type the number 30 in the text field opposite the threshold slider located on the right side of the Wavelet Packet 2-D Compression window. Then press the Enter key.

Setting all wavelet packet coefficients whose valuefalls below 30 to zero yields much better results. Note that the new threshold achieves a compression ratio of better than 12:1, while still retaining nearly 98% of the image energy. Compare this wavel et packet anal ysis to the wavel et analysis of the same image in "Compressing Signals" in Chapter 3.

8 Click the Compress button to start the compression.
Y ou can see the result obtained by wavelet packet coefficients thresholding and image reconstruction. The visual recovery is correct but not perfect. The compressed image, shown side-by-side with the original, shows some artifacts.

9 Click the Close button located at the bottom of the Wavelet Packet 2-D Compression window. U pdatethe synthesized image by clicking Yes when the dialog box appears.

Take this opportunity to try out your own compression strategy. Adjust the threshold value, the entropy function, and the wavelet, and see if you can obtain better results.

Hint: The bi or 6.8 wavelet is better suited to this analysis than is haar, and can lead to a compression ratio of 24:1.

Before concluding this analysis, it is worth turning our attention to the "col ored coefficients for terminal nodes plot" and considering the best tree decomposition for this image.

This plot is shown in the lower right side of the Wavelet Packet 2-D tool. The plot shows us which details have been decomposed and which have not. Larger squares represent details that have not been broken down to as many levels as smaller squares. Consider, for example, this level 2 decomposition pattern:

Looking at the pattern of small and large squares in the fingerprint analysis shows that the best tree al gorithm has apparently singled out the diagonal details, often sparing these from further decomposition. Why is this?

If we consider the original image, we realize that much of its information is concentrated in the sharp edges that constitute the fingerprint's pattern. Looking at these edges, we see that they are predominantly oriented horizontally and vertically. This explains why the best tree algorithm has "chosen" not to decompose the diagonal details - they do not provide very much information.

Importing and Exporting from Graphical Tools

The Wavelet Packet 1-D and Wavelet Packet 2-D tools let you import information from and export information to your disk.

If you adhere to the proper file formats, you can:

- Save decompositions as well as synthesized signals and images from the wavel et packet graphical tools into your disk.
- L oad signals, images, and one- and two-dimensional decompositions from your disk into the Wavelet Packet 1-D and Wavelet Packet 2-D graphical tools.

Saving Information to the Disk

The graphical tools' functions let you save synthesized signals or images, as well as one- or two-dimensional wavel et packet decomposition structures, using specific file formats. This feature provides flexibility and allows you to combine command line and graphical interface operations.

Saving Synthesized Signals

You can process a signal in the Wavelet Packet 1-D tool and then save the processed signal to a MAT-file.

F or example, load the demo analysis: File \Rightarrow Demo Analysis \Rightarrow with db3 at level 5 --> Sum of sines, and perform a compression or de-noising operation on the original signal. When you close the Wavelet Packet 1-D De-noising or Wavelet Packet 1-D Compression window, updatethe synthesized signal by clicking Yes in the dialog box.

Then, from the Wavelet Packet 1-D tool , select the File \Rightarrow Save Synthesized Signal menu option.

A dialog box appears allowing you to select a directory and filename for the MAT-file. F or this example, choose the name synt hsi g.

To load the signal into your workspace, simply type:

```
» I oad synthsi g
```

» whos

Name	Size	El ements	Bytes	Cl ass
synt hsig	1 by 1000	1000	8000	doubl e array

Saving Synthesized Images

You can process an image in the Wavelet Packet 2-D tool and then save the processed image to a MAT-file.

For example, load the demo analysis File \Rightarrow Demo Analysis \Rightarrow db1 - depth: 1 - ent: shannon —> woman, and perform a compression on the original image. When you close the Wavelet Packet 2-D Compression window, update the synthesized image by clicking Yes in the dialog box that appears.

Then, from the Wavelet 2-D tool, select the File \Rightarrow Save Synthesized I mage menu option.

A dialog box appears allowing you to select a directory and filename for the MAT-file. F or this example, choose the name upsymage.

To load the image into your workspace, simply type:
» I oad wpsymage
» whos

Name	Size	El ements	Byt es	Cl ass
map	255 by 3	765	6120	doubl e array
upsymage	256 by 25665536	524288	doubl e array	

Saving One-Dimensional Decomposition Structures

The Wavelet Packet 1-D tool lets you save an entire wavel et packet decomposition tree and related data to your disk. The toolbox creates a MAT-file in the current directory with a name you choose, followed by the extension up1 (wavelet packet 1-D).

Open the Wavelet Packet 1-D tool and load the demo analysis File \Rightarrow Demo Analysis \Rightarrow db1 - depth: 2 - ent: shannon $->$ sumsin.

To save the data from this analysis, use the menu option File \Rightarrow Save Decomposition.

A dialog box appears that lets you specify a directory and file name for storing the decomposition data. Type the name updecex.

After saving the decomposition data to the file wpdecex1d. wp1, load the variables into your workspace.

```
> | oad wpdecex1d. wp1 - mat
> whos
```

Name	Si ze	El ements	Byt es	Cl ass
dat a_name	1 by 6	6	48	doubl e array
data_struct	1 by 1057	1057	8456	doubl e array
tree_struct	2 by 5	3	80	doubl e array

Variables tree_st ruct and dat a_st ruct contain the wavelet packet decomposition structure (tree and data). The other variable contains the data name.

Saving Two-Dimensional Decomposition Structures

The file format, variables, and conventions are exactly the same as in the one-dimensional case except for the extension, which is wp2 (wavelet packet 2-D). The variables saved are the same as with the one-dimensional case, with the addition of the colormap matrix map:

Name	Si ze	El ements	Byt es	Cl ass
dat a_name	1 by 5	5	40	doubl e array
dat a_struct	1 by 65590	65590	524720	doubl e array
map	255 by 3	765	6120	doubl e array
tree_struct 3 by 5	15	120	doubl e array	

Loading Information into the Graphical Tools

You can load signals, images, or one- and two-dimensional wavelet packet decompositions into the graphical interface tools. The information you load may have been previously exported from the graphical interface and then manipulated in the workspace, or it may have been information you generated initially from the command line.

In either case, you must observethe strict file formats and data structures used by the graphical tools, or else errors will result when you try to load information.

Loading Signals

To load a signal you've constructed in your MATLAB workspace into the Wavelet Packet 1-D tool, save the signal in a MAT-file that has the same name as the signal variable itself.

For instance, suppose you've designed a signal called warmand want to analyze it in the Wavelet Packet 1-D tool.

```
» I save warma
```

The workspace variable war ma must be a vector.

```
# si zwarma = si ze( narmm)
sizwarmm =
```

 1
 1000
 To load this signal into the Wavelet Packet 1-D tool, use the menu option File \Rightarrow Load Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Loading Images

This tool box supports only indexed images. An indexed image is a matrix containing only integers from 1 to n, where n is the number of colors in the image.
This image may optionally be accompanied by a n-by-3 matrix called map. This is the colormap associated with the image. When MATLAB displays such an image, it uses the values of the matrix to look up the desired col or in this col ormap. If the col ormap is not given, the Wavelet Packet 2-D graphical tool uses a monotonic colormap with $\max (\max (X))-\min (\min (X))+1$ colors.

To load an image you've constructed in your MATLAB workspace into the Wavelet Packet 2-D tool, save the image (and optionally, the variable map) in a MAT-file that has the same name as the image matrix itself.

For instance, suppose you've created an image called br ai n and want to analyze it in the Wavelet Packet 2-D tool. Type:
» I save brain
To load this image into the Wavelet Packet 2-D tool, use the menu option File \Rightarrow Load Image.

A dialog box appears that lets you select the appropriate M AT-file to be loaded.

Abstract

Caution: The graphical tools allow you to load an image that does not contain integers from 1 to n . The computations will be correct since they act directly on the matrix, but the display of the image will be strange. The values less than 1 will be evaluated as 1 , the values greater than n will be evaluated as n, and a real value within the interval [$1, \mathrm{n}$] will be evaluated as the closest integer.

Note that the coefficients, approximations, and details produced by wavelet packets decomposition are not indexed image matrices.

In order to display these images in a suitable way, the Wavelet Packet 2-D tool follows these rules:

- Reconstructed approximations are displayed using the colormap map. The same holds for the result of the reconstruction of selected nodes.
- The coefficients and the reconstructed details are displayed using the col ormap map applied to a rescaled version of the matrices.

Loading Wavelet Packet Decomposition Structures

You can load one and two-dimensional wavelet packet decompositions into the graphical tools providing you have previously saved the decomposition data in a MAT-file of the appropriate format.

While it is possi ble to edit data originally created using the graphical tools and then exported, you must be careful about doing so. Wavel et packet data structures are complex, and the graphical tool s do not do any consistency checking. This can lead to errors if you try to load improperly formatted data.

One-dimensional data structures must contain the variables:

Variable	Description
dat a_name	String specifying name of decomposition
dat a_st ruct	Vector specifying data in tree structure
tree_st ruct	Vector specifying tree structure

These variables must be saved in a MAT-file with the extension. upl.
Two-dimensional data structures must contain the variables:

Variable	Description
dat a_name	String specifying name of decomposition
dat a_st ruct	Vector specifying data in tree structure
map	Image map
tree_st ruct	Vector specifying tree structure

These variables must be saved in a MAT-file with the extension . up2.
To load the properly-formatted data, use the menu option File \Rightarrow Load Decomposition Structure from the appropriate tool, then select the desired MAT-file from the dialog box that appears.

The Wavelet Packet 1-D or 2-D graphical tool then automatically updates its display to show the new analysis.

Advanced Concepts

6-2 Mathematical Conventions
6-5 General Concepts
6-21 The Fast Wavelet Transform (FWT) Algorithm
6-34 One-Dimensional Wavelet Capabilities
6-40 Two-Dimensional Wavelet Capabilities
6-46 Dealing with Border Distortion
6-56 Frequently Asked Questions
6-62 Wavelet Families: Additional Discussion
6-73 Summary of Wavelet Families and Associated Properties
6-74 Wavelet Applications: More Detail
6-95 Wavelet Packets
6-114 References

This chapter presents an alternative and more advanced treatment of wavelet methods. It assumes that the reader is comfortable with mathematical ideas. F or more detail on the theory, the reader is directed to the book Wavelets and Filter Banks by Strang and N guyen, and to the references at the end of this Chapter.

Mathematical Conventions

This chapter and the reference section use certain mathematical conventions.

General Notation	Interpretation
$a=2^{j}, j \in Z$ $b=k a, k \in Z$	Dyadic scale. j is the level, $1 / a$ or 2^{-j} is the resolution t k or n (i, j)
s	Dyadic translation
Discrete time Pixel	
Continuous time Signal or image. The signal is a function defined on R or Z, the image is defined on R^{2} or Z^{2} A finite-length signal is extended to all $\mathrm{R}, \mathrm{Z}, \mathrm{R}^{2}$ or Z^{2} using zeros (this is zero-padding). $L^{2}(R)$ Fourier transform of the function f or the sequence f.	
$\int_{R} s(x)^{2} d x$	Set of signals of finite energy
$\left\langle s, s^{\prime}\right\rangle=\int_{R} s(x) s^{\prime}(x) c$	Energy of the signal s
$L^{2}\left(R^{2}\right)$	Scalar product of signals s and s^{\prime}
$\int_{R} \int_{R} s(x, y)^{2} d x d y$	Set of images of finite energy
$\left\langle s, s^{\prime}\right\rangle=\int_{R} \int_{R} s(x, y) s^{\prime}(x, y) d x d y$	Energy of the image s

General Notation	Interpretation
Discrete time	
$l^{2}(Z)$	Set of signals of finite energy
$\sum_{Z} s(n)^{2}$	Energy of the signal s
$\left\langle s, s^{\prime}\right\rangle=\sum_{Z} s(n) s^{\prime}(n)$	Scalar product of signals s and s^{\prime}
$l^{2}\left(Z^{2}\right)$	Set of images of finite energy
$\sum_{Z} \sum_{Z} s(n, m)^{2}$	Energy of the image s
$\left\langle s, s^{\prime}\right\rangle=\sum_{Z} \sum_{Z} s(n, m) s^{\prime}(n, m)$	Scalar product of images s and s^{\prime}

Wavelet Notation	Interpretation
$A_{\text {j }}$	j-level approximation or approximation at level j
D_{j}	j-level detail or detail at level j
f	Scale or scaling function
y	Wavelet
$\frac{1}{\sqrt{a}} \psi\left(\frac{x-b}{a}\right)$	Family associated with the one-dimensional wavelet, $a>0$ and $b \in R$.
$\frac{1}{\sqrt{a_{1} a}} \psi\left(\frac{x_{1}-b_{1}}{a_{1}}, \frac{x_{2}-b_{2}}{a_{2}}\right), x=\left(x_{1}, x_{2}\right) \in R^{2}$	Family associated with the two-dimensional wavelet, $a_{1}>0, a_{2}>0, b_{1} \in R, b_{2} \in R$.
$\phi_{j, k}(x)=2^{-j / 2} \phi\left(2^{-j} x-k\right), j \in Z, k \in Z$	Family associated with the one-dimensional scale function for dyadic scales $a=2^{j}, b=k a$.
	It should be noted that $\phi=\phi_{0,0}$.

Wavelet Notation	Interpretation
$\Psi_{j, k}(x)=2^{-j / 2} \psi\left(2^{-j} x-k\right), j \in Z, k \in Z$	Family associated with the one-dimensional ψ for dyadic scales $a=2^{j}, b=k a$.
	It should be noted that $\psi=\psi_{0,0}$. $\left(h_{k}\right), k \in Z$ $\left(g_{k}\right), k \in Z$
	Scale or scaling filter associated with a discrete
wavelet	
	Discrete wavelet

$$
\psi_{j, k}(x)=2^{-j / 2} \psi\left(2^{-j} x-k\right), j \in Z, k \in Z
$$

$\left(g_{k}\right), k \in Z$

Discrete wavelet

General Concepts

This section presents a brief overview of wavelet concepts.

Wavelets: A New Tool for Signal Analysis

Wavelet analysis consists of decomposing a signal or an image into a hierarchical set of approximations and details. Thelevels in the hierarchy often correspond to those in a dyadic scale.

From the signal analyst's point of view, wavelet analysis is a decomposition of the signal on a family of analyzing signals, which is an "orthogonal function method." F rom an al gorithmic point of view, wavelet analysis offers a harmonious compromise between decomposition and smoothing techniques.

Wavelet Decomposition: A Hierarchical Organization

Unlike conventional techniques, wavelet decomposition produces a family of hierarchically organized decompositions The selection of a suitable level for the hierarchy will depend on the signal and experience. Often the level is chosen based on a desired low-pass cutoff frequency.

At each level j, we build the j-level approximation, A_{j}, or approximation at level j, and a deviation signal called the j-level detail, D_{j}, or detail at level j. The original signal we could consider as the approximation at level 0 , denoted by A_{0}. The words "approximation" and "detail" are justified by the fact that A_{1} is an approximation of A_{0} taking into account the "low frequencies" of A_{0}, whereas the detail D_{1} corresponds tothe "high frequency" correction. The figure on Page 1-23 graphically represents this hierarchical decomposition.

As outlined in Chapter 1, one way of understanding this decomposition consists of using an optical comparison. Successiveimages A_{1}, A_{2}, A_{3} of a given object are built. We use the sametype of photographic devices, but with increasingly poor resolution. The images are successive approximations; one detail is the discrepancy between two successive images. Image A_{2} is therefore the sum of image A_{4} and intermediate details D_{4}, D_{3} :

$$
A_{2}=A_{3}+D_{3}=A_{4}+D_{4}+D_{3}
$$

Finer and Coarser Resolutions

The organizing parameter, the scale a, is related to level j , by $a=2^{j}$. If we define resolution as $1 / a$, then the resolution increases as the scale decreases. The greater the resolution, the smaller and finer are the details that can be accessed.

j	10	9	\ldots	2	1	0	-1	-2
Scale	1024	512	\ldots	4	2	1	$1 / 2$	$1 / 4$
Resolution	$1 / 2^{10}$	$1 / 2^{9}$	\ldots	$1 / 4$	$1 / 2$	1	2	4

From a technical point of view, the size of the revealed details for any j is proportional to the size of the domain in which the wavelet or analyzing function of the variable $x, \psi\left(\frac{x}{a}\right)$, is not too close to 0 . The proportionality coefficient depends on the wavelet.

Wavelet Shapes

One-dimensional analysis is based on one scaling function ϕ and one wavelet ψ. Two-dimensional analysis (on a square or rectangular grid) is based on one scaling function $\phi\left(x_{1}, x_{2}\right)$ and three wavel ets.
Figure 6-1 shows ϕ and ψ for each wavel et, except the M orlet wavel et and the Mexican hat for which ϕ does not exist. All the functions decay quickly to zero. The Haar wavelet is the only noncontinuous function with three points of discontinuity ($0,0.5,1$). The ψ functions oscillate more than associated ϕ functions. coi f 2 exhibits some angular points, db6 and sym6 are quite smooth. The Morlet and Mexican hat wavelets are symmetrical.

Figure 6-1: Various One-Dimensional Wavelets

Wavelets and Associated Families

In the one-dimensional context, we distinguish the wavelet ψ from the associated function ϕ, called the scaling function. Some properties of the ψ and ϕ are:

- The integral of ψ is zero, $\left(\int \psi(x) d x=0\right)$, and ψ is used to define the details.
- The integral of ϕ is $1,\left(\int \phi(x) d x=1\right)$, and ϕ is used to define the approximations.

The usual two-dimensional wavelets are defined as tensor products of one-dimensional wavel ets: $\phi(x, y)=\phi(x) \phi(y)$ is the scaling function and $\psi_{1}(x, y)=\phi(x) \psi(y), \psi_{2}(x, y)=\psi(x) \phi(y), \psi_{3}(x, y)=\psi(x) \psi(y)$ are the three wavel ets.

Figure 6-2 shows the four functions associated with thetwo-dimensional coi f 2 wavelet.

Figure 6-2: Two-Dimensional coif2 Wavelet

To each of these functions, we associate its doubly indexed family, which is used to:

- M ove the shape, translating it to position b (see Figure 6-3).
- Keep the shape while changing the one-dimensional time scale a ($a>0$), see Figure 6-4.

So a wavel et has to be thought as a function located at a position b, and having a scale a.

In one-dimensional situations, the family of translated and scaled wavelets associated with ψ is expressed as:

Translation	Change of scale	Translation and change of scale
$\psi(x-b)$	$\frac{1}{\sqrt{a}} \psi\left(\frac{x}{a}\right)$	$\frac{1}{\sqrt{a}} \psi\left(\frac{x-b}{a}\right)$

Figure 6-3: Translated Wavelets
Wavel et $d b 3(x)$ is in the middle, $d b 3(x+8)$ on the left, $d b 3(x-8)$ on the right.

Figure 6-4: Time scaled one-dimensional wavelet
Wavel et $d b 3(x)$ is in the middle, $d b 3(2 x+7)$ on the left, $d b 3(x / 2-7)$ on the right. In a two-dimensional context, we have the translation by vector $\left[b_{1}, b_{2}\right]^{\prime}$ and a change of scale of parameter $\left[a_{1}, a_{2}\right]^{\prime}$.
Translation and change of scale become: $\frac{1}{\sqrt{a_{1} a_{2}}} \psi\left(\frac{x_{1}-b_{1}}{a_{1}}, \frac{x_{2}-b_{2}}{a_{2}}\right)$ where
In most cases, we will limit our choice of a and b values by using only the following discrete set (coming back to the one-dimensional context):

$$
(j, k) \in Z^{2}: a=2^{j}, \quad b=k 2^{j}=k a .
$$

What is more, let us define:

$$
(j, k) \in Z^{2}: \psi_{j, k}=2^{-j / 2} \psi\left(2^{-j} x-k\right), \phi_{j, k}=2^{-j / 2} \phi\left(2^{-j} x-k\right) .
$$

We now have a hierarchical organization similar to the organization of a decomposition, which is represented in the example of the Figure 6-5. Let $k=0$ and leave the translations aside for the moment. The functions (expressed as $\phi_{\mathrm{j}, 0}$) associated with $j=0,1,2,3$ for ϕ and with $j=1,2,3$ for ψ (expressed as $\Psi_{j, 0}$) are displayed in Figure 6-5 for the db3 wavelet.

Figure 6-5: Wavelets Organization

In Figure 6-5, the four level decomposition is shown, progressing from the top to the bottom, we find $\phi_{0,0}$, then $2^{1 / 2} \phi_{1,0}, 2^{1 / 2} \psi_{1,0}$ then $2 \phi_{2,0}, 2 \psi_{2,0}$ then $2^{3 / 2} \phi_{3,0}, 2^{3 / 2} \psi_{3,0}$. The wavelet is $d b 3$.

Wavelets on a Regular Discrete Grid

To complement the wavelets introduced previously, we use wavel ets defined on grids, when the signal is sampled on a regular grid. The simplest of these wavelets is deduced from wavel ets capable of analyzing the signals that are recorded continuously. Figure 6-6 shows some of these wavelets (non-normalized).

Figure 6-6: Discrete wavelets

The wavelet filter g, plays the role of ψ. The scaling filter h plays the role of ϕ. They are defined on a regular grid ΔZ, where Δ is the sampling period. Let us set $\Delta=1$. Like the previous wavelets, functions g and h are subjected to scalings and translations.
Using a function g defined on Z and a scale equal to 2^{j}, for $j \in N$ and $k \in N$, we define the function $g_{j, k}$ by:

$$
n \in Z, \quad g_{j, k}(n)=2^{-j / 2}{ }_{g\left(2^{-j} n-k\right)}
$$

Wavelet Transforms: Continuous and Discrete

The wavelet transform of a signal s is the family $C(a, b)$, which depends on two indices a and b. The set to which a and b belong is given below in the table. The studies focus on three kinds of signals:

- Continuous time signal, recorded continuously
- Sampled signal
- Discrete time signal recorded in discrete time and two transforms:
- Continuous transform
- Discrete transform.

From an intuitive point of view, the wavelet decomposition consists of calculating a "resemblance index" between the signal and the wavelet. If the index is large, the resemblance is strong, otherwise it is slight. The indexes $C(a, b)$ are called coefficients.

We define the coefficients in the following tables. We have three types of analysis at our disposal.

Continuous time "continuous" analysis	Continuous time "discrete" analysis	Discrete time ($\Delta=\mathbf{1)}$ "discrete" analysis
$C(a, b)=\int_{R} s(t) \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right) d t$	$C(a, b)=\int_{R} s(t) \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right) d t$	$C(a, b)=C(j, k) \quad=\sum_{n \in Z} s(n) g_{j, k}(n)$
$a \in R^{+}-\{0\}, b \in R$	$a=\Delta 2^{j}, b=\Delta k 2^{j},(j, k) \in Z^{2}$	$a=2^{j}, b=k 2^{j}, j \in N, k \in Z$

Let us illustrate the differences between the two transforms, for the analysis of a fractal signal (see Figure 6-7).

Figure 6-7: Continuous versus discrete transform

Using a redundant representation close to the so-called continuous analysis, instead of a non-redundant discretetime-scal erepresentation, can be useful for analysis purposes. The non-redundant representation is associated with an orthonormal basis, whereas the redundant representation uses much more scale and position parameters than a basis. For a classical fractal signal, the redundant methods are quite accurate.

- Graphic representation of continuous analysis: time is on the abscissa and on the ordinate the scale varies almost continuously between 2^{1} and 2^{5} by step 1 (down to up). K eep in mind that when a scale is small, only small details are analyzed, as in a geographical map.
- Graphic representation of discrete analysis: (in the middle of the figure) time is on the abscissa and on the ordinate the scale a is dyadic: 2^{1}, $2^{2}, 2^{3}, 2^{4}$ and 2^{5} (down to up). Each coefficient of level k is repeated 2^{k} times.

Local and Global Analysis

A small scale value permits us to perform a local analysis; a large scale value is used for a global analysis. Combining local and global is a useful feature of the method. Let us be a bit more precise about the local part and glance at the frequency domain counterpart.

Imagine that the analyzing function ϕ or ψ is zero outside of a domain U , which is contained in a disk of radius $\rho: \psi(u)=0, \forall u \notin \mathrm{U}$. The wavelet is localized. The signal s and the function ψ are then compared in the disk, taking into account only the x values in the disk. The signal values, which are located outside of this domain, do not influence the value of the coefficient
$\int_{R} s(t) \psi(t) d t$. The same argument holds when ψ is translated to position b and the corresponding coefficient analyzes s around b. So this analysis is local.

The wavelets having a compact support are used in local analysis. This is the case for Haar and Daubechies wavelets, for example. The wavelets whose values are considered as very small outside a domain U can be used with caution, as if they were in fact actually zero outside U. Not every wavelet has a compact support. This is the case, for instance, of the Meyer wavelet.

The previous localization is temporal, and is useful in analyzing a temporal signal (or spatial signal if analyzing an image). A result (linked to the Heisenberg uncertainty principle) links the signal dispersion f and the dispersion of its Fourier transform \hat{f}, and therefore of the dispersion of ψ and $\hat{\psi}$. The product of these dispersions is always greater than a constant c (which does not depend on the signal, but only on the dimension of the space). So, it is impossible to reduce arbitrarily both time and frequency localization.

In the Fourier and spectral analysis, the basic function is $f(x)=\exp (i \omega x)$. This function is not a localized function. The support is R. Its F ourier transform \hat{f} is a distribution concentrated at point ω. The function f is very poorly localized in time, but \hat{f} is perfectly localized in frequency. The wavelets generate an interesting "compromise" on the supports, and this compromise differs from that of complex exponentials, sine, or cosine.

Synthesis: An Inverse Transform

In order to be efficient and useful, a method designed for analysis also has to be able to perform synthesis. The wavelet method achieves this.

The analysis starts from s and results in the coefficients $C(a, b)$. The synthesis starts from the coefficients $C(a, b)$ and reconstructs s. Synthesis is the reciprocal operation of analysis.

For signals of finite energy, there are two formulas to perform the inverse wavelet transform:

- Continuous synthesis:

$$
s(t)=\frac{1}{K_{\psi}} \int_{R^{\dagger}} \int_{R} C(a, b) \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right) \frac{d a d b}{a^{2}}
$$

where K_{ψ} is a constant depending on ψ.

- Discrete synthesis:

$$
s(t)=\sum_{j \in Z} \sum_{k \in Z} C(j, k) \psi_{j, k}(t) .
$$

Details and Approximations

The equations for continuous and discrete synthesis are of considerable interest and can be read in order to define the detail at level j :

1 Let us fix j and sum on k. A detail D_{j} is nothing more than the function

$$
D_{j}(t)=\sum_{k \in Z} C(j, k) \Psi_{j, k}(t)
$$

2 Now let us sum on j. The signal is the sum of all the details: $s=\sum_{j \in Z} D_{j}$.

The details have just been defined. Take a reference level called J. There are two sorts of details. Those associated with indices $j \leq J$ correspond to the scales $a=2^{j} \leq 2^{J}$ which are the fine details. The others, which correspond to $j>J$, are the coarser details. We group these latter details into

$$
A_{J}=\sum_{j>J} D_{j}
$$

which defines what is called an approximation of the signal s. We have just created the details and an approximation. They are connected. The equality

$$
s=A_{J}+\sum_{j \leq J} D_{j}
$$

signifies that s is the sum of its approximation A_{\jmath} and of its fine details. From the previous formula, it is obvious that the approximations are related to one another by:

$$
A_{J-1}=A_{J}+D_{J} .
$$

The calculation of the approximation coefficients will be discussed later.

For an orthogonal analysis, in which the $\psi_{\mathrm{j}, \mathrm{k}}$ is an orthonormal family,

- A_{J} is orthogonal to $D_{\mathrm{J}}, D_{\mathrm{J}-1}, D_{\mathrm{J}-2}, \ldots$,
- s is the sum of the two orthogonal signals: A_{J} and $\sum_{j \leq J} D_{j}$,
- $D_{j} \perp D_{k}$ for $j \neq k$.
- the quality (in energy) of the approximation of s by A_{J} is qual ${ }_{J}=\frac{\left\|A_{J}\right\|^{2}}{\|s\|^{2}}$,
- $q u a l_{J-1}=q u a l_{J}+\frac{\left\|D_{J}\right\|^{2}}{\|s\|^{2}}$.

The following table contains definitions of details and approximations.

Definition of the detail at level j	$D_{j}(t)=\sum_{k \in Z} C(j, k) \psi_{j, k}(t)$
The signal is the sum of its details	$s=\sum_{j \in Z} D_{j}$
The approximation at level J	$A_{J}=\sum_{j>J} D_{j}$
Link between A_{J-1} and A_{J}	$A_{J-1}=A_{J}+D_{J}$
Several decompositions	$s=A_{J}+\sum_{j \leq J} D_{j}$

From a graphical point of view, when analyzing a signal, it is always valuable to represent the different signals and coefficients.

Let us consider the Figure 6-8. The different signals that are presented exist in the same time grid. We can consider that the t index of detail $D_{4}(t)$, for example, that of an approximation $A_{5}(t)$ and that of the signal $s(t)$, identify the same temporal instant. This identity is of considerable practical interest in understanding the composition of the signal, even if the wavel et sometimes introduces dephasing.

Figure 6-8: Approximations, details and coefficients

The Fast Wavelet Transform (FWT) Algorithm

In 1988, M allat produced a fast wavelet decomposition and reconstruction al gorithm [M al89]. The Mallat al gorithm for discrete wavelet transform (DWT) is, in fact, a classical scheme in the signal processing community, known as a two channel subband coder using conjugate quadrature filters or quadrature mirror filters (QMF).

- The decomposition algorithm starts with signal s, then calculates the coordinates of A_{1} and D_{1}, then those of A_{2} and D_{2} and so on.
- The reconstruction al gorithm called the inverse discrete wavelet transform (IDWT), starts from the coordinates of A_{J} and D_{J} then calculates the coordinates of A_{J-1}, then from the coordinates of A_{J-1} and D_{J-1} cal culates those of $A_{\mathrm{J}-2}$ and so on.

Filters Used to Calculate the DWT and IDWT

For an orthogonal wavelet, in the multiresolution framework (see [Dau92] chap. 5), we start with the scaling function ϕ and the wavelet function ψ. One of the fundamental relations is the twin-scale relation (dilation equation or refinement equation):

$$
\frac{1}{2} \phi\left(\frac{x}{2}\right)=\sum_{n \in Z} w_{n} \phi(x-n) .
$$

All the filters used in DWT and IDWT are intimately related to the sequence $\left(w_{n}\right)_{n \in Z}$. Clearly if ϕ is compactly supported, the sequence $\left(w_{n}\right)$ is finite and can be viewed as a filter. The filter W, which is called the scaling filter (non-normalized), is:

- Finite Impulse Response (FIR)
- of length $2 N$
- of sum 1
- of norm $\frac{1}{\sqrt{2}}$
- a low-pass filter

```
For example, for the db3 scaling filter:
I oad db3
db3
            db3 =
            0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249
sum(db3)
        ans =
            1.0000
norm(db3)
        ans =
            0.7071
```

From filter W, we definefour FIR filters, of length $2 N$ and of norm 1, organized as follows:

Filters	Low-pass	High-pass
Decomposition	LoF_D	HiF_D
Reconstruction	LoF_R	HiF_R

The four filters are computed using the following scheme:

where qnf is such that HiF_R and LoF_R are quadrature mirror filters (i.e.,
 $\mathrm{HiF}_{-}^{-} \mathrm{D}$ an LoF_D are also quadrature mirror filters. The computation of these filters is performed using or thf il t . Let us illustrate these properties with the db6 wavelet. The plots associated with the following M-file are shown in the Figure 6-9.

```
%Load scaling filter.
| oad db6; w = db6;
subpl ot(421); stem(w); title('Original scaling filter');
%Compute the four filters.
[LoF_D,Hi F_D, LoF_R,Hi F_R] = orthfilt(w);
subpl ot(423); stem(LoF_D);
title('Decompositi on l ow pass filter');
subpl ot (424); stem(Hi F_D) ;
title('Decomposition high-pass filter');
subpl ot (425); stem(LoF_R);
title('Reconstruction low- pass filter');
subpl ot (426); st em(Hi F_R);
title('Reconstruction hi gh- pass filter');
% Hi gh and I ow frequency ill ustration.
fftld =fft(LoF_D); ffthd =fft(HiF_D);
freq = [1: I ength(LoF_D) ]/I ength(LoF_D);
subpl ot(427); pl ot(freq,abs(fftld));
title('Transfer modul us: low- pass')
subpl ot(428); pl ot(freq, abs(ffthd));
title('Transfer modulus: hi gh-pass')
```


Figure 6-9: The four wavelet filters

Algorithms

- Given a signal s of length N, the DWT consists of $\log _{2} N$ stages at most. The first step produces, starting from s, two sets of coefficients: approximation coefficients $c A_{1}$ and detail coefficients $c D_{1}$. These vectors are obtained by convolving s with the low-pass filter LoF_D for approximation, and with the high-pass filter HiF_D for detail, followed by dyadic decimation.

M ore precisely, the first step is:

where: $\quad \mathrm{X} \quad$ Convolve with filter X.
$\downarrow 2$ Keep the even indexed elements $\begin{aligned} & \text { (see dyaddown). }\end{aligned}$
The length of each filter is equal to $2 N$. If $n=$ length (s), the signals F and G, are of length $n+2 N-1$ and then the coefficients $c A_{1}$ and $c D_{1}$ are of length

$$
\text { floor }\left(\frac{n-1}{2}\right)+N
$$

The next step splits the approximation coefficients $c A_{1}$ in two parts using the same scheme, replacing s by $c A_{1}$, and producing $c A_{2}$ and $c D_{2}$, and so on.

One-Dimensional DWT

Decomposition step

So the wavelet decomposition of the signal s analyzed at level j has the following structure: $\left[c A_{\mathrm{j}}, c D_{\mathrm{j}}, \ldots, c D_{1}\right]$.

This structure contains for $\mathrm{J}=3$, the terminal nodes of the following tree:

- Conversely, starting from $c A_{\mathrm{j}}$ and $c D_{\mathrm{j}}$, the IDWT reconstructs $c A_{\mathrm{j}-1}$, inverting the decomposition step by inserting zeros and convolving the results with the reconstruction filters.

One-Dimensional IDWT

Reconstruction step

where:

Insert zeros at odd-indexed elements.
X Convolve with filter X.

$$
\begin{aligned}
& \text { kep Take the central part of } U \text { with the } \\
& \text { convenient length. }
\end{aligned}
$$

- For images, a similar algorithm is possiblefor two-dimensional wavelets and scaling functions obtained from one-dimensional wavelets by tensorial product.
This kind of two-dimensional DWT leads to a decomposition of approximation coefficients at level j in four components: the approximation at level $j+1$ and the details in three orientations (horizontal, vertical, and diagonal).
The following charts describe the basic decomposition and reconstruction steps for images:

Two-Dimensional DWT

Decomposition step

Where:
$2 \downarrow 1$ Downsample columns: keep the even indexed columns.
$1 \downarrow 2$ Downsample rows: keep the even indexed rows.

rows
X
Convolve with filter X the rows of the entry.

columns
X Convolve with filter X the columns of the entry.
Initialization $\quad C A_{0}=s$ for the decomposition initialization.

Two-Dimensional IDWT

Reconstruction step

Where: $\quad 241$ Upsample columns: insert zeros at odd-indexed columns.
142 Upsample rows: insert zeros at odd-indexed rows.
rows
X Convolve with filter X the rows of the entry.
columns
X Convolve with filter X the columns of the entry.

So, for $J=2$, the two-dimensional wavelet tree has the form:

Finally, let us mention that, for biorthogonal wavelets, the same al gorithms hold but the decomposition filters on onehand and thereconstruction filters on the other hand are obtained from two distinct scaling functions associated with two multiresolution analyses in duality.

In this case, the filters for decomposition and reconstruction are, in general, of different odd lengths. This situation occurs, for example, for "splines" biorthogonal wavelets used in the tool box. By zero-padding, the four filters can be extended in such a way that they will have the same even length.

Why Does Such an Algorithm Exist?

Let us denote $h=$ LoF_R and $g=H i F _R$ and focus on the one-dimensional case.
We first justify how to go from level j to level $j+1$, for the approximation vector. This is the main step of the decomposition algorithm for the computation of the approximations. The details are calculated in the same way using the filter g instead of filter h.
Let $\left(A_{k}{ }^{(j)}\right)_{k \in Z}$ be the coordinates of the vector A_{j} :

$$
A_{j}=\sum_{k} A_{k}^{(j)} \phi_{j, k}
$$

and $A_{k}{ }^{(j+1)}$ the coordinates of the vector $\mathrm{A}_{\mathrm{j}+1}$:

$$
A_{j+1}=\sum_{k} A_{k}^{(j+1)} \phi_{j+1, k}
$$

$A_{k}{ }^{(j+1)}$ is calculated using the formula:

$$
A_{k}{ }^{(j+1)}=\sum_{n} h_{n-2 k} A_{n}{ }^{(j)}
$$

This formula resembles a convolution formula.
The computation is very simple. Let us define $\tilde{h}(k)=h(-k)$, and

$$
F_{k}^{(j+1)}=\sum_{n} \tilde{h}_{k-n} A_{n}{ }^{(j)}
$$

We obtain:

$$
A_{k}{ }^{(j+1)}=F_{2 k}{ }^{(j+1)}
$$

We have to take the even index values of F. This is downsampling.
The initialization is carried out using $A_{k}^{(0)}=s(k)$ where $s(k)$ is the signal value at time k.

There are several reasons for this surprising result, all of which are linked to the multiresolution situation and to a few of the properties of the functions $\phi_{\mathrm{j}, \mathrm{k}}$ and $\psi_{\mathrm{j}, \mathrm{k}}$.

Let us now describe some of them.
1 The family ($\phi_{0, k}, k \in Z$) is formed of orthonormal functions. As a conse quence for any j, the family ($\phi_{j, k}, k \in Z$) is orthonormal.

2 The double indexed family ($\psi_{j, k}, j \in Z, k \in Z$) is orthonormal.
3 For any j, the $\left(\phi_{j, k}, k \in Z\right)$ are orthogonal to ($\psi_{j^{\prime}, k}, j^{\prime} \leq j, k \in Z$)
4 Between two successive scales, we have a fundamental relation, called the "twin-scale relation":

Tw in-scale relation for ϕ

$$
\phi_{1,0}=\sum_{k \in Z} h_{k} \phi_{0, k} \quad \phi_{j+1,0}=\sum_{k \in Z} h_{k} \phi_{j, k}
$$

This relation introduces the algorithm's h filter ($h_{n}=\sqrt{2} w_{n}$), see the section "Filters Used to Calculate the DWT and IDWT" on page 6-21).

5 We check that:
a. the coordinate of $\phi_{j+1,0}$ on $\phi_{\mathrm{j}, \mathrm{k}}$ is h_{k} and does not depend on j,
b. the coordinate of $\phi_{j+1, n}$ on $\phi_{\mathrm{j}, \mathrm{k}}$ is equal to: $\left\langle\phi_{j+1, n}, \phi_{j, k}\right\rangle=h_{k-2 n}$.

6 These relations supply the ingredients for the algorithm.
7 Up to now we used the filter h. The high-pass filter g is used in the twin scales relation linking the ψ and ϕ functions. Between two successi ve scales, we have the following twin-scale fundamental relation.

Twin-scale relation between ψ and ϕ

$$
\Psi_{1,0}=\sum_{k \in Z} g_{k} \phi_{0, k} \quad \Psi_{j+1,0}=\sum_{k \in Z} g_{k} \phi_{j, k}
$$

8 We justify now the reconstruction al gorithm by buil ding it. Let us simplify the notation, starting from A_{1} and D_{1}, let us study $A_{0}=A_{1}+D_{1}$. The procedure is the same to calculate $A_{\mathrm{j}}=A_{\mathrm{j}+1}+D_{\mathrm{j}+1}$.
Let us define $\alpha_{n}, \delta_{n}, \alpha_{k}^{0}$ by:

$$
A_{1}=\sum_{n} \alpha_{n} \phi_{1, n}, \quad D_{1}=\sum_{n} \delta_{n} \psi_{1, n}, \quad A_{0}=\sum_{k} \alpha_{k}^{0} \phi_{0, k},
$$

Let us assess the α_{k}^{0} coordinates as:

$$
\begin{aligned}
\alpha_{k}^{0}=\left\langle A_{0}, \phi_{0, k}\right\rangle & =\left\langle A_{1}+D_{1}, \phi_{0, k}\right\rangle=\left\langle A_{1}, \phi_{0, k}\right\rangle+\left\langle D_{1}, \phi_{0, k}\right\rangle \\
& =\sum_{n} \alpha_{n}\left\langle\phi_{1, n}, \phi_{0, k}\right\rangle+\sum_{n} \delta_{n}\left\langle\psi_{1, n}, \phi_{0, k}\right\rangle \\
& =\sum_{n} \alpha_{n} h_{k-2 n}+\sum_{n} \delta_{n} g_{k-2 n}
\end{aligned}
$$

We will focus our study on the first sum $\sum_{n} \alpha_{n} h_{k-2 n}$; the second sum
$\sum_{n} \delta_{n} g_{k-2 n}$ is handled in a similar manner. The calculations are easily organized if we note that (taking $k=0$ in the previous formulas, makes things simpler):

$$
\begin{aligned}
\sum_{n} \alpha_{n} h_{-2 n} & =\ldots+\alpha_{-1} h_{2}+\alpha_{0} h_{0}+\alpha_{1} h_{-2}+\alpha_{2} h_{-4}+\ldots \\
& =\ldots+\alpha_{-1} h_{2}+0 h_{1}+\alpha_{0} h_{0}+0 h_{-1}+\alpha_{1} h_{-2}+0 h_{-3}+\alpha_{2} h_{-4}+\ldots
\end{aligned}
$$

If we transform the (α_{n}) sequence into a new sequence ($\tilde{\alpha}_{n}$) defined by

$$
\begin{gathered}
\ldots, \alpha_{-1}, 0, \alpha_{0}, 0, \alpha_{1}, 0, \alpha_{2}, 0, \ldots \text { or } \\
\tilde{\alpha}_{2 n}=\tilde{\alpha}_{n}, \tilde{\alpha}_{2 n+1}=0
\end{gathered}
$$

Then:

$$
\sum_{n} \alpha_{n} h_{-2 n}=\sum_{n} \tilde{\alpha}_{n} h_{-n}
$$

and by extension:

$$
\sum_{n} \alpha_{n} h_{k-2 n}=\sum_{n} \tilde{\alpha}_{n} h_{k-n}
$$

Since $\alpha_{k}^{0}=\sum_{n} \tilde{\alpha}_{n} h_{k-n}+\sum_{n} \tilde{\delta}_{n} g_{k-n}$ the procedure thus becomes:

- Replace the α and δ sequences by upsampled versions $\tilde{\alpha}$ and $\tilde{\delta}$ inserting zeros
- Filter by h and g respectively
- Sum the obtained sequences

These are exactly the reconstruction steps.

One-Dimensional Wavelet Capabilities

The basic one-dimensional objects are:

	$\mathbf{O b j e c t s}$	Description
Signal in original time	s	Original signal
	$A_{\mathrm{k}}, 0 \leq k \leq j$	
	$D_{\mathrm{k}}, 1 \leq k \leq j$	Approximation at level k
Coefficients in scale-related time	$c A_{\mathrm{k}}, 1 \leq k \leq j$	
$c D_{\mathrm{k}}, 1 \leq k \leq j$		
$\left[c A_{\mathrm{j}}, c D_{\mathrm{j}}, \ldots, c D_{1}\right]$	Detail at level k	

The analysis-decomposition capabilities are:

Purpose	Input	O utput	M-file
Single-level decomposition	s	$c A_{1}, c D_{1}$	dut
Single-level decomposition	$c A_{\mathrm{j}}$	$c A_{\mathrm{j}+1}, c D_{\mathrm{j}+1}$	dut
Decomposition	s	$\left[c A_{\mathrm{j}}, c D_{\mathrm{j}}, \ldots, c D_{1}\right]$	wavedec

The synthesis-reconstruction capabilities are:

Purpose	Input	O utput	M-file
Single-level reconstruction	$c A_{1}, c D_{1}$	s or A_{0}	i dwt
Single-level reconstruction	$c A_{\mathrm{j}+1}, c D_{\mathrm{j}+1}$	$c A_{\mathrm{j}}$	i dwt
Full reconstruction	$\left[c A_{\mathrm{j}}, c D_{\mathrm{j}}, \ldots, c D_{1}\right]$	s or A_{0}	waverec
Selective reconstruction	$\left[c A_{\mathrm{j}}, c D_{\mathrm{j}}, \ldots, c D_{1}\right]$	$A_{\mathrm{l}}, D_{\mathrm{m}}$	wrcoef
Single reconstruction	$c A_{\mathrm{j}}\left(\mathrm{or} c D_{\mathrm{j}}\right)$	$A_{\mathrm{j}}\left(\mathrm{or} D_{\mathrm{j}}\right)$	upcoef

The decomposition structure utilities are:

Purpose	Input	Output	M-file				
Extraction of detail coefficients	$\left[c A_{\mathrm{j}}, c D_{\mathrm{j}}, \ldots, c D_{1}\right]$	$c D_{\mathrm{k}}$,	det coef				
$1 \leq k \leq j$,			$\left[c A_{\mathrm{j}}, c D_{\mathrm{j}}, \ldots, c D_{1}\right]$
:---	:---	:---					
Extraction of approximation coefficients	$0 \leq k \leq j$	appcoef					
Recomposition of the decomposition structure	$\left[c A_{\mathrm{j}}, c D_{\mathrm{j}}, \ldots, c D_{1}\right]$	$\left[c A_{\mathrm{k}}, c D_{\mathrm{k}}, \ldots, c D_{1}\right]$					
$1 \leq k \leq j$	upw ev						

Let us illustrate the command line mode for one-dimensional capabilities:
\% Load original 1D signal.
I oad I el eccum s = I el eccum(1: 3920);
I $\mathrm{s}=1$ ength (s);
\% Performone step decomposition
$\%$ of s using db1.
[cal, cd1] $=\operatorname{dut}\left(s,{ }^{\prime} \mathrm{db1} 1^{\prime}\right)$;
Results are displayed in Figure 6-10
\% Perform one step reconstruction of \%cal and cd1.
a1 $=$ upcoef('a', ca1, 'db1', $1,1 \mathrm{~s}$);
d1 $=$ upcoef('d', cd1, 'db1', 1, ls);
Results are displayed in Figure 6-11.

Original signal s.

Approx. coef. : ca1

Detail coef. : cd1

Figure 6-10: Coefficients at level 1

Original signal s.

Figure 6-11: Signals at level 1
\%Invert di rect decomposition of s
\% using coefficients.
a0 = idut(cal, cd1,' db1', ls);
\% Perform decomposition at level 3
$\%$ of s using dbl.
$[\mathrm{c}, \mathrm{l}]=\operatorname{wavedec}\left(\mathrm{s}, 3, \mathrm{'dbl}^{\prime}\right)$;
\% Extract the approximation coefficients $\%$ at level 3, fromthe wavel et decomposition \% structure [c,l].

```
ca3 = appcoef(c,l,'db1',3);
% Extract the detail coeffici ents at levels
% 1, 2 and 3, fromthe wavel et decomposition
% structure [c,l].
cd3 = detcoef(c,l,3);
cd2 = detcoef(c,l, 2);
cd1 = detcoef(c,l,1);
```

Results are displayed in Figure 6-12, the signal s, ca3, cd3, cd2 and cd1 from the top to the bottom.

Original signal s and coefficients.

Figure 6-12: Coefficients at levels 1 to 3

```
% Reconstruct the approxi mati on at l evel 3,
%fromthe wavel et decomposition
% structure [c,l].
a3 = wrcoef(' a', c, l,' db1', 3);
% Reconstruct the detail at
%l evel 2, fromthe wavel et
% decomposition structure [c,l].
d2 = wrcoef('d',c,l,'db1',2);
% Reconstruct s fromthe wavel et
% decompositi on structure [c,l], s = a0.
a0 = waverec(c,l,'db1');
```


Two-Dimensional Wavelet Capabilities

The basic two-dimensional objects are:

	Objects	Description
Imagein original resol ution	s	Original image
	A_{0}	Approximation at level 0
	$A_{\mathrm{k}}, 1 \leq k \leq j$	Approximation at level k
	$D_{\mathrm{k}}, 1 \leq k \leq j$	Details at level k
Coefficients in scale-related resol ution	$c A_{\mathrm{k}}, 1 \leq k \leq j$	
$c D_{\mathrm{k}}, 1 \leq k \leq j$		
	$\left[c A_{\mathrm{j}}, c D_{\mathrm{j}}, \ldots, c D_{1}\right]$	Approximation coefficients at level k

D_{k} stands for $\left[D_{k}{ }^{(h)}, D_{k}{ }^{(v)}, D_{k}{ }^{(d)}\right]$, the horizontal, vertical and diagonal details at level k.
The same holds for $c D_{\mathrm{k}}$ which stands for: $\left[c D_{k}{ }^{(h)}, c D_{k}{ }^{(\nu)}, c D_{k}^{(d)}\right]$.
The two-dimensional M-files are exactly the same as in one-dimensional case, appending a 2 on the end of the command. For example, idwt becomes idut 2.

Let us illustrate the command line mode for two-dimensional capabilities:

```
% Load origi nal i mage.
I oad noman;
sX = si ze(X);
%X contai ns the I oaded i mage and
% map contai ns the I oaded col ormap.
row = sX(1); col =sX(2);
% I mage codi ng.
nbcol = size(map, 1);
cod_X = wcodemat(X, nbcol );
% Performone step decomposition
% of X using dbl.
[ca1,chd1,cvd1,cdd1] = dwt 2( X,' db1');
% I mages coding.
cod_cal = wcodemat(cal, nbcol);
cod_chd1 = wcodemat(chd1, nbcol);
cod_cvd1 = wcodemmt(cvd1, nbcol);
cod_cdd1 = wcodemat(cdd1, nbcol);
dec2d = [...
    cod_cal, cod_chd1; ...
    cod_cvd1, cod_cdd1 ...
    ];
```

\% Vi sualize the coefficients of the decomposition \% at level 1.

Results are displayed in Figure 6-13.

Figure 6-13: Decomposition at level 1
\% Perform second step decomposition: \% decompose approx. cfs of level 1. [ca2, chd2, cvd2, cdd2] = dwt 2(ca1, 'db1');
\% I nvert directly decomposition of X \% usi ng coefficients at level 1. a0 = idwt 2(cal, chd1, cvd1, cdd1,' db1', sX);
\% Perform decomposition at level 2 $\%$ of X using db1.
[c, s] = navedec2(X, 2, 'db1');
Results are displayed in Figure 6-14.

Figure 6-14: Decomposition at level 2
\% Extract approximation coefficients
\% at level 2, from wavel et decomposition
\% structure [c,s].
ca2 = appcoef2(c,s,' db1', 2);
\% Extract details coefficients at level 2
\%from wavel et decomposition
\%structure [c,s].
chd2 $=\operatorname{det}$ coef $2(' h ', c, s, 2)$;
$\mathrm{cvd} 2=\operatorname{det} \operatorname{coef} 2\left({ }^{\prime} \mathrm{v}\right.$ ', $\mathrm{c}, \mathrm{s}, 2$);
cdd2 $=\operatorname{det}$ coef 2('d', c, $\mathrm{s}, 2$);
\% Extract approximation and details coefficients
\% at level 1, from wavel et decomposition
\%structure [c,s].
cal $=\operatorname{appcoef} 2\left(\mathrm{c}, \mathrm{s}, \mathrm{'db1}^{\prime}, 1\right)$;
chd1 $=\operatorname{det} \operatorname{coef} 2(' \mathrm{~h} ', \mathrm{c}, \mathrm{s}, 1)$;
$\mathrm{cvd1}=\operatorname{det} \operatorname{coef} 2\left({ }^{\prime} \mathrm{v}\right.$ ', $\mathrm{c}, \mathrm{s}, 1$);
cdd1 $=\operatorname{det} \operatorname{coef} 2\left({ }^{\prime} d^{\prime}, c, s, 1\right)$;

```
% Reconstruct approxi mati on at l evel 2,
%fromthe wavel et decomposition
% structure [c,s].
a2 = urcoef 2(' a', c, s,' db1', 2);
% Reconstruct details at level 2,
%fromthe wavel et decomposition
% structure [c,s].
hd2 = wrcoef 2(' h', c, s, ' db1', 2);
vd2 = wrcoef 2('v',c, s,'db1',2);
dd2 = wrcoef 2('d',c, s,'db1',2);
% One step reconstruction of wavel et
% decomposition structure [c, s].
sc = size( c)
    SC =
        1 65536
val_s = s
        val_s =
            64 64
            64 64
            128 128
            256 256
[c,s] = upw ev2(c, s,'db1'); sc = size(c)
        SC =
            1 65536
val _s = s
    val _s =
            128 128
            128 128
            256 256
```

```
% Reconstruct approxi mation and details
% at l evel 1, from coeffici ents.
%
%step 1: extract coefficients
% decomposition structure [c, s].
%
%step 2: reconstruct.
siz = s(size(s, 1),:);
cal = appcoef 2(c, s,' db1',1);
al = upcoef 2('a',cal,' db1',1, si z);
cl ear cal
chd1 = det coef 2('h', c, s, 1);
hd1 = upcoef 2(' h', chd1,' 'db1', 1, si z);
cl ear chd1
cvd1 = det coef 2('v', c, s, 1);
vd1 = upcoef 2('v',cvd1,' db1',1, siz);
clear cvd1
cdd1 = det coef 2('d', c, s, 1);
dd1 = upcoef 2('d',cdd1,' db1',1, si z);
cl ear cdd1
% Reconstruct X fromthe wavel et
% decomposition structure [c,s].
a0 = waverec2(c, s,'db1');
```


Dealing with Border Distortion

Classically the DWT is defined for sequences with length of some power of two, and different ways of extending samples of other sizes are needed. M ethods for extending the signal include: zero-padding, periodic extension, and boundary value replication (symmetrization).

The basic algorithm for the DWT is not limited to dyadic length and is based on a simple scheme; convolution and downsampling. As usual, when a convolution is performed on finite-length signals, border distortions arise.

Signal Extensions: Zero-Padding, Symmetrization, and Smooth Padding

In order to deal with border distortions, the border should be treated differently. Various methods are available to deal with this problem, referred as "wavelets on the interval" (see [CohDJ V93]). These interesting constructions are effective in theory but are not entirely satisfactory from a practical viewpoint.

Often it is preferable to use simple schemes based on signal extension on the boundaries. This involves the computation of a few extra coefficients at each stage of the decomposition process in order to get a perfect reconstruction. Details about the rationale of these schemes can be found in Chapter 8 of the book Wavelets and Filter Banks, by Strang and Nguyen.

The available signal extension modes are: (see dwt mode)

- zero-padding: This method is used in the version of the DWT given in the previous sections and assumes that the signal is zero outside the original support. It is the default mode of the wavelet transform in the tool box.
The disadvantage of zero-padding is that discontinuities are artificially created at the border.
- symmetrization: This method assumes that signals or images can be recovered outside their original support by symmetric boundary value replication.
Symmetrization has the disadvantage of artificially creating discontinuities of thefirst derivative at the border, but this method works well in general for images.
- smooth padding: This method assumes that signals or images can be recovered outside their original support by a simple first order derivative extrapolation. Smooth padding works well in general for smooth signals.

Before looking at an illustrative example, note that the decomposition step with any of these three extension modes has the same inverse reconstruction step. So all the capabilities described in the previous paragraphs are available without any reference to the extension mode.

It is interesting to notice that if arbitrary extension is done, and decomposition performed using theconvolution-downsampling scheme, perfect reconstruction is recovered using i dwt or i dwt 2 . This point is illustrated by the following example.

```
% Set initial signal and get filters.
    x = sin(0. 3*[ 1:451]);
    w = 'db9';
    [LoF_D, Hi F_D, LoF_R,Hi F_R] = wfilters(w);
%In fact using a slightly redundant scheme, any si gnal
%extensi on strategy works well.
% For exampl e use random paddi ng.
```


3. $0464 \mathrm{e}-11$

Now let us illustrate the differences between the three methods both for 1-D and 2-D signals.

Zero-Padding.

Using the GUI we will examine the effects of zero-padding.
1 From the MATLAB prompt, type
dut mode('zpd')
2 F rom the MATLAB prompt, type wavemenu.The Wavelet Tool box M ain Menu appears.

3 Click the Wavelet 1-D menu item.The discrete wavelet analysis tool for one-dimensional signal data appears.

4 From the File menu, choose the Demo Analysis option and select with db2 at level 5 --> two nearby discontinuities.

5 Select Display Mode: Show and Scroll

The detail coefficients clearly show the signal end effects.

Symmetric Extension.

6 From the MATLAB prompt, type dut mode(' sym)

7 From the MATLAB prompt, type wavemenu.
The Wavelet Tool box M ain Menu appears.

8 Click the Wavelet 1-D menu item.
The discrete wavelet analysis tool for one-dimensional signal data appears.
9 From the File menu, choose the Demo Analysis option and select with db2 at level 5 -->two nearby discontinuities.

10 Select Display Mode: Show and Scroll

The detail coefficients show the signal end effects are present, but the discontinuities are well detected.

Smooth Padding.

11 From the MATLAB prompt, type dut mode('spd')

12 From the MATLAB prompt, type wavemenu.
The Wavelet Tool box M ain Menu appears.
13 Click the Wavelet 1-D menu item.
The discrete wavelet analysis tool for one-dimensional signal data appears.
14 F rom the File menu, choose the Demo Analysis option and select with db2 at level 5 --> two nearby discontinuities.

15 Select Display Mode: Show and Scroll

The detail coefficients show the signal end effects are not present, and the discontinuities are well detected.

Let us now consider an image example.

Original Image.

1 From the MATLAB prompt, type
I oad geometry; sX = size(X);
\% X contai ns the Ioaded image and $\%$ map cont ai ns the loaded col ormap. row $=s \mathrm{x}(1)$; col $=\mathrm{sX}(2)$;
nbcol = size(map, 1);
col ormp(pi nk(nbcol));
i mage(wcodenat (X, nbcol));

Zero-Padding.

Now we set the extension mode to zero-padding and perform a decomposition of the image to level 3 using the sym\# wavelet, and then reconstruct the approximation of level 3.

2 From the MATLAB prompt, type
dut mode('zpd')
lev = 3;
[c, s] = wavedec $2(\mathrm{X}, \mathrm{l}$ ev, ' sym4');
a = wrcoef 2('a', c, s, 'sym4',lev);
i mage(wcodemat (a, nbcol));

Symmetric Extension.

Now we set the extension mode to symmetric extension and perform a decomposition of the image again to level 3 using the sym\& wavelet, and then reconstruct the approximation of level 3.

3 From the MATLAB prompt, type
dut node(' sym)
[c, s] = wavedec2(X,Iev,'sym4');
a = wrcoef 2('a', c, s,' sym4', lev);
i mage(wcodemat (a, nbcol)) ;

Smooth Padding.

Finally we set the extension mode to smooth padding and perform a decomposition of the image again to level 3 using the sym4 wavelet, and then reconstruct the approximation of level 3.

4 From the MATLAB prompt, type
dut mode('spd')
[c, s] = wavedec2(X,I ev, 'sym4');
a = urcoef 2('a', c, s, 'sym4', lev);
i mage(wcodemat (a, nbcol));

Periodized Wavelet Transform

Another method is the periodized wavelet transform. This method supposes that signals or images are periodic. It is clear that in general it is far from a reasonable assumption. The main advantage of this transform is that it does not require extra coefficients.

In the toolbox, the periodized wavel et transform is handled separately (see dwt per, dwt per 2, i dwt per, i dwt per 2). F or the periodized wavelet transform, the full command line capabilities described previously are not defined and the GUI tools do not support the periodized wavelet transform.

Frequently Asked Questions

Continuous or Discrete Analysis?

When is continuous analysis more appropriate than discrete analysis? To answer this, consider the related questions: Do you need to know all values of a continuous decomposition to reconstruct the signal s exactly? Can you perform non-redundant analysis?
When the energy of the signal is finite, not all values of a decomposition are needed to exactly reconstruct the original signal, provided that you are using a wavelet that satisfies some admissibility condition (see [Dau92] p. 7, 24, 27). Usual wavelets satisfy this condition. In that case, a continuous-time signal s is entirely characterized by the knowledge of the discrete transform $C(j, k),(j, k) \in Z^{2}$. In such cases, discrete analysis is sufficient and continuous analysis is redundant. When the signal is recorded in continuous time or on a very fine time grid, both types of analysis are possible. Which should be used? The answer is: each has its own advantages.

- Discrete analysis ensures space-saving coding and is sufficient for the synthesis.
- Continuous analysis is often easier to interpret, since its redundancy tends to reinforce the traits and makes all information more visible. This is especially true of very subtle information. The analysis gains in "readability" and in ease of interpretation what it loses in terms of space saving.

Why Are Wavelets Useful for Space-Saving Coding?

The family of functions ($\phi_{0, k} ; \psi_{j, 1}$) $j \leq 0, k, l \in Z$, used for the analysis is an orthogonal basis, therefore leading to non-redundancy: $\phi_{0, k} \perp \psi_{j^{\prime}, k^{\prime}}$ as soon as $j^{\prime} \leq 0$, and $\psi_{j, k} \perp \psi_{j^{\prime}, k^{\prime}}$ as soon as $(j, k) \neq\left(j^{\prime}, k^{\prime}\right)$. Let us remember that $u \perp v$ stands for $\int_{R} u(x) v(x) d x=0$, for one dimensional signals. For biorthogonal wavelets, the idea is similar.

Why Do All Wavelets Have Zero Average and Sometimes Several Vanishing Moments?

When the wavelet's $k+1$ moments are equal to zero $\left(\int_{R}{ }^{j} \psi(t) d t=0\right.$ for
$j=0, \ldots, k$) all the polynomial signals $s(t)=\sum_{0 \leq j \leq k} a_{j} j^{j}$ have zero wavelet
coefficients, the details are also zero. This property ensures the suppression of signals that are polynomials.

What About the Regularity of a Wavelet ψ ?

The notion of regularity has been assuming increasing importance in theoretical and practical studies. Wavelets are tools used to study regularity and to conduct local studies. Deterministic fractal signals or Brownian motion trajectories are locally very irregular; for example, the latter are continuous signals, but their first derivative exists almost nowhere.
The definition of the concept of regularity is somewhat technical. To make things simple, let us say that a signal f, defined on R, has a regularity of s.
When s is an integer, the regularity in x_{0} is defined as usual, s is the order of differentiability. When s is not an integer, let m be the integer such that $m<s<m+1$, then f has a regularity of s in x_{0} if its derivative $f^{(m)}$ of order m resembles $\left|x-x_{0}\right|^{s-m}$ locally around x_{0}.
The regularity of f in a domain is that of its least regular point.
The greater s, the more regular the signal.
The regularity of certain wavelets is known. The following table gives some indications for Daubechies wavelets.

ψ	$\mathbf{d b 1}=\mathbf{H a a r}$	$\mathbf{d b 2}$	$\mathbf{d b 3}$	$\mathbf{d b 4}$	$\mathbf{d b 5}$	$\mathbf{d b 7}$	$\mathbf{d b 1 0}$
Regularity	0	0.5	0.91	1.27	1.59	2.15	2.90

We have an asymptotic relation linking the size of the support of the Daubechies wavelets $d b N$ and their regularity: when $N \rightarrow \infty$, length(support) $=2 N$, regularity $s \approx \frac{N}{5}$.

The functions are more regular at certain points than at others (see Figure 6-15).

Figure 6-15: Zooming in on db3 wavelet
Selecting a regularity and a wavelet for this regularity is useful in estimations of the local properties of functions or signals. This can be used, for example, to make sure that a signal has a constant regularity at all points. Work on function estimation and nonlinear regression is currently underway, notably by Donoho, J ohnstone, Kerkyacharian and Picard, in order to adapt the statistical estimators to unknown regularity. See also the remarks by I. Daubechies (see [Dau92] p. 301).

From a practical point of view, these questions arise in the world of finance in dealing with monetary and stock markets for fine studies of very fast transactions.

Are Wavelets Useful in Fields Other Than Signal or Image Processing?

- From a theoretical point of view, wavelets can be used to characterize large sets of mathematical functions and are used in the study of operators linked to partial differential equations.
- From a practical point of view, wavelets are used in several fields of numerical analysis, making certain complex calculations easier to handle or more precise.

What Functions Are Candidates to Be a Wavelet?

If a function f is continuous, has null moments, decreases quickly towards 0 when x tends towards infinity, or is null outside a segment of R, it is a likely candidate to become a wavelet. The family of shifts and dilations of f allows all finite energy signals to be reconstructed using the details in all scales. Such a function will be called ψ. This allows only continuous analysis.

In the tool box, the ψ wavelet is usually associated with a scaling function ϕ. There are, however, some ψ wavel ets for which we do not know how to associate a ϕ. In some cases we know how to prove that ϕ does not exist, for example, the Morlet wavelet.

Is It Easy to Build a New Wavelet?

Not at the present time. M ore precisely, for a minimal requirement on the wavel et properties, it is easy but without interest. But if more interesting properties (like the existence of ϕ for example) are needed, then it is difficult.

Very few wavelets have an explicit analytical expression. Notable exceptions are wavel ets that are piecewise polynomials (Haar, Battle-Lemarie, see [Dau92] p. 146), M orlet, or M exican hat.

Wavelets, even db2, db3 ..., are defined by functional equations. The solution for constructive equations is numerical, and is accomplished using a fairly simple algorithm.

The basic property is the existence of a linear relation between the two functions $\phi(x / 2)$ and $\phi(x)$. A nother relation of the same type links $\psi(x / \Omega)$ to $\phi(x)$. These are the relations of the two scales, the twin-scale relation.

I ndeed there are two sequences h and g of coefficients such that:

$$
\begin{aligned}
h \in l^{2}(Z), g & \in l^{2}(Z) \text { and } \\
\frac{1}{2} \phi\left(\frac{x}{2}\right) & =\frac{1}{\sqrt{2}} \sum_{n \in Z} h_{n} \phi(x-n) \\
\frac{1}{2} \psi\left(\frac{x}{2}\right) & =\frac{1}{\sqrt{2}} \sum_{n \in Z} g_{n} \phi(x-n) .
\end{aligned}
$$

By rewriting these formulas using F ourier transforms (expressed using a hat) we obtain:

$$
\hat{\phi}(2 \omega)=\frac{1}{\sqrt{2}} \hat{h}(\omega) \hat{\phi}(\omega) \quad \hat{\psi}(2 \omega)=\frac{1}{\sqrt{2}} \hat{g}(\omega) \hat{\phi}(\omega)
$$

There are ϕ functions for which the h has a finite impulse response (FIR): there is only a finite number of nonzero h_{n} coefficients. The associated wavelets were built by I. Daubechies (see[Dau92] in Chapter 6) and are used extensively in the tool box. The reader can refer to p. 164 and Chapter 10 of the book Wavel ets and Filter Banks, by Strang and Nguyen.

What Is the Link Betw een Wavelet and Fourier Analysis?

Wavelet analysis complements the F ourier analysis for which there are several MATLAB functions: fft , spa , et fe , spect rum

Fourier analysis uses the basic functions $\sin (\omega t), \cos (\omega t)$, and $\exp (i \omega t)$, with ω being the frequency.

- In the frequency domain, these functions are perfectly localized, since their spectrum loads only two points $-\omega / 2$, and $\omega / 2$. The functions are suited to the analysis and synthesis of signals with a simple spectrum, which is very well localized in frequency, for example $\sin \left(\omega_{1} t\right)+0.5 \sin \left(\omega_{2} t\right)-\cos \left(\omega_{3} t\right)$.
- In the time domain, these functions are not localized. It is difficult for them to analyze or synthesize complex signals presenting fast local variations such as transients or abrupt changes: the Fourier coefficients for a frequency ω will depend on all values in the signal. To limit the difficulties involved, it is possible to "window" the signal using a regular function, which is zero or nearly zero outside a time segment $[-m, m]$. We then build "a well localized slice" as I. Daubechies (see [Dau92] p. 2) calls it. The windowed-F ourier analysis coefficients are:

$$
\hat{s}(\omega, t)=\int_{R} s(u) g(t-u) e^{-i \omega u} d u
$$

The analogy of this formula with that of the wavelet coefficients is obvious:

$$
C(a, t)=\int_{R} s(u)\left(\frac{1}{\sqrt{a}}\right) \psi\left(\frac{(t-u)}{a}\right) d u
$$

The large values of a correspond to small values of ω.

The F ourier coefficient $\hat{s}(\omega, t)$ depends on the values of the signal s on the segment with a constant width $[t-m, t+m]$. If ψ, like g, is zero outside of $[-m, m]$, the $C(a, t)$ coefficients will depend on the values of the signal s on the segment of width $2 a m$, which varies as a function of $[t-\mathrm{a} m, t+\mathrm{a} m]$. This slight differencesolves several difficulties, allowing a kind of time-windowed analysis at various scales a.

The wavelets stay however competitive, even in contexts considered favorable for the Fourier technique. I. Daubechies (see [Dau92] p. 3-7) gives an example of "Windowed Fourier" processing and complex M orlet wavelet processing $\psi(t)=C e^{-t^{2} / \alpha^{2}}\left(e^{i \pi t}-e^{-\pi^{2} \lambda^{2} / 4}\right)$, of a signal composed mainly of the sum of two sines. The wavelet analysis gives good results.

Wavelet Families: Additional Discussion

There are different types of wavelet families whose qualities vary according to several criteria. The main criteria are:

- The support of $\psi, \hat{\psi}$ and $\phi, \hat{\phi}$: the speed of convergence at infinity to 0 of these functions when the time or the frequency goes to infinity, which quantifies both time and frequency localizations.
- The symmetry, which is useful in avoiding dephasing in image processing.
- The number of vanishing moments for ψ or for ϕ (if it exists), which is useful for compression purpose.
- The regularity, which is useful for getting nice features, like smoothness of the reconstructed signal or image.

These are associated with two properties that allow fast algorithm and space-saving coding:

- The existence of a scaling function ϕ.
- The orthogonality or the biorthogonality of the resulting analysis, and perhaps less important ones:
- The existence of an explicit expression.
- The ease of tabulating.
- The familiarity with use.

Typing wavei nfo in command line mode displays a survey of the main properties of all wavelet families available in the tool box.
Let us mention that the ϕ and ψ functions can be computed using wavef un; the filters are generated using wfil ters. We provide definition equations for several wavelets. Some are given explicitly by their time definition, others by their frequency definition, and still others by their filter.

The table below outlines the wavelet families included in the tool box.

Wavelets in the toolbox	
morl	Morlet
mexh	Mexican hat
meyr	Meyer
haar	Haar
dbN	Daubechies
symN	Symlets
coi fN	Coiflets
bi or Nr. Nd	Splines biorthogonal wavelets

Daubechies Wavelets: dbN

In $d b N, N$ is the order. Some authors use $2 N$ instead of N. M ore about this family can be found in [Dau92] p. 115, 132, 194, 242. By typing wavei nf o(' db) , at the MATLAB command prompt, you can obtain a survey of the main properties of this family.

Figure 6-16: Daubechies wavelets db4 and db8

This family includes the H aar wavelet, written $d b 1$, the simplest wavelet imaginable and certainly theearliest. Using wavei nf o(' haar ') , you can obtain a survey of the main properties of this wavelet.

Haar

$\psi(x)=1$,	if	$0 \leq x<\frac{1}{2}$
$\psi(x)=-1$,	if	$\frac{1}{2} \leq x<1$
$\psi(x)=0$,	if	$x \notin[0,1]$
$\phi(x)=1$	if	$x \in[0,1]$
$\phi(x)=0$	if	$x \notin[0,1]$

dbN

These wavelets have no explicit expression except for $d b 1$, which is the Haar wavelet. However, the square modulus of the transfer function of h is explicit and fairly simple.

- Let $P(y)=\sum_{k=0}^{N-1} C_{k}^{N-1+k} y^{k}$, where C_{k}^{N-1+k} denotes the binomial
coefficients. Then:

$$
\left|m_{0}(\omega)\right|^{2}=\left(\cos ^{2} \frac{\omega}{2}\right)^{N} P\left(\sin ^{2}\left(\frac{\omega}{2}\right)\right)
$$

where:

$$
m_{0}(\omega)=\frac{1}{\sqrt{2}} \sum_{k=0}^{2 N-1} h_{k} e^{-i k \omega}
$$

- The support length of ψ and ϕ is $2 N-1$. The number of vanishing moments of ψ is N.
- Most $d b N$ are not symmetrical. F or some, the asymmetry is very pronounced.
- The regularity increases with the order. When N becomes very large, ψ and ϕ belong to $C^{\mu \mathrm{N}}$, since μ is approximately equal to 0.2 . F or sure, this asymptotic value is too pessimistic for small order N. Note that the functions are more regular at certain points than at others.
- The analysis is orthogonal.

Symlet Wavelets: symN

In sym N, N is the order. Some authors use $2 N$ instead of N. Symlets are only near symmetric; consequently some authors do not call them symlets. More about symlets can be found in [Dau92], p. 194, 254-257. By typing wavei nf o(' sym) at the MATLAB command prompt, you can obtain a survey of the main properties of this family.

Figure 6-17: Symlets sym4 and sym8

Daubechies proposes modifications of her wavelets such that their symmetry can be increased while retaining great simplicity.
The idea consists of reusing the function m_{0} introduced in the $d b N$, considering the $\left|m_{0}(\omega)\right|^{2}$ as a function W of $z=e^{i \omega}$. Then we can factor W in several different ways in the form of $W(z)=U(z) \overline{U\left(\frac{1}{z}\right)}$. The roots of W with modulus not equal to 1 go in pairs. If one is $z_{1}, \frac{1}{z_{1}}$ is also a root.

- By sel ecting U such that the modulus of all its roots is strictly less than 1 , we build Daubechies wavelets $d b N$. The U filter is a "minimum phase filter."
- By making another choice, we obtain more symmetrical filters; these are symlets.

The symlets have other properties similar to those of the $d b N s$.

Coiflet Wavelets: coifN

In coifN, N is the order. Some authors use $2 N$ instead of N. F or the coiflet construction, see [Dau92] p. 258-259. By typing wavei nf o(' coi f') at the MATLAB command prompt, you can obtain a survey of the main properties of this family.

Figure 6-18: Coiflets coif3 and coif5.

Built by Daubechies at the request of Coifman, the function ψ has $2 N$ moments equal to 0 and, what is more original, the function ϕ has $2 N-1$ moments equal to 0 . The two functions have a support of length $6 \mathrm{~N}-1$.

The coifN ψ and ϕ are much more symmetrical than the $d b N s$. With respect to the support length, coifN has to be compared to $d b 3 N$ or sym $3 N$; with respect to the number of vanishing moments of ψ, coifN has to be compared to $d b 2 N$ or sym $2 N$.

If s is a smooth continuous time signal, for Iarge j : the coefficient $\left\langle s, \phi_{j, k}\right\rangle \approx 2^{-j / 2} s\left(2^{j} k\right)$ (see the "Mathematical Conventions" section at the beginning of this chapter). If s is a polynomial of degree $d, d \leq N-1$ the approximation becomes an equality. This property is used, connected with sampl ing problems, when calculating the difference between an expansion over the $\phi_{j, k}$ of a given signal and its sampled version.

Biorthogonal Wavelet Pairs: biorNr.Nd

More about biorthogonal wavelets can be found in [Dau92] p. 259, 269-285 and [Coh92]. By typing wavei nf o(' bi or ') at the MATLAB command prompt, you can obtain a survey of the main properties of this family, as well as information about Nr and Nd orders and associated filter lengths.

Figure 6-19: Biorthogonal wavelets bior2.4 and bior4.4

The new family extends the wavel et family. It is well known in the subband filtering community that symmetry and exact reconstruction are incompatible, if the same FIR filters are used for reconstruction and decomposition. Two wavelets, instead of just one, are introduced:

- One, $\tilde{\psi}$, is used in the analysis, and the coefficients of a signal s are

$$
\tilde{c}_{j, k}=\int s(x) \tilde{\Psi}_{j, k}(x) d x
$$

- The other, ψ, is used in the synthesis $s=\sum_{j, k} \tilde{c}_{j, k} \psi_{j, k}$.

In addition, the wavelets are related by duality in the following sense:
$\int \tilde{\Psi}_{j, k}(x) \psi_{j^{\prime}, k^{\prime}}(x) d x=0$ as soon as $j \neq j^{\prime}$ or $k \neq k^{\prime}$ and even
$\int \tilde{\phi}_{0, k}(x) \phi_{0, k^{\prime}}(x) d x=0$ as soon as $k \neq k^{\prime}$.

It becomes apparent, as Cohen pointed out in his thesis (see [Coh92] p. 110), that "the useful properties for analysis (e.g., oscillations, zero moments) can be concentrated on the $\tilde{\psi}$ function whereas the interesting properties for synthesis (regularity) are assigned to the ψ function. The separation of these two tasks proves very useful."
$\tilde{\psi}, \psi$ can have very different regularity properties, ψ being more regular than $\tilde{\psi}$ (see [Dau92] p. 269).
The $\tilde{\psi}, \psi, \tilde{\phi}$ and ϕ functions are zero outside of a segment.
The calculation algorithms are maintained and thus very simple.
The filters associated to m_{0} and \tilde{m}_{0} can be symmetrical. The functions used in the calculations are easier to build numerically than those used in the usual wavelets.

Meyer Wavelet: meyr

Both ψ and ϕ are defined in the frequency domain, starting with an auxiliary function v (see [Dau92] p.117, 119, 137, 152). By typing wavei nf o(' meyr') at the MATLAB command prompt, you can obtain a survey of the main properties of this wavelet.

Figure 6-20: The Meyer wavelet

The Meyer wavelet and scaling function are defined in the frequency domain by:

- $\hat{\psi}(\omega)=(2 \pi)^{-1 / 2} e^{i \omega / 2} \sin \left(\frac{\pi}{2} v\left(\frac{3}{2 \pi}|\omega|-1\right)\right) \quad$ if $\quad \frac{2 \pi}{3} \leq|\omega| \leq \frac{4 \pi}{3}$

$$
\hat{\psi}(\omega)=(2 \pi)^{-1 / 2} e^{i \omega / 2} \cos \left(\frac{\pi}{2} v\left(\frac{3}{4 \pi}|\omega|-1\right)\right) \quad \text { if } \quad \frac{4 \pi}{3} \leq|\omega| \leq \frac{8 \pi}{3}
$$

and $\hat{\psi}(\omega)=0 \quad$ if $\quad|\omega| \notin\left[\frac{2 \pi}{3}, \frac{8 \pi}{3}\right]$
where $\mathrm{v}(a)=a^{4}\left(35-84 a+70 a^{2}-20 a^{3}\right), \quad a \in[0,1]$

- $\hat{\phi}(\omega)=(2 \pi)^{-1 / 2} \quad$ if $\quad|\omega| \leq \frac{2 \pi}{3}$

$$
\hat{\phi}(\omega)=(2 \pi)^{-1 / 2} \cos \left(\frac{\pi}{2} v\left(\frac{3}{2 \pi}|\omega|-1\right)\right) \quad \text { if } \quad \frac{2 \pi}{3} \leq|\omega| \leq \frac{4 \pi}{3}
$$

$$
\hat{\phi}(\omega)=0 \quad \text { if } \quad|\omega|>\frac{4 \pi}{3}
$$

By changing the auxiliary function, one gets a family of different wavelets. For the required properties of the auxiliary function v, see the list of references. This wavelet ensures orthogonal analysis.

The function ψ does not have finite support, but ψ decreases to 0 when $x \rightarrow \infty$, faster than any "inverse polynomial":
$\forall n \in \mathrm{~N}, \exists C_{n}$ such that $|\psi(x)| \leq C_{n}\left(1+|x|^{2}\right)^{-n}$.
This property holds also for the derivatives:

$$
\forall k \in N, \forall n \in N, \exists C_{k, n} \text {, such that }\left|\psi^{(k)}{ }_{x}\right| \leq C_{k, n}\left(1+|x|^{2}\right)^{-n}
$$

The wavelet is infinitely differentiable.

Battle-Lemarie Wavelets

See [Dau92] p. 146-148, 151.
These wavel ets are not included in the toolbox, but we use the spline functions in the biorthogonal family.
There are two forms of the wavelet; one does not ensure the analysis to be an orthogonal one, while the other does. For $N=1$, the scaling functions are linear splines. For $N=2$, the scaling functions are quadratic B-spline with finite support. M ore generally, for an N -degree B-splines:

$$
\hat{\phi}(\omega)=(2 \pi)^{-1 / 2} e^{-i \kappa \omega / 2}\left[\frac{\sin (\omega / 2)}{\omega / 2}\right]^{N+1}
$$

with $k=0$ if N is odd, $k=1$ if N is even. This formula can be used to build the filters.
The twin scale relation is:

$$
\begin{gathered}
\phi(x)=2^{-2 M} \sum_{j=0}^{2 M+1} C_{j}^{2 M+1} \phi(2 x-M-1+j) \quad \text { if } \quad N=2 M \\
\phi(x)=2^{-2 M-1} \sum_{j=0}^{2 M+2} C_{j}^{2 M+2} \phi(2 x-M-1+j) \text { if } N=2 M+1
\end{gathered}
$$

- For an even N, ϕ is symmetrical around, $x=1 / 2 ; \psi$ is anti-symmetrical around $x=1 / 2$. F or an odd N, ϕ is symmetrical around $x=0 ; \psi$ is symmetrical around $x=1 / 2$.
- The analysis becomes orthogonal if we transform the functions ψ and ϕ somewhat. F or $N=1$, for instance, let:

$$
\widehat{\phi^{\perp}}(\omega)=3^{1 / 2}(2 \pi)^{-1 / 2} \frac{4 \sin ^{2}(\omega / 2)}{\omega^{2}\left[1+2 \cos ^{2}(\omega / 2)\right]^{1 / 2}}
$$

- The supports of ψ and ϕ^{\perp} are not finite, but the decrease of the functions ψ and ϕ^{\perp} to 0 is exponential. See [Dau92] p. 151.
- The ψ functions have derivatives up to order $N-1$.

Mexican Hat Wavelet: mexh

See [Dau92] p. 75.
By typing wavei nf o(' mexh') at the MATLAB command prompt, you can obtain a survey of the main properties of this wavelet.

Mexican hat wavelet function

Figure 6-21: The Mexican hat

$$
\psi(x)=\left(\frac{2}{\sqrt{3}} \pi^{-1 / 4}\right)\left(1-x^{2}\right) e^{-x^{2} / 2}
$$

This function is proportional to the second derivative function of the Gaussian probability density function.
As the ϕ function does not exist, the analysis is not orthogonal.

Morlet Wavelet: morl

See [Dau92] p. 76.
By typing wavei nf o(' morl') at the MATLAB command prompt you can obtain a survey of the main properties of this wavelet.

Figure 6-22: The Morlet wavelet

$$
\psi(x)=C e^{-x^{2} / 2} \cos (5 x)
$$

The C constant is used for normalization in view of reconstruction.
As the ϕ function does not exist, the analysis is not orthogonal.

Summary of Wavelet Families and Associated Properties

	morl	mexh	meyr	haar	dbN	symN	coifN	biorNr.Nd
"Crude"	-	-						
Infinitely regular	-	-	-					
Compactly supported orthogonal				-	-	-	-	
Compactly supported biothogonal								-
Symmetry	-	-	-	-				-
Asymmetry					-			
N ear symmetry						-	-	
Arbitrary number of vanishing moments					-	-	-	-
Vanishing moments for ϕ							-	
Arbitrary regularity					-	-	-	-
Existence of ϕ			-	-	-	-	-	-
Orthogonal analysis			-	-	-	-	-	
Biorthogonal analysis			-	-	-	-	-	-
Exact reconstruction			-	-	-	-	-	-
FIR filters				-	-	-	-	-
Continuous transform	-	-	-	-	-	-	-	-
Discrete transform			-	-	-	-	-	-
Fast algorithm				-	-	-	-	-
Explicit expression	-	-		-				for splines

Wavelet Applications: More Detail

Chapters 3 and 4 illustrate wavelet applications with examples and case studies. This section re-examines some of the applications with additional theory and more detail.

Suppressing Signals

As shown in Chapter 3, "Suppressing Signals," by suppressing a part of a signal the remainder may be highlighted.
Let ψ be a wavelet with at least $k+1$ vanishing moments (for $j=0, \ldots, k$,
$\left.\int_{R} x^{j} \psi(x) d x=0\right)$.
If the signal s is a polynomial of degree k, then the coefficients $C(a, b)=0$ for all a and all b. Such wavelets automatically suppress the polynomials. The degree of s can vary with time, provided that it remains less than k.
If s is now a polynomial of degree k on segment $[\alpha, \beta]$, then $C(a, b)=0$ as long as the support of the function $\frac{1}{\sqrt{a}} \psi\left(\frac{x-b}{a}\right)$ is included in $[\alpha, \beta]$. The suppression is local. Effects will appear on the edges of the segment.
Likewise, let us suppose that, on $[\alpha, \beta]$ to which 0 belongs, we have the expansion $s(x)=s(0)+x s^{\prime}(0)+x^{2} s^{(2)}(0)+\ldots+x^{k} s^{(k)}(0)+g(x)$. The s and g signals then have the same wavelet coefficients. This is the technical meaning of the phrase: "the wavel et suppresses a polynomial part of signal s ". The signal g is the "irregular" part of the signal s. The ψ wavelet systematically suppresses the regular part and analyzes the irregular part. This effect is easily seen in Figure 4-2 up to detail D_{4}; the wavel et suppresses the slow sine wave which is locally assimilated to a polynomial.

Another way of suppressing a component of the signal consists of forcing certain coefficients $C(a, b)$ to be equal to 0 . Having selected a set E of indices, we stipulate that $\forall(a, b) \in E, C(a, b)=0$. We then synthesize the signal using the modified coefficients.

Let us illustrate with the fol Iowing M-file, some features of wavelet processing using coefficients (resulting plots can be found in Figure 6-23).

```
% Load origi nal 1-D si gnal.
    l oad sumsi n; s = sumsin;
% Set the wavel et name and performthe decomposition
% of s at level 4, using coif3.
    w = ' coif 3'; maxl ev = 4;
    [c,l] = wavedec(s, maxl ev,w);
    newc = c;
%Force to zero the detail coefficients at levels 3 and 4.
    newc = wthcoef('d', c, l, [ 3, 4]);
%Force the detail coefficients at level 1 to zero on
% origi nal time interval [400:600] and shrink otherwi se.
% determine first and last i ndex of
%l evel 1 coefficients.
    k = maxl ev+1;
    first = sum(l(1: k-1))+1; last = first + (k)-1;
    indd1 = first:last;
% shrink by di vi di ng by 3.
    newc(i ndd1) = c(i ndd1)/ 3;
%find at level 1 indices of coefficients
%in the interval [400:600],
% note that time t in origi nal grid corresponds to time
%t/ 2^k on the grid at level k. Here k=1.
    indd1 = first +400/ 2: first +600/2;
%force it to zero.
    newc(i ndd1) = zeros(si ze(i ndd1));
% Set to 4 a coefficient at level 2 corresponding roughly
%to original time t = 500.
    k = maxl ev; first = sum(l(1:k-1)) +1;
    newc(first+500/2^2) = 4;
%Synthesize modified decomposition structure.
    synth = waverec(newc,l,w);
```

A simple procedure to select E, called the thresholding procedure, is carried out using the wh hr esh function. The interface mode includes such procedures, which are also used for de-noising and compression.

Figure 6-23: Suppress or modify signal components, acting on coefficients

Splitting Signal Components

Wavelet analysis is a linear technique: the wavel et coefficients of the linear combination of two signals $\alpha s^{(1)}+\beta s^{(2)}$ are equal to the linear combination of their wavelet coefficients $\alpha C_{j, k}^{(1)}+\beta C_{j, k}^{(2)}$. The same hol ds true for the corresponding approximations and details, for example $\alpha A_{j}^{(1)}+\beta A_{j}^{(2)}$ and $\alpha D_{j}^{(1)}+\beta D_{j}^{(2)}$.

Noise Processing

Let us first analyze noise as an ordinary signal. Then the probability characteristics: correlation function, spectrum, and distribution need to be studied.

In general, for a one-dimensional discrete-time signal, the high frequencies influence the details of the first levels, while the low frequencies influence the deepest levels and the associated approximations.

If a signal comprised only of white noise is analyzed, (see for example, Figure 4-3, the details at the various levels decrease in amplitude as the level increases. The variance of the details al so decreases as the level increases. The details and approximations are not white noise anymore, as color is introduced by the filters.

On the coefficients $C(j, k)$, where j stands for the scale and k for the time, we can add often-satisfied properties for discrete time signals:

- If the anal yzed signal s is stationary, zero mean, white noise, the coefficients are uncorrelated.
- If furthermore s is Gaussian, the coefficients are independent and Gaussian.
- If s is a colored, stationary, zero mean Gaussian sequence, the coefficients remain Gaussian. For each scale level j, the sequence of coefficients is a col ored stationary sequence. It could be interesting to know how to choose the wavelet that would de-correlate the coefficients. This problem has not yet been resolved. What is more, the wavel et (if indeed it exists) most probably depends on the color of the signal. In order for the wavelet to be cal culated, the color must be known. In most instances, this is beyond our reach.
- If s is a zero mean ARMA model stationary for each scale j, then $C(j, k), k \in Z$ is also a stationary, zero mean ARMA process whose characteristics depend on j.
- If s is a noise whose:
- correlation function ρ is known, we know how to calculate the correlations of $C(j, k)$ and $C\left(j, k^{\prime}\right)$.
- spectrum $\hat{\rho}$ is known, we know how to calculate the spectrum of $C(j, k)$, $k \in Z$ and the cross spectrum of two different levels j and j^{\prime}.
These results are easily established, since they can be deduced from the fact that the $C(a, b)$ coefficients are calculated primarily by convolving ψ and s, and using conventional formulas. The quantity that comes into play is the self-reproduction function $U(a, b)$, which is obtained by analyzing the ψ wavelet as if it was a signal:

$$
U(a, b)=\int_{R} \frac{1}{\sqrt{a}} \psi\left(\frac{x-b}{a}\right) \psi(x) d x .
$$

From the results for coefficients we deduce the properties of the details (and of the approximations), by using the formula:

$$
D_{j}(n)=\sum_{k \in Z} C(j, k) \Psi_{j, k}(n)
$$

where the $\mathrm{C}(j, k)$ coefficients are random variables and the functions $\psi_{j, k}$ are not. If the support of ψ is finite, only a finite number of terms will be summed.

De-Noising

This section discusses the problem of signal recovery from noisy data. This problem is easy to understand looking at the following simple example, where a slow sine is corrupted by a white noise.

Figure 6-24: What is de-noising?

The Basic One-Dimensional Model

The underlying model for the noisy signal is basically of the following form:

$$
s(n)=f(n)+\sigma e(n)
$$

where time n is equally spaced.
In the simplest model we suppose that $e(n)$ is a Gaussian white noise $N(0,1)$ and the noise level s is supposed to be equal to 1.

The de-noising objective is to suppress the noise part of the signal s and to recover f. From a statistical viewpoint, the model is a regression model over time and the method can be viewed as a nonparametric estimation of the function f using orthogonal basis.

De-Noising Procedure Principles

The de-noising procedure proceeds in three steps:
1 Decompose
Choose a wavelet, choose a level N. Compute the wavel et decomposition of the signal s at level N.

2 Threshold detail coefficients
For each level from 1 to N, select a threshold and apply soft thresholding to the detail coefficients.

3 Reconstruct
Compute wavelet reconstruction based on the original approximation coefficients of level N and the modified detail coefficients of levels from 1 to N.

Two points must be addressed: how to choose the threshold and how to perform the thresholding.

Soft or Hard Thresholding?

Thresholding can be done using the function:

$$
\text { yt }=\text { wt hresh }(y, \text { sorh, thr })
$$

which returns soft or hard thresholding of input y, depending on the sor h option. Hard thresholding is the simplest method. Soft thresholding has nice mathematical properties and the corresponding theoretical results are available.
Let us give a simple example.

```
    y = I i nspace(-1, 1, 100);
    thr = 0. 28;
    ythard = wthresh(y,' h',thr);
ytsoft = wthresh(y,'s',thr);
```


Figure 6-25: Hard and soft thresholding of the signal $s=x$

Comment: Let t denote the threshold. The hard threshold signal is x if $|x|>t$, and is 0 if $|x| \leq t$. The soft threshold signal is $\operatorname{sign}(x)(|x|-t)$ if $|x|>t$ and is 0 if $|x| \leq t$.

Hard thresholding can be described as the usual process of setting to zero the elements whose absolute values are lower than the threshold. Soft thresholding is an extension of hard thresholding, first setting to zero the elements whose absolute values are lower than the threshold, then shrinking
the nonzero coefficients towards 0 (see Figure 6-25). As can be seen in the comment of Figure 6-25, the hard procedure creates discontinuities at $x= \pm t$, while the soft procedure does not.

Threshold Selection Rules

According to the basic noise model, four threshold selection rules are implemented in the M -filet hsel ect. E ach rule corresponds to a t pt r option in the command:

```
thr = thsel ect(y, tptr)
```

which returns the threshold value.

Option	Threshold selection rule
' ri grsure'	Selection using principle of Stein's U nbiased Risk
	Estimate (SURE)
' sqt wol og'	Fixed form threshold equal to sqrt(2*log(length(s)))
' heur sure'	Selection using a mixture of the first two options
' mi ni maxi '	Selection using minimax principle

- Option tptr = ' ri gr sure' uses for the soft threshold estimator a threshold selection rule based on Stein's Unbiased Estimate of Risk (quadratic loss function). You get an estimate of the risk for a particular threshold value t. Minimizing the risks in t gives a selection of the threshold value.
- Option tptr = ' sqt wol og' uses a fixed form threshold yielding minimax performance multiplied by a small factor proportional to log(length(s)).
- Option tptr = 'heur sure' is a mixture of the two previous options. As a result, if the signal-to-noise ratio is very small, the SURE estimate is very noisy. So if such a situation is detected, the fixed form threshold is used.
- Option tptr = ' mi ni maxi ' uses a fixed threshold chosen to yield minimax performance for mean square error against an ideal procedure. Theminimax principle is used in statistics in order to design estimators. Since the de-noised signal can be assimilated to the estimator of the unknown regression function, the minimax estimator is the option that realizes the minimum of the maximum mean square error obtained for the worst function in a given set.

Typically it is interesting to show how thsel ect works if y is a Gaussian white noise $N(0,1)$ signal.

```
y = randn(1, 1000); thr = thsel ect(y, 'rigrsure')
thr =
    2. }073
thr = thsel ect(y,' sqt wol og')
thr =
    3. }716
thr = thsel ect(y,' heursure')
thr =
    3.7169
thr = thsel ect(y,'mini mmxi')
thr =
    2. }216
```

Becausey is a standard Gaussian white noise, we expect that each method kills roughly all the coefficients. F or Stein's Unbiased Risk Estimate and minimax thresholds, roughly 3% of coefficients are saved. F or other selection rules, all the coefficients are set to 0 .

We know that the detail coefficients vector is the superposition of the coefficients of f and the coefficients of e, and that the decomposition of e leads to detail coefficients, which are standard Gaussian white noises.

So minimax and SURE threshold selection rules are more conservative and would be more convenient when small details of function f lie in the noise range. The two other rules remove the noise more efficiently. The option ' heur sure' is a compromise. In this example, the fixed form threshold wins.

Recalling step 2 of the de-noise procedure, the function t hsel ect performs a threshold selection and then each level is thresholded. This second step can be done using wt hcoef, directly handling the wavelet decomposition structure of the original signal s.

Dealing with Unscaled Noise and Non-White Noise

It is clear that in practice the basic model cannot be used directly. We examine here the options available in the main de-noising function uden, in order to deal with model deviations.

The simplest use of wden is:

```
sd \(=\) wden( \(s, t\) ptr, sorh, scal, \(n\), wav)
```

which returns the de-noised version sd of the original signal s obtained using thet pt r threshold selection rule. Other parameters needed are sor h, thresholding of details coefficients of the decomposition at level n of s by the wavelet called wav. The remaining parameter scal is to be specified. It corresponds to threshold's rescaling methods.

Option	Corresponding model
' one'	Basic model
'sl n '	Basic model with unscaled noise
' mln '	Basic model with non-white noise

- Option scal = ' one' corresponds to the basic model.
- In general you can ignore the noise level that must be estimated. The detail coefficients $c D_{1}$ (the finest scale) are essentially noise coefficients with standard deviation equal to σ. The median absolute deviation of the coefficients is a robust estimate of σ. The use of a robust estimate is crucial for two reasons. The first one is that if level 1 coefficients contain f details, these details are concentrated in few coefficients if the function f is sufficiently regular. The second reason is to avoid signal end effects, which are pure artifacts due to computations on the edges.
Option scal = 'sl n' handles threshold rescaling using a single estimation of level noise based on the first level coefficients.
- When you suspect a nonwhite noise e, thresholds must be rescaled by a level-dependent estimation of the level noise. The same kind of strategy is used by estimating $\sigma_{\text {lev }}$ level by level. This estimation is implemented in M -file unoi sest, directly handling the wavelet decomposition structure of the original signal s.
Option scal = 'min' handles threshold rescaling using a level-dependent estimation of the level noise.

A more general procedure wdencmp performs wavelet coefficients thresholding for both de-noising and compression purposes directly handling one-dimensional and two-dimensional signals. It allows you to define your own threshol ding strategy selecting in:

```
xd = wdencmp( opt, x, wav, n, thr, sorh, keepapp);
```

- opt = ' gbl ' and thr is a positive real number for uniform threshold opt $=$ ' I vd' and thr is a vector for level dependent threshold.
- keepapp $=1$ to keep approximation coefficients, as previously and keepapp $=0$ to allow approximation coefficients thresholding.
- x is the signal to be de-noised and wav, n , sor h are the same as above.

De-Noising in Action

We begin with examples of one-dimensional de-noising methods with the first example credited to Donoho and J ohnstone. F or the first test function available using wnoi se, use the following M-file.

```
%Set signal to noi se ratio and set rand seed.
snr = 4; init = 2055615866;
%Generate ori gi nal si gnal xref and a noi sy versi on x adding
%a standard Gaussian white noi se.
[ xref,x] = wnoi se(1, 11, snr,init);
% De- noi se noi sy signal usi ng soft heuri stic SURE threshol di ng
% and scal ed noi se option, on detail coefficients obtai ned
%fromthe decomposition of x, at l evel 3 by sym8 wavel et.
xd = wden(x,' heursure','s',' one', 3,' sym8');
```


Figure 6-26: Blocks de-noising

So despite the fact that only a small number of large coefficients characterize the original signal, the method performs very well (see Figure 6-26). If you want to see more about how the threshol ding works, use the GUI .

As a second example, let us try the method on the highly perturbed part of the electrical signal studied above.

According to this previous analysis, let us use db3 wavelet and decompose at level 3. In order to deal with the composite noise nature, let us try a level-dependent noise size estimation.

```
%oad el ectrical signal and sel ect part of it.
I oad I el eccum, i ndx = 2000: 3450;
x = I el eccum(indx);
% Find first val ue in order to avoid edge effects.
deb = x(1);
% De- noi se signal using soft fixed formthreshol ding
% and unknown noi se option.
xd = wden(x-deb, ' sqt wol og',' s',' ml n' , 3,' db3' ) +deb;
```


Figure 6-27: Electrical signal de-noising
The result is quite good in spite of the time heterogeneity of the nature of the noise after and before the beginning of the sensor failure around time 2450.

Extension to Image De-Noising

The de-noising method described for the one-dimensional case applies also to images and applies well to geometrical images. A direct translation of the one-dimensional model is:

$$
s(i, j)=f(i, j)+\sigma e(i, j), i, j=0, \ldots, m-1
$$

where e is a white Gaussian noise with unit variance.
The two-dimensional de-noising procedure has the same three steps and uses two-dimensional wavel et tools instead of one-dimensional ones. For the threshold selection m^{2} is used instead of n if the fixed form threshold is used.

Note that except for the "automatic" one-dimensional de-noising case, de-noising and compression are performed using wdencmp. As an example, you can use the following M -file illustrating the de-noising of a synthetic image.

```
%oad original imme.
l oad si nsi n
% Generate noi sy i mage.
i ni t=2055615866; randn('seed',init);
x = X + 18*randn(size(X));
% Find def ault val ues using ddencmp.
%In this case fixed formthreshold is used
% with estimation of level noi se, threshol ding
% mode is soft and the approxi mation coeffici ents
% are kept.
[thr, sorh, keepapp] = ddencmp('den',' w'',x);
%thr is roughly equal to 18*sqrt(log(prod(size(x))))
thr
thr =
80. }688
\% De- noi se i mage using gl obal threshol ding option. xd = wdencmp(' gbl' , x, ' sym4' , 2, thr, sorh, keepapp);
```

The result shown below is acceptable.

Data Compression

The compression features of a given wavelet basis are primarily linked to the relative scarceness of the wavelet domain representation for the signal. The notion behind compression is based on the concept that the regular signal component can be accurately approximated using the following elements: a small number of approximation coefficients (at a suitably chosen level) and some of the detail coefficients.

Like de-noising, the compression procedure contains three steps:

1 Decompose

2 Threshold detail coefficients
For each level from 1 to N, a threshold is selected and hard threshol ding is applied to the detail coefficients.

3 Reconstruct

The difference with the de-noising procedure is found in step 2. There are two compression approaches available. The first consists of taking the wavelet expansion of the signal and keeping the largest absolute value coefficients. In this case you can set a global threshold, a compression performance, or a rel ative square norm recovery performance. Thus only a single parameter needs to be selected. The second approach consists of applying visually determined level-dependent thresholds.

Let us examine two real-life examples of compression using global thresholding, for a given and unoptimized wavelet choice, to produce a nearly complete square norm recovery for a signal (see Figure 6-29) and for an image (see Figure 6-30).

```
%Load electrical signal and sel ect a part.
| oad I el eccum i ndx = 2600: 3100;
x = I el eccum( i ndx);
% Perform wavel et decomposition of the si gnal.
n = 3; w = 'db3';
[c,l] = wavedec(x,n,w);
% Compress using a fixed threshold.
thr = 35;
[ xd, cxd, I xd, perf0, perfl 2] = wdencmp(' gbl ', c, I w, n, thr,' h', 1);
```


Figure 6-29: Signal compression
\% Load origi nal i mage.
I oad woman; $x=X(100: 200,100: 200)$;
nbc = si ze(map, 1);
\% Wavel et decomposition of x .
$\mathrm{n}=5$; w = 'sym2'; [c,l] = wavedec $2(\mathrm{x}, \mathrm{n}, \mathrm{w})$;
\% Whel et coeffici ents threshol ding.
$\mathrm{thr}=20$;
$[x d, c x d, l x d, \operatorname{perf} 0, \operatorname{perfl} 2]=$ wdencmp('gbl' $, ~ c, l, w, n, t h r, ' h ', 1) ;$

Figure 6-30: Image compression

If the wavelet representation is too dense, similar strategies can be used in the wavel et packet framework in order to obtain a sparser representation. You can then determine the best decomposition with respect to a suitably selected entropy-like criterion, which corresponds to the selected purpose(de-noising or compression).

Default Values for De-Noising and Compression

De-noising.

Automatic mode.

Wavelet 1-D or 2-D:
The global threshold is derived from Donoho-J ohnstone fixed form threshold strategy for an unscaled white noise.

Manual mode.
Wavelet 1-D:
The level-dependent thresholds are derived from Birge-M assart strategy with $\alpha=3$.

Wavelet 2-D:
The global threshold is derived from Donoho-J ohnstone fixed form threshold strategy for an unscaled white noise.

Compression.

Automatic mode.

Wavelet 1-D or 2-D and Wavelet Packet 1-D:
The global threshold is derived from an equal balance between the percentages of retained energy and number of zeros.

Wavelet Packet 2-D:
The global threshold is the square root of the threshold value derived from an equal balance between the percentages of retained energy and number of zeros.

Manual mode.

Wavelet 1-D:
The level-dependent thresholds are derived from Birge-Massart strategy with $\alpha=1.5$.

Wavelet 2-D:
The global threshol d is based on the analysis of the level-one detail coefficients cd1 and is equal tot $=$ medi $a n(a b s(c d 1))$ or $0.005^{*} \operatorname{mx}(a b s(c d 1))$ if t is zero.

About the Birge-Massart Strategy

The Birge-M assart strategy is based on results on adaptive functional estimation in regression or density contexts (more details can be found in the reference [BirM 95] at the end of this Chapter).

Fortunately, this sophisticated estimate can be implemented in a very simple way, like the previously described procedures for de-noising or compression.

It uses level-dependent thresholds obtained by the following wavelet coefficients selection rule.

Let j_{0} be the decomposition level, m be the length of coarsest approximation coefficients over 2 and α be a real greater than 1 .

The numbers $\mathrm{j}_{0}, \mathrm{~m}$ and α define the strategy:

- at level $\mathrm{j}_{0}+1$ (and coarser levels), everything is kept.
- for level j from 1 to j_{0}, the kj larger coefficients in absolute value, are kept with:

$$
k j=m /\left(j_{0}+1-j\right)^{\alpha}
$$

Typically the parameter α is equal to 1.5 for compression and α is equal to 3 for de-noising.

Wavelet Packets

The wavelet packet method is a generalization of wavelet decomposition that offers a richer signal analysis.

Wavelet packet atoms are waveforms indexed by three naturally interpreted parameters: position and scale (as in wavelet decomposition and frequency).

For a given orthogonal wavelet function, we generate a library of wavelet packet bases. Each of these bases offers a particular way of coding signals, preserving global energy and reconstructing exact features. The wavelet packets can then be used for numerous expansions of a given signal. We then select the most suitable decomposition of a given signal with respect to an entropy-based criterion.

There exist simple and efficient algorithms for both wavelet packet decomposition and optimal decomposition selection. We can then produce adaptive filtering algorithms with direct applications in optimal signal coding and data compression.

From Wavelets to Wavelet Packets: Decomposing the Details

In the orthogonal wavel et decomposition procedure, the generic step splits the approximation coefficients into two parts. After splitting we obtain a vector of approximation coefficients and a vector of detail coefficients, both at a coarser scale. The information lost between two successive approximations is captured in the detail coefficients. Then next step consists of splitting the new approximation coefficient vector; successive details are never re-analyzed.
In the corresponding wavelet packet situation, each detail coefficient vector is also decomposed into two parts using the same approach as in approximation vector splitting. This offers the richest analysis: the complete binary tree is produced as shown in Figure 6-31.

Figure 6-31: Wavelet packet decomposition tree at level 3

The idea of this decomposition is to start from a scale-oriented decomposition and then to analyze the obtained signals on frequency subbands.

Wavelet Packets in Action: An Introduction

The following simple examples illustrate certain differences between wavelet analysis and wavelet packet analysis.

Example 1: Analyzing a Sine Function

The signal to be analyzed is a sampled sine function of period 8 . In order to simplify the presentation, the length is 8192 and the haar wavel et is used. Only a portion of the signal is displayed. Figure 6-32 contains the "time-frequency" plot (x-axis is time and y-axis is frequency, high to low from the top to the bottom) for the wavelet decomposition (on the left) and for the wavelet packet decomposition (on the right), both corresponding to a decomposition at level 6.

Wavel et decomposition localizes the period of the sine within the interval [8,16]. Wavelet packets provide a more precise estimation of the actual period.

Figure 6-32: Wavelets (left) versus wavelet packets (right): a sine function

Example 2: Analyzing a Chirp Signal

The signal to be analyzed is a chirp: an oscillatory signal with increasing modulation $\sin \left(250 \pi t^{2}\right)$ sampled 512 times on [0, 1]. For this "linear" chirp, the derivative of the phase is linear. On the left of Figure 6-33, a wavelet analysis does not easily detect this time-frequency property of the signal. But on the right of Figure 6-33, the linear slopefor the greatest wavel et packet coefficients in absolute value is obvious. The same experiment can be done with a "quadratic" chirp of the form $\sin \left(k \pi t^{3}\right)$ in which the greatest wavelet packet coefficients exhibit a quadratic time frequency pattern.

Figure 6-33: Wavelets (left) versus wavelet packets (right): damped oscillations.

Building Wavelet Packets

The computation schemefor wavel et packets generation, is easy when using an orthogonal wavelet. We start with the two filters of length $2 N$, denoted $h(n)$ and $g(n)$, corresponding to the wavelet. They are, respectively, thereversed versions of the low-pass decomposition filter and the high-pass decomposition filter divided by $\sqrt{2}$.

Now by induction let us define the following sequence of functions ($W_{\mathrm{n}}(x), n=0,1,2, \ldots$) by:

$$
\begin{aligned}
W_{2 n}(x) & =2 \sum_{k=0}^{2 N-1} h(k) W_{n}(2 x-k) \\
W_{2 n+1}(x) & =2 \sum_{k=0}^{2 N-1} g(k) W_{n}(2 x-k)
\end{aligned}
$$

where $W_{0}(x)=\phi(x)$ is the scaling function and $W_{1}(x)=\psi(x)$ is the wavelet function.

For example for the Haar wavelet we have:
$N=1, h(0)=h(1)=1 / 2$ and $g(0)=-g(1)=1 / 2$.
The equations become:
$W_{2 n}(x)=W_{n}(2 x)+W_{n}(2 x-1)$ and $W_{2 n+1}(x)=W_{n}(2 x)-W_{n}(2 x-1)$.
$W_{0}(x)=\phi(x)$ is the Haar scaling function and $W_{1}(x)=\psi(x)$ is the Haar wavelet, both supported in [0, 1]. Then we can obtain $W_{2 n}$ by adding two $1 / 2$-scaled versions of W_{n} with distinct supports [0,1/2] and [1/2,1] and obtain $W_{2 n+1}$ by subtracting the same versions of W_{n}.

For $n=0$ to 7 , we have the W-functions shown below.

Figure 6-34: The Haar wavelet packets
This can be obtained using the following command:
[wf un, xgri d] = wpf un(' db1' , 7, 5) ;
which returns in wf un the approximate values of W_{n} for $n=0$ to 7 , computed on a $1 / 2^{5}$ grid of the support xgrid .

Starting from more regular original wavelets and using a similar construction, we obtain smoothed versions of this system of W-functions, all with support in the interval [0, 2N-1]. Figure $6-35$ presents the system of W-functions for the original db2 wavelet.

Figure 6-35: The db2 wavelet packets

Wavelet Packet Atoms

Starting from the functions ($W_{n}(x), n \in N$) and following the same line leading to orthogonal wavelets, we consider the three-indexed family of analyzing functions (the waveforms):

$$
W_{j, n, k}(x)=2^{-j / 2} W_{n}\left(2^{-j} x-k\right) \text { where } n \in N \text { and }(j, k) \in Z^{2} .
$$

As in the wavelet framework, k can be interpreted as a time-localization parameter and j as a scale parameter. So what is the interpretation of n ?
As can be seen in the previous figures, $W_{\mathrm{n}}(x)$ "oscillates" approximately n times. So for fixed values of j and $k, W_{\mathrm{j}, \mathrm{n}, \mathrm{k}}$ analyzes the fluctuations of the signal roughly around the position $2^{j} \cdot k$, , at the scale 2^{-j} and at various frequencies for the different admissible values of the last parameter n.

In fact examining carefully the wavelet packets displayed in Figure 6-34 and Figure6-35, the naturally ordered W_{n} for $n=0,1, \ldots, 7, \ldots$ does not match exactly the property that W_{m} oscillates more than W_{m}, if $m>m$ '. M ore precisely, counting the number of zero-crossing for the db1 wavelet packets, we have:

Natural order n	0	1	2	3	4	5	6	7
Number of zero-crossing for	2	3	5	4	9	8	6	7
$d b 1 W_{\mathrm{n}}$								

So in order to restore the property that the main frequency increases monotonically with the order, it is convenient to define the "frequency" order obtained from the natural one recursively.

Natural order n	0	1	2	3	4	5	6	7
"Frequency" order $\sigma(n)$	0	1	3	2	6	7	5	4

To analyze a signal (the chirp of example 2 for instance), it is better to plot the wavel et packet coefficients following the "frequency" order (on the right of the Figure 6-36) from the low frequencies at the bottom to the high frequencies at the top, rather than naturally ordered coefficients (on the left of Figure 6-36).

Figure 6-36: Natural and frequency ordered wavelet packets coefficients

The two options are available when the GUI tools are used, since the packets are organized following the natural order (see below) in order to preserve consistency.

Organizing the Wavelet Packets

The set of functions: $W_{\mathrm{j}, \mathrm{n}}=\left(W_{\mathrm{j}, \mathrm{n}, \mathrm{k}}(x), k \in Z\right)$ is the (j, n) wavelet packet. F or positive values of integers j and n, wavelet packets are organized in trees. The tree in Figure 6-37 is created in order to give a maximum level decomposition equal to 3 . F or each scale j, the possible values of parameter n are: $0,1, \ldots, 2 j-1$.

Figure 6-37: Wavelet packets organized in a tree, scale j defines depth and frequency \mathbf{n} defines position in the tree
The notation $\mathrm{W}_{\mathrm{j}, \mathrm{n}}$, where j denotes scale parameter and n the frequency parameter, is consistent with the usual depth-position tree labeling.

We have $W_{0,0}=(\phi(x-k), k \in Z)$, and $W_{1,1}=(\psi(x-k), k \in Z)$.
It turns out that the library of wavelet packet bases contains the wavelet basis. M ore precisely if V_{0} denotes the space (spanned by the family $W_{0,0}$) in which the signal to be analyzed lies then ($\mathrm{W}_{\mathrm{d}, 1} ; d \geq 1$) is an orthogonal basis of V_{0}.
For every strictly positive integer $D,\left(W_{\mathrm{D}, 0},\left(W_{\mathrm{d}, 1} ; 1 \leq d \leq D\right)\right.$) is an orthogonal basis of V_{0}.

We also know that $\left\{\left(W_{\mathrm{j}+1,2 \mathrm{n}}\right),\left(W_{\mathrm{j}+1,2 \mathrm{n}+1}\right)\right\}$ is an orthogonal basis of the space spanned by $W_{\mathrm{j}, \mathrm{n}}$.

This last property gives a precise interpretation of splitting in the wavelet packet organization tree, because all the devel oped nodes are of the form shown in the figure below.

Figure 6-38: Wavelet packet tree: split and merge
It follows that the leaves of every connected binary subtree of the wavelet packet tree correspond to an orthogonal basis of the initial space. F or a finite energy signal, any wavelet packet basis will provide exact reconstruction and offer a specific way of coding the signal, using information allocation in frequency scale subbands.

Choosing the Optimal Decomposition

Based on the organization of the wavelet packet library, it is natural to count the decompositions issued from a given orthogonal wavelet. As a result, a signal of length $N=2^{\mathrm{L}}$ can be expanded in at most 2^{N} different ways, the number of binary subtrees of a complete binary subtree of depth L. As this number may be very large, and since explicit enumeration is generally unmanageable, it is interesting to find an optimal decomposition with respect to a convenient criterion, computable by an efficient al gorithm. We are looking for a minimum of the criterion.

Functionals verifying an additivity-type property are well suited for efficient searching of binary-tree structures and the fundamental splitting. Classical entropy-based criteria match these conditions and describe information-related properties for an accuraterepresentation of a given signal. Entropy is a common concept in many fields, mainly in signal processing. Let us list four different entropy criteria (see [CoiW92]), many others are available and can beeasily integrated (type hel p went ropy). In the following expressions s is the signal and $\left(s_{\mathrm{i}}\right)_{\mathrm{i}}$ the coefficients of s in an orthonormal basis.

The entropy E must be an additive cost function such that $E(0)=0$ and $E(s)=\sum_{i} E\left(s_{i}\right)$

- The (non-normalized) Shannon entropy.
$E 1\left(s_{i}\right)=-s_{i}^{2} \log \left(s_{i}^{2}\right)$ so $E 1(s)=-\sum_{i} s_{i}^{2} \log \left(s_{i}^{2}\right)$
with the convention $\operatorname{Olog}(0)=0$.
- The concentration in l^{p} norm with $1 \leq p<2$.
$E 2\left(s_{i}\right)=\left|s_{i}\right|^{p}$ so $E 2(s)=\sum_{i}\left|s_{i}\right|^{p}=\|s\|_{p}^{p}$.
- The logarithm of the "energy" entropy.
$E 3\left(s_{i}\right)=\log \left(s_{i}^{2}\right)$ so $E 3(s)=\sum_{i} \log \left(s_{i}^{2}\right)$
with the convention $\log (0)=0$.
- The threshold entropy.
$E 4\left(s_{i}\right)=1$ if $\left|s_{i}\right|>\varepsilon$ and 0 elsewhere so $E 4(s)=\#\left\{\right.$ such that $\left.\left|s_{i}\right|>\varepsilon\right\}$ is the number of time instants when the signal is greater than a threshold ε.
These entropy functions are available using the went ropy M -file.

Example 1: Compute Various Entropies.

1 Generate a signal of energy equal to 1.

$$
s=\text { ones }(1,16) * 0.25 ;
$$

2 Compute Shannon entropy of s.

```
el = wentropy(s,' shannon' )
    el = 2.7726
```

3 Compute $l^{1.5}$ entropy of s, equivalent to norm $(s, 1.5)^{1.5}$.

```
e2 = wentropy(s,' nor m, 1. 5)
    e2 = 2
```

4 Compute the "log energy" entropy of s.

```
e3 = wentropy(s,'log energy')
    e3 = -44. 3614
```

5 Compute threshold entropy of s, using a threshold value of 0.24 .

```
e4 = went ropy(s,'thr eshol d', 0. 24)
    e4 = 16
```


Example 2: Minimum-Entropy Decomposition.

This simple example illustrates the use of entropy to determine whether a new splitting is of interest in order to obtain a minimum-entropy decomposition.

1 We start with a constant original signal. Two pieces of information are sufficient to define and to recover the signal (i.e., length and constant value).

```
w00 = ones(1, 16) *0. 25;
```

2 Compute entropy of original signal.

$$
\begin{aligned}
& \mathrm{e} 00=\text { went ropy(} \mathrm{m} 00, \text { ' shannon' }) \\
& \mathrm{e} 00=2.7726
\end{aligned}
$$

3 Then split woo using the haar wavelet.
[w10, wll] = dwt(w00, 'db1');
4 Compute entropy of approximation at level 1

```
e10 = went ropy(wl0,' shannon' )
    e10 = 2. 0794
```

The detail of level 1, wl1, is zero; the entropy ell is zero. Due to the additivity property the entropy of decomposition is given by e10+e11=2.0794. This has to be compared to the initial entropy e $00=2.7726$. We have e $10+\mathrm{e} 11<\mathrm{e} 00$, so the splitting is interesting.

5 Now split w10 and not wil simply because the splitting of a null vector is without interest, the entropy being zero.
[w20, w21] = dwt(w10,' db1');
6 We have $\mathrm{w} 20=0.5^{*}$ ones (1,4) and w21 is zero. The entropy of approximation level 2 is:

```
e20 = went ropy(w20, ' shannon' )
    e20 = 1. 3863
```

Again we have e20 $+0<$ e10, so splitting makes the entropy decrease.

7 Then:

```
[w30,w31] = dwt(w20,'db1' );
e30 = wentropy(w30,' shannon' )
    e30 = 0. }693
[w40,w41] = dwt(w30,'db1')
    w40 = 1. }000
    w41 = 0
e40 = wentropy(w40,' shannon' )
    e40 = 0
```

In the last splitting operation we find that only one piece of information is needed to reconstruct the original signal. The wavelet basis at level 4 is a best basis according to shannon entropy (with null optimal entropy since e40+e41+e31+e21+e11 = 0).

8 All this work can be performed simply using:
$s=o n e s(1,16) * 0.25 ;$
9 Perform wavelet packets decomposition.
[t, d] $=\operatorname{mpdec}(s, 4$, ' haar', 'shannon' $)$;
The wavelet packet tree below shows the nodes labeled with original entropy numbers.

Figure 6-39: Entropy values

10 Now compute the best tree.

```
[ bt,bd] = besttree(t,d);
```

The best tree is displayed in the figure below. In this case, the best tree corresponds to the wavel et tree. The nodes are labeled with optimal entropy.

Figure 6-40: Optimal entropy values

Wavelet Packets 1-D Decomposition Structure

Using wavelet packets requires tree-related actions and labeling. The implementation of the user interface is built around this consideration. See the Reference Section for more information on the technical details.

The complete binary tree of depth D corresponding to a wavel et packet decomposition tree (WPT) developed at level D, is shown below:

Figure 6-41: Binary tree of depth 3

We have the following relationships:

Decomposition tree	Subtree such that the set of leaves is a basis
Wavel et packets decomposition tree	Complete binary tree: WPT of depth D
Wavel et packets optimal decomposition tree	Binary subtree of WPT
Wavel et packets best-level tree	Complete binary subtree of WPT
Wavel et decomposition tree	Left unilateral binary subtree of WPT of depth D
Wavel et best-basis tree	Left unilateral binary subtree of WPT

We deduce the following definitions of optimal decompositions, with respect to an entropy criterion E.

Decompositions	Optimal decomposition	Best-level decomposition
Wavel et packet decompositions	Search among $2^{\text {D }}$ trees	Search among D trees
Wavelet decompositions	Search among D trees	Search among D trees

For any nonterminal node in a complete binary tree of depth D corresponding to a wavelet packet decomposition tree, we use the following basic step in order to find the optimal subtree with respect to a given entropy criterion E (where Eopt denotes the optimal entropy value):

Entropy condition	Action on tree and on entropy labelling
$E($ node $) \leq \sum_{\mathrm{c} \text { child of node }} \operatorname{Eopt}(\mathrm{c})$	If (node \neq root $),$ merge and set $\operatorname{Eopt}($ node $)=E($ node $)$
$E($ node $)>\sum_{\mathrm{c} \text { child of node }} \operatorname{Eopt}(c)$	Split and set Eopt $($ node $)=\sum_{\mathrm{cchild} \text { of node }} \operatorname{Eopt}(c)$

with the natural initial condition on the reference tree, $\operatorname{Eopt}(t)=E(t)$ for each terminal node t.

Wavelet Packets 2-D Decomposition Structure

Exactly as in the wavelet decomposition case, the preceding one-dimensional framework can be extended to image analysis. Minor direct modifications lead to quaternary tree related definitions. An example is shown bel ow for depth 2.

Figure 6-42: Quaternary tree of depth 2

Wavelet Packets for Compression and De-Noising

In the wavelet packet framework, compression and de-noising ideas are identical as those devel oped in the wavelet framework. The only new feature is a more complex analysis that provides increased flexibility. A single decomposition using wavel et packets generates a large number of bases. Y ou can then look for the best representation with respect to a design objective, using the function best $t r$ ee with an entropy function. See Chapter 5 for detail.

References

[AntO95] Antoniadis, A., G. Oppenheim, Eds.(1995), "Wavelets and statistics", Lecture Notes in Statistics 103, Springer Verlag.
[BirM95] Birgé, L., P. Massart, Preprint Univ. Paris Sud, France 95.41 p. 1-32(1995), To appear in Festscheift in honor of Le Cam (D. Pollard, E. Torgersen, G. Young Eds., Springer Verlag.
[Chu92a] Chui, C.K. (1992a), "Wavelets: a tutorial in theory and applications", Academic Press.
[Chu92b] Chui, C.K. (1992b), "An introduction to wavelets", Academic Press.
[Coh92] Cohen, A. (1992) "Ondelettes, analyses multirésolution et traitement numérique du signal", Ph. D. Thesis, University of Paris IX, Dauphine.
[CohDF 92] Cohen, A., I. Daubechies, J.C. F eauveau (1992) "Biorthogonal basis of compactly supported wavelets", Comm. Pure Appli. Math. , vol. 45, pp 485-560.
[CohDJ V93] Cohen, A., I. Daubechies , B. J awerth, P. Vial (1993) "Multiresolution analysis, wavelets and fast wavelet transform on an interval", CRAS Paris, Ser. A, t. 316, p. 417-421.
[CoiMW92] Coifman, R.R., Y. M eyer, M.V. Wickerhauser (1992), "Wavelet analysis and signal processing", in Wavelets and their applications, M.B. Ruskai et al. (Eds.), pp. 153-178, J ones and Bartlett.
[CoiW92] Coifman, R.R., M.V Wickerhauser, (1992), "E ntropy-based algorithms for best basis selection", IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.
[Dau92] Daubechies, I. (1992), "Ten lectures on wavelets", SIAM.
[DevJ L92] DeVore, R.A., B. J awerth, B.J . Lucier (1992), "I mage compression through wavel et transform coding", IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 719-746.
[Don93] Donoho, D.L. (1993), "Progress in wavelet analysis and WVD: a ten minute tour", in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.
[Don95] Donoho, D.L. (1995), "De-N oising by soft-threshol ding", IEE E Trans. on Inf. Theory, vol. 41, 3, pp. 613-627.
[DonJ 94a] Donoho, D.L., I.M. J ohnstone(1994),"I deal spatial adaptation by wavelet shrinkage", Biometrika, vol 81, pp. 425-455.
[DonJ 94b] Donoho, D.L., I.M. J ohnstone(1994), "I deal de-noising in an orthonormal basis chosen from a library of bases", CRAS Paris, t. 319, Ser I, pp. 1317-1322.
[DonJ KP95a] Donoho, D.L., I.M. J ohnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptopia", J our. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301-369.
[DonJ KP95b] Donoho, D.L., I.M. J ohnstone, G. Kerkyacharian, D. Picard (1995), "Density estimation by wavelet thesholding", submitted for publication to the Annals of Stat.
[KahL 95] Kahane, J .P., P.G Lemarié (1995), "Fourier series and wavelets", Gordon and Research Publishers, Studies in the Development of M odern Mathematics, vol 3.
[Kai 94] K aiser, G. (1994), "A friendly guide to wavel ets", Birkhauser.
[Lem90] Lemarié, P.G., Ed, (1990),"'Les ondelettes en 1989", Lecture Notes in Mathematics, Springer Verlag.
[Mal89] M allat, S. (1989), "A theory for multiresolution signal decomposition: the wavelet representation", IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, pp 674-693.
[Mey90] M eyer, Y. (1990), "Ondelettes et opérateurs", Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)
[Mey93] M eyer, Y. (1993), "Les ondelettes. Algorithmes et applications", Colin Ed., Paris, 2nd edition. (English translation: "Wavelets: algorithms and applications", SIAM).
[MeyR 93] Meyer, Y., S. Roques, Eds. (1993), "Progress in wavelet analysis and applications", F rontières Ed.
[MisMOP93a] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1993a), "Analyse de signaux classiques par décomposition en ondelettes", Revue de Statistique Appliquée, vol. XLI, no. 4, pp 5-32.
[MisMOP 93b] Misiti, M., Y. Misiti, G. Oppenheim, J .M. Poggi (1993b), "Ondelettes en statistique et traitement du signal", Revue de Statistique Appliquée, vol. XLI, no. 4, pp 33-43.
[MisMOP 94] Misiti, M., Y. Misiti, G. Oppenheim, J.M. Poggi (1994), "Décomposion en ondelettes et méthodes comparatives: étude d'une courbe de charge électrique", Revue de StatistiqueAppliquée, vol. XLII, no. 2, pp 57-77.
[StrN96] Strang, G., T. N guyen (1996), "Wavelets and filter banks", Wellesley-Cambridge Press.
[Wic91] Wickerhauser, M.V., (1991) "INRIA lectures on wavel et packet algorithms", Proceedings ondelettes et paquets d'ondes, 17-21 june, Rocquencourt France, pp 31-99.
[Wic94] Wickerhauser, M.V., (1994) "Adapted wavelet analysis from theory to software algorithms", A.K. Peters.

Adding Your Own Wavelets

7-3 Preparing to Add a New Wavelet Family

7-3 Choose the Wavelet Family Full Name
7-3 Choose the Wavelet Family Short Name
7-4 Determine the Wavel et Type
7-4 Define the Orders of Wavelets Within the Given Family
7-5 Build a MAT-File or M-File
7-7 Define the Effective Support

7-8 How to Add a New Wavelet Family

7-16 After Adding a New Wavelet Family

The Wavelet Toolbox contains a lot of wavelet families, but by using the wavemgr function, you can add new wavel ets to the existing ones in order to implement your favorite or try out a wavel et of your own design. The tool box allows you to define new wavelets for use with both the command line functions and the graphical tools.

Caution: This capability must be used carefully, because the tool box does not check that your wavelet meets all the mathematical requisites.

The wavemngr function affords extensive wavelet management. However, this chapter focuses only on the addition of a wavelet family. For more complete information, see the wavemgr reference entry in Chapter 8.
This chapter discusses:

- Preparing to Add a New Wavelet Family
- How to Add a New Wavelet Family
- After Adding a New Wavelet Family

Preparing to Add a New Wavelet Family

The wavemgr command permits you to add new wavelets and wavel et families to the predefined ones. However, before you can use the wavemgr command to add a new wavelet, you must:

1 Choose the full name of the wavelet family (f n).
2 Choose the short name of the wavelet family (fsn).
3 Determine the wavelet type (wt).
4 Define the orders of wavelets within the given family (nums).
5 BuildaMAT-file or a M-file (file).
6 For wavel ets without FIR filters: Define the effective support.
The remainder of this section describes each of these steps.

Choose the Wavelet Family Full Name

The full name of the wavelet family, f n , must be a string. Predefined wavelet family names are: Haar , Daubechi es, Bi or Spl i nes, Coi fl et s, Syml et s, Mbr I et, Mexi can_hat, and Mkyer.

Choose the Wavelet Family Short Name

The short name of the wavel et family, f sn, must be a string of four characters or less. Predefined wavelet family short names are: haar , db, bi or , coi f, sym norl, mexh, and meyr.

Determine the Wavelet Type

We distinguish four types of wavelets:

- Orthogonal wavelets with FIR filters

These wavelets can be defined through the scaling filter w. Predefined families of such wavelets include: Haar , Daubechi es, Coi fl et s, and Sym et s.

- Biorthogonal wavelets with FIR filters

These wavel ets can be defined through the two scaling filters wr and wd, for reconstruction and decomposition respectively. The Bi or Spl i nes wavelet family is a predefined family of this type.

- Orthogonal wavelets without FIR filter but with scale function

These wavel ets can be defined through the definition of the wavel et function and the scaling function. The Meyer wavelet family is a predefined family of this type.

- Wavelets without FIR filter and without scale function

These wavel ets can be defined through the definition of the wavel et function. Predefined families of such wavelets include: Mbrlet, and Mexi can_hat.

Define the Orders of Wavelets Within the Given Family

If a family contains many wavel ets, the short name and the order are appended in order to form the wavelet name. Argument nums is a string containing the orders separated with blanks. This argument is not used for wavelets of type 3 or 4 , nor is it used for a family that only has a single wavelet.

For example, for the first Daubechies wavelets,

```
fsn = 'db'
nums ='1 2 3'
```

yield the three wavelets db1, db2 and db3.
For the first BiorSplines wavelets,

```
fsn = 'bior'
nums = '1.1 1.3 1.5 2. 2'
```

yield the four wavelets bi or 1. 1, bi or 1. 3, bi or 1.5, and bi or 2. 2 .

Build a MAT-File or M-File

The wavemngr command requires a file argument, which is a string containing a MAT-file or M-file name.

If a family contains many wavelets, a M-file must be defined and must be of a specific form that depends on the wavel et type. The specific M-file formats are described in the remainder of this section.

If a family contains a single wavel et, then a MAT-file can be defined for wavelets of type 1. It must have the wavelet family short name (f sn) argument as its name and must contain a single variable whose name is $f s n$ and whose value is the scaling filter. An M-file can also be defined as discussed below.

Type 1 (Orthogonal with FIR Filter)

The syntax of the first line in the M-file must be:
function $w=$ file(wname)
where the input argument wname is a string containing the wavelet name, and the output argument wis the corresponding scaling filter.

The filter w must be of even length otherwise it is zero-padded by the tool box.
For predefined wavelets, the scaling filter is of sum 1. F or a new wavelet, the normalization is free (except 0 of course) since the tool box uses a suitably normalized version of this filter.

Examples of such M-files for predefined wavelets are: dbwavf . mfor Daubechies, coi f wavf. mfor Coiflets, and symwavf. mfor Symlets.

Type 2 (Biorthogonal with FIR Filter)

The syntax of the first line in the M-file must be:
function [wr, wd] = file(wname)
where the input argument wname is a string containing the wavelet name and the output arguments wr and wd are the corresponding reconstruction and decomposition scaling filters, respectively.

The filters wr and wd must be of the same even length. In general, initial biorthogonal filters do not meet these requirements, so they arezero-padded by the toolbox.

F or predefined wavelets, the scaling filters are of sum 1. F or a new wavel et, the normalization is free (except 0 of course) since the tool box uses a suitably normalized version of these filters.

The M-file bi or wavf. m (for Bi or Spl i nes) is an example of an M-filefor a type-2 predefined wavelet family.

Type 3 (Orthogonal with Scale Function)

The syntax of the first line in the M-file must be:
function [phi, psi,t] = file(l b, ub, n)
which returns values of the scaling function phi and of the wavelet function psi on a regular n-point grid with intervals of length t and bounded by [lbub].
The M-file meyer . mis an example of an M-file for a type-3 predefined wavelet family.

Type 4 (No FIR Filter; No Scale Function)

The syntax of the first line in the M-file must be:
function [psi,t] = file(Ib, ub, n)
which returns values of the wavel et function psi on a regular n-point grid with intervals of length t and bounded by [$1 \mathrm{~b} u \mathrm{ub}$].

Examples of type-4 M-files for predefined wavelet families are mexi hat. m(for Mexi can_hat) and norl et. m(for Mbrlet).

Define the Effective Support

This definition is required only for wavelets of type 3 or 4 , since they are not compactly supported.

Defining the effective support means specifying an upper and lower bound. F or predefined wavelet families, we have:

Family	Lower Bound (l b)	Upper Bound (ub)
Meyer	-8	8
Mexi can_hat	-5	5
Mbrl et	-4	4

How to Add a New Wavelet Family

To add a new wavelet, use the wavemgr command in one of two forms:

```
    wavemgr(' add', f n, f sn, wt, nums, fil e)
```

or
wavemgr (' add', fn, fsn, wt, nums, file, b).

Here are a few examples to illustrate how you would use wavemgr to add some of the predefined wavelet families:

Type Syntax

1 wavemmgr('add',' Ndaubechi es',' ndb', 1,' 1234 5', 'dbwavf ');
wavemmgr(' add',' Ndaubechi es',' ndb', 1,'1 2345 **', 'dbwavf');

2 wavemmgr(' add', ' Nbi or wavf', ' nbi o' , 2,' 1. 1 1. 3' , ' bi or wavf ') ;
wavemmgr(' add', ' Nmeyer', ' nmey', 3, ' ' , ' meyer', [-8, 8]) ;
wavemmgr('add',' Nnorl et ', 'nmor', 4,' ', 'morl et ', [-4, 4]).

Example 1

Let us takethe example of Bi nl et s proposed by Strangand N guyen in the book Wavelets and Filter Banks (See pp. 216-217).

Note: The M-files used in this example can be found in the wavedeno directory.

The full family name is: Bi nl et s.
The short name of the wavelet family is: bi nl .
The wavelet type is: 2 (Biorthogonal with FIR filters).

The order of the wavelet within the family is: 7.9 (we just use one in this example).

The M-file used to generate the filters is bi nl wavf. m
Then to add the new wavelet, type:
\% Add new fanily of bi orthogonal wavel ets.
wavermgr(' add', ' Bi nl et s' , 'bi nl ', 2,' 7. 9' , ' bi nl wavf')
\% List wavel ets families.
wavemgr('read')
ans $=$

Haar	haar
Daubechi es	db
Bi or Spl i nes	bi or
Coiflet s	coif
Syml ets	sym
Mbrl et	morl
Mexi can_hat	mexh
Meyer	meyr
Bi nl ets	bi nl

If you want to get online information on this new family, you can build an associated help file which would look like:
function binlinfo
\% ${ }^{\text {BI }}$ NLI NFO I nf ormation on bi orthogonal wavel et s (binlets).
\%
\% Bi orthogonal Wavel ets (Bi nl ets)
\%
\% Fanily Bi nl et s
\%
\%
Short name
bi nl
Or der Nr , Nd
$\mathrm{Nr}=7, \mathrm{Nd}=9$
\%
\% Orthogonal no
\% Bi orthogonal yes
\% Compact support yes
\% DVT possible
\% CWT
possi ble
\%
\%
\%
\%
\%
bi nl 7.9
$1 d$
ef fective length of LoF_D

7

Ir effective length of $\mathrm{Hi}_{\mathrm{F}} \mathrm{D}$

9

The associated M-file to generate the filters (bi nl wavf . m) is:
function [Rf, Df] = bi nl wavf (mame)
\%BI NLWAVF Bi orthogonal wavel et filters (Binlets).
\% [RF, DF] = BI NLWAVF(W) returns two scaling filters
\% associated with the bi orthogonal wavel et specified
\% by the string W
\% W = 'binl Nr. Nd' where possible val ues for Nr and Nd are:
$\mathrm{Nr}=7 \quad \mathrm{Nd}=9$
\% The output arguments are filters:
RF is the reconstruction filter
DF is the decomposition filter
\% Check ar guments.
if errargn('bi nl wavf', nargi n, [0 1], nargout, [0:2]), error('*'); end

```
% suppress the following line for extension
Nr = 7; Nd = 9;
%for possi ble extensi on
% more wavel ets in 'Binl ets' famly
%---------------------------------
if nargi n=0
    Nr = 7; Nd = 9;
el sei f i sempt y( uname)
    Nr = 7; Nd = 9;
el se
        if i sstr(wname)
            I w = I engt h( wname);
            ab = abs(uname);
            ind = find(ab=46 | 47<ab | ab<58);
            li = l ength(ind);
            err = 0;
            if li=0
                                err = 1;
            el seif ind(1)~=ind(li )- li +1
                                    err = 1;
            end
            if err=0,
                                    uname = str2num( uname(ind));
                                    if i sempty(mname), err = 1; end
                    end
    end
    if err=0
            Nr = fix(mname); Nd = 10*(mame- Nr);
        el se
            Nr = 0; Nd = 0;
        end
end
```

```
% suppress the following lines for extension
% and add a test for errors.
%-----------------------------------------
if Nr~=7, Nr = 7; end
if Nd~=9, Nd = 9; end
if Nr = 7
    if Nd == 9
            Rf =[-1 0 9 16 9 0 -1]/ 32;
            Df =[ 1 0 -8 16 46 16-8 0 1]/64;
    end
end
```


Example 2

In the following example, new compactly supported orthogonal wavelets are added to the toolbox. These wavelets, which are a slight generalization of the Daubechies wavelets, are based on the use of Bernstein polynomials and are due to K ateb and Lemarié in an unpublished work.

Note: The M-files used in this example can be found in the wavedemo directory.

\% List initial wavel ets families. wavemgri('read')	
ans =	
Haar	haar
Daubechi es	db
Bi orSpl ines	bi or
Coiflets	coif
Sym et s	sym
Mbrlet	morl
Mexi can_hat	mexh
Meyer	meyr

\% List all wavel ets. wavemgr (' read' , 1)			
ans $=$			
Haar	haar		
Daubechi es db			
db1	db2	db3	db4
db5	db6	db7	db8
db9	db10	dbxx	
Bi orSplines bi or			
bi or 1.1 bi or 1.3 bi or 1.5 bi or 2. 2 bi or 2.4 bi or 2.6 bi or 2.8 bi or 3.1 bi or 3.3 bi or 3.5 bi or 3.7 bi or 3.9 bi or 4.4 bi or 5.5 bi or 6.8			
Coiflets coif			
coif1 coif2 coif3 coif4			
Syml et s sym			
$\begin{aligned} & \text { sym2 } \\ & \text { sym6 } \end{aligned}$	symB	sym4	symb
	sym7	sym8	
Mbrlet morl			
Mexi can_hat mexh			
Mkyer meyr			

```
% Add new family of orthogonal wavel ets.
% You must define:
%
% Family Name: Lemmie
% Family Short Name: l em
% Type of wavel et: 1 (orth)
% Vavel ets numbers: 1 2 3 4 5
% File driver: I enwavf
%
% Add new family of orthogonal wavel ets.
% You must define:
%
% Family Name: Lemmrie
% Family Short Name: l em
% Type of wavel et: 1 (orth)
% Vavel ets numbers: 1 2 3 4 5
% File driver: I emwavf
%
% and the function I enwavf.mmust be as follow.
% function w = l emwavf(wname)
% where the input argument wname is a string:
% wname = 'lem1' or 'lem2' ... i.e.
% wname = sh. name + number
% and w the corresponding scaling filter
% then addition is obtai ned using:
    wavemmgr(' add','Lemari e','। em,1,'1 2 3 4 5','lemwavf');
% The ascii file ' wavel ets.asc' is saved as
%' mavel ets.prv' then it is modified and
%the mat file 'wavel ets.inf' is generated.
```


After Adding a New Wavelet Family

When you use the wavemgr command to add a new wavelet, the tool box creates three wavelet extension files in the current directory: the two ASCII files wavel ets. asc and wavel ets. prv, and the MAT-file wavel ets. inf.

If you want to use your own extended wavelet families with the Wavelet Toolbox, you should:

1 Create a new directory specifically to hold the wavelet extension files.
2 Move the previously mentioned files into this new directory.
3 Prepend this directory to the MATLAB's directory search path (see the reference entry for the path command).

4 Use this same directory for subsequent modifications. Allowing many wavelet extension files to proliferate in different directories may lead to unpredictable results.

5 Define an M-file called " \Varangle sn>i nfo. m" (F or example, see dbi nf o. mor morlinfo.m.

This file will be associated automatically with the Wavelet Family button in the Wavelet Display option of the graphical tools.

Reference

Commands Grouped by Function

Graphical User Interface Tools

wavemenu Start graphical user interface tools.

Wavelets: General	
bi orfilt	Biorthogonal wavelet filter set.
dyaddown	Dyadic downsampling.
dyadup	Dyadic upsampling.
int wave	Integrate wavelet function psi.
orthfilt	Orthogonal wavelet filter set.
quff	Quadrature mirror filter.
wavef un	Wavelet and scaling functions.
wfilters	Wavelet filters.
wavermgr	Wavelet manager.
unmal ev	Maximum wavelet decomposition level.

Wavelet Families	
bi or wavf	Biorthogonal spline wavelet filters.
coi f wavf	Coiflets wavelet filters.
dbaux	Daubechies wavelet filters computation.
dbwavf	Daubechies wavelet filters.
nexi hat	Mexican hat wavelet.
neyer	Meyer wavelet.
neyer aux	Meyer wavelet auxiliary function.
norl et	Morlet wavelet.
symwavf	Symlets wavelet filters.

Continuous Wavelet: One-Dimensional
 cut
 Continuous wavelet coefficients 1-D.

Discrete Wavelets: One-Dimensional	
appcoef	Extract 1-D approximation coefficients.
det coef	Extract 1-D detail coefficients.
dwt	Single-level discrete 1-D wavelet transform. dwt per Single-level discrete 1-D wavelet transform (peri- odized).
dwt mode	Discrete wavelet transform extension mode. i dwt i dwt per
Single-level inverse discrete 1-D wavelet transform.	
upcoef	Single-level inverse discrete 1-D wavelet transform (periodized).
upw ev	Direct reconstruction from 1-D wavelet coefficients. single-level reconstruction of wavelet decomposition
wavedec	1-D.
waverec	Multi-level wavelet decomposition 1-D.
wr coef	Multi-level wavelet reconstruction 1-D.

Discrete Wavelets: Tw o-Dimensional	
appcoef 2	Extract 2-D approximation coefficients.
det coef 2	Extract 2-D detail coefficients.
dut 2	Single-level discrete 2-D wavelet transform.
dut per 2	Single-level discrete 2-D wavelet transform (periodized).
dut mode	Discrete wavelet transform extension mode.
i dwt 2	Single-level inverse discrete 2-D wavelet transform.
i dut per 2	Single-level inverse discrete 2-D wavelet transform (periodized).
upcoef 2	Direct reconstruction from 2-D wavelet coefficients.
upw ev2	Single-level reconstruction of wavelet decomposition 2-D.
wavedec2	Multi-level wavelet decomposition 2-D.
waverec2	Multi-level wavelet reconstruction 2-D.
wr coef 2	Reconstruct single branch from 2-D wavelet coefficients.

Wavelet Packet Algorithms	
besttree	Best tree (wavelet packet).
bestlevt	Best level tree (wavelet packet).
ent rupd	Entropy update (wavelet packet).
went ropy	Entropy (wavelet packet).
up2utr ee	Extract wavelet tree from wavelet packet tree.
upcoef	Wavelet packet coefficients.
upcutree	Cut wavel et packets tree.
updec	Wavelet packet decomposition 1-D.
wpdec2	Wavelet packet decomposition 2-D.
upf un	Wavelet packet functions.
upj oi n	Recompose wavelet packet.
uprcoef	Reconstruct wavelet packet coefficients.
uprec	Wavelet packet reconstruction 1-D
uprec2	Wavelet packet reconstruction 2-D.
upsplt	Split (decompose) wavelet packet.

De-Noising and Compression for Signals and Images
ddencmp Default values for de-noising or compression.
$t h s e l$ ect Threshold selection for de-noising.
wden Automatic 1-D de-noising using wavelets.
wdencmp De-noising or compression using wavelets.
unoi se
Generate noisy wavel et test data.
unoi sest
Estimate noise of wavel et coefficients 1-D.
updencmp
De-noising or compression using wavelet packets.
wpt hcoef
ut hcoef
Wavelet packet coefficients thresholding.
wt hcoef 2 Wavelet coefficients threshol ding 1-D.
ut hresh
Wavelet coefficients threshol ding 2-D. Perform soft or hard thresholding.

Tree Management Utilities	
al I nodes	Tree nodes.
depo2i nd	Node depth-position to node index.
i nd2depo	Node index to node depth-position.
i snode	True for existing node.
i st node	True for terminal nodes.
maket ree	Make tree.
nodeasc	Node ascendants.
nodedesc	Node descendants.
nodej oi n	Recompose node.
nodepar	Node parent.
nodespl t	Split (decompose) node.
nt node	Number of terminal nodes.
pl ot tree	Plot tree.
t nodes	Terminal nodes.
tr eedpt h	Tree depth.
treeord	Tree order.
wdat angr	Manager for data structure.
wt reengr	Manager for tree structure.

General Utilities

debl ankl	Convert string to lowercase without blanks.
er rargn	Check function arguments number.
er rargt	Check function arguments type.
num2nstr	Convert number to string in maximum precision.
wcodemat	Extended pseudocol or matrix scaling.
wcommon	Find common elements.
wkeep	Keep part of a vector or a matrix.
wrev	Flip vector.

Other	
inst dfft	Inverse nonstandard 1-D fast Fourier transform.
nst dfft	Nonstandard 1-D fast Fourier transform.

Wavelets Information	
wavei nf o	Information on wavelets.

Demos
wavedeno
Wavelet tool box demos.

Purpose Tree nodes.

Syntax \quad| N | $=\operatorname{al} I \operatorname{nodes}(T)$ |
| ---: | :--- |
| N | $=\operatorname{al} \operatorname{lnodes}\left(\mathrm{T}, \mathrm{C} \operatorname{deppos}{ }^{\prime}\right)$ |

Description

Examples

```
% Create initial tree.
    ord = 2;
    t = maketree(ord, 3); % Bi nary tree of depth 3.
    tt = nodej oi n(t,5);
    tt = nodej oi n(tt,4);
    pl ottree(tt)
```


\% List tt nodes (index). al n_i nd $=$ al 1 nodes($t t)$
al n_ind $=$
0
1
2
3
4
5
6
7
8
13
14
\% List tt nodes (depth- position).
al n_depo $=$ all nodes(tt,' deppos')
al n_depo =
00
10
$1 \quad 1$
20
21
$2 \quad 2$
23
30
31
36
37

Purpose Extract 1-D approximation coefficients.

Syntax	A $=\operatorname{appcoef}\left(\mathrm{C}, \mathrm{L}, \mathrm{'}^{\text {uname' }}\right.$, N)
	$A=\operatorname{appcoef}(C, L, '$ mame')
	A $=\operatorname{appcoef}\left(\mathrm{C}, \mathrm{L}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi} \mathrm{Z}^{\text {R }}\right.$)
	$A=\operatorname{appcoef}\left(\mathrm{C}, \mathrm{L}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi} \mathrm{Z}_{-} \mathrm{R}, \mathrm{N}\right)$

Description

appcoef is a one-dimensional wavelet analysis function.
appcoef computes the approximation coefficients of a one-dimensional signal.
A = appcoef (C, L, 'wnare', N) computes the approximation coefficients at level N using the wavelet decomposition structure [C, L] (see wavedec).
'wname' is a string containing the wavelet name. Level n must be an integer such that $0<=N<=1$ engt $h(L)-2$.

A = appcoef (C, L, 'wname') extracts the approximation coefficients at the last level length(L) - 2 .
Instead of giving the wavelet name, you can give the filters. F or
 reconstruction low-pass filter and $\mathrm{Hi}_{\text {_ }} \mathrm{R}$ is the reconstruction high-pass filter.

Examples

Algorithm

See Also
\% Load original one- di mensi onal si gnal.
I oad I el eccum $s=\mid$ el eccum($1: 3920$; $\mathrm{I} s=\mid$ engt $h(s) ;$
\% Perform decomposition at level 3 of s using db1. [c, l] = wavedec(s, 3, 'db1');
\% Extract approximation coefficients at level 3, fromthe \% wavel et decomposition structure [c,l]. ca3 $=\operatorname{appcoef}(\mathrm{c}, \mathrm{l}, ' \mathrm{db1}$ ', 3);

Original signal s.

Approx. coef. level 3 : ca3

The input vectors C and L contain all the information about the signal decomposition.

Let NMAX $=$ I engt $h(L)-2$, then $C=[A($ NMAX $) \quad D($ NMAX $) \ldots D(1)]$, where A and the D are vectors.

If $\mathrm{N}=$ NMAX a simple extraction is done, otherwise appcoef computes iteratively the approximation coefficients using the inverse wavelet transform.

```
det coef, wavedec
```

Purpose	Extract 2-D approximation coefficients.
Syntax	A $=\operatorname{appcoef} 2\left(\mathrm{C}, \mathrm{S}\right.$, ' uname' $\left.^{\prime}, \mathrm{N}\right)$
	$A=\operatorname{appcoef} 2(C, S, '$ mame')
	A $=$ appcoef 2($\mathrm{C}, \mathrm{S}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi}$
	A $=$ appcoef 2($\mathrm{C}, \mathrm{S}, \mathrm{Lo}$ _R, Hi_ R, N)
Description	appcoef 2 is a two-dimensional wavelet analysis function.
	appcoef 2 computes the approximation coefficients of a two-dimensional signal
	A = appcoef 2(C, S, 'wnare', N) computes theapproximation coefficients at level Nusing the wavelet decomposition structure [C, S] (see wavedec2).
	'wname' is a string containing the wavelet name. Level Nmust be an integer such that $0<=N<=\operatorname{size}(S, 1)-2$.
	A = appcoef 2(C, S, 'uname') extracts the approximation coefficients at the last level si ze(S, 1)-2.
	Instead of giving the wavelet name, you can give the filters. For the reconstruction low-pass filter and $\mathrm{Hi}_{\mathbf{R}} \mathrm{R}$ is the reconstruction high-pass filter.
Examples	\% Load ori gi nal i mage. I oad noman; $\% \mathrm{X}$ cont ai ns the l oaded imge.
	```% Perform decomposition at l evel 2 % of X using db1. [c, s] = navedec2(X, 2,' db1'); sizex = size(X)```

```
sizex =
 256 256
 sizec = size(c)
sizec =
 1 65536
 val _s = s
val _s =
 64 64
 64 64
 128 128
 256 256
% Extract approximati on coef fici ents
% at l evel 2.
 ca2 = appcoef 2(c, s,'db1', 2);
 sizeca2 = si ze(ca2)
sizeca2 =
 64 64
% Compute approxi mati on coeffici ents
% at l evel }1
 ca1 = appcoef 2(c, s,' db1', 1);
 sizecal = si ze(cal)
sizecal =
 128 128
```

Algorithm The algorithm is built on the same principle as appcoef .
See Also det coef 2, wavedec2

\% PI ot wavel et packet tree structure wpt. pl ot tree( wpt )

\% Compute best l evel tree.
[ blt, bld] = bestlevt (upt, upd) ;
\% Pl ot best level tree structure blt. plottree(blt)


Algorithm $\begin{aligned} & \text { See best t r ee algorithm section. The only difference is that the optimal tree is } \\ & \text { searched among the complete sub-trees of the initial tree. }\end{aligned}$
See Also besttree, maket ree, went ropy, wpdec, mpdec 2

Purpose Best tree (wavelet packet).

Syntax	$[T, D]=$ besttree(T, D)
	$[T, D, E]=$ besttree(T, D)
$[T, D, E, N]=$ besttree( $T, D)$	

Description
besttree is a one- or two-dimensional wavelet packet analysis function that computes the optimal sub-tree of an initial tree with respect to an entropy type criterion. The resulting tree may be much smaller than the initial one.

F ollowing the organization of the wavel et packets library, it is natural to count the decompositions issued from a given orthogonal wavelet. As a result, a signal of length $N=2^{\mathrm{L}}$ can be expanded in at most $2^{\mathrm{N}}$ different ways, the number of binary sub-trees of a complete binary sub-tree of depth $L$. As this number may be very large, and since explicit enumeration is generally intractable, it is interesting to find an optimal decomposition with respect to a convenient criterion, computable by an efficient algorithm. We are looking for a minimum of the criterion.
[T, D] = besttree(T, D) computes the modified tree structure T and data structure D (see maket ree), corresponding to the best entropy value.
[ T, D, E] = best tree(T, D) returns the best tree T, the data structure D, and in addition, the best entropy value E .
$[T, D, E, N]=$ best tree(T, D) returns the best treeT, the data structure $D$, the best entropy value E , and in addition, the vector N containing the indices of the merged nodes.

## Examples

\% Load si gnal
I oad noi sdopp; x = noi sdopp;
\% Decompose x at depth 3 with db1 wavel et packets, using \% default entropy (shannon) and decompose the packet [30].
[ upt, upd] $=\operatorname{updec}(x, 3, ' d b 1 ')$;
[ upt, upd] = upsplt(upt, upd, [ 3 0]);
\% PI ot wavel et packet tree structure upt. pl ot tree( wpt )

\% Compute best tree.
[ bt, bd] = besttree(upt, upd)
\% Pl ot best tree structure bt.
pl ot tree( bt)


Algorithm	Consider the one-dimensional case. Starting with the root node, the best tree   is calculated using the following scheme. A node $N$ is split into two nodes N1   and N2 if and only if the sum of the entropy of N1 and N 2 is lower than the   entropy of N. This is a local criterion based only on the information available   at the node $N$.   Several entropy type criteria can be used (see went ropy). If the entropy   function is an additive function along the wavelet packet coefficients, this   Algorithm leads to the best tree.   Starting from an initial tree T and using the merging side of this algorithm, we   obtain the best tree among all the binary sub-trees of T.
See Also	bestlevt, maketree, wentropy, wpdec, wpdec 2
References	R.R. Coifman, M.V Wickerhauser, (1992), "E ntropy-based algorithms for best   basis selection," IE E Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.

## Purpose <br> Syntax

Biorthogonal wavelet filter set.

```
[LO_D,HI_D, LO_R,HI_R] = bi orfilt(DF,RF)
[LO_D1, Hl _D1, LO_R1, Hl _R1, LO_D2, H| _D2, LO_R2,H| _R2] =
 biorfilt(DF, RF,' 8')
```

The bi orfilt command returns either four or eight filters associated with biorthogonal wavelets.
[ LO_D, HI _D, LO_R, HI_R] = bi orfilt (DF, RF) computes four filters associated with the biorthogonal wavelet specified by decomposition filter DF and reconstruction filter RF. These filters are:

LO_D Decomposition low-pass filter
H _D Decomposition high-pass filter
LO_R Reconstruction low-pass filter
HI _R Reconstruction high-pass filter
[LO_D1, HI _D1, LO_R1, HI R1, LO_D2, HI_D2, LO_R2, HI _R2] = bi orfilt ( $\left.\overline{D F}, R F,{ }^{\prime} 8^{\prime}\right)$ returns eight filters, the first four associated with the decomposition wavelet, and the last four associated with the reconstruction wavelet.

It is well known in the sub-band filtering community that if the same FIR filters are used for reconstruction and decomposition, then symmetry and exact reconstruction are incompatible (except with the Haar wavelet). Therefore, with biorthogonal filters, two wavelets are introduced instead of just one:

- One wavelet, $\tilde{\psi}$, is used in the analysis, and the coefficients of a signal s are $\tilde{c}_{j, k}=\int s(x) \tilde{\Psi}_{j, k}(x) d x$,
- The other wavelet, $\psi$, is used in the synthesis $s=\sum_{j, k} \tilde{c}_{j, k} \psi_{j, k}$

Further, the two wavel ets are related by duality in the following sense:
$\int \tilde{\Psi}_{j, k}(x) \Psi_{j^{\prime}, k^{\prime}}(x) d x=0$ as soon as $j \neq j^{\prime}$ or $k \neq k^{\prime}$ and
$\int \tilde{\phi}_{0, k}(x) \phi_{0, k^{\prime}}(x) d x=0$ as soon as $k \neq k^{\prime}$.

It becomes apparent, as A. Cohen pointed out in his thesis (p. 110), that "the useful properties for analysis (e.g., oscillations, null moments) can be concentrated in the $\tilde{\psi}$ function whereas the interesting properties for synthesis (regularity) are assigned to the $\psi$ function. The separation of these two tasks proves very useful."
$\tilde{\psi}$ and $\psi$ can have very different regularity properties, $\psi$ being more regular than $\tilde{\psi}$ (see Daubechies p. 269).
The $\tilde{\psi}, \psi, \tilde{\phi}$ and $\phi$ functions are zero outside a segment.

## Examples

```
%Compute the four filters associ ated with spline bi orthogonal
% wavel et 3. 5: bi or 3.5.
% Find the two scaling filters associ ated with bi or 3.5.
[Rf,Df] = bi orwavf(' bi or 3.5');
%Compute the four filters needed.
[Lo_D,Hi_D, Lo_R,Hi_R] = bi orfilt(Df,Rf);
subpl ot(221); stem(Lo_D);
title('Dec. Iow pass filter bi or3.5');
subpl ot(222); stem(Hi_D);
title('Dec. hi gh-pass filter bi or 3.5');
subpl ot(223); stem(Lo_R);
title('Rec. I ow pass filter bi or3.5');
subpl ot(224); stem(Hi_R);
title('Rec. hi gh-pass filter bi or 3.5');
```


\% Orthogonal ity by dyadic translation is lost. nzer $=[$ Lo_D 0 0]*[ 00 Lo_D]'
nzer =

- 0.6881
nzer $=\left[\begin{array}{llll}\mathrm{Hi} & \mathrm{D} & 0 & 0\end{array}\right]^{*}\left[\begin{array}{llll}0 & 0 & \mathrm{Hi} & \mathrm{D}\end{array}\right]^{\prime}$
nzer =

0. 1875
\% But using dual ity we have:
zer $=[$ Lo_D 0 0]*[0 0 Lo_R]'
zer =
-2. 7756e- 17
zer $\left.=\left[\begin{array}{lll}\mathrm{Hi} & \mathrm{D} & 0\end{array}\right]\right]^{*}\left[\begin{array}{llll}0 & 0 & \mathrm{Hi} & \mathrm{R}\end{array}\right]^{\prime}$
zer =
1. $7756 \mathrm{e}-17$
\% But perfect reconstruction via DVT is preserved.
$x=r a n d n(1,500)$;
[ a, d] $=\operatorname{dwt}\left(x\right.$, Lo_D, Hi $\left.D_{1}\right)$;

err $=$ nor $m(x-x r e c)$
err =
2. $0218 \mathrm{e}-15$
```
% Hi gh and I ow frequency ill ustration.
 fftld = fft(Lo_D); ffthd = fft(Hi_D);
 freq = [1: I engt h(Lo_D)]/ I engt h(Lo_D);
 subpl ot(221); pl ot(freq, abs(fftld),freq, abs(ffthd));
 title('Transfer modul us for dec. filters')
 fftlr = fft(Lo_R); ffthr = fft(Hi_R);
 freq = [1: l engt h(Lo_R)]/l engt h(Lo_R);
 subpl ot(222); pl ot(freq, abs(fftlr),freq, abs(ffthr));
 title('Transfer modul us for rec. filters')
 subpl ot(223); pl ot(freq, abs(fftlr.*fftld + ffthd.*ffthr));
 title('One bi orthogonality condition')
 xl abel('|fft(Lo_R)fft(Lo_D) + fft(Hi_R)fft(Hi_D)| = 2')
```

Transfer modulus for dec. filters


One biorthogonality condition

$\mid \mathrm{fft}(\mathrm{Lo}$ R $) \mathrm{fft}(\mathrm{Lo}$ D) $+\mathrm{fft}(\mathrm{Hi}$ R) fft(Hi_D) $\mid=2$

Note: For biorthogonal wavelets, the filters for decomposition and reconstruction are in general of different odd lengths. This situation occurs, for example, for "splines" bi orthogonal wavelets used in the tool box, where the four filters are zero-padded to have the same even length.

## See Also bi orwavf, orthfilt

References A. Cohen (1992) "Ondelettes, analyses multirésolution et traitement numérique du signal," Ph. D. Thesis, University of Paris IX, DAUPHINE.
I. Daubechies (1992), "Ten lectures on wavelets," CBM S-NSF conference series in applied mathematics. SIAM Ed.

Purpose Biorthogonal spline wavel et filters.

## Syntax <br> [ RF, DF] = bi or wavf (W)

[ RF, DF] = bi or wavf (W) returns two scaling filters associated with biorthogonal wavelet specified by the string $W$
$\mathrm{W}=$ ' bi or Nr . Nd' where possible values for Nr and Nd are:

$\mathrm{Nr}=1$	$\mathrm{Nd}=1,3$ or 5
$\mathrm{Nr}=2$	$\mathrm{Nd}=2,4,6$ or 8
$\mathrm{Nr}=3$	$\mathrm{Nd}=1,3,5,7$ or 9
$\mathrm{Nr}=4$	$\mathrm{Nd}=4$
$\mathrm{Nr}=5$	$\mathrm{Nd}=5$
$\mathrm{Nr}=6$	$\mathrm{Nd}=8$

The output arguments are filters:

- RF is the reconstruction filter.
- DF is the decomposition filter.


## Examples

```
% Set spl ine bi orthogonal wavel et name.
 uname = ' bi or 2. 2';
 % Compute the two correspondi ng scaling filters,
%rf is the reconstruction scaling filter and
%df is the decomposition scaling filter.
 [rf,rd] = bi or wavf(wname)
rf =
```

0
0. 2500
0. 5000
0. 2500
00

```
df \(=\)
- 0. 1250
0. 2500
0. 7500
0. \(2500-0.1250\)
0
```

See Also bi orfilt, wavei nfo
Purpose Coiflets wavel ets filters.
Syntax F = coi f wavf ( W)
Description
Examples
\% Set coiflet wavel et name.

        wname = ' coif 2 ';
    \% Compute the corresponding scaling filter.
            \(\mathrm{f}=\mathrm{coi} \mathrm{f}\) wavf (wname)
        f \(=\)
        Col ums 1 through 7
        \(0.0116-0.0293-0.0476 \quad 0.2730 \quad 0.5747 \quad 0.2949-0.0541\)
        Col ums 8 through 12
        -0. 0420 0. 0167 0. \(0040-0.0013-0.0005\)
    See Also waveinfo

## Purpose Continuous 1-D wavelet coefficients.

```
Syntax coefs = cwt(s,scal es,' wname')
coefs = cut(s,scal es,' mname',' pl ot')
```


## Description

cut is a one-dimensional wavelet analysis function.
coefs $=$ cut ( $s$, scal es, 'wname') computes the continuous wavelet coefficients of the vector s at real, positive scal es, using the wavelet whose name is 'wname' (see wavei nfo).
coef s = cwt (s, scal es, 'wname', ' pl ot ' ) computes, and in addition plots, the continuous wavelet transform coefficients.

Let $s$ be the signal and $\psi$ the wavelet. Then the wavelet coefficient of $s$ at scale $a$ and position $b$ is defined by:

$$
C_{a, b}=\int_{R} s(t) \frac{1}{\sqrt{a}} \psi\left(\frac{t-b}{a}\right) d t
$$

since $s(t)$ is a discrete signal, we use a piecewise constant interpolation of the $s(k)$ values, $k=1$ to $l$ engt $h(s)$.

Then for any strictly positive scale $a$, we compute $C_{\mathrm{a}, \mathrm{b}}$ for $b=1$ to I engt h(s).
Output argument coef s contains the wavelet coefficients for the scales within the vector scal es in the same order, stored rowwise.

Examples of valid uses are:

```
c = cut(s, 1: 32,' meyr')
c = cut(s,[64 32 16:-2: 2],'morl')
c = cut(s,[3 18 12.9 7 1.5],' db2')
```


## Examples

This example demonstrates the difference between discrete and continuous wavelet transforms.

```
% Load origi nal fractal signal.
 l oad vonkoch
 vonkoch=vonkoch(1: 510);
 l v = l engt h(vonkoch);
 subpl ot(311), pl ot(vonkoch); titl e('Anal yzed si gnal.');
 set(gca,' Xl i m,[O 510])
% Perform di screte wavel et transform at l evel 5 by sym2.
% Level s 1 to 5 correspond to scal es 2, 4, 8, 16 and 32.
 [c, l] = wavedec(vonkoch, 5,'sym2');
% Expand di screte wavel et coefficients for pl ot.
% Level s 1 to 5 correspond to scal es 2, 4, 8, 16 and 32.
 cfd = zeros(5,lv);
 for k = 1:5
 d = detcoef (c,l,k);
 d = d(ones(1, 2^k),:);
 cfd(k,:) = wkeep(d(:)',lv);
 end
 cfd = cfd(:);
 I = find(abs(cfd)<sqrt(eps));
 cfd(I) =zeros(size(I));
 cfd = reshape(cf d, 5, l v);
% Pl ot di screte coef fici ents.
 subpl ot (312), col ormap(pi nk(64));
 i ng = i mage(fli pud(wcodemat(cfd, 64,' row)));
 set(get(i mg,' par ent'),' Yt i ckLabel s', []);
 title('Di screte Transform absol ute coeffici ents.')
 yl abel('I evel')
% Perform conti nuous wavel et transformby sym2 at all i nt eger
%scal es from1 to 32.
 subpl ot (313)
 ccfs = cut(vonkoch, 1: 32,' sym2',' pl ot ');
 title('Conti nuous Transform absol ute coefficients.')
 col or mæp(pi nk(64));
 yl abel('Scal e')
```



Algorithm

$$
\begin{aligned}
& C_{a, b}=\int_{R} s(t) \frac{1}{\sqrt{a}} \psi\left(\frac{\sigma}{a}\right) d t \\
& C_{a, b}=\sum_{k} \int_{k}^{k+1}{ }_{s(t) \frac{1}{\sqrt{a}}} \psi\left(\frac{t-b}{a}\right) d t
\end{aligned}
$$

since $s(t)=s(k)$, if $t \in[k, k+1]$ then

$$
\begin{gathered}
C_{a, b}=\frac{1}{\sqrt{a}} \sum_{k} s(k) \int_{k}^{k+1} \psi\left(\frac{t-b}{a}\right) d t \\
C_{a, b}=\frac{1}{\sqrt{a}} \sum_{k} s(k)\left(\int_{-\infty}^{k+1} \psi\left(\frac{t-b}{a}\right) d t-\int_{-\infty}^{k} \psi\left(\frac{t-b}{a}\right) d t\right)
\end{gathered}
$$

so at any scale $a$, the wavel et coefficients $C_{\mathrm{a}, \mathrm{b}}$ for $b=1$ to l engt $\mathrm{h}(s)$ can be obtained by convolving the signal $s$ and a dilated and translated version of the integrals of the form $\int_{-\infty}^{k} \psi(t) d t$ (given by i nt wave), and taking finite difference using diff.

See Also wavedec, wavef un, wavei nf o, wcodemat

Purpose Daubechies wavelets filters computation.

## Syntax $\quad W=\operatorname{dbaux}(N$, SUM $)$ <br> W = dbaux ( $N$ ) <br> W = dbaux ( N, SUMV is the order N Daubechies scaling filter such that sum W) = SUMW Possible values for $N$ are: 1, 2, 3, ...

Note: Instability may occur when N is too large.

```
W = dbaux(N) is equivalent to W = dbaux(N, 1).
W = dbaux(N, 0) is equivalent to W = dbaux(N, 1).
 %P the "Lagrange a trous" filter for N=2 is explicit
 % and gi ven by:
 P = [- 1/16 0 9/16 1 9/16 0-1/ 16]
 P =
 -0.0625 0}00.5625 1.0000 0.5625 0-0.0625
```

    \% The db2 Daubechi es scaling filter w, is a
    \% sol ution of the equation: \(P=\operatorname{conv}(\operatorname{wrev}(w), w) * 2\).
    \%
    \% This filter P is symetric, easy to generate, and wis
        \% a minimumase sol ution of the previous equation,
        \% based on the roots of P .
            \(r P=\operatorname{roots}(P)\);
    \% Ret ai ning onl y the root inside the unit circle (here it
    \(\%\) is the sixth val ue of \(r P\) ), and two roots located at -1 ,
    \(\%\) we obt ai \(n\) the Daubechi es wavel et of order 2:
    
$u w=u w /$ sum( $u w) \quad$ \% normalize sum

```
ww =
 0.3415 0.5915 0.1585-0.0915
% Check that uw is correct and equal to
%the db2 Daubechi es scaling filter w.
 w = dbaux(2)
w =
 0.3415 0.5915 0.1585-0.0915
```


## Algorithm

The algorithm used is based on a result obtained by Shensa, showing a correspondence between the "Lagrange a trous" filters and the convolutional squares of the Daubechies wavelet filters.

The computation of the order $N$ Daubechies scaling filter $w$ proceeds in two steps: compute a "Lagrange a trous" filter $P$ and extract a square root. M ore precisely:

- P the associated "Lagrange a trous" filter is a symmetric filter of length $4 \mathrm{~N}-1$. P is defined by:

$$
\begin{aligned}
& P=\left[\begin{array}{lllllllllllll}
a(N) & 0 & a(N-1) & 0 & \ldots & 0 & a(1) & 1 & a(1) & 0 & a(2) & 0 \ldots 0 & a(N)
\end{array}\right] \\
& \text { where } a(k)=\frac{\prod_{i=-N+1}^{N \neq k}}{N}\left(\frac{1}{2}-i\right)
\end{aligned}
$$

- Then, if $w$ denotes $\mathrm{db} N$ Daubechies scaling filter of sum $\sqrt{2}, w$ is a square root of $P$. M ore precisely $P=\operatorname{conv(wrev(w),w),~and~} w$ is a filter of length $2 N$. The corresponding polynomial has $N$ zeros located at -1 and $N-1$ zeros less than 1 in modulus.

Note that other methods can be used; see various solutions of the spectral factorization problem in Strang-N guyen p. 157.
Limitations The computation of the $\mathrm{db} N$ Daubechies scaling filter requires the extraction of the roots of a polynomial of order 4 N . Instability may occur when N is too large.
See Also dbwavf, wfilters
References I. Daubechies (1992), "Ten lectures on wavelets," CBMS-NSF conference series in applied mathematics. SIAM Ed.
M.J . Shensa (1992), "The discrete wavelet transform: wedding the a trous and Mallat Algorithms," IEEE Trans. on Signal Processing, vol. 40, 10, pp 2464-2482.
G. Strang, T. N guyen (1996), Wavel ets and Filter Banks, Wellesley-Cambridge Press.
Purpose Daubechies wavelets filters.
Syntax F = dbwavf( W )
Description F = dbwavf ( W returns the scaling filter associated with Daubechies waveletspecified by the string $w$ where $w=' d b N '$. Possible values for $N$ are: $1,2,3, \ldots$, 50.
Examples
\% Set Daubechi es wavel et name.

        uname = ' db4' ;
    
    \% Compute the corresponding scaling filter.
    
        f = dbwavf( wname)
    
    f =
    
    Col ums 1 through 7
    
    \(\begin{array}{llllll}0.1629 & 0.5055 & 0.4461-0.0198-0.1323 & 0.0218 & 0.0233\end{array}\)
    
    Col um 8
    
    - 0.0075
    See Also dbaux, waveinfo, ufilters

Purpose	Default values for denoising or compression.
Syntax	[ THR, SORH, KEEPAPP, CRI T] = ddencmp ( N 1 , I N $\mathrm{N}, \mathrm{X}$ )
	[ THR, SORH, KEEPAPP] = ddencmp ( $\mathrm{Nl},{ }^{\prime} \mathrm{w} \mathrm{w}^{\prime}$, X )
	[ THR, SORH, KEEPAPP, CRIT] = ddencmp $\mathrm{I} \mathrm{NL},{ }^{\text {' up }}$ ' X )
Description	ddencmp is a de-noising and compression oriented function.
	ddencmp gives default values for all the general procedures related to denoising and compression of one- or two-dimensional signals, using wavelets or wavelet packets.
	[ THR, SORH, KEEPAPP, CRI T] = ddencmp ( I N1, I N2, X) returns default values for de-noising or compression, using wavelets or wavelet packets, of an input vector or matrix X , which can be a one- or two-dimensional signal. THR is the threshold, SORH is for soft or hard thresholding, KEEPAPP allows you to keep approximation coefficients, and CRI T (used only for wavelet packets) is the entropy name (see went ropy).
	1 N 1 is ' den' or ' cmp '
	I N2 is ' w' or ' mp' .
	For wavelets (three output arguments):
	[ THR, SORH, KEEPAPP] = ddencmp ( Nl , ' w ', x ) returns default values for denoising (if $\mathrm{I} 1 \mathrm{~N}=$ ' den') or compression (if $\mathrm{I} \mathrm{N} 1=$ ' cmp ') of X . These values can be used for wdencmp.
	For wavelet packets (four output arguments):
	[ THR, SORH, KEEPAPP, CRI T] = ddencmp ( NL , ' wp' , X) returns default values denoising (if $\mathrm{I} 1=$ ' den') or compression (if $\mathrm{I} \mathrm{N} 1=$ ' cmp ') of X . These values can be used for updencmp.

## Examples

```
% Gener at e Gaussi an whi te noi se.
 i ni t = 2055415866; randn('seed', i ni t);
 x = randn(1, 1000);
% Fi nd def ault val ues for wavel ets (3 out put argunents).
% These val ues can be used for wdencmp with opti on 'gbl'.
 % def aul t for de-noi sing:
 % soft threshol ding and appr. cf s. kept
 %thr = sqrt(2*Iog(n)) * s
 % where s is an estimate of l evel noise.
 [thr, sorh, keepapp] = ddencmp(' den',' ww',x)
thr =
 3.8593
sorh =
S
keepapp =
 1
 % defaul t for compressi on:
 % hard threshol ding and appr. cf s. kept
 %thr = redi an(abs(detail at level 1)) if nonzero
 % el se thr = 0.05 * max(abs(detail at level 1)).
 [thr, sorh, keepapp] = ddencmp('cmp',' w', x)
t hr =
 0.7003
sorh =
h
keepapp =
 1
```

\% Find default val ues for wavel et packets (4 out put arguments).
\% These val ues can be used for updencmp.
\% def aul $t$ for de-noi sing:
\% sof t threshol ding and appr. cf s. kept
$\% \mathrm{thr}=\operatorname{sqrt}\left(2^{*} \log \left(\mathrm{n}^{*} \log (\mathrm{n}) / \log (2)\right)\right)$
\%the noi se level is supposed to be equal to 1 ;
\% default entropy is 'sure' criterion.
[thr, sorh, keepapp, crit] = ddencmp('den', 'wp' , x)

```
t hr =
 4. }291
sorh =
h
keepapp =
 1
crit =
sure
 % defaul t for compressi on.
 % hard threshol di ng and appr. cfs. kept
 %thr = medi an(abs(detail at l evel 1))
 % def ault entropy is 'threshol d' criterion.
 [thr, sor h, keepapp, crit] = ddencmp('cmp', ' wp', x)
t hr =
 0.7003
sorh =
h
keepapp =
 1
crit =
threshold
```

See Also wdencmp, went ropy, updencmp
References D.L. Donoho (1995), "De-noising by soft-thresholding," IEEE, Trans. on Inf. Theory, 41, 3, pp. 613-627.
D.L. Donoho, I.M. J ohnstone (1994), "I deal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.
D.L. Donoho, I.M. J ohnstone, "I deal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, t. 319, Ser. I, pp. 1317-1322.

## Purpose Convert string to lowercase without blanks.

## Syntax $\quad$ S = debl ankl $(X)$

Description debl ankl is a general utility.
This function gives flexibility when using strings.
$\mathrm{S}=$ debl ankI $(\mathrm{X})$ is the string X converted to lowercase without blanks.
$x=$ 'AB1 C \% ${ }^{\prime}$

$$
x=
$$

AB1 C \%
y = debl ankl ( $x$ )
$y=$
ab1c \%

## Purpose <br> Node depth-position to node index.

Syntax
$\mathrm{N}=\operatorname{depo2i} \mathrm{nd}(\mathrm{O},[\mathrm{D}$ P])
Description
depo2i nd is a tree management utility.
For a tree of order $\mathrm{O}, \mathrm{N}=$ depo2i $\mathrm{nd}(\mathrm{O},[\mathrm{D} P]$ ) computes the indices N of the nodes whose depths and positions are encoded within [ D, P].
$D, P$ and $N$ are column vectors. The values of $D, P$ and $N$ are constrained by:
$\mathrm{D}=$ depths, $0 \leq \mathrm{D} \leq \operatorname{dmax}$
$P=$ positions at depth $D, 0 \leq P \leq$ order $^{D-1}$
$\mathrm{N}=$ indices, $0 \leq \mathrm{N}<\left(\right.$ order $\left.^{(\mathrm{dmax}+1)}-1\right) /($ order- -1$)$
Note that for a column vector X , we have depo2i nd( $\mathrm{O}, \mathrm{X}$ ) $=\mathrm{X}$.

## Examples

\%Create initial tree.
ord $=2$;
$\mathrm{t}=$ maketree (ord, 3); $\%$ bi nary tree of depth 3.
$\mathrm{tt}=$ nodej oi $\mathrm{n}(\mathrm{t}, 5)$;
$\mathrm{tt}=$ nodej oi $\mathrm{n}(\mathrm{tt}, 4)$;
pl ot tree(tt)

\% List tt nodes (depth-position).
al n_depo $=$ all nodes(tt,' deppos')

$$
\begin{array}{ll}
\text { al n_depo }= \\
0 & 0 \\
1 & 0 \\
1 & 1 \\
2 & 0 \\
2 & 1 \\
2 & 2 \\
2 & 3 \\
3 & 0 \\
3 & 1 \\
3 & 6 \\
3 & 7 \\
\text { \% Swi tch from dept h- positi on to i ndex. } \\
\text { al n_i nd = depo2i nd( ord, al n_depo) } \\
\\
\text { al n_i nd = } \\
0 & \\
1 & \\
2 & \\
3 & \\
4 & \\
5 \\
6 \\
7 & \\
8 & \\
13 & \\
14
\end{array}
$$

[^1]
## Purpose Extract 1-D detail coefficients.

Syntax $\quad$| $D$ | $=\operatorname{det} \operatorname{coef}(C, L, N)$ |
| ---: | :--- |
| $D$ | $=\operatorname{det} \operatorname{coef}(C, L)$ |

## Description

Examples
det coef is a one-dimensional wavelet analysis function.
D = det coef ( C, L, N) extracts the detail coefficients at level N from the wavel et decomposition structure [ C, L] (see wavedec). Level $N$ must be an integer such that $1<=N<=1$ engt $h(L)-2$.
$D=\operatorname{det} \operatorname{coef}(\mathrm{C}, \mathrm{L})$ extracts the detail coefficients at last level $\mathrm{n}=1$ engt $\mathrm{h}(\mathrm{L})-2$.
\% Load ori gi nal one- di mensi onal si gnal.
I oad I el eccum
s = I el eccum( 1: 3920);
ls = l ength(s);
\% Perform decomposition at level 3 of $s$ using db1.
[ c, l] = wavedec(s, 3, ' db1' );
\% Extract detail coefficients at levels $\% 1,2$ and 3, from wavel et decomposition \% struct ure [c,l].
$\operatorname{cd3}=\operatorname{det} \operatorname{coef}(\mathrm{c}, \mathrm{I}, 3)$;
$c d 2=\operatorname{det} \operatorname{coef}(c, 1,2)$;
cd1 $=\operatorname{det} \operatorname{coef}(\mathrm{c}, \mathrm{I}, 1)$;
Original signal s


Detail coef. level 2 : cd2


See Also appcoef, wavedec

## Purpose Extract 2-D detail coefficients.

## Syntax <br> $\mathrm{D}=\operatorname{det} \operatorname{coef} 2(\mathrm{O}, \mathrm{C}, \mathrm{S}, \mathrm{N})$

Description

Examples
det coef 2 is a two-dimensional wavelet analysis function.
$\mathrm{D}=\operatorname{det}$ coef $2(\mathrm{O}, \mathrm{C}, \mathrm{S}, \mathrm{N})$ extracts from the wavelet decomposition structure [ C, S] (see wavedec 2), the horizontal, vertical , or diagonal detail coefficients for $\mathrm{O}=\mathrm{h}$ ' (or 'v' or ' d ', respectively), at level N .

Level N must be an integer such that $1<=\mathrm{N}<=\operatorname{si} z e(\mathrm{~S}, 1)-2$.

```
% Extract details coefficients at l evel 2
% in each orientation, from wavel et decomposition
% structure [c,s].
 chd2 = det coef 2(' h', c, s, 2);
 cvd2 = det coef 2('v', c, s, 2);
 cdd2 = det coef 2('d', c, s, 2);
 sizecd2 = si ze(chd2)
sizecd2 =
 64 64
% Extract details coefficients at l evel 1
%in each orient ation, from wavel et decomposition
% structure [c,s].
 chd1 = det coef 2(' h', c, s, 1);
 cvd1 = det coef 2('v', c, s, 1);
 cdd1 = det coef 2('d', c, s, 1);
 sizecdl = si ze(chd1)
sizecdl =
 128 128
```

See Also appcoef 2, wavedec2

Purpose Single-level discrete 1-D wavelet transform.
Syntax $\quad[\mathrm{cA}, \mathrm{cD}]=\operatorname{dut}(\mathrm{X}$, ' uname' $)$
$[c A, c D]=\operatorname{dwt}\left(X, L o _D, H i _D\right)$
The dwt command performs a single-level one-dimensional wavelet decomposition with respect to either a particular wavelet ('wname', see wfilters) or particular wavelet decomposition filters (Lo_Dand Hi _D) you specify.
[ cA, cD] = dwt ( X , 'wname') computes the approximation coefficients vector cA and detail coefficients vector cD, obtained by wavel et decomposition of the vector X .
$[c A, c D]=\operatorname{dwt}\left(X, L o _D, H i _D\right)$ computes the wavelet decomposition as above, given these filters as input:

- Lo_D is the decomposition low-pass filter and
- Hi _D is the decomposition high-pass filter.

Lo_D and Hii_D must be the same length.
$I f I x$ is the length of $X$ and $I f$ is the length of the filters Lo_D and Hi _D, then I engt $h(c A)=1$ engt $h(c D)=f \mid \operatorname{oor}((\mid x+1 f-1) / 2)$.

For the different signal extension modes, see dut mode.

```
% Construct el ement ary ori gi nal one-di mensi onal si gnal .
 r andn('seed', 531316785)
 s = 2 + kron(ones(1, 8),[1 - 1]) + ...
 ((1: 16). ^2)/ 32 + 0. 2*randn(1, 16);
% Performsingl e-l evel di screte wavel et transformof s by haar.
 [cal,cdl] = dut(s,' haar');
 subpl ot(311); pl ot(s); titl e('Original si gnal');
 subpl ot(323); pl ot(cal); title('Approx. coef. for haar');
 subpl ot(324); pl ot(cd1); title('Det ail coef. for haar');
```

\% For a gi ven wavel et, compute the two associated decomposition \%filters and compute approxi mation and detail coefficients \% using directly the filters.
[ Lo_D, Hi_D] = wfilters('haar','d'); [cal, cd1] = dwt(s, Lo_D, Hi _D) ;
\% Performsingle-l evel di screte wavel et transformof s by db2 \% and observe edge effects for last coefficients. \% These extra coefficients are only used to ensure exact \% gl obal reconstruction.
[ ca2, cd2] = dut (s, 'db2') ;
subpl ot (325); pl ot (ca2); title('Approx. coef. for db2');
subpl ot (326); pl ot(cd2); title('Detail coef. for db2');


## Algorithm

Starting from a signal $s$, two sets of coefficients are computed: approximation coefficients $C A_{1}$ and detail coefficients $C D_{1}$. These vectors are obtained by convolving $s$ with the low-pass filter Lo_D for approximation, and with the high-pass filter Hi_D for detail, followed by dyadic decimation.

M ore precisely, the first step is:


The length of each filter is equal to $2 N$. If $n=l$ engt $\mathrm{h}(s)$, the signals $F$ and $G$ are of length $n+2 N-1$ and then the coefficients $C A_{1}$ and $C D_{1}$ are of length floor $\left(\frac{n-1}{2}\right)+N$.

Note: In order to deal with signal-end effects involved by convolution based al gorithm, a global variable managed by dwt mode is used. The possible options are: zero-padding (used in the previous example, this mode is the default), symmetric extension, and smooth extension. It should be noted that dwt has the same single inverse function i dut for the three extension modes.

Limitations	Periodized wavelet transform is handled separately (see dwt per and i dwt per).
See Also	dwt node, dwt per, i dwt, wavedec, wavei nf o
References	I. Daubechies (1992), "Ten lectures on wavelets," CBMS-NSF conference series   in applied mathematics. SIAM Ed.
	S. Mallat (1989), "A theory for multiresolution signal decomposition: the   wavelet representation," IEEE Pattern Anal. and Machine Intell., vol. 11, no.      7, pp 674-693.
	Y. Meyer (1990), "Ondelettes et opérateurs," Tome 1, Hermann Ed. (E nglish   translation: Wavelets and operators, Cambridge U niv. Press. 1993.)

Purpose Single-level discrete 2-D wavelet transform.
Syntax [cA, cH, cV, cD] $=\operatorname{dut} 2(\mathrm{X}$, ' unare' $)$
[cA, cH, cV, cD] $=$ dut 2(X, Lo_D, Hi _D)
Description
Examples
\% Load origi nal image.
l oad woman;
\% X contai ns the I oaded imge. \% map cont ai ns the loaded col ormap.

    nbcol = size(map, 1);
    \% Performsingle-I evel decomposition

$\%$ of $X$ using dbl.

    [ cAl, cH1, cV1, cD1] = dut 2( X, ' db1' );
    ```
 % I mages codi ng.
 cod_X = wcodemat(X, nbcol);
 cod_cA1 = wcodemat(cA1, nbcol);
 cod_cH1 = wcodemat(cH1,nbcol);
 cod_cV1 = wcodemat(cV1,nbcol);
 cod_cD1 = wcodemat(cD1, nbcol);
 dec2d = [...
 cod_cA1, cod_cH1; ...
 cod_cV1, cod_cD1 ...
];
```

Original image X


One step decomposition


## Algorithm

For images, an algorithm similar to the one-dimensional case is possible for two-dimensional wavelets and scaling functions obtained from one-dimensional ones by tensorial product.

This kind of two-dimensional DWT leads to a decomposition of approximation coefficients at level $j$ in four components: the approximation at level $j+1$ and the details in three orientations (horizontal, vertical, and diagonal).

The following chart describes the basic decomposition steps for images:
Two-Dimensional DWT


Where:
$2 \downarrow 1$ Downsample columns: keep the even indexed columns
$1 \downarrow 2$ Downsample rows: keep the even indexed rows
rows
X Convolve with filter X the rows of the entry
columns
X Convolve with filter X the columns of the entry

Initialization $\quad C A_{0}=s$ for the decomposition initialization

Note: In order to deal with signal-end effects involved by convolution based al gorithm, a global variable managed by dwt mode is used. The possible options are: zero-padding (used in the previous example, this mode is the default), symmetric extension, and smooth extension. It should be noted that dwt 2 has the same single inverse function idwt 2 for the three extension modes.

[^2]| See Also | dwt node, dwt per 2, i dwt 2, wavedec 2, wavei nf o |
| :--- | :--- |
| References | I. Daubechies (1992), "Ten lectures on wavelets," CBMS-NSF conference series <br> in applied mathematics. SIAM Ed. |
| S. Mallat (1989),"A theory for multiresolution signal decomposition: the <br> wavelet representation," IEEE Pattern Anal. and MachineIntell., vol. 11, no. <br> 7, pp 674-693. |  |
| Y. Meyer (1990),"Ondelettes et opérateurs," Tome 1, Hermann Ed. (English <br> translation: Wavelets and operators, Cambridge Univ. Press. 1993.) |  |

## Purpose <br> Discrete wavelet transform extension mode.

## Description

## Examples

| Syntax | dut mode |
| :--- | :--- |
| dwt node( ' mode' ) Where ' mode' can be 'zpd', ' sym, or ' spd' |  |

dut mode
dut mode(' mode' ) Where ' mode' can be 'zpd', ' sym, or 'spd'
The dut mode command sets the signal or image extension mode for discrete wavelet and wavelet packet transforms. The extension modes represent different ways of handling the problem of border distortion in signal and image analysis. For more information, see "Dealing with Border Distortion" in Chapter 6.
dwt node or dut node( ' st at us' ) displays the current mode.
dut mode( ' mode' ) sets the DWT extension mode according to the value of 'mode':

| ' mode' | DWT Extension Mode |
| :--- | :--- |
| 'zpd' | Zero-padding (default) |
| 'sym' | Symmetrization (boundary value replication) |
| 'spd' | Smooth padding (first derivative interpolation at the edges) |

If dut mode is called with two input arguments, the second one is dummy and no text (status or warning) is displayed in the M ATLAB command window.

The dut mode function updates a global variable allowing three ways of signal extension. Only dwt and dwt 2 use the global variable.

```
%If the DWT extensi on mode gl obal variable does not
% exi st, def ault is zero-paddi ng.
cl ear gl obal
dut node
** DVT Extensi on Mbde: Zero- paddi ng **
**
```

```
% Di spl ay current DWT si gnal extensi on mode.
dut mode
**
** DVT Extensi on Mbde: Zero-Paddi ng **

% Change to symmetrization extensi on mode.
dwt mode('sym)
!!!
! WARNI NG: Change DWT Extensi on Mbde !
!!!
**
** DVT Extensi on Mbde: Symmetrization **
**
% Di spl ay current DWT si gnal extensi on mode.
dut mode
** DVT Ext ensi on Mbde: Symmetrization **
**
```

Note: You should change the extension mode only by using dut node; avoid changing the global variable directly.

| Limitations | Periodized wavelet transform is handled separately (see dwt per, dwt per 2, <br> i dwt per, i dwt per 2). |
| :--- | :--- |
| See Also | dwt, dwt 2 |

Purpose Single-level discrete 1-D wavelet transform (periodized).
Syntax [cA, cD] $=\operatorname{dut} \operatorname{per}(X$, ' uname' $)$
[ cA, cD] = dwt per(X, Lo_D, Hi _D)
Descriptiondut per is a one-dimensional wavelet analysis function.[ cA, cD] = dwt per ( X , 'wname') computes the approximation coefficients vectorcA and detail coefficients vector cD, obtained by periodized waveletdecomposition of the vector $X$.'wname' is a string containing the wavelet name (see wf ilters).Instead of giving the wavelet name, you can give the filters. When used withthreearguments: [ cA, cD] = dwt per (X, Lo_D, Hi _D), Lo_Dis the decompositionlow-pass filter and Hi _ D is the decomposition high-pass filter.
If $\mid x=I$ engt $h(X)$ then $I$ engt $h(c A)=\mid$ engt $h(c D)=c e i I(\mid x / 2)$.
Examples

```
% Set initial si gnal and get filters.
 x = sin(0.3*[1:300]); I x = l ength(x)
 |x =
 300
 w = 'db9';
 [Lo_D, Hi _D, Lo_R, Hi _R] = wfilters(w);
 % DVT with zero- padding signal extension.
 [cazp,cdzp] = dwt(x,w);
 % The transformuses some extra coeffici ents,
 % at most 2 if Ix is odd.
 |xtzp = 2*| ength(cazp)
 |xtzp =
 316
```

```
% Reconstruction.
xzp = i dut(cazp, cdzp,w, I x);
% Error wi th zero- paddi ng.
errzp = max(abs(x-xzp))
errzp =
 7. 3231e-12
% Peri odi zed DVT.
[cap,cdp] = dut per (x, w) ;
% The transform uses a mi ni num of extra coefficients.
| xtp = 2*| engt h(cap)
|xtp =
 3 0 0
% Reconstruction.
xp = i dwt per (cap, cdp, w, I x);
% Error with periodized DVT.
errp = max(abs(x-xp))
errp =
 1. 4588e- 11
```

| Algorithm | The algorithm is the same as in dwt but the signal X is extended assuming periodicity. More precisely, if $\mathrm{I} \mathrm{x}=\mathrm{l}$ engt $\mathrm{h}(\mathrm{X})$ is even, the extended signal is $\operatorname{ext} X=[X(\|x-\|f+1:\| x) X X(1: \mid f)]$ where I $f$ is the length of the filter. Then usual convolution and downsampling operations are done, followed by keeping the central part of length $1 \times / 2$. |
| :---: | :---: |

See Also dwt, idwt per
Purpose Single-level discrete 2-D wavelet transform (periodized).
Syntax [ cA, cH, cV, cD] $=$ dwt per 2( X, ' wname' )
$[\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}]=\operatorname{dwt} \operatorname{per} 2\left(\mathrm{X}\right.$, Lo_D, $^{\mathrm{D}} \mathrm{Hi}_{-} \mathrm{D}$ ..... D)
Description
dwt per 2 is a two-dimensional wavelet analysis function.
[ cA, cH, cV, cD] = dwt per 2(X, 'wname') computes the approximation coefficients matrix cA and details coefficients matrices $\mathrm{cH}, \mathrm{cV}$, and cD , obtained by periodized wavelet decomposition of the input matrix $X$.
'wname' is a string containing the wavelet name (see wf il ters).
Instead of giving the wavelet name, you can give the filters. When used with three arguments: [ cA, cH, cV, cD] = dwt per 2( X, Lo_D, Hi _D), Lo_Dis the decomposition low-pass filter and $\mathrm{Hi}_{\mathrm{Z}}$ Dis the decomposition high-pass filter.
If sx $=$ size( X ) then size(cA) $=$ si $z e(c H)=\operatorname{size}(c V)=$ si $z e(c D)=$ ceil( $s x / 2$ ).

## Examples

```
% Set initial signal and get filters.
 load tire
 % X contai ns the loaded immge.
 sx = si ze(X)
sx =
 205 232
w = 'db9';
[Lo_D, Hi_D, Lo_R, Hi_R] = wfilters(w);
% DVT with zero- padding i mage extension.
[ca0, ch0, cv0,cd0] = dwt 2(X, w);
% The transformuses some extra coeffici ents.
sxtzp = 2*si ze(ca0)
sxtzp =
 222 248
```

```
% Reconstructi on
x0 = i dut 2(ca0, ch0, cv0, cd0, w, sx);
% Error wi th zero- paddi ng.
err0 = max(max(abs(X-x0)))
err0 =
 6. 3292e- 09
% Peri odi zed DVT
[cap, chp, cvp, cdp] = dwt per 2(X, w) ;
% The transformuses a mi ni mum of extra coefficients.
|xtp = 2*size(cap)
| xtp =
 206 232
% Reconstruction.
xp = i dwt per 2(cap, chp, cvp, cdp, w, sx);
% Error with periodized DVT.
errp = max(max(abs(X-xp)))
errp =
 6. 7353e- 09
```

Algorithm See the dwt per al gorithm section.

## See Also <br> dut 2, i dwt per 2

Purpose Dyadic downsampling.
Syntax $Y=$ dyaddown $(X$, evenodd)
$Y=\operatorname{dyaddown}(X)$
Y = dyaddown( X, evenodd, ' type' )
Y = dyaddown( X, 'type', evenodd)
Description
Examples
\% For a vect or
s = 1: 10
s =
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
dse $=$ dyaddown(s) \% Downsample el enents with even indices.
dse $=$
$\begin{array}{lllll}2 & 4 & 6 & 8 & 10\end{array}$

## dyaddown

```
% or equi val ently
dse = dyaddown(s,0)
dse =
 2 4 6 8 10
dso = dyaddown(s,1) % Downsampl e el ements with odd i ndi ces.
dso =
 1 3 5 7 9
% For a matrix.
s = (1:3)'*[1:4]
S =
 1 2 3 4
 2 4 6 8
 3 6 9 12
dec = dyaddown(s,0,'c') % Downsampl e col umms wi th even i ndi ces.
dec =
 24
 4
 6 12
der = dyaddown(s, 1,'r') % Downsampl e rows with odd i ndi ces.
der =
 1 2 3 4
 3 6 9 12
```

See Also dyadup
References G. Strang, T. N guyen (1996), Wavel ets and Filter Banks, Wellesley-CambridgePress.

## Purpose Dyadic upsampling.

Syntax $\quad$| $Y=\operatorname{dyadup}(X$, evenodd $)$ |
| :--- |
| $Y=\operatorname{dyadup}(X)$ |
| $Y=\operatorname{dyadup}(X$, evenodd, ' type' $)$ |
|  |

Description dyadup implements a simple zero-padding scheme very useful in the wavelet reconstruction algorithm.
$\mathrm{Y}=$ dyadup( X , evenodd), where X is a vector, returns an extended copy of vector $X$ obtained by inserting zeros. Whether the zeros are inserted as even- or odd-indexed elements of $Y$ depends on the value of positive integer evenodd:

- If evenodd is even, then $Y(2 k-1)=X(k), Y(2 k)=0$.
- If evenodd is odd, then $Y(2 k-1)=0, Y(2 k)=X(k)$.

If you omit the evenodd argument, dyadup $(X)$ defaults to evenodd $=1$ (zeros in odd-indexed positions).
$Y=$ dyadup ( $X$, evenodd,'t ype') or $Y=$ dyadup( $X$, 't ype',evenodd), where $X$ is a matrix, return extended copies of $X$ obtained by inserting:

Columns in $X$
Rows in X
Rows and columns in $X$

If 'type' = 'c'
If 'type' $={ }^{\prime} r^{\prime}$
If 'type' = 'm

If you omit the evenodd or 't ype' arguments, dyadup defaults to evenodd =1 (zeros in odd-indexed positions) and 't ype' = ' c' (insert columns).

```
Examples
\% For a vect or
 \(s=1: 5\)
s =
 12345
 dse \(=\) dyadup(s) \% Upsample el ements at odd indi ces.
dse \(=\)
 01020304050
 \% or equi val ently
 dse \(=\operatorname{dyadup}(\mathrm{s}, 1)\)
dse =
 01020304050
 dso = dyadup(s,0) \% Upsampl e el enents at even indi ces.
dso =
 102030405
\% For a matrix.
 s = (1:2)'*[1:3]
s =
 123
 246
 der \(=\) dyadup(\(s, 1, r^{\prime}\) ') \% Upsample rows at even indices.
der \(=\)
 000
 123
 000
 246
 000
 doc = dyadup(s, 0, 'c') \% Upsampl e col ums at odd indi ces.
doc =
 10203
 20406
```

```
% Using default val ues for dyadup and dyaddown, we have:
% dyaddown(dyadup(s)) = s.
s = 1:5
s =
 12345
 uds = dyaddown(dyadup(s))
uds =
 12345
 %In general reversed identity is false.
```

| See Also | dyaddown |
| :--- | :--- |
| References | G. Strang, T. N guyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge <br> Press |

## entrupd

| Purpose | Entropy update (wavelet packet). |
| :--- | :--- |
| Syntax | NDATA $=$ ent $r$ upd( TREE, DATA, ENT) |
|  | NDATA $=$ ent $r$ upd ( TREE, DATA, ENT, PAR) |

## Description

## Examples

```
% Load si gnal.
 I oad noi sdopp; x = noi sdopp;
```

\% Decompose x at depth 2 with db1 wavel et packets
\% usi ng shannon entropy.
[ $\mathrm{t}, \mathrm{d}]=\operatorname{mpdec}(\mathrm{x}, 2$, ' db1','shannon' $)$;
\% Read entropy of all the nodes.
nodes $=$ all nodes( t$)$;
ent = wdat amgr ('read_ent',d, nodes)
ent =
1. $0 \mathrm{e}+04$ *
$-5.8615-6.8204-0.0350-7.7901-0.0497-0.0205-0.0138$
\% Update nodes entropy wi thout changing tree
$\%$ and data structures.
d = entrupd(t, d, 'threshol d', 0.5);
nent $=$ wdat angr('read_ent', $d$, nodes)
nent $=$
937488320241175170163
See Also went ropy, wpdec, wpdec 2
Purpose Check function arguments number.
Syntax er r = errargn(' f unction', numargi n, argi n, numar gout, argout)
Description
Examples
In this example, er rar gn reports an improper call to function I i ne:

```
» err = errargn('Iine',4,[2 3],0,[0 1]);
```

ERROR
I ine ---> invalid number of ar guments
Here, surf is passed the proper number of arguments, so no error message results:

```
» err = errargn('surf',4,[3 4], 0,[0 1]);
```

See Also errargt
Purpose Check function arguments type.

| Syntax | ERR $=$ errargt ( NDFCT, VAR, TYPE) |
| :---: | :---: |
|  | ERR $=$ errargt ( NDFCT, VAR, ' m g ${ }^{\text {c }}$ |

## Description

er rargn is a general utility.
ERR = errargt ( NDFCT, VAR, TYPE) is equal to 1 if any element of input vector or matrix VAR (depending on TYPE choice listed below) is not of type prescribed by input string TYPE. Otherwise ERR $=0$.

If ERR $=1$, an error message is displayed in the command window. In the header message, the string NDFCT is displayed. This string contains the name of a function.

Available options for TYPE are:
' int ' Strictly positive integers (excluding zero)
' i n0' Positive integers (including zero)
'rel' Integers
' rep' Strictly positive reals (excluding zero)
' re0' Positive reals (including zero)
'str' String
'vec' Vector
'row Row vector
'col' Column vector
' dat ' Dates AAAAM MJJ HHMNSS with:
$0 \leq A A A A \leq 9999$
$1 \leq M M \leq 12$
$1 \leq J J \leq 31$
$0 \leq H H \leq 23$
$0 \leq M N \leq 59$
$0 \leq S S \leq 59$
'mon' $\quad$ Months MM with:
$1 \leq M M \leq 12$

A special use of errargt is:
ERR = errargt ( NDFCT, VAR, ' nฐg' ) for which ERR=1 and the string VAR is the error message.

## See Also <br> er rargn

## Purpose Single-level inverse discrete 1-D wavelet transform.

| Syntax | $\mathrm{X}=\mathrm{i} \operatorname{dwt}(\mathrm{CA}, \mathrm{cD}, \mathrm{\prime}$ wname' $)$ |
| :---: | :---: |
|  |  |
|  |  |
|  | $X=\mathrm{idwt}\left(\mathrm{cA}, \mathrm{cD}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi} \mathrm{R}^{\mathrm{R}, \mathrm{L}}\right.$ ) |

## Description

## Examples

The i dut command performs a single-level one-dimensional wavelet reconstruction with respect to either a particular wavelet ('wname', see wfilters) or particular wavelet reconstruction filters (Lo_R and Hi_R) you specify.

X = idwt (cA, cD, 'wname' ) returns the single-level reconstructed approximation coefficients vector $x$ based on approximation and detail coefficients vectors CA and cD, and using the wavelet 'uname' .
$X=i \operatorname{dwt}\left(c A, c D, L_{0} R\right.$, Hi _R) reconstructs as above using filters you specify:

- Lo_R is the reconstruction low-pass filter
- Hi _R is the reconstruction high-pass filter

Lo_R and Hi _R must be the same length. If I a is the length of $c A$ (which also equals the length of $c D$ ) and I $f$ is the length of the filters Lo_R and Hi_R, then I engt $h(X)=2 * I a-I f+2$.
 length-L central portion of the result obtained using i dwt (cA, cD, 'wname' ). L must be less than $2 * 1$ a-If +2 .
$i$ dwt is the inverse function of dwt in the sense that the abstract statement i dwt ( dwt ( X, 'wnare' ), 'wnare' ) gives back X. Consider this example.

```
% Construct el ementary one- di mensional signal s.
 randn('seed',531316785)
 s = 2 + kron(ones(1, 8),[1 - 1]) +...
 ((1:16).^2)/32 + 0. 2*randn(1,16);
```

\% Performsingle-I evel dut of $s$ using db2.
[ca1, cd1] = dwt( $s,{ }^{\prime}$ db2' );
subpl ot (221); pl ot (ca1);
title('Approx. coef. for db2');
subpl ot (222); pl ot (cd1);
title('Detail coef. for db2');
\% Performsingle-I evel inverse di screte wavel et transform, \%illustrating that idwt is the inverse function of dwt.
ss = idwt(ca1, cd1,' db2' );
err $=$ norms-ss); $\quad$ \% Check reconstruction.
subpl ot (212); pl ot([s;ss]');
title('Original and reconstructed si gnal s');
xlabel (['Error norm = ', num2str(err)])
\% For a gi ven wavel et, compute the two associ at ed \%reconstruction filters and inverse transformusing \%the filters di rectly.
[ Lo_R, Hi _R] = wfilters('db2','r'); ss = idwt(cal, cd1, Lo_R, Hi_R);


## Algorithm

Starting from the approximation and detail coefficients at level $j, c A_{\mathrm{j}}$ and $c D_{\mathrm{j}}$, the inverse discrete wavelet transform reconstructs $c A_{j-1}$, inverting the decomposition step by inserting zeros and convolving the results with the reconstruction filters.

One-Dimensional IDWT

## Reconstruction step



Where:


Insert zeros at odd-indexed elements
X
Convolve with filter X
wkeep
Take the central part of $U$ with the convenient length

See Also dwt, idwt per, upw ev
References I. Daubechies (1992), "Ten lectures on wavelets," CBMS-NSF conference series in applied mathematics. SIAM Ed.
S. M allat (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and MachineIntell., vol. 11, no. 7, pp 674-693.
Y. M eyer (1990), "Ondelettes et opérateurs," Tome 1, Hermann Ed. (E nglish translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

| Purpose | Single-level inverse discrete 2-D wavelet transform. |
| :---: | :---: |
| Syntax | $\mathrm{X}=\mathrm{i}$ dut $2\left(\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}, \mathrm{C}^{\text {uname' }}\right.$ ) |
|  |  |
|  | $\mathrm{X}=\mathrm{i}$ dut 2( $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}, \mathrm{l}$ wname', S ) |
|  | $X=i d w t 2\left(c A, c H, c V, c D, L o _R, H i _R, S\right)$ |
| Description | The idut 2 command performs a single-level two-dimensional wavelet reconstruction with respect to either a particular wavelet ('wname', see wfilters) or particular wavel et reconstruction filters (Lo_R and Hi_R) you specify. |
|  | $\mathrm{X}=\mathrm{i}$ dwt 2(cA, cH, cV, cD, 'wname') uses the wavel et 'wname' to compute the single-level reconstructed approximation coefficients vector X based on approximation vector cA and (horizontal, vertical, and diagonal) detail vectors $\mathrm{cH}, \mathrm{cV}$ and cD . |
|  | $\mathrm{X}=\mathrm{i}$ dwt 2 ( cA, cH, cV, cD, Lo_R, Hi_R) reconstructs as above, using filters you specify: |
|  | - Lo_R is the reconstruction low-pass filter |
|  | - Hi _R is the reconstruction high-pass filter |
|  | Lo_R and Hi _R must be the same length. |
|  | If sa $=\operatorname{size}(c A)=\operatorname{size}(c H)=\operatorname{size}(c V)=s i z e(c D)$ and If is the length of the filters, then size(X) $=2 *$ si ze(cA)-If+2. |
|  | $\mathrm{X}=\mathrm{idut} 2(\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}$, 'wname', S$)$ and $\mathrm{X}=$ |
|  | i dwt 2( $\left.c A, c H, c V, c D, L_{0}, R, H i _R, S\right)$ return the size $S$ central portion of the result obtained using the syntax i dut 2 ( $c A, c H, c V, c D$, 'uname' ) . $S$ must be less than $2 *$ si ze( $c A$ ) $-1 f+2$. |
| Examples | i dwt 2 is the inverse function of dwt 2 in the sense that the abstract statement i dwt 2(dut 2(X, 'uname' ), 'wname' ) gives back X. Consider this example. |
|  | \% Load original image. <br> I oad woman; <br> $\% \mathrm{X}$ contai ns the loaded imge. <br> sX = size( X ); |

## Examples $\quad i d w t 2$ is the inverse function of dwt 2 in the sense that the abstract statement

 i dwt 2( dwt 2( X, 'wname' ), 'wname' ) gives back X. Consider this example.```
% Load ori gi nal i mage.
    l oad noman;
    % X contai ns the l oaded i mage.
    sX = si ze( X);
```

```
% Performsingl e-I evel decomposition
% of X using db4.
    [ cAl, cH1,cV1,cD1] = dwt 2( X, ' db4' );
%Invert directly decomposition of X
% using coefficients at I evel 1.
    A0 = i dwt 2(cA1, cH1,cV1, cD1,' db4',sX);
% Check for perfect reconstruction.
    max(max( X-A0))
ans =
    3. 3032e-10
```


Algorithm

Two-Dimensional IDWT

Reconstruction step

Where: 241 Upsample columns: insert zeros at odd-indexed columns
$1 \uparrow 2$ Upsample rows: insert zeros at odd-indexed rows

X Convolve with filter X the rows of the entry
columns
X Convolve with filter X the columns of the entry

See Also

dut 2, i dut per 2, upw ev2

Purpose	Single-level inverse discrete 1-D wavelet transform (periodized).
Syntax	$\mathrm{X}=\mathrm{i}$ dut per (CA, CD, ' wname')
	X $=\mathrm{i}$ dwt per ($\mathrm{cA}, \mathrm{cD}, \mathrm{'}^{\text {uname' }}$, L)
	X $=\mathrm{i}$ dwt per ($\mathrm{CA}, \mathrm{cD}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi}$ _ R, L)
Description	i dwt per is a one-dimensional wavelet analysis function.
	$X=i d w t \operatorname{per}(C A, C D, ' w n a m e ')$ returns the single-level reconstructed approximation coefficients vector X based on approximation and detail vectors cA and cDat a given level, using the periodized inverse wavelet transform. 'wnare' is a string containing the wavelet name (see wfil ters).
	Instead of giving the wavelet name, you can give the filters.
	For $\mathrm{X}=\mathrm{i}$ dwt per ($\mathrm{CA}, \mathrm{cD}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi}$ _R) :
	Lo_R is the reconstruction low-pass filter.
	$\mathrm{Hi}_{\sim} \mathrm{R}$ is the reconstruction high-pass filter.
	If $\mathrm{a} a=1$ engt $h(c A)=1$ engt $h(c D)$ then I engt $h(X)=2^{*} \mid \mathrm{a}$.
	For $\mathrm{X}=\mathrm{i}$ dwt per (cA, cD, 'uname', L) or X = i dut per (cA, cD, Lo_R, Hi _R, L) , L is the length of the result.
	i dwt per is the inverse function of dwt per in the sense that the abstract statement i dwt per (dwt per (X, 'wname'), 'wname') gets back to X.
Examples	\% Set initial signal and get filters. $x=\sin \left(0.3^{*}[1: 300]\right) ; \quad \mid x=1$ ength(x)
	$\begin{array}{r} \mid x= \\ 300 \end{array}$
	w = ' db9' ;
	[Lo_D, Hi _D, Lo_R, Hi_ R] = wfilters(w);
	\% DVT with zero- padding signal extensi on. [cazp, cdzp] $=\operatorname{dwt}(x, w)$;

```
% The transformuses some extra coeffici ents,
% at nost 2 if lx is odd.
l xtzp = 2*| ength(cazp)
|xtzp =
    316
% Reconstructi on.
xzp = idwt(cazp,cdzp,w,lx);
% Error with zero- paddi ng.
errzp = max(abs(x-xzp))
errzp =
    7. 3231e-12
% Peri odi zed DVT.
[ cap, cdp] = dwt per(x,w);
% The transformuses a mi ni mum of extra coefficients.
|xtp = 2*| ength(cap)
|xtp =
    3 0 0
% Reconstructi on.
xp = i dwt per(cap, cdp, w, l x);
% Error with periodized DVT.
errp = max(abs(x-xp))
errp =
    1. 4588e-11
```

Note: In general, the following abstract statement is not true: i dwt per (dwt (X, 'wname'), 'wnane') = X .

See Also dwt per

Purpose	Single-level inverse discrete 2-D wavelet transform (periodized).
Syntax	$\mathrm{X}=\mathrm{i}$ dwt per $2(\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}$, ' wname' $)$
	$\mathrm{X}=\mathrm{i}$ dwt per 2 $\left(\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi}\right.$ _R)
	$X=i d w t \operatorname{per} 2\left(c A, c H, c V, c D, L o \_R, H i \ldots R, S\right)$
Description	i dwt per 2 is a two-dimensional wavel et analysis function.
	$\mathrm{X}=\mathrm{i}$ dwt per 2(cA, cH, cV, cD, 'wname') returns the single-level reconstructed approximation coefficients vector X based on approximation and details vectors $\mathrm{cA}, \mathrm{cH}, \mathrm{cV}$, and cD at a given level, using the periodized inverse wavelet transform. 'wname' is a string containing the wavelet name (see wf il ters).
	Instead of giving the wavel et name, you can give the filters.
	For $X=i$ dwt per $2\left(c A, c H, c V, c D, L_{o} R, H_{i} R\right.$), Lo_R is the reconstruction low-pass filter and $\mathrm{Hi}_{\mathrm{Z}} \mathrm{R}$ is the reconstruction high-pass filter.
	For $X=i d w t$ per $2(\mathrm{cA}, \mathrm{cH}, \mathrm{cV}, \mathrm{cD}$, 'wname', S) or
	i dwt per 2 is the inverse function of dwt per 2 in the sense the abstract statement i dwt per 2(dwt per 2(X, 'wname') , 'wname') gets back to X.
Examples	\% Set initial signal and get filters. load tire
	$\% \mathrm{X}$ contai ns the loaded inage. $\text { sx = si ze(} X \text {) }$
	$s x={ }_{205} \quad 232$
	$205 \quad 232$
	$\mathrm{w}=$ 'db9' ;
	[Lo_D, Hi_ D, Lo_R, Hi_R] = wfilters(w);
	\% DVT with zero- padding i mage ext ension. [ca0, ch0, cv0, cd0] = dwt 2(X, w) ;

```
% The transformuses some extra coefficients.
sxtzp = 2*si ze(ca0)
sxtzp =
    222 248
% Reconstructi on.
x0 = idwt 2(ca0, ch0, cv0, cd0, w, sx);
% Error with zero- paddi ng.
err0 = max(max(abs(X-x0)))
err0 =
    6. 3292e- 09
% Periodi zed DVT.
[ cap, chp, cvp,cdp] = dwt per 2(X,w);
% The transformuses a mi ni mum of extra coefficients.
|xtp = 2*size(cap)
|xtp =
    206 232
% Reconstructi on.
xp = i dwt per 2(cap, chp, cvp, cdp, w, sx);
% Error with periodized DVT.
errp = max(max(abs(X-xp)))
errp =
    6. 7353e- 09
```

Note: In general, the following abstract statement is not true: i dut per 2(dut 2(X, 'wname'), 'wnare') = X.

Purpose Node index to node depth-position.

Syntax [D, P] = ind2depo(ORD, N)

Description i nd2depo is a tree management utility.
For a tree of order ORD, [D, P] = i nd2depo(ORD, N) computes the depths D and the positions P (at this depths D) for the nodes with indices N.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

D, P, N are column vectors. The values of D, P, N are constrained by:
$\mathrm{D}=$ depths, $0 \leq \mathrm{D} \leq \operatorname{dmax}$
$\mathrm{P}=$ positions at depth $\mathrm{D}, 0 \leq \mathrm{P} \leq$ order $^{\mathrm{D}-1}$
$\mathrm{N}=$ indices, $0 \leq \mathrm{N}<\left(\right.$ order $\left.^{(\mathrm{dmax}+1)}-1\right) /($ order -1$)$
Note that [D, P] = ind2depo(ORD, [D P]).

Examples

\% Create initial tree.
ord $=2 ; \mathrm{t}=$ maketree(ord, 3); $\%$ Bi nary tree of depth 3.
tt = nodej oi $n(t, 5)$;
$\mathrm{tt}=$ nodej oi $\mathrm{n}(\mathrm{tt}, 4)$; plotree(tt)


```
% List tt nodes (i ndex).
        al n_i nd = al Inodes(tt)
al n_i nd =
        0
        1
        2
        3
        4
        5
        6
        7
        8
        13
        14
% Switch fromindex to depth- position.
[ dept h, pos] = i nd2depo( ord, al n_i nd);
al n_depo = [ dept h, pos]
aln_depo =
            0
            0
            1
            2
            2 1
            2
            2 3
            0
            3 1
            3 6
            3 7
```

See Also depo2i nd, maket ree, wt r eengr
Purpose Inverse nonstandard 1-D fast Fourier transform.
Syntax [$\mathrm{X}, \mathrm{T}]=\mathrm{instdff(}$ (XHAT, LOWB, UPPB)
Description inst $\mathrm{df} f \mathrm{t}$ is a general mathematical utility.[X, T] = inst df $\mathrm{ft}(\mathrm{XHAT}$, LOMB, UPPB) returns the inverse nonstandard FFT ofXHAT, on a power of 2 regular grid (not necessarily integers) on the interval[LOWB, UPPB].Output arguments are x the recovered signal computed on the time interval Tgiven by $T=$ LOVB $+[0: n-1] *($ UPPB- LOMB $) / n$, where n is the length of XHAT.
Outputs are vectors of length n.
Algorithm See nst dfft algorithm section.
Limitations The length of XHAT must be a power of two.
See Also $\mathrm{fft}, \mathrm{ifft}, \mathrm{nst} \mathrm{df} \mathrm{ft}$

Purpose Integrate wavelet function psi.

Syntax	[I NTEG, XVAL
	[I NTEG, XVAL
	[I NTEG, XVAL

Description [I NTEG, XVAL] = i nt wave('wname', PREC) returns values of the wavelet function ψ integrals I NTEG (from $-\infty$ to XVAL values): $\int_{-\infty}^{x} \psi(y) d y$ for x in XVAL.
The function ψ is approximated on the 2PREC points grid XVAL, where PREC is a positive integer. 'wname' is a string containing the name of the wavelet ψ (see wfilters).

When used with three arguments, the third one is a dummy argument.
[I NTEG, XVAL] = i nt wave('wname', PREC, PFLAG) in addition plots I NTEGon XVAL grid if PFLAG is nonzero.
[I NTEG, XVAL] = i nt wave('wname', PREC) is equivalent to [I NTEG, XVAL] = i nt wave('wname', PREC, 0).
[I NTEG, XVAL] = i nt wave('wname') is equivalent to [I NTEG, XVAL] = i nt wave('mname', 8).
i nt wave is used only for continuous analysis (see cut).

Algorithm First, the wavelet function is approximated on a grid of $2^{\text {PREC }}$ points using

Examples

See Also
\% Set wavel et name.
wname = ' db4' ;
\% Pl ot wavel et function.
[phi , psi, xval] = wavef un(wname, 7) ;
subpl ot (211); pl ot (xval, psi); title(' Kavel et');
\% Compute and pl ot wavel et integrals approxi mations $\%$ on a dyadi c grid.
[integ, xval] = int wave(wname, 7);
subpl ot (212); pl ot (xval, integ);
title(['Wavel et integral s over [-Inf x] ' ...
'for each val ue of xval']);
 wavef un. A piecewise constant interpolation is used in order to compute the integrals using cunsum
wavef un

Purpose \quad True for existing node.
Syntax $\quad R=i \operatorname{snode}(T, N)$
Description i snode is a tree management utility.
$R=i \operatorname{snode}(T, N)$ returns l's for nodes N, which exist in the tree structure T, and 0 's for others. N can be a column vector containing the indices of nodes or a matrix, that contains the depths and positions of nodes.

In the last case, $N(i, 1)$ is the depth of i-th node and $N(i, 2)$ is the position of i-th node.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .

Examples

$\mathrm{tt}=$ nodej oi $n(\mathrm{tt}, 4)$; pl ot tree(tt)

\% Check node index.
i snode(tt, [1; 3; 25])
ans =
1

1

0
\% Check node depth-position.
i snode(tt,[1 0; 3 1; 4 5])
ans =
1
1
0

See Also

i st node, maket ree, wt reengr

Purpose
 Check if nodes are terminal nodes.

Syntax \quad R $=$ istnode (T, N)

Description

Examples
\% Create initial tree.

```
ord = 2;
t = maketree(ord, 3); % bi nary tree of depth 3.
tt = nodej oi n(t,5);
tt = nodej oi n(tt,4);
pl ottree(tt)
```


\% Find terminal nodes and return indices for terminal \% nodes in the tree structure.
i st node(tt, [14])
ans $=$
6
i st node(tt, [15])
ans $=$
0
i st node(tt, [1; 7; 14; 25])
ans =
0
1
6
0

istnode

```
    i st node(tt,[1 0;3 1;4 5])
ans =
                            0
                            2
0
```

See Also
i snode, maket ree, wt r eengr

Purpose	Make tree．
Syntax	［ T, NB ］＝nmket ree（ ORD，D）
	［ T，NB］＝maket ree（ ORD，D，NBI ）
	［ T, NB ］＝n⿴囗十⿰⿺乚一匕
Description	maket ree is a tree management utility．
	naket ree creates a tree of order ORD and depth D．ORD is an integer equal to the number of children of a generic node．E ach nonterminal node has ORD children．
	For wavelet packet decomposition，a convenient structure is a binary tree for the one－dimensional case（ORD $=2$ ）and a quaternary tree for the two－dimensional case（ORD $=4$ ）．The depth Dis the number of levels of the tree．
	［ $T, N B$ ］＝maket ree（ ORD，D）creates a tree structure of order ORD with depth D ． Output argument $N B$ is the number of terminal nodes（ $N B=$ ORD ${ }^{\wedge}$ ）．Output vector T is organized as：
	［ $\mathrm{T}(1) \ldots \mathrm{T}(\mathrm{NB}+1)$ ］where $\mathrm{T}(\mathrm{i}), \mathrm{i}=1, \ldots$, NB arethe indices of the terminal nodes and $T(N B+1)=-$ ORD．
	The nodes are numbered from left to right and from top to bottom．The root index is 0 ．
	When used with three input arguments，［ T，NB］＝maket ree（ ORD，D，NBI ） computes T as a（ $1+$ NBI ）－by－（ NB＋1）matrix with $\mathrm{T}(1,:)$ as above and in the range $\mathrm{T}(2$ ：NBI $+1,:$ ）the user is free to add their own material．
	$\begin{aligned} & [T, N B]=\text { maket ree(ORD) is equivalent to }[T, N B]=\text { maket ree(ORD, } 0,0) . \\ & [T, N B]=\text { maket ree(ORD, D) is equivalent to }[T, N B]=\text { maket ree(ORD, } D, 0) . \end{aligned}$

Examples

```
% Create bi nary tree (tree of order 2) of depth 3.
    t2 = maketree(2,3);
```

\% PI ot tree structure t2.
plottree(t2)

\% Create bi nary tree (tree of order 4) of depth 2. t 4 = maket ree(4, 2);
\% PI ot tree structure t 4 .
plottree(t4)

See Also
pl ottree, wt reengr

Purpose Mexican hat wavelet.

Syntax
 [PSI, X] = mexi hat(LB, UB, N)

Description

Examples

$[P S I, X]=$ mexi hat (LB, UB, N) returns values of the Mexican hat wavelet on an N point regular grid, X , on the interval [LB, UB] .

Output arguments are the wavelet function psi computed on the grid x, and the grid X .

This wavelet has [-5 5] as effective support.

$$
\psi(x)=\left(\frac{2}{\sqrt{3}} \pi^{-1 / 4}\right)\left(1-x^{2}\right) e^{-x^{2} / 2}
$$

This function is proportional to the second derivative function of the Gaussian probability density function.

```
% Set effective support and grid parameters.
    lb = -5; ub = 5; n = 1000;
```

\% Compute and pl ot Mexi can hat wavel et.
[psi, x] = mexi hat(l b, ub, n);
plot(x, psi), title('Mexi can hat wavel et')

See Also wavei nf o

Purpose Meyer wavelet.

$$
\begin{array}{ll}
\text { Syntax } & {[\mathrm{PHI}, \mathrm{PSI}, \mathrm{~T}]=\operatorname{meyer}(\mathrm{LOWB}, \mathrm{UPPB}, \mathrm{~N})} \\
& {[\mathrm{PHI}, \mathrm{~T}]=\operatorname{meyer}\left(\mathrm{LOWB}, \mathrm{UPPB}, \mathrm{~N}, \mathrm{'}^{\prime} \mathrm{phi}^{\prime}\right)} \\
& {[\mathrm{PSI}, \mathrm{~T}]=\operatorname{meyer}(\text { LOWB, UPPB, N, 'psi' })}
\end{array}
$$

Description [PHI, PSI, T] = meyer(LOWB, UPPB, N) returns Meyer wavelet and scaling functions evaluated on an N point regular grid on the interval [LONB, UPPB].

N must be a power of two.
Output arguments are the scaling function PHI and the wavelet function PSI computed on the grid T . These functions have [-8 8] as effective support.

A fourth argument is allowed if only one function is required:
$[\mathrm{PH}, \mathrm{T}]=\operatorname{meyer}\left(\right.$ LOWB, UPPB, $\mathrm{N},{ }^{\prime}$ phi' $)$
[PSI, T] = meyer(LOWB, UPPB, N, ' psi')
when the fourth argument is used but not equal to ' phi ' or ' psi ' . Outputs are the same as in the main option.

The Meyer wavelet and scaling function are defined in the frequency domain by

- $\hat{\Psi}(\omega)=(2 \pi)^{-1 / 2} e^{i \omega / 2} \sin \left(\frac{\pi}{2} v\left(\frac{3}{2 \pi}|\omega|-1\right)\right) \quad$ if $\quad \frac{2 \pi}{3} \leq|\omega| \leq \frac{4 \pi}{3}$
- $\hat{\psi}(\omega)=0 \quad$ if $\quad|\omega| \notin\left[\frac{2 \pi}{3}, \frac{8 \pi}{3}\right]$
- $\hat{\psi}(\omega)=(2 \pi)^{-1 / 2} e^{i \omega / 2} \cos \left(\frac{\pi}{2} v\left(\frac{3}{4 \pi}|\omega|-1\right)\right) \quad$ if $\quad \frac{4 \pi}{3} \leq|\omega| \leq \frac{8 \pi}{3}$
where $\quad v(a)=a^{4}\left(35-84 a+70 a^{2}-20 a^{3}\right), \quad a \in[0,1]$
- $\hat{\phi}(\omega)=(2 \pi)^{-1 / 2} \cos \left(\frac{\pi}{2} v\left(\frac{3}{2 \pi}|\omega|-1\right)\right) \quad$ if $\quad \frac{2 \pi}{3} \leq|\omega| \leq \frac{4 \pi}{3}$
- $\hat{\phi}(\omega)=(2 \pi)^{-1 / 2} \quad$ if $\quad|\omega| \leq \frac{2 \pi}{3}$,
- $\hat{\phi}(\omega)=0 \quad$ if $\quad|\omega|>\frac{4 \pi}{3}$

By changing the auxiliary function (see meyer aux), you get a family of different wavel ets. F or therequired properties of the auxiliary function v, see References in Chapter 6.

See Also meyer aux, wavef un, wavei nf o

Examples

Algorithm

References
\% Set effective support and grid parameters. I owb = - 8; uppb = 8; $n=1024 ;$
\% Compute and pl ot Meyer wavel et and scaling function. [phi, psi ,x] = meyer(lowb, uppb, n) ; subpl ot (211), pl ot (x, psi) title('Meyer wavel et') subpl ot (212), pl ot (x, phi) title('Meyer scaling function')

Starting from an explicit form of the Fourier transform $\hat{\phi}$ of ϕ, meyer computes the values of $\hat{\phi}$ on a regular grid and then the values of ϕ are computed using i nst df ft , the inverse nonstandard discrete FFT.

The procedure for ψ is al ong the same lines.
I. Daubechies (1992), "Ten lectures on wavelets," CBMS-NSF conference series in applied mathematics. SIAM Ed. pp 117-119, 137, 152.
Purpose Meyer wavelet auxiliary function.
Syntax $\mathrm{Y}=\operatorname{meyer} \operatorname{aux}(\mathrm{X})$
Description $Y=$ neyer aux (X) returns values of the auxiliary function used for Meyerwavelet generation evaluated at the elements of the vector or matrix X.
The function is

$$
35 x^{4}-84 x^{5}+70 x^{6}-20 x^{7}
$$

See Also щеуег

Purpose Morlet wavelet.

Syntax
 [PSI, X] = morlet (LB, UB, N)

Description
[PSI , X] = morl et (LB, UB, N) returns values of the M orlet wavel et on an N point regular grid, X, on the interval [LB, UB].

Output arguments are the wavelet function PSI computed on the grid x, and the grid x. This wavelet has [-4 4] as effective support.

$$
\psi(x)=e^{-x^{2} / 2} \cos (5 x)
$$

Examples

> \% Set effective support and grid parameters. l b = - 4; ub = 4; $n=1000$;
> \% Compute and pl ot Mbrlet wavel et. $[\mathrm{psi}, \mathrm{x}]=\operatorname{morl}$ et (l b, ub, n) ;
> plot(x, psi), title('Mbrlet wavel et')

See Also

wavei nf o

Purpose Node ascendants.

Syntax \quad| A | $=\operatorname{nodeasc}(T, N)$ |
| ---: | :--- |
| A | $=\operatorname{nodeasc}\left(T, N\right.$, ' $\left.^{\prime} \operatorname{deppos}^{\prime}\right)$ |

Description

nodeasc is a tree management utility.
$A=$ nodeasc (T, N) returns the indices of all the ascendants of the node N in the tree structure T. N can be the index node or the depth and position of node. A is a column vector with $A(1)=$ index of node N.
$A=$ nodeasc($T, N,{ }^{\prime}$ deppos') is a matrix that contains the depths and positions of all ascendants. $A(i, 1)$ is the depth of i-th ascendant and $A(i, 2)$ is the position of i-th ascendant.

Examples
\% Create bi nary tree of depth 3.
$\mathrm{t}=$ maketree(2,3);
$\mathrm{tt}=$ nodej oi $\mathrm{n}(\mathrm{t}, 5)$;
$\mathrm{tt}=$ nodej oi $\mathrm{n}(\mathrm{tt}, 4)$;
pl ot tree(tt)


```
% Node descendants.
    nodedesc(tt, 2)
ans =
    7
    3
    1
    0
    nodedesc(tt,2,'deppos')
ans =
    nodeasc(tt,[2 2])
ans =
    5
    2
    0
    nodeasc(tt,[2 2],'deppos')
ans =
    2
    1
    0
```

See Also maket ree, nodedesc, nodepar, wt reengr

Purpose
 Node descendants.

Syntax
$\mathrm{D}=$ nodedesc($\mathrm{T}, \mathrm{N})$
D = nodedesc(T, N, ' deppos' $^{\text {) }}$

Description

nodedesc is a tree management utility.
$D=$ nodedesc (T, N) returns the indices of all the descendants of the node N in the tree structure T. N can be the index node or the depth and position of node. D is a column vector with $D(1)=$ index of node N.
$\mathrm{D}=$ nodedesc($\mathrm{T}, \mathrm{N}, \mathrm{I}^{\prime}$ deppos' $)$ is a matrix that contains the depths and positions of all descendants. $D(i, 1)$ is the depth of i-th descendant and $D(i, 2)$ is the position of i-th descendant.

Examples

\% Create bi nary tree of depth 3.
$\mathrm{t}=$ maket ree(2,3);
tt = nodej oi $n(t, 5)$;
$\mathrm{tt}=$ nodej oi $\mathrm{n}(\mathrm{tt}, 4)$; pl ot tree(tt)

\% Node descendants. nodedesc(tt, 2)
ans =
2
5
6
13
14
nodedesc(tt, 2, 'deppos')
ans =
$1 \quad 1$
22
23
36
37
nodedesc(tt,[2 2],' deppos')
ans =
$2 \quad 2$
nodedesc(tt,[1],' 1 deppos')
ans =
$1 \quad 1$
$2 \quad 2$
23
36
37
nodedesc(tt,[lll)
ans =
2
5
6
13
14

See Also
maket ree, nodeasc, nodepar, wt r eengr

Purpose Recompose node.

Syntax
 $\mathrm{T}=$ nodej oi $\mathrm{n}(\mathrm{T}, \mathrm{N})$
 $T=$ nodej oi $n(T)$

Description

Examples
nodej oi n is a tree management utility.
$\mathrm{T}=$ nodej oi $\mathrm{n}(\mathrm{T}, \mathrm{N})$ returns the modified tree structure T corresponding to a recomposition of the node N .

The nodes are numbered from left to right and from top to bottom. The root index is 0 .
$T=$ nodej oi $n(T)$ is equivalent to $T=$ nodej oi $n(T, 0)$.
\% Create bi nary tree of depth 3.
$\mathrm{t}=$ maketree(2,3);
\% Pl ot tree structure t. pl ot tree(t)


```
% Merge nodes of indi ces 4 and 5.
    tt = nodej oi n(t,5);
    tt = nodej oi n(tt,4);
% Pl ot new tree structure tt.
    pl ottree(tt)
```


See Also
maket ree, nodespl t, wt r eengr

Purpose Node parent.

Syntax \quad| F | $=\operatorname{nodepar}(T, N)$ |
| ---: | :--- |
| F | $=\operatorname{nodepar}\left(T, N, ' \operatorname{deppos}{ }^{\prime}\right)$ |

Description

nodepar is a tree management utility.
$\mathrm{F}=$ nodepar (T, N) returns the indices of the "parent(s)" of the nodes N in the tree structureT. N can be a column vector containing the indices of nodes or a matrix that contains the depths and positions of nodes. In the last case, N(i, 1) is the depth of i-th node and $N(i, 2)$ is the position of i-th node.
$\mathrm{F}=$ nodepar ($\mathrm{T}, \mathrm{N}, \mathrm{'}$ deppos') is a matrix that contains the depths and positions of returned nodes. $F(i, 1)$ is the depth of i-th node and $F(i, 2)$ is the position of i-th node.
nodepar (T, 0) or nodepar (T, [0, 0]) returns- 1 .
nodepar ($\mathrm{T}, \mathrm{0}$, ' deppos') or nodepar($\mathrm{T},[\mathrm{0}, 0]$, ' deppos') returns [-1, 0].

Examples
\% Create bi nary tree of depth 3.
$\mathrm{t}=$ maketree(2,3);
$\mathrm{tt}=$ nodej oi $\mathrm{n}(\mathrm{t}, 5)$;
$\mathrm{tt}=$ nodej oi $\mathrm{n}(\mathrm{tt}, 4)$;
plot tree(tt)

\% Nodes parent.
nodepar(tt,[2 2],' deppos')
ans $=$
$1 \quad 1$
nodepar(tt, [1; 7; 14])
ans $=$
0
3
6
See Also
maket ree, nodeas c, nodedes c, wt reengr

Purpose Split (decompose) node.

Syntax
 $\mathrm{T}=$ nodespl $\mathrm{t}(\mathrm{T}, \mathrm{N})$

Description nodespl t is a tree management utility.
$\mathrm{T}=$ nodespl $\mathrm{t}(\mathrm{T}, \mathrm{N})$ returns the modified tree structure T corresponding to the decomposition of the node N .

Examples

\% Create bi nary tree (tree of order 2) of depth 3.
$t \quad=$ maketree 2,3)
\% Pl ot tree structure t. pl ot tree(t)


```
Split node of index 10.
    tt = nodespl t(t,10);
% PI ot new tree structure tt.
    pl ottree(tt)
```


See Also
maket r ee, nodej oi n, wt r eengr

Purpose Nonstandard 1-D fast Fourier transform.

Syntax [XHAT, OMEGA] = nstdfft(X, LOWB, UPPB)

Description

Algorithm

nst $d f f t$ is a general mathematical utility.
[XHAT, OMEGA] = nstdfft(X, LOMB, UPPB) returns a non-standard FFT of signal X sampled on a power of 2 regular grid (not necessarily integers) on the interval [LOVB, UPPB].

Output arguments are XHAT, the shifted FFT of X computed on the interval OMEGA given by OMEGA $=[-n: 2: n-2] /\left(2^{*}(\right.$ UPPB $\left.-L O M B)\right)$, where n is the length of X. Outputs are vectors of length n.

Length of X must be a power of two.
Given $N=2^{q}$ observations between two bounds l and $u: x_{1}, x_{2}, \ldots, x_{N}$, which are regularly sampled from a continuous signal f :
$x_{\mathrm{k}}=f(l+(k-1) \delta)$ for $k=1$ to N where $\delta=(u-1) / N$
nst df ft computes approximations of the continuous Fourier transform coefficients: $\hat{f}(\omega)=\int_{l}^{u} f(t) e^{-2 i \pi \omega t} d t$ for $\omega=\frac{-1}{2 \delta}: \frac{1}{N \delta}: \frac{1}{2 \delta}-\frac{1}{N \delta}$ using the standard discrete fast fourier transform fft .
For a given frequency $\omega: \quad \hat{f}(\omega)=\int_{l}^{u} f(t) e^{-2 i \pi \omega t} d t \quad$ can be rewritten
as $\quad \hat{f}(\omega)=N \delta e^{-2 i \pi \omega l} \int_{0}^{1} f(l+s N \delta) e^{-2 i \pi \omega t s N \delta} d s \quad$ using $t=s N \delta+l$.
The integral term can be approximated by the finite sum:
$\left.\frac{1}{N} \sum_{k=1}^{N} f l+(k-1) \delta\right) e^{-2 i \pi \omega(k-1) \delta}$.

Since $\omega=\frac{-1}{2 \delta}: \frac{1}{N \delta}: \frac{1}{2 \delta}-\frac{1}{N \delta}$
then $j=\omega \delta N=\frac{-N}{2}: 1: \frac{N}{2}-1$, which are the usual frequencies of the discrete Fourier transform.
It turns out that $\hat{f}(\omega)$ can be approximated by:
$\delta e^{-2 i \pi \omega l} \sum_{k=1}^{N} x_{k} \omega^{(k-1) j}$ where $\omega_{N}=e^{-2 i \pi / N}$
which can be computed using standard fft and a normalization. The function i nst dfft inverts this transform in three steps: normalization, use of ifft, and translation in time.

The length of X must be a power of two.

See Also $\quad f f t, f f t s h i f t, i n s t d f t$

Purpose Number of terminal nodes.

Syntax
 $N B=n t$ node(T)

Description
nt node is a tree management utility.
$N B=n t$ node(T) returns the number of terminal nodes in the tree structure T.

Examples

\% Create bi nary tree (tree of order 2) of depth 3. $\mathrm{t}=$ maket ree(2,3);
\% Pl ot tree structure t . pl ot tree(t)

\% Number of terminal nodes. nt node(t)
ans =
8
See Also maket ree, wt r eengr
Purpose Convert number to string in maximum precision.
Syntax $\mathrm{S}=$ num2nstr(N$)$
Description num2nstr is a general utility.$\mathrm{S}=$ num2nstr(N$)$ converts real numbers of input matrix N to string outputvector S , in maximum precision.
See Also num2str

Purpose Orthogonal wavelet filter set.

Syntax [Lo_D, Hi_D, Lo_R, Hi_R] = orthfilt(W)

Description [Lo_D, Hi_D, Lo_R, Hi_R] = orthfilt (W) computes the four filters associated with the scaling filter Wcorresponding to a wavelet:

Lo_D Decomposition low-pass filter
Hi _D Decomposition high-pass filter
Lo_R Reconstruction low-pass filter
$\mathrm{Hi}_{\mathbf{Z}}$ R Reconstruction high-pass filter
For an orthogonal wavelet, in the multiresolution framework, westart with the scaling function ϕ and the wavel et function ψ. One of the fundamental relations is the twin-scale relation:

$$
\frac{1}{2} \phi\left(\frac{x}{2}\right)=\sum_{n \in Z} w_{n} \phi(x-n) .
$$

All the filters used in DVT and I DWT are intimately related to the sequence $\left(w_{n}\right)_{n \in Z}$. Clearly if ϕ is compactly supported, the sequence $\left(w_{n}\right)$ is finite and can be viewed as a FIR filter. The scaling filter wis:

- A low-pass FIR filter
- Of length $2 N$
- Of sum 1
- Of norm $\frac{1}{\sqrt{2}}$

F or example, for the db3 scaling filter:
I oad db3
db3
db3 $=$
0. $23520.57060 .3252-0.0955-0.06040 .0249$
sum(db3)
ans =

1. 000
nor m(db3)
ans $=$
2. 7071

From filter W we define four FIR filters, of length 2 N and norm 1, organized as follows:

Filters	Low -pass	High-pass
Decomposition	Lo_D	Hi _D $^{\text {D }}$
Reconstruction	Lo_R	$\mathrm{Hi}_{-} \mathrm{R}$

The four filters are computed using the following scheme:

where qrf is such that $\mathrm{Hi} \_\mathrm{R}$ and Lo_R are quadrature mirror filters (i.e. $\mathrm{Hi} \_\mathrm{R}(k)=(-1)^{\mathrm{k}}$ Lo_R(2N-1-k)), and where wrev flips the filter coefficients. So Hi _Dand Lo_D are also quadrature mirror filters. The computation of these filters is performed using orthfilt.

```
Examples %Load scaling filter.
    l oad db8; w = db8;
    subpl ot (421); st em( w);
    title('Origi nal scaling filter');
% Compute the four filters.
    [ Lo_D, Hi _D, Lo_R, Hi_R] = orthfilt(w);
    subpl ot(423); stem(Lo_D);
    title('Decomposition low-pass filter');
    subpl ot(424); stem( Hi _D);
    title('Decomposition hi gh-pass filter');
    subpl ot(425); stem(Lo_R);
    title('Reconstruction low pass filter');
    subpl ot(426); st em( Hi _R);
    title('Reconstruction hi gh- pass filter');
% Check for orthonormality.
    df = [Lo_D; Hi_D];
    rf = [Lo_R; Hi_R];
    id = df*df '
id =
    1.0000-0.0000
    -0.0000 1.0000
    id = rf*rf'
i d =
    1.0000 0.0000
    0.0000 1.0000
% Check for orthogonality by dyadic translation, for exampl e:
    df = [Lo_D O O; Hi _D O O];
    dft = [0 O Lo_D; O O Hi_D];
    zer = df*dft'
zer =
    1. 0e- 12 *
    -0.1883 0. }000
    -0.0000-0.1883
```

```
% Hi gh and I ow frequency il I ustration.
        fftld = fft(Lo_D); ffthd = fft(Hi_D);
        freq = [ 1: I engt h( Lo_D) ]/ I engt h(Lo_D) ;
        subpl ot(427); pl ot(freq,abs(fftld));
        title('Transfer modul us: low- pass')
        subpl ot(428); pl ot(freq, abs(ffthd));
        title('Transfer modul us: hi gh- pass')
```

 Original scaling filter

Decomposition high-pass filter

See Also bi orfilt, qnf, wfilters
References I. Daubechies (1992), "Ten lectures on wavelets," CBMS-NSF conference series in applied mathematics. SIAM Ed. pp 117-119, 137, 152.
Purpose Plot tree.
Syntax pl ottree(T)
Description pl ot tree is a graphical tree management utility.
pl ot tree(T) plots the tree structure T (see maket ree).
Examples
\% Create bi nary tree of depth 3.$\mathrm{t}=$ maketree(2,3);\% Pl ot tree structure t.pl ot tree(t)
\% Creates a figure contai ni ng the tree\% and a si mple menu bar allowing:
\% - to close the wi ndow
\% - to choose node I abel ing mode bet ween
\% index and depth-position.
plottree

See Also
maket ree, wpdec, wpdec2

Purpose Quadrature mirror filter.

Syntax $\quad Y=q n f(X, P)$
 $Y=q n f(X)$

Description

Examples

```
%Load scaling filter associ ated with an orthogonal wavel et.
I oad db10;
subpl ot(321); stem(db10); title('db10 low pass filter');
% Compute the quadrature mirror filter.
qnf db10 = qnf(db10);
subpl ot(322); stemqnfldb10); title('QMF db10 filter');
%Check for frequency condition (necessary for orthogonality): %
abs(fft(filter))^2 + abs(fft(qum(filter))^2 = 1 at each
%frequency.
m= fft(db10);
nt = fft(quf db10);
```

```
freq = [ 1: I engt h(db10) ]/ I engt h( db10);
subpl ot (323); pl ot (freq, abs(m) );
title('Transfer nodul us of db10')
subpl ot (324); pl ot (freq, abs(nt));
title('Transfer nodul us of QMF db10')
subpl ot (325); pl ot (freq, abs(n).^2 + abs(nt ). ^2);
title('Check QMF conditi on for db10 and QMF db10')
xl abel(' abs(fft(db10))^2 + abs(fft(quf(db10) )^2 = 1')
% Check for orthonormal ity.
df = [db10; quff db10]*sqrt(2) ;
id = df*df'
i d =
    1.0000 0.0000
    0.0000 1.0000
    0.5%
                                    *)
```



```
Check QMF condition for db10 and QMF db10
```



```
\(\mathrm{abs}(\mathrm{fft}(\mathrm{db} 10))^{\wedge} 2+\mathrm{abs}\left(\mathrm{ftt}(\mathrm{qmf}(\mathrm{db} 10))^{\wedge} 2=1\right.\)
```


References
 G. Strang, T. N guyen (1996), Wavel ets and Filter Banks, Wellesley-Cambridge Press

8-116

Purpose Symlets wavelet filters.
Syntax F = symwavf('symame')
Description $\mathrm{F}=$ symavf ('symane') returns the scaling filter associated with the syml etwavelet specified by 'symane'. Possible values for N are: 2, 3, 4, 5, 6, 7 or 8.
Examples \% Compute the scaling filter corresponding to wavel et symf. w = symwavf('sym4')
w =
Col urms 1 through 7
$0.0228-0.0089-0.07020 .2106$ 0. $56830.3519-0.0210$Col umm 8

$$
-0.0536
$$

See Also wavei nf o

thselect

Purpose	Threshold selection for de-noising.
Syntax	THR $=$ thsel ect ($\mathrm{X}, \mathrm{TPTR}$)
Description	t hsel ect is a one-dimensional de-noising oriented function.
	THR $=t$ hsel ect (X, TPTR) returns threshold X-adapted value using selection rule defined by string TPTR.
	Available selection rules are:
	TPTR = ' ri grsure', adaptive threshold selection using principle of Stein's Unbiased Risk Estimate.
	TPTR $=$ ' heursur e^{\prime}, heuristic variant of the first option.
	TPTR = ' sqt wol og', threshold is sqrt($2 * \log (l e n g t h(X))$).
	TPTR = ' mi ni maxi ' , minimax thresholding.
	Threshold selection rules are based on the underlying model $y=f(t)+e$ where e is a white noise $N(0,1)$. Dealing with unscaled or nonwhite noise can be handled using rescaling output threshold THR (see SCAL parameter in wden).
	Available options are:
	- t pt r =' ri gr sure' uses for the soft threshold estimator a threshold selection rule based on Stein's U nbiased Estimate of Risk (quadratic loss function). One gets an estimate of the risk for a particular threshold valuet. Minimizing the risks in t gives a selection of the threshold value.
	- tptr $=$ ' sqt wol og' uses a fixed form threshold yielding minimax performance multiplied by a small factor proportional to log(length(s)).
	- t ptr =' heursure' is a mixture of the two previous options. As a result, if the signal to noise ratio is very small, the SURE estimate is very noisy. If such a situation is detected, the fixed form threshold is used.
	- tptr =' mi ni maxi ' uses a fixed threshold chosen to yield minimax performance for mean squareerror against an ideal procedure. Theminimax principle is used in statistics in order to design estimators. Since the denoised signal can be assimilated to the estimator of the unknown regression function, the minimax estimator is the one that realizes the

minimum of the maximum mean square error obtained for the worst function in a given set.

Examples

```
% Generate Gaussian white noi se.
    i ni t = 2055415866; randn('seed',i nit);
    x = randn(1, 1000);
% Find threshold for each sel ection rule.
    % adapti ve threshol d usi ng SURE.
    thr = thsel ect(x,'rigrsure')
thr =
    1. }806
% Fi xed formthreshold.
    thr = thsel ect(x,' sqt wol og' )
thr =
    3.7169
% Heuristic variant of the first options.
    thr = thsel ect(x,' heursure')
thr =
    3.7169
%M ni max threshold.
    thr = thsel ect(x,' mi ni maxi')
thr =
    2. }216
```

See Also
References
wden
D.L. Donoho (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.
D.L. Donoho, I.M. J ohnstone (1994), "I deal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.
D.L. Donoho (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.

Purpose Terminal nodes.

Syntax	$N=t \operatorname{nodes}(T)$
	$N=t \operatorname{nodes}(T, ' \operatorname{deppos} ')$
$[N, K]=t \operatorname{nodes}(T)$	
	$[N, K]=t \operatorname{nodes}\left(T, ' \operatorname{deppos} '^{\prime}\right)$

Description

Examples

t nodes is a tree management utility.
$\mathrm{N}=\mathrm{t}$ nodes(T) returns the indices of terminal nodes of the tree structure T (see maketree). N is a column vector.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .
$\mathrm{N}=\mathrm{t}$ nodes(T, ' deppos') returns a matrix N which contains the depths and positions of terminal nodes.
$N(i, 1)$ is the depth of i-th terminal node. $N(i, 2)$ is the position of i-th terminal node.
 indices reordered in tree T , from left to right.

```
% Create initial tree.
    ord = 2; t = maketree(ord, 3); % Bi nary tree of depth 3.
    tt = nodej oi n(t,5);
    tt = nodej oi n(tt,4);
    pl ottree(tt)
```


\% List terminal nodes (index). t nodes(tt)
ans $=$
4
5
7
8
13
14

```
%List terminal nodes (depth-position).
    t nodes(tt,' deppos')
ans =
    2 1
    2
    3 0
    3 1
    3 6
    7
```

See Also maket ree, wt r eemgr

Purpose Tree depth.

Syntax
 $\mathrm{D}=\mathrm{tr}$ eedpt $\mathrm{h}(\mathrm{T})$

Description treedpt h is a tree management utility.
$D=t r$ eedpt $h(T)$ returns the depth D of the tree T.
Examples
\% Create bi nary tree (tree of order 2) of depth 3. $\mathrm{t}=$ maket $\mathrm{ree}(2,3)$;
\% PI ot tree structure t. pl ot tree(t)

\% Tree depth.
treedpt h(t)
ans $=$
3
See Also maket ree, wt r eengr

Purpose Tree order.

Syntax \quad ORD $=$ treeord (T)

Description treeord is a tree management utility. ORD $=\operatorname{tr}$ eeord (T) returns the order ORD of the tree T.

Examples

\% Create binary tree (tree of order 2) of depth 3.
$\mathrm{t}=$ maketree(2,3);
\% Pl ot tree structure t . plotree(t)

\% Tree order. treeord(t)
ans $=$
2
See Also maket ree, wt r eengr

Purpose	Direct reconstruction from 1-D wavel et coefficients.
Syntax	$\mathrm{Y}=\operatorname{upcoef}\left(\mathrm{O}, \mathrm{X}, \mathrm{'}^{\text {uname' }}\right.$, N)
	$Y=\operatorname{upcoef}\left(\mathrm{O}, \mathrm{X}, \mathrm{\prime}\right.$ uname' ${ }^{\prime} \mathrm{N}, \mathrm{L}$)
	$Y=\operatorname{upcoef}(\mathrm{O}, \mathrm{X}, \mathrm{Lo}$ _ R, Hi_ R, N$)$
	$\mathrm{Y}=\operatorname{upcoef}(\mathrm{O}, \mathrm{X}$, Lo_R, Hi _ R, $\mathrm{N}, \mathrm{L})$
	$Y=\operatorname{upcoef}\left(0, X,{ }^{\text {, mname' }}\right.$)
	$Y=\operatorname{upcoef}(\mathrm{O}, \mathrm{X}, \mathrm{Lo}$ _ R, Hi_ R $)$
Description	upcoef is a one-dimensional wavelet analysis function.
	$\mathrm{Y}=$ upcoef (O, X, 'uname', N) computes the N steps reconstructed coefficients of vector X .
	'wname' is a string containing the wavelet name.
	N must be a strictly positive integer.
	If $\mathrm{O}=$ ' a ', approximation coefficients are reconstructed.
	If $\mathrm{O}=$ ' d ', detail coefficients are reconstructed.
	$\mathrm{Y}=$ upcoef (O, X, 'wname', N, L) computes the N steps reconstructed coefficients of vector X and takes the length-L central portion of the result. Instead of giving the wavelet name, you can give the filters.
	For $Y=\operatorname{upcoef}\left(\mathrm{O}, \mathrm{X}\right.$, Lo_R, Hi_R, $^{\text {}}$) or $Y=\operatorname{upcoef}\left(\mathrm{O}, \mathrm{X}, \mathrm{Lo}_{-} R, \mathrm{Hi}_{-} \mathrm{R}, \mathrm{N}, \mathrm{L}\right)$, Lo_R is the reconstruction low-pass filter and $\mathrm{Hi}_{\mathrm{Z}} \mathrm{R}$ is the reconstruction high-pass filter.
	$Y=\operatorname{upcoef}\left(0, X\right.$, Lo_R, Hi_R) is equivalent to $Y=\operatorname{upcoef}\left(0, X, L o \_R, H i \_R, 1\right)$.
Examples	\% Approxi mation signals, obt ai ned froma single coefficient
	$\%$ at levels 1 to 6.
	cfs $=[1] ;$ \% Decomposition reduced a single coefficient. essup $=10$; $\%$ Essential support of the scaling filter db6.
	figure(1)
	for $\mathrm{i}=1$: 6

```
% Reconstruct at the top l evel an approxi mati on
% whi ch is equal to zero except at l evel i where onl y
% one coefficient is equal to 1.
rec = upcoef('a',cfs,'db6',i);
% essup is the essential support of the
%reconstructed si gnal.
subpl ot (6, 1, i), h = pl ot (rec(1: essup));
set(get(h,'parent'),'xl i m, [1 325]);
essup = essup*2;
subpl ot (611)
title(['Approxi mati on si gnals, obt ai ned from a single ' ... ' coeffici ent at level s 1 to 6' ])
```

end

Approximation signals, obtained from a single coefficient at levels 1 to 6

\% The same can be done for details.
\% Det ails si gnals, obt ai ned froma single coefficient \% at levels 1 to 6.
cfs $=[1]$;
$\mathrm{m}=12 ; \mathrm{m}=30 ; \quad$ E Essential support of \%the wavel et filter db6.

```
rec = upcoef(' d',cfs,' db6',1);
fi gure(2)
subpl ot(611), pl ot(rec(3: 12))
for i =2: 6
    % Reconstruct at top level a single detail
    %coefficient at level i.
    rec = upcoef('d',cfs,'db6',i);
    subpl ot(6,1,i), pl ot(rec(min2^(i-2): m⿴*2^(i-2)))
end
subpl ot ( 611)
title(['Detail signals obtai ned froma single ' ...
            'coefficient at levels 1 to 6'])
```


Algorithm

See Also idwt

Purpose Direct reconstruction from 2-D wavelet coefficients.

```
Syntax Y = upcoef 2( O, X,' uname', N, S)
Y = upcoef 2(O, X, Lo_R, Hi_R,N,S)
Y = upcoef 2(O,X,' uname',N)
Y = upcoef 2(O, X, Lo_R,Hi_R,N)
Y = upcoef 2(O, X,' mname')
Y = upcoef 2(O, X, Lo_R,Hi_R)
```


Description

upcoef 2 is a two-dimensional wavelet analysis function.
$\mathrm{Y}=$ upcoef 2(O, X, 'wname', N, S) computes the N steps reconstructed coefficients of matrix X and takes the central part of size S. 'wname' is a string containing the name of the wavelet.

If $\mathrm{O}=$ 'a', approximation coefficients are reconstructed; otherwise if $\mathrm{O}=$ ' h ' (' v' or 'd' respectively), horizontal (vertical or diagonal respectively) detail coefficients are reconstructed. N must be a strictly positive integer.

Instead of giving the wavelet name, you can give the filters.
For $\mathrm{Y}=$ upcoef 2($\left.\mathrm{O}, \mathrm{X}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi} \_\mathrm{R}, \mathrm{N}, \mathrm{S}\right)$, Lo_R is the reconstruction low-pass filter and Hi _R is the reconstruction high-pass filter.
$\mathrm{Y}=\operatorname{upcoef} 2(\mathrm{O}, \mathrm{X}$, 'wname', N$)$ or $\mathrm{Y}=\operatorname{upcoef} 2\left(\mathrm{O}, \mathrm{X}\right.$, Lo_R, $_{\mathrm{Hi}}$ _R, N$)$ return the computed result without any truncation.
$\mathrm{Y}=$ upcoef 2(O, X, 'wname') is equivalent to $\mathrm{Y}=\operatorname{upcoef} 2(\mathrm{O}, \mathrm{X}$, 'wnane', 1).
$Y=$ upcoef $2\left(0, X, L_{0} R, H_{i} R\right)$ is equivalent to
$Y=\operatorname{upcoef} 2\left(\mathrm{O}, \mathrm{X}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi} \_\mathrm{R}, 1\right)$.

```
Examples
% Load ori gi nal i mage.
    l oad noman;
    % X contai ns the I oaded immge.
%Performdecomposition at level 2
% of X using db4.
    [c, s] = wavedec2(X, 2,' db4' );
% Reconstruct approxi mation and details
% at level 1, from coeffici ents.
% Thi s can be done using wrcoef 2, or
% equi val ently usi ng:
%
%Step 1: Extract coefficients fromthe
% decomposition structure [c,s].
%
% Step 2: Reconstruct usi ng upcoef 2.
siz = s(size(s,1),:);
cal = appcoef 2(c, s,' db4',1);
al = upcoef 2('a',ca1, 'db4', 1, si z);
    chd1 = det coef 2('h', c, s, 1);
    hd1 = upcoef 2('h',chd1,' db4',1, siz);
    cvd1 = det coef 2('v', c, s, 1);
    vd1 = upcoef 2('v',cvd1,'db4',1,siz);
    cdd1 = det coef 2('d', c, s, 1);
    dd1 = upcoef 2('d',cdd1,' db4',1,siz);
```

Algorithm See upcoef .

See Also idwt 2

Purpose
 Single-level reconstruction of 1-D wavelet decomposition.

Syntax

Description

Examples

[NC, NL, cA] $=\operatorname{upw} \operatorname{ev}(C, L$, ' uname' $)$
$[\mathrm{NC}, \mathrm{NL}, \mathrm{cA}]=\operatorname{upw} \operatorname{ev}\left(\mathrm{C}, \mathrm{L}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi} \mathrm{I}_{\mathrm{R}} \mathrm{R}\right)$
upw ev is a one-dimensional wavelet analysis function.
[NC, NL, cA] = upw ev(C, L, 'wname') performs the single-level reconstruction of the wavelet decomposition structure [C, L] giving the new one [NC, NL] , and extracts the last approximation coefficients vector cA.
[C, L] is a decomposition at level $\mathrm{n}=\mathrm{l}$ engt $\mathrm{h}(\mathrm{L})-2$, so [NC, NL] is the same decomposition at level $n-1$ and $c A$ is the approximation coefficients vector at level n.
'wname' is a string containing the wavelet name, C is the original wavel et decomposition vector, and L the corresponding bookkeeping vector (for detailed storage information, see wavedec).

Instead of giving the wavelet name, you can give the filters.
For [NC, NL, cA] = upw ev(C, L, Lo_R, Hi_R), Lo_R is the reconstruction low-pass filter and $\mathrm{Hi}_{\mathrm{Z}} \mathrm{R}$ is the reconstruction high-pass filter.

```
% Load ori gi nal one-di mensi onal si gnal.
        l oad sumsi n; s = sumsi n;
%Perform decomposition at level 3 of s using db1.
    [c,l] = navedec(s, 3, 'db1' );
    subpl ot(311); pl ot(s);
    title('Origi nal signal s.');
    subpl ot(312); pl ot(c);
    title('Wavel et decomposition structure, l evel 3')
    xl abel(['Coefs for approx. at l evel 3' ...
        ' and for det. at levels 3, 2 and 1'])
```

\% One step reconstruction of the wavel et decomposition \% structure at level 3 [$\mathrm{c}, \mathrm{l}]$, so the new structure [nc, nl] \%is the wavel et decomposition structure at level 2.
[nc, nl] = upw ev(c,l,'db1');
subpl ot (313); pl ot (nc);
title('Vavel et decomposition structure, level 2')
xl abel (['Coefs for approx. at level 2^{\prime}...
'and for det. at levels 2 and 1'])
Original signal s.

Wavelet decomposition structure, level 3

Coefs for approx. at level 3 and for det. at levels 3, 2 and 1
Wavelet decomposition structure, level 2

See Also idwt, upcoef, wavedec

Purpose	Single-level reconstruction of 2-D wavelet decomposition.
Syntax	[NC, NS, cA] = upw ev2(C, S, ' wname')
	[NC, NS, CA] $=\operatorname{upw} \operatorname{ev2}\left(\mathrm{C}, \mathrm{S}\right.$, Lo_R, $^{\text {Hi _ R }}$)
Description	upw ev2 is a two-dimensional wavelet analysis function.
	[NC, NS, cA] = upw ev2(C, S, 'wnare') performs the single-level reconstruction of wavelet decomposition structure [C, S] giving the new one [NC, NS], and extracts the last approximation coefficients matrix cA.
	[C, S] is a decomposition at level $\mathrm{n}=$ si ze($\mathrm{S}, 1$) -2 , so [NC, NS] is the same decomposition at level $n-1$ and cA is the approximation matrix at level n.
	'uname' is a string containing the wavelet name, C is the original wavelet decomposition vector, and S the corresponding bookkeeping matrix (for detailed storage information, see wavedec2).
	For [NC, NS, CA] = upw ev2($\mathrm{C}, \mathrm{S}, \mathrm{Lo}_{-} \mathrm{R}, \mathrm{Hi}$ _R), Lo_R is the reconstruction low-pass filter and $\mathrm{Hi}_{\mathrm{Z}} \mathrm{R}$ is the reconstruction high-pass filter.

8-132

Examples
\% Load ori gi nal i mage.
I oad noman;
\% X contai ns the I oaded image.
\% Perform decomposition at Ievel 2
\% of X using dbl.
[c, s] = wavedec2(X, 2, 'db1'); sc = size(c)
sc =
165536

val_s = s
val_s = $64 \quad 64$
$64 \quad 64$ $128 \quad 128$ $256 \quad 256$
\% One step reconstruction of wavel et$\%$ decomposition structure $[c, s]$.[nc, ns] = upw ev2(c, s, ' db1');snc = size(nc)
snc =
165536
val_ns = ns
val_ns =
128128
128128
$256 \quad 256$
See Also idwt 2, upcoef 2, wavedec2

Purpose Multi-level 1-D wavel et decomposition.
Syntax
[C, L] = wavedec(X, N, ' wname')
$[\mathrm{C}, \mathrm{L}]=\operatorname{wavedec}\left(\mathrm{X}, \mathrm{N}\right.$, Lo_D, $\left._{\text {Li }} \mathrm{D}\right)$

Description

wavedec performs a multi-level one-dimensional wavel et analysis using either a specific wavelet ('wname', see uf ilters) or specific wavelet decomposition filters (Lo_D and Hi _D).
[$\mathrm{C}, \mathrm{L}]=\operatorname{wavedec}(\mathrm{X}, \mathrm{N}$, 'wname') returnsthewavelet decomposition of thesignal X at level N, using 'wnare'. N must be a strictly positive integer (see wnmxl ev). The output decomposition structure contains the wavelet decomposition vector C and bookkeeping vector L . The structure is organized as in this level-3 decomposition example:

[C, L] = wavedec(X, N, Lo_D, Hi _D) returns the decomposition structure as above, given the low- and high-pass decomposition filters you specify.

Examples

```
% Load origi nal one- di mensi onal signal .
    l oad sumsi n; s = sumsin;
%Perform decomposition at level 3 of s using db1.
    [c,l] = wavedec(s, 3,'db1' );
```

Original signal s.

Algorithm

Given a signal s of length N, the DWT consists of $\log _{2} N$ stages at most. The first step produces, starting from s, two sets of coefficients: approximation coefficients $C A_{1}$ and detail coefficients $C D_{1}$. These vectors are obtained by convolving s with the low-pass filter Lo_D for approximation, and with the high-pass filter Hi _Dfor detail, followed by dyadic decimation (downsampling).

More precisely, the first step is:

where:

Convolve with filter X

> Keep the even indexed elements (We call this operation downsampling.)

The length of each filter is equal to $2 N$. If $n=$ length (s), the signals F and G are of length $n+2 N-1$ and the coefficients $c A_{1}$ and $c D_{1}$ are of length

$$
\text { floor }\left(\frac{n-1}{2}\right)+N
$$

The next step splits the approximation coefficients $c A_{1}$ in two parts using the same scheme, replacing s by $c A_{1}$, and producing $c A_{2}$ and $c D_{2}$, and so on.

One-Dimensional DWT

Decomposition step

where: $\quad \mathrm{X}$ Convolve with filter X
$\downarrow 2$ Downsample
Initialization $\quad c A_{0}=s$

The wavel et decomposition of the signal s analyzed at level j has the following structure: $\left[c A_{\mathrm{j}}, c D_{\mathrm{j}}, \ldots, c D_{1}\right]$.

This structure contains, for $J=3$, the terminal nodes of the following tree:

See Also dut, wavei nfo, wfilter s, umaxlev
References I. Daubechies (1992), "Ten lectures on wavelets," CBM S-NSF conference series in applied mathematics. SIAM Ed.
S. M allat (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and MachineIntell., vol. 11, no. 7, pp 674-693.
Y. Meyer (1990), "Ondelettes et opérateurs," Tome 1, Hermann Ed. (English translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

Purpose
 Multi-level 2-D wavelet decomposition.

Syntax
[C, S] = wavedec2(X, N, ' wname')
[C, S] = wavedec2(X, N, Lo_D, Hi_D)

Description

wavedec 2 is a two-dimensional wavelet analysis function.
[C, S] = wavedec2(X, N, 'wname') returns the wavelet decomposition of the matrix X at level N, using the wavelet named in string 'wname' (see wfilters).

Outputs are the decomposition vector C and the corresponding bookkeeping matrix S .

N must be a strictly positive integer (see wnaxl ev).
Instead of giving the wavelet name, you can give the filters.
For [C, S] = wavedec $2\left(\mathrm{X}, \mathrm{N}\right.$, Lo_D, $^{\mathrm{D}}, \mathrm{Hi}$ _D), Lo_D is the decomposition low-pass filter and Hi _Dis the decomposition high-pass filter. The output wavelet two-dimensional decomposition structure [C, S] contains the wavelet decomposition vector C and the corresponding bookkeeping matrix S .

Vector C is organized as:
$C=[A(N)|H(N)| V(N)|D(N)| \ldots$
$H(N-1)|V(N-1)| D(N-1)|\ldots|(1)|V(1)| D(1)]$.
where A, H, V, D, are row vectors such that:
A = approximation coefficients
$\mathrm{H}=$ horizontal detail coefficients
$\mathrm{V}=$ vertical detail coefficients
D = diagonal detail coefficients
each vector is the vector columnwise storage of a matrix.
Matrix S is such that:
$\mathrm{S}(1,:)=$ size of approximation coefficients(N)
$\mathrm{S}(\mathrm{i},:)=$ size of detail coefficients($\mathrm{N}-\mathrm{i}+2$) for $\mathrm{i}=2, \ldots \mathrm{~N}+1$ and $\mathrm{S}(\mathrm{N}+2,:$) $=\operatorname{size}(\mathrm{X})$.
coef $s(3 n+1$ sections)

Examples

```
% Load origi nal i mage.
    l oad noman;
    % X contai ns the I oaded immge.
% Performdecomposition at level 2
% of X using dbl.
    [c, s] = wavedec2(X, 2,' db1' );
% Decomposition structure organi zation.
    sizex = si ze(X)
sizex =
    256 256
    sizec = size(c)
sizec =
    1 65536
    val_s = s
val _s =
    64 64
    64 64
    128 128
    256 256
```


Algorithm

For images, an algorithm similar to the one-dimensional case is possible for two-dimensional wavelets and scaling functions obtained from one-dimensional ones by tensor product.
This kind of two-dimensional DWT leads to a decomposition of approximation coefficients at level j in four components: the approximation at level $\mathrm{j}+1$ and the details in three orientations (horizontal, vertical, and diagonal).

The foll owing chart describes the basic decomposition step for images:

Two-Dimensional DWT

Decomposition step

where
$2 \downarrow 1$ Downsample columns: keep the even indexed columns
$1 \downarrow 2$ Downsample rows: keep the even indexed rows
\square Convolve with filter X the rows of the entry
columns
X Convolve with filter X the columns of the entry

Initialization $c A_{0}=s$ for the decomposition initialization

So, for J = 2, the two-dimensional wavelet tree has the form:

See Also dut 2, wavei nfo, uf ilters, urmal ev
References
I. Daubechies (1992), "Ten lectures on wavelets," CBM S-NSF conference series in applied mathematics. SIAM Ed.
S. Mallat (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and MachineIntel., vol. 11, no. 7, pp 674-693.
Y. M eyer(1990), "Ondelettes et opérateurs," Tome 1, Hermann Ed. (E nglish translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

Purpose	Wavelet tool box demos.
Syntax	wavedeno
Description	wavedeno brings up a GUI that allows you to choose between several Wavelet Tool box demos.

Purpose Wavelet and scaling functions.

Syntax [phi, psi, XVAL] = wavef un(' wname',iter)

[phi 1, psi 1, phi 2, psi 2, XVAL] = wavef un(' uname', iter)

[psi, XVAL] = wavef un(' wname',iter)

havef un (' wname', a, b)
The function wavef un returns approximations of the wavelet function ' mname' and the associated scaling function, if it exists. Positive integer i ter determines the number of iterations computed, and thus the refinement of the approximations.
For an orthogonal wavel et:
[phi, psi, XVAL] = wavef un(' wname',iter) returns the scaling and wavelet functions on the $2{ }^{\text {iter }}$ points grid XVAL.
For a biorthogonal wavelet:
[phi 1, psi 1, phi 2, psi 2, XVAL] = wavef un(' mname',iter) returns the scaling and wavelet functions both for decomposition (phi 1, psi 1) and for reconstruction (phi 2, psi 2).
For a Meyer wavelet:
[phi, psi, XVAL] = wavef un(' mname', iter)
For a Morlet or Mexican Hat wavelet:
[psi,XVAL] = wavef un(' wname', iter)
wavef un(' wname', a, b), where a and b are positive integers, is equivalent to wavef un(' wname' , $\max (\mathrm{a}, \mathrm{b})$), and draws plots of the wavelet and scale approximations.
When a is set equal to the special value 0 ,
wavef un(' wname', 0) is equivalent to wavef un(' mname' , 8, b) .
wavef un(' wname') is equivalent to wavef un(' mname' , 8) .

Examples

On thefollowing graph, 10 piecewise linear approximations of the sym4 wavelet obtained after each iteration of the cascade algorithm are shown.

```
% Set number of iterations and wavel et name.
    iter = 10;
    wav = 'sym4';
% Compute approxi mations of the wavel et function using the
%cascade al gorithm
    for i = 1:iter
            [ phi,psi,xval] = wavef un( wav,i);
            pl ot (xval, psi);
            hol d on
        end
        title(['Appr oxi mati ons of the wavel et ', wav, ...
            ' for 1 to ',num2str(iter),' iterations']);
        hol d off
```

 Approximations of the wavelet sym4 for 1 to 10 iterations

For compactly supported wavel ets defined by filters, in general no closed form analytic formula exists.

The algorithm used is the cascade algorithm. It uses the single-level inverse wavelet transform repeatedly.

Let us begin with the scaling function ϕ.
Since ϕ is also equal to $\phi_{0,0}$, (according to the notation used in Chapter 6), this function is characterized by the following coefficients in the orthogonal framework:
$<\phi, \phi_{0, n}>=1$ only if $n=0$ and equal to 0 otherwise
$<\phi, \psi_{-j, k}>=0$ for positive j, and all k.
This expansion can be viewed as a wavelet decomposition structure. Detail coefficients areall zeros and approximation coefficients areall zeros except one equal to 1.

Then we use the reconstruction algorithm in order to approximate the function ϕ over a dyadic grid, according to the following result:

For any dyadic rational of the form $x=n 2^{-j}$ in which the function is continuous and where j is sufficiently large, we have pointwise convergence and:

$$
\left|\phi(x)-2^{\frac{j}{2}}\left\langle\phi, \phi_{-j, n 2^{j-j}}\right\rangle\right| \leq C .2^{-j \alpha}
$$

where C is a constant, and α is a positive constant depending on the wavelet regularity.

Then using a good approximation of ϕ on dyadic rationals, we can use piecewise constant or piecewise linear interpolations η on dyadic intervals, for which uniform convergence occurs with similar exponential rate:

$$
\|\phi-\eta\|_{\infty} \leq C .2^{-j \alpha}
$$

So using a J-steps reconstruction scheme, we obtain an approximation that converges exponentially towards ϕ when J goes to infinity.

Approximations are computed over a grid of dyadic rationals covering the support of the function to be approximated.

Since a scaled version of the wavelet function ψ can also be expanded on the $\left(\phi_{-1, n}\right)_{n}$, the same scheme can be used, after a single-level reconstruction starting with the appropriate wavel et decomposition structure. Approximation coefficients are all zeros and detail coefficients are all zeros except one equal to 1.

For biorthogonal wavelets, the same ideas can be applied on each of the two multiresolution schemes in duality.

Note: This algorithm may diverge if the function to be approximated is not continuous on dyadic rationals.

See Also	i nt wave, wavei nf o, wf i I ters
References	I. Daubechies, "Ten lectures on wavelets," CBMS, SIAM, 1992, p. 202-213.
	G. Strang, T. N guyen (1996), Wavel ets and Filter Banks, Wellesley-Cambridge Press.

Purpose Information on wavelets.

Syntax	wavei nf o
wavei nf o(' wnane' ' $)$	

Description

wavei nf o gives information on all wavelets.
wavei nf o('wname') gives information on the wavelet family whose short name is specified by the string 'uname'. Available family short names are:

' haar'	$:$	Haar wavelet.
' db'	$:$	Daubechies wavel ets.
' sym	$:$	Symlets.
' coif'	$:$	Coiflets.
' bi or'	$:$	Biorthogonal wavelets.
' meyr'	$:$	Meyer wavelet.
' mexh'	$:$	Mexican hat wavelet.
' morl'	$:$	Morlet wavelet.

or user-defined short names for their own wavelet families (see navemgr).
wavei $n f$ o('wsys') gives information on wavelet packets.
Examples
wavei $n f o(' d b ' ~)$
DBI NFO I nf or mation on Daubechi es wavel ets.
Daubechi es Wavel ets
General characteristics: Compactly supportedwavel ets with extremal phase and hi ghestnumber of vani shing moments for a gi vensupport width. Associ ated scaling filters aremini mum phase filters.
Family Daubechi es
Short nare db
$\begin{array}{ll}\text { Order } & \text { N }\end{array}$
Orthogonal yes
Bi orthogonal yes
Compact support yes
DVT possible
CVT possible
Support width $2 \mathrm{~N}-1$
Filters length $2 N$
Regul arity about 0. 2 N for I arge N
Symmetry far fromNumber of vani shing moments for psi NRef er ence: I. Daubechi es,
Ten lectures on wavel ets CBMB, SI AM 61, 1994, 194-202.
See Also wavemgr

Purpose Start graphical user interface tools.

Syntax havemenu

Description
wavemenu brings up a menu for accessing the various graphical tools provided in the Wavelet Tool box. F or instructions on using these tools see:

Continuous Wavelet 1-D
Wavelet 1-D and Wavelet 2-D
Wavelet Packet 1-D and Wavelet Packet 2-D
Wavelet Display and Wavelet Packet Display

Chapter 2
Chapter 2
Chapter 5
Chapter 1

Examples

wavemenu


```
Purpose Wavelet manager.
Syntax wavemgr('create')
wavemmgr(' add', FN, FSN, VT, NUMS, FI LE)
wavemgr( ' add' , FN, FSN, WT, NUMS, FI LE, B)
wavemgr(' del ',N)
wavemgr(' rest ore')
wavemgr('rest ore', I N2)
OU1 = wavemmgr('read' )
OUT1 = navemmgr('read',I N2)
OUT1 = navemmgr('read_asc')
```


Description

```
wavemgr is a type of wavel ets manager. It allows you to create, add, delete, restore, or read wavelets.
wavemgr(' create') creates the wavel et s. i nf MAT-file using the wavel ets. asc ASCII-file.
wavemngr (' add' , FN, FSN, VT, NUMS, FI LE) or wavemgr ( ' add' , FN, FSN, VT, NUMS, FI LE, B) , adds a new wavelet family to the tool box.
FN = Family Name (string)
FSN = Family Short Name (string of length less than four characters)
WT =Wavelet type
\(\mathrm{VT}=1\), orthogonal wavelets
\(\mathrm{WT}=2\), biorthogonal wavelets
\(W T=3\), wavel et with scaling function
\(W T=4\), wavel et without scaling function
NUMS = String of numbers
FI LE = MAT-file or M-file name (string). See the example for usage.
\(B=\left[\begin{array}{ll}l & \mathrm{~b}\end{array}\right]\) lower and upper bounds of effective support for wavelets of type \(=3\) or 4 .
```

This option is fully documented in Chapter Chapter 7, "Adding Y our Own Wavelets."
wavemgr(' del ' , N) , deletes a wavelet family. FSN = F amily Short Name or Wavelet Name (in the family).
wavemgr('restore') or wavenmgr('restore', IN2), restores previous or initial wavelets. If nargi $n=1$, the previous wavel et s. asc file is restored; otherwise the initial wavel et s. asc file is restored. Here I N2 is a dummy argument.

OT1 = wavemmgr('read') Or1 gives all wavelets families.
OT1 = wavemmgr ('read' , I N2) returns all wavelets, I N2 is a dummy argument.

OT1 = wavemgr('read_asc') reads wavel et s. asc ASCII-file and OUT1 gives all wavelets information.

Examples

8-152

In the following example, new compactly supported orthogonal wavelets are added to the tool box. These wavelets, which are a slight generalization of the Daubechies wavelets, are based on the use of Bernstein polynomials and are due to K ateb and Lemarié in an unpublished work.

Note: The M-files used in this example can be found in the wavedeno directory.

```
% Add new family of orthogonal wavel ets.
% You must define:
%
% Family Name: Lemarie
% Family Short Name: I em
% Type of wavel et: 1 (orth)
% Wavel ets numbers: 1 2 3 4 5
% File driver: I emwavf
%
% The functi on I emwavf.m must be as follow.
% functi on w = l emwavf(wname)
% where the i nput argument wname is a string:
% wname = 'lem1' or 'lem2' ... i.e.,
% wname = sh. name + number
% and w the corresponding scaling filter.
% Ten addi ti on i s obtai ned usi ng:
```

```
wavemmgr(' add',' Lemari e','। em', 1,' 1 2 3 4 5','I emmavf');
% The ascii file 'wavel ets. asc' is saved as
%' wavel ets. prv', then it i s modi fied and
%the MAT file 'wavel ets.inf' i s gener at ed.
% Li st wavel ets families.
    wavemmgr('read')
ans =
Haar haar
Daubechi es db
Bi orSpl i nes bi or
Coi fl ets coif
Sym et s sym
Mbrlet norl
Mexi can_hat mexh
Meyer meyr
Lemarie l em
% Remove the added family.
    wavemmgr(' del ',' Lemari e' );
% Li st wavel ets families.
    wavemmgr('read')
ans =
Haar haar
Daubechi es db
Bi orSpl i nes bi or
Coiflets coif
Sym et s sym
Mbrlet morl
Mexi can_hat mexh
Meyer neyr
```



```
Lemarie lem
------------------------------
I eml lem2 lemB I emA | enD
%Restore initial wavel ets.
%
% Restore the initial ascii file
%' wavel ets.ini' and initial
% MAT-file ' wavel ets.bin'.
    wavemmg(' rest ore', 0);
% Li st wavel ets families.
    wavemmg('read' )
ans =
Haar haar
Daubechi es db
Bi orSplines bi or
Coifl ets coif
Syml ets sym
Mbrlet norl
Mexi can_hat mexh
Meyer meyr
%Add new family of orthogonal wavel ets.
    wavemgr(' add',' Lemarie','l em, 1,' 1 2 3','I emwavf');
% All command line capabilities are available for
%the new wavel ets.
%
% Example 1: compute the four associ ated filters.
    [Lo_D, Hi_D, Lo_R, Hi__R] = wfilters('I emß');
% Exampl e 2: compute scal e and wavel et functions.
    [ phi,psi,xval ] = wavef un('l emß' );
```

```
% Add a new family of orthogonal wavel ets: speci al form
%for the GUI node.
%
% The M-file lemwavf allows you to compute the filter for
% any order. If you want to get a popup of the form
%12 3**, associ at ed with the family, then wavel ets are
% appended for GUl mode usi ng:
wavemgr('rest or e',0);
wavemgr(' add','Lemarie','l em,1,'1 2 3 **','I emmavf');
%After this sequence, all GUl capabilities are available for
% the new wavel ets.
% Note that the last command allows a short cut in the
% order definition only if possible orders are integers.
```

Caution: wavemgr works on the current directory. If you add a new wavelet family, it is available in this directory only. Refer to Chapter 7, "Adding Your Own Wavelets ."

Limitations

wavemgr allows you to add a new wavelet. Y ou must verify that it is truly a wavelet. No check is performed either about this point or about the type of the new wavelet.

Purpose	Multi-level 1-D wavel et reconstruction.
Syntax	X = waverec (C, L, ' wnane')
	X $=$ waverec(C, L, Lo_R, Hi_R)
Description	waver ec performs a multi-level one-dimensional wavelet reconstruction using either a specific wavelet ('wname', see wf i l ter s) or specific reconstruction filters (Lo_R and Hi_R). waverec is the inverse function of wavedec in the sense that the abstract statement waverec(wavedec (X, N, 'wname'), 'wname') returns X.
	$X=$ waverec(C, L, 'wnare') reconstructs the signal X based on the multi-level wavelet decomposition structure [C, L] and wavelet 'wname'. (For information about the decomposition structure, see wavedec.)
	$X=$ waver ec ($C, L, L o \_R, H i \_R$) reconstructs the signal X as above, using the reconstruction filters you specify.
Remarks	Note that $\mathrm{X}=$ waver ec (C, L, 'wname') is equivalent to $X=\operatorname{appcoef}(C, L, '$ mame', 0).
Examples	\% Load origi nal one- di mensi onal si gnal. I oad I el eccum s = I el eccum(1: 3920); Is = I ength(s);
	\% Perform decomposition of signal at level 3 using db5. [c, l] = wavedec(s, 3, ' db5');
	\% Reconstruct s fromthe wavel et decomosition structure [c,l]. a0 = waverec(c,l,'db5');
	\% Check for perfect reconstruction. err $=$ norm(s-a0)
	3. $2079 \mathrm{e}-09$
See Also	appcoef, i dwt, wavedec

8-158

Purpose Multi-level 2-D wavelet reconstruction.
Syntax X = waverec 2(C, S, ' wname')
X = waverec 2 (C, S, Lo_R, Hi_R)
Description
Remarks
Examples
\% Load ori gi nal i mage.
I oad woman;
\% X cont ai ns the l oaded i mage.
\% Perform decomposition at l evel 2
\% of X using symA.
[c, s] = wavedec2($X, 2$, 'sym4');
\% Reconstruct X from the wavel et\% decomposition structure [c, s].
a0 = naverec 2 (c, s, 'sym4');
\% Check for perfect reconstruction.
$\max (\max (X-a 0))$
ans $=$
1. $9463 \mathrm{e}-10$
See Also
Purpose Extended pseudocolor matrix scaling.
Syntax $\left.\quad \begin{array}{rl}Y & =\operatorname{wcodemat}(X, N B, O P T, A B S O L\end{array}\right)$

Description

wcodemat is a general utility.
$Y=$ wcodemat ($X, N B$, OPT, ABSOL) returns a coded version of input matrix X if ABSOL $=0$, or $\operatorname{ABS}(X)$ if ABSOL is nonzero, using the first NB integers. Coding can be done rowwise (OPT = ' row'), columnwise (OPT = ' col') or globally (OPT = ' mat'). Coding uses a regular grid between the minimum and the maximum values of each row (column or matrix, respectively).
$Y=\operatorname{wcodemat}(X, N B, O P T)$ is equivalent to $Y=\operatorname{wcodemat}(X, N B, O P T, 1)$.
$Y=\operatorname{wcodemat}(X, N B)$ is equivalent to $Y=\operatorname{wcodemat}(X, N B, \quad$ mat', 1$)$.
$Y=\operatorname{wcodemat}(X)$ is equivalent to $Y=\operatorname{wcodemat}(X, 16, ' m a t ', 1)$.

Purpose Find common elements.

Syntax
 [XI, YI] = wcommon(X, Y)

Description wcommon is a general utility.
For two vectors X and Y with integer components, [XI, YI] = wcomon (X, Y) returns two vectors with 0 and 1 components such that:
$\mathrm{XI}(\mathrm{k})=1$ if $\mathrm{X}(\mathrm{k})$ belongs to Y ; otherwise $\mathrm{XI}(\mathrm{k})=0$ and
$\mathrm{YI}(\mathrm{j})=1$ if $\mathrm{Y}(\mathrm{j})$ belongs to X ; otherwise $\mathrm{YI}(\mathrm{j})=0$.
Examples

```
% Define two vectors.
        x = [ 10 20 30 40 50 ];
        y =[ [ 60 50 70 30 20 12 31 ];
    % Fi nd common el ements.
        [xi,yi] = wcommon(x,y)
xi =
        O 1 0 1
yi =
        0101100
% Li st conmmon el ements.
        comel em = x(find(xi ))
comel em =
            20 30 50
```

Purpose	Manager for data structure.
Syntax	[OUT1, OUT2] = wdat angr (O, D, I N3, I N4, I N5)
Description	wdat angr is a tree management utility.
	[OUT1, OUT2] = wdat angr (O, D, I N3, I N4, I N5) where Dis the data structure and ois a string option. The possible options are:
	' write_cf s' : writes coefficients for a terminal node data = wdat angr('write_cfs',data,tree, node, coefs);
	' read_cfs' : reads coefficients for a terminal node coefs = wdat amgr('read_cfs',data, tree, node);
	```' read_ent ' : reads the entropy vector ent = wdat angr('read_ent',dat a, nodes);```
	' read_ent o' : reads the optimal entropy vector ento = wdat angr('read_ento', data, nodes);
	' read_t p_ent ' : reads the type and the parameter for entropy [type_ent, param] = wdatamgr('read_tp_ent', data);
	' read_wave' : reads the name of the wavel et wave = wdat angr('r ead_wave', dat a);

## Examples

```
% Load si gnal.
 I oad noi sdopp; x = noi sdopp;
% Decompose x at depth 3 wi th dbl wavel et packets
% usi ng Shannon entropy.
 [t,d] = wpdec(x, 3,'db1','shannon');
% Read entropy name.
 ent_name = wdat angr('read_t p_ent ', d)
ent_name =
shannon
% Read wavel et name.
 wav_name = wdat amgr (' read_wave',d)
wav_name =
db1
```

```
% Read packet (3, 2) coef fici ent s.
 cfs = wdat amgr('read_cfs',d,t,[3 2]);
% Read packet (3,2) entropy and opti mal entropy.
 i nd_node = depo2i nd(2, [3 2]);
 ent = wdat amgr('read_ent',d,i nd_node)
ent =
- 318.4298
% Optimal entropy is NaN because no optimization has been done.
 ent o = wdat amgr('read_ento',d, i nd_node)
ento =
NaN
% Mbdify packet (3,2) coefficients.
 ncfs = cos(cfs); % or any ot her modification !
% Update packet (3,2) coefficients.
 d = wdat angr('write_cfs',d,t,[3 2], ncfs);
% Update nodes entropy.
 d = entr upd(t, d, ' shannon');
 nent = wdat amgr('read_ent',d, i nd_node)
nent =
22. }283
wpdec, wpdec 2 , wt r eemgr
```


## Purpose

Syntax

## Description

Automatic 1-D denoising using wavelets.
[ XD, CXD, LXD] = wden ( X, TPTR, SORH, SCAL, N, ' uname' )
[ XD, CXD, LXD] $=$ wden ( C, L, TPTR, SORH, SCAL, N, ' wname' )
wden is a one-dimensional de-noising oriented function.
wden performs an automatic de-noising process of a one-dimensional signal using wavelets.
[ XD, CXD, LXD] = wden( X, TPTR, SORH, SCAL, N, 'wname') returns a denoised version XD of input signal $X$ obtained by threshol ding the wavelet coefficients.

Additional output arguments [ CXD, LXD] are the wavelet decomposition structure (see wavedec) of the de-noised signal XD.

TPTR string contains threshold selection rules:
' ri gr sure' use the principle of Stein's Unbiased Risk.
' heur sure' is an heuristic variant of the first option.
' sqt wol og' for universal threshold $\sqrt{2 \log (.)}$.
' mi ni maxi ' for minimax thresholding (seethsel ect for more details).
SORH (' s' or ' h ' ) is for soft or hard thresholding (see nt hresh for more details).
SCAL defines multiplicative threshold rescaling:
' one' for no rescaling.
' sl n' for rescaling using a single estimation of level noise based on first level coefficients.
' min' for rescaling done using level-dependent estimation of level noise.
Wavelet decomposition is performed at level Nand 'wnare' is a string containing the name of the desired orthogonal wavelet (see umaxl ev and wfilters).
[ XD, CXD, LXD] = wden( C, L, TPTR, SORH, SCAL, N, 'wname') returns the same output arguments, using the same options as above, but obtained directly from the input wavelet decomposition structure [ C, L] of the signal to be denoised, at level N and using 'wname' orthogonal wavelet.

The underlying model for the noisy signal is basically of the following form:

$$
s(n)=f(n)+\sigma e(n)
$$

where time $n$ is equally spaced.
In the simplest model, suppose that $e(n)$ is a Gaussian white noise $N(0,1)$ and the noise level $\sigma$ a is supposed to be equal to 1 .

The denoising objective is to suppress the noise part of the signal $s$ and to recover $f$.

The de-noising procedure proceeds in three steps:
1 Decomposition. Choosea wavelet, and choose a level N. Computethe wavelet decomposition of the signal sat level N .
2 Detail coefficients thresholding. F or each level from 1 to N, select a threshold and apply soft threshol ding to the detail coefficients.
3 Reconstruction. Compute wavelet reconstruction based on the original approximation coefficients of level N and the modified detail coefficients of levels from 1 to N .

More details about threshold selection rules can be found in Chapter 6 and in the help for thsel ect. Let us point out that:

- The detail coefficients vector is the superposition of the coefficients of $f$ and the coefficients of $e$, and that the decomposition of eleads to detail coefficients that are standard Gaussian white noises.
- Minimax and SURE threshold selection rules are more conservative and are more convenient when small details of function $f$ lie in the noise range. The two other rules remove the noise more efficiently. The option ' heur sure' is a compromise.

In practice the basic model cannot be used directly. This section examines the options available, in order to deal with model deviations. The remaining parameter scal has to be specified. It corresponds to threshold rescaling methods.

- Option scal =' one' corresponds to the basic model.
- In general you can ignore the noise level that must be estimated. The detail coefficients $C D_{1}$ (the finest scale) are essentially noise coefficients with standard deviation equal to $\sigma$. The median absolute deviation of the coefficients is a robust estimate of $\sigma$. The use of a robust estimate is crucial for two reasons. The first is that if level 1 coefficients contain $f$ details, these details are concentrated in few coefficients. The second reason is to avoid signal end effects, which are pure artifacts due to computations on the edges.
Option scal = 'sl n' handles threshold rescaling using a single estimation of level noise based on the first level coefficients.
- When you suspect a nonwhite noise $e$, thresholds must be rescaled by a level dependent estimation of the level noise. The same kind of strategy is used by estimating $\sigma_{l e v}$ level by level. This estimation is implemented in M-file unoi sest, which handles the wavelet decomposition structure of the original signal $s$ directly.

Option scal $=$ ' min' handles threshold rescaling using a level-dependent estimation of the level noise.

## Examples

```
% Set si gnal to noi se ratio and set rand seed.
 snr = 3; i nit = 2055615866;
% Generate ori gi nal si gnal and a noi sy versi on adding
% a standard Gaussi an whi te noi se.
 [xref,x] = wnoi se(3, 11, snr,i nit);
% De-noi se noi sy si gnal usi ng soft heuri stic SURE threshol di ng
% and scal ed noi se option, on detail coefficients obtai ned
%fromthe decompositi on of x, at l evel 5 by sym8 wavel et.
 l ev = 5;
 xd = wden(x,' heursure',' s',' one',l ev,' sym8');
```

\% PI ot si gnal s.
subpl ot (611), pl ot (xref), axi s([1 $2048-10$ 10]); title('Origi nal si gnal');
subpl ot (612), pl ot (x), axis([1 2048-10 10]); title(['Noisy signal - Si gnal to noi se ratio =',... num2str(fix(snr))]); subpl ot(613), pl ot (xd), axi s([1 2048-10 10]); title('De-noised signal - heuristic SURE');
\% De-noi se noi sy si gnal usi ng soft SURE threshol ding xd $=$ wden( $x$, ' heursure', 's','one', lev,' sym8' );
\% PI ot si gnal.
subpl ot (614), pl ot (xd), axi s([ 1 2048-10 10]);
title('De-noi sed si gnal - SURE' );
\% De- noi se noi sy si gnal using fixed formthreshol d with \% a single level estimation of noi se standard deviation. xd = wden(x,' sqt wol og','s','sl n',lev,' sym8' );
\% PI ot si gnal.
subpl ot (615), pl ot (xd), axi s([ 1 2048-10 10]); title('De-noi sed signal - Fixed formthreshol d' );
\% De-noi se noi sy si gnal usi ng mi ni max threshol d with \% a multiple level estimation of noi se standard deviation. xd = wden( $x$, ' mi ni maxi',' s','sl n', l ev,' sym8' );
\% PI ot si gnal.
subpl ot (616), pl ot (xd), axi s([1 2048-10 10]); title(' De-noi sed signal - Min max');
\%If many trials are necessary, it is better to perform \% decomposition once and threshol d it many times: \% decomposition. [ c, l] = navedec(x, lev,' syn8'); \%threshol d the decomposition structure [c,l].



## See Also <br> thsel ect, wavedec, wdencmp, wfilters, wt hresh

## References

A. Antoniadis, G. Oppenheim, Eds. (1995), "Wavelets and statistics," 103, Lecture Notes in Statistics, Springer Verlag.
D.L. Donoho (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.
D.L. Donoho, I.M. J ohnstone (1994), "I deal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.
D.L. Donoho (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.
D.L. Donoho, I.M. J ohnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptotia," J our. Roy. Stat. Soc., series B, vol. 57, no. 2, pp. 301369.

## Purpose <br> De-noising or compression using wavelets.

Syntax

Description

[ XC, CXC, LXC, PERFO, PERFL2] = wdencmp(' gbl ' , X, ' wname' , N, THR, SORH, KEEPAPP)<br>[ XC, CXC, LXC, PERF0, PERFL2] = wdencmp('I vd' , X, ' mname' , N, THR, SORH)<br>[ XC, CXC, LXC, PERF0, PERFL2] = wdencmp('I vd' , C, L, ' wname' , N, THR, SORH)

wdencmp is a one- or two-dimensional de-noising and compression oriented function.
wdencmp performs a de-noising or compression process of a signal or an image, using wavelets.
[ XC, CXC, LXC, PERFO, PERFL2] = wdencmp( ' gbl ' , X, 'wnare', N, THR, SORH, KEEPAPP) returns a de-noised or compressed version XC of input signal X (oneor two-dimensional) obtained by wavelet coefficients thresholding using global positive threshold THR.

Additional output arguments [ CXC, LXC] are the wavelet decomposition structure of XC (see wavedec or wavedec2). PERF0 and PERFL2 are $L^{2}$-norm recovery and compression score in percentage.
PERFL2 $=100$ * (vector-norm of CXC / vector-norm of C) ${ }^{2}$ if [ $\mathrm{C}, \mathrm{L}$ ] denotes the wavelet decomposition structure of $X$.

If $X$ is a one-dimensional signal and 'uname' an orthogonal wavelet, PERFL2 is
reduced to $\frac{100\|X C\|^{2}}{\|X\|^{2}}$.
Wavelet decomposition is performed at level Nand 'wname' is a string containing wavel et name (see wnmx ev and wf il ters). SORH (' s' or ' h' ) is for soft or hard thresholding (see wt hr esh for more details). If KEEPAPP = 1, approximation coefficients cannot be thresholded, otherwise it is possible.
wdencmp( ' gbl ' , C, L, 'wname', N, THR, SORH, KEEPAPP) has the same output arguments, using the same options as above, but obtained directly from the input wavel et decomposition structure [ C, L] of the signal to be de-noised or compressed, at level $N$ and using 'wname' wavelet.

For the one-dimensional case and 'I vd' option:
[ XC, CXC, LXC, PERF 0, PERFL2] = wdencmp('I vd' , X, ' wname' , N, THR, SORH)
or
[ XC, CXC, LXC, PERFO, PERFL2] =
wdencmp('I vd', C, L, ' wname' , N, THR, SORH)
has the same output arguments, using the same options as above, but allowing level-dependent thresholds contained in vector THR (THR must be of length N). In addition, the approximation is kept. Note that, with respect to wden (automatic de-noising), wdencmp allows moreflexibility and you can implement your own de-noising strategy.

For the two-dimensional case and ' I vd' option:
[ XC, CXC, LXC, PERF0, PERFL2] = wdencmp('I vd' , X, ' wname' , N, THR, SORH) or
[ XC, CXC, LXC, PERFO, PERFL2] =
wdencmp('I vd', C, L, ' wname' , N, THR, SORH)
THR must be a matrix 3 by $N$ containing the level-dependent thresholds in the three orientations; horizontal, diagonal, and vertical.

Ideas for de-noising can be found in Chapter 2, "Using Wavelets ," and in the Description section of the uden reference entry.

The compression features of a given wavelet basis are primarily linked to the relative scarceness of the wavelet domain representation for the signal. The notion behind compression is based on the concept that the regular signal component can be accurately approximated using a small number of approximation coefficients (at a suitably selected level) and some of the detail coefficients.

Like de-noising, the compression procedure contains three steps:
1 Decomposition.
2 Detail coefficient thresholding. For each level from 1 to N , a threshold is selected and hard threshol ding is applied to the detail coefficients.
3 Reconstruction.
The difference with the de-noising procedure is found in step 2.

## Examples

\% Load origi nal image. I oad sinsin
\% X contai ns the I oaded image.
\% Gener at e noi sy i mage.
i ni t =2055615866; randn('seed', init);
$x=X+18^{*}$ randn(size(X) );
\% Use wdencmp for i mage de- noi sing.
\%find default val ues (see ddencmp).
[thr, sor h, keepapp] = ddencmp('den',' w', x); \% de- noi se i nage using gl obal threshol di ng option. xd = wdencmp('gbl', x, 'sym4', 2, thr, sorh, keepapp) ;


De-noised Image

\% Load el ectrical si gnal and sel ect a part.
I oad I el eccum indx = 2600: 3100;
$x=1$ el eccum( i ndx);
\% Use wdencmp for si gnal compression. \% compress using a fixed threshold. t hr =35;
[ xd, cxd, I xd, perf0, perfl 2] = ...
wdencmp(' gbl ' , x, ' db3' , 3, thr, ' h' , 1);

\% Use wdencmp for si gnal de- noi sing.
\% Find def ault val ues (see ddencmp).
[thr, sorh, keepapp] = ddencmp('den',' w' , x) ;
\% De- noi se si gnal using gl obal threshol ding option. xd = wdencmp(' gbl', x, 'db3', 2, thr, sorh, keepapp);


\%In addition the first option allows level and orientation\% dependent threshol ds. In this case the approxi mation is kept. \% The level-dependent threshol ds in the three orientations \% horizontal, di agonal and vertical are as follows:
thr_h = [17 18]; \% Horizontal threshol ds.
thr_d = [19 20]; \% Di agonal threshol ds.
thr_v = [21 22]; \%Vertical threshol ds.
thr = [thr_h ; thr_d ; thr_v]
$\mathrm{thr}=$
1718
1920
2122
[ xd, cxd, l xd, perf 0, perfl 2] = ...
wdencmp('I vd', x, 'sym8', 2, thr,' h' );
See Also ddencmp, wavedec, wavedec 2, wden, wpdencmp, wt hresh
References R.A. DeVore, B. J awerth, B.J. Lucier (1992), "Image compression through wavelet transform coding," IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719-746.
D.L. Donoho (1993), "Progress in wavel et analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. M eyer, S. Roques, pp. 109-128. Frontières Ed.
D.L. Donoho, I.M . J ohnstone(1994), "I deal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.
D.L. Donoho, I.M. J ohnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptopia,"J our. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301369.
D.L. Donoho, I.M. J ohnstone, "I deal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, t. 319, Ser. I, pp. 1317-1322.
D.L. Donoho (1995), "De-noising by soft-thresholding," IEEE Trans. on Inf. Theory, 41, 3, pp. 613-627.

Purpose	Entropy (wavelet packet).
Syntax	$\begin{aligned} & \mathrm{E}=\text { wentropy }(\mathrm{X}, \mathrm{~T}, \mathrm{P}) \\ & \mathrm{E}=\text { wentropy }(\mathrm{X}, \mathrm{~T}) \end{aligned}$
Description	$E=$ went $\operatorname{ropy}(X, T, P)$ returns the entropy $E$ of the vector or matrix input $X$. In both cases, output E is a real number. T is a string containing the type of entropy:   T = 'shannon', 'threshol d', 'norm, 'log energy', 'sure', 'user'   $P$ is an optional parameter depending on $T$ value:   If T = 'shannon' or ' l og energy', P is not used.   If $T=$ ' $\mathrm{threshol} \mathrm{d}^{\prime}$ or ' sure', P is the threshold and must be a positive number.   If $\mathrm{T}=$ ' norm, P is the power and must be such that $1<=\mathrm{P}<2$.   If $T=$ ' user ' , P is a string containing the M -file name of your own entropy function, with a single input $x$.   $E=$ went $r o p y(X, T)$ is equivalent to $E=$ went $\operatorname{ropy}(X, T, 0)$.   Functionals verifying an additive-type property are well suited for efficient searching of binary-tree structures and the fundamental splitting property of the wavelet packets decomposition. Classical entropy-based criteria match these conditions and describe information-related properties for an accurate representation of a given signal. Entropy is a common concept in many fields, mainly in signal processing. The following example lists different entropy criteria, many others are available and can be easily integrated. In the following expressions $s$ is the signal and $\left(s_{\mathrm{i}}\right)_{\mathrm{i}}$ the coefficients of $s$ in an

The entropy E must be an additive cost function such that $E(0)=0$ and $E(s)=\sum_{i} E\left(s_{i}\right)$.

- The (non-normalized) Shannon entropy.

$$
\begin{aligned}
& E 1\left(s_{i}\right)=s_{i}{ }^{2} \log \left(s_{i}{ }^{2}\right) \text { so } E 1(s)=-\sum_{i} s_{i}{ }^{2} \log \left(s_{i}^{2}\right) \\
& \text { with the convention } \operatorname{Olog}(0)=0
\end{aligned}
$$

- The concentration in $l^{\mathrm{p}}$ norm with $1 \leq p<2$.
- $E 2\left(s_{\mathrm{i}}\right)=\left|s_{\mathrm{i}}\right|^{\mathrm{p}}$ so $E 2(s)=\sum_{i}\left|s_{i}\right|^{p}=\|s\|_{p}^{p}$
- The "log energy" entropy.
- $E 3\left(s_{i}\right)=\log \left(s_{i}{ }^{2}\right)$ so $E 3(s)=\sum_{i} \log \left(s_{i}{ }^{2}\right)$
- with the convention $\log (0)=0$.
- The threshold entropy.
- $E 4\left(s_{\mathrm{i}}\right)=1$ if $\left|s_{\mathrm{i}}\right|>p$ and 0 elsewhere so $E 4(s)=\#\left\{i\right.$ such that $\left.\left|s_{\mathrm{i}}\right|>p\right\}$ is the number of time instants when the signal is greater than a threshold $p$.
- The "SURE" entropy.
$\mathrm{E} 5(\mathrm{~s})=\mathrm{n}-\#\left\{\right.$ i such that $\left.\left|s_{i}\right| \leq p\right\}+\sum_{i} \min \left(s_{i}{ }^{2}, p^{2}\right)$
See the section entitled "Using wavel et packets for compression and de-noising" in Chapter 6 for more information.


## Examples

```
% Gener at e i ni ti al si gnal .
 x = randn(1, 200) ;
% Compute Shannon entropy of x.
 e = went ropy(x,'shannon')
e =
 -142.7607
% Compute l og energy entropy of x.
 e = wentropy(x,'log energy')
e =
 -281.8975
% Compute threshol d entropy of x
% wi th threshold equal to 0. 2.
 e = went ropy(x,' threshol d', 0. 2)
e =
 1 6 2
% Compute Sure entropy of x
% wi th threshol d equal to 3.
 e = went ropy(x,'sure', 3)
e =
 -0.6575
% Compute normentropy of x with power equal to 1.1.
 e = went ropy(x,' norm, 1. 1)
e =
 160.1583
```

```
%Compute user entropy of x with a user defined
%function: userent for example.
%this function must be an Mfile, with first line
% of the following form
%
% function e = userent(x)
%
% where x is a vector and e is a real number.
% Then a new entropy is defined and can be used typing:
%
%e = wentropy(x,'user',' userent')
```

References
R.R. Coifman, M .V. Wickerhauser, (1992), "Entropy-based Algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.
D.L. Donoho, I.M. J ohnstone, "I deal de-noising in an orthonormal basis chosen from a library of bases," C.R.A.S. Paris, t. 319, Ser. I, pp. 1317-1322.

## Purpose Wavelet filters.

## Syntax [Lo_D, Hi _D, Lo_R, Hi_R] = wfilters(' mname') [F1,F2] = wfilters('unare','type')

## Description

[ Lo_D, Hi _D, Lo_R, Hi _R] = uf ilter s('wname') computes four filters associated with the orthogonal or biorthogonal wavelet named in the string 'wname'.

The four output filters are:

- Lo_D, the decomposition low-pass filter
- Hi _D, the decomposition high-pass filter
- Lo_R, the reconstruction low-pass filter
- Hi _R, the reconstruction high-pass filter

Available orthogonal or biorthogonal wavelet names 'wname' are:
Daubechies : 'db1' or 'haar', 'db2', ... ,'db10', ... ,' db50'
Coiflets : 'coif1', ... , coif5'
Symlets : 'sym2', ... , 'sym8'
Biorthogonal : ' bi or 1.1', ' bi or 1.3', ' bi or 1.5'
' bi or 2. 2', ' bi or 2.4', ' bi or 2. 6' , ' bi or 2. 8'
' bi or 3. 1', ' bi or 3. 3', ' bi or 3. 5', ' bi or 3. 7'
' bi or 3. 9', ' bi or 4. 4', ' bi or 5. 5', ' bi or 6. 8'
[ F1, F2] = wfilters( 'wname', 't ype') returns the following filters:
Lo_D and Hii_D (Decomposition filters) If 't ype' = ' d'
Lo_R and Hi_R (Reconstruction filters) If 'type' = 'r'
Lo_Dand Lo_R (Low-pass filters) If 'type'='I'


## Examples

\% Set wavel et name.
wname = 'db5';
\% Compute the four filters associ ated with wavel et name gi ven \% by the input string wnane.
[ Lo_D, Hi _D, Lo_R, Hi_ R] = wfilters(wname);
subpl ot (221); stem Lo_D);
title(' Decomposition low pass filter');
subpl ot (222) ; stem Hi_D);
title('Decomposition high-pass filter');
subpl ot (223) ; stem Lo_R);
title('Reconstruction low pass filter');
subpl ot (224); stem Hi_R);
title('Reconstruction hi gh- pass filter');
xlabel (' The four filters for db5')





```
% When used with two i nput arguments, depending on second
% argument, outputs are one row or one col umm of the previ ous
% figure.
 % Decomposition filters (first row).
 [Lo_D,Hi_D] = wf ilters(wname,' d');
 % Reconstruction filters (second row).
 [Lo_R,Hi_R] = uf ilters(wname,'r');
 % Low-pass filters (first col umm).
 [Lo_D, Lo_R] = uf ilters(wname,'l');
 % Hi gh-pass filters (second col umm).
 [Hi_D,Hi_R] = wf ilters(wname, 'h');
```


## See Also bi orfilt, orthfilt, wavei nfo

References I. Daubechies (1992), "Ten lectures on wavelets," CBM S-NSF conference series in applied mathematics. SIAM Ed.
S. Mallat (1989), "A theory for multiresolution signal decomposition: the wavelet representation," IEEE Pattern Anal. and MachineIntell., vol. 11, no. 7, pp 674-693.

Purpose Keep part of a vector or a matrix.

## Syntax <br> $Y=$ wkeep $(X, L, O)$ <br> $Y=$ wkeep $(X, L)$

## Description

wkeep is a general utility.
For a vector, $\mathrm{Y}=$ wkeep $(\mathrm{X}, \mathrm{L}, \mathrm{O})$ extracts the vector Y from the vector X . L is the length of result $Y$. If $O=$ ' $c^{\prime}$ ('I' , ' $r$ ' respectively), $Y$ is the central (left, right respectively) part of $x$.
$Y=$ wkeep $(X, L)$ is equivalent to $Y=$ wkeep $\left(X, L, C^{\prime}\right)$.
For a matrix, $\mathrm{Y}=\operatorname{wkeep}(\mathrm{X}, \mathrm{S})$ extracts the central part of the matrix X . S is the size of Y .

## Examples

```
\% For a vect or
 \(x=1: 10 ;\)
 y = wkeep(\(x, 6,{ }^{\prime} c^{\prime}\))
\(y=\)
 \(\begin{array}{llllll}3 & 4 & 5 & 6 & 7 & 8\end{array}\)
 \(y=\) wkeep \((x, 6)\)
\(y=\)
 \(3 \quad 45\)
 y \(=\) wkeep \(\left(x, 7, c^{\prime}\right)\)
\(y=\)
 \(\begin{array}{lllllll}2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\)
 \(y=\) wkeep \(\left(x, 6, I^{\prime \prime}\right)\)
\(y=\)
 \(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\)
 \(y=\) wkeep \(\left(x, 6, r^{\prime}\right)\)
\(y=\)
 \(\begin{array}{llllll}5 & 6 & 7 & 8 & 9 & 10\end{array}\)
```

$\begin{gathered} \text { \% For a matrix. } \\ x=\operatorname{mgic}(5) \end{gathered}$				
17	24	1	8	15
23	5	7	14	16
4	6	13	20	22
10	12	19	21	3
11	18	25	2	9

$$
\left.y=\text { wkeep( } x,\left[\begin{array}{ll}
3 & 2
\end{array}\right]\right)
$$

$$
y=
$$

$$
5 \quad 7
$$

$6 \quad 13$
$12 \quad 19$

```
Purpose Maximum wavelet decomposition level.
Syntax L = wrmal ev(S,' wname')
Description urmal ev is a one- or two-dimensional wavelet or wavelet packets oriented
function.
urmxl ev can help you avoid unreasonable maximum level values.
L = wnmxl ev(S, 'wnare') returns the maximum level decomposition of signal or
image of size S using the wavelet named in the string 'wname' (see wf il t ers).
ummxl ev gives the maximum allowed level decomposition, but in general, a
smaller value is taken.
Usual values are 5 for the one-dimensional case and 3 for the two-dimensional case.
```


## Examples

```
% For a 1_D si gnal.
```

% For a 1_D si gnal.
s = 2^10;
s = 2^10;
w = 'db1';
w = 'db1';
%Compute naxi muml evel decomposition.
%Compute naxi muml evel decomposition.
%The rule is the I ast level for whi ch at least
%The rule is the I ast level for whi ch at least
% one coeffici ent is correct.
% one coeffici ent is correct.
l = wrmal ev( s,w)
l = wrmal ev( s,w)
| =
| =
1 0
1 0
% Change wavel et.
% Change wavel et.
w = ' db7';
w = ' db7';
% Compute maxi muml evel decomposition.
% Compute maxi muml evel decomposition.
I = wnmal ev(s,w)
I = wnmal ev(s,w)
| =
| =
6

```
 6
```

```
% For a 2_D si gnal.
 s = [2^9 2^7];
 w = 'db1';
% Compute maxi muml evel decomposition.
 I = wnmal ev(s,w)
| =
 7
% whi ch is the same as:
 l = wnmal ev(min(s),w)
| =
 7
% Change wavel et.
 w = ' db7';
% Compute maxi muml evel decomposition.
 | = unmaxl ev(s,w)
| =
 3
```

wavedec, wavedec 2 , wpdec, wpdec 2

Purpose Generate noisy wavel et test data.

Syntax	$X=$ unoi se( NUM, N)
$[X, X N]=$ unoi se( NUM N, SNRAT)	
	$[X, X N]=$ unoi se( NUM N, SNRAT, I NI T)

Description

## Examples

 of $[0,1]$. ratio of SNRAT. the generator seed is set to I NI T value.| NUM $=1$ | Blocks |
| :--- | :--- |
| NUM $=2$ | Bumps |
| NUM $=3$ | Heavy sine |
| NUM $=4$ | Doppler |
| NUM $=5$ | Quadchirp |
| NUM $=6$ | Mishmash |

$X=$ wnoi se( NUM N $N$ ) returns values of test function number NUM on a $2^{\mathrm{N}}$ sample
[ $\mathrm{X}, \mathrm{XN}$ ] = wnoi se( NUM, N, SNRAT) returns a test vector X as above, rescaled such that st $\mathrm{d}(\mathrm{x})=$ SNRAT. The returned vector XN contains the same test vector corrupted by additive Gaussian white noise $N(0,1)$. XN has a signal-to-noise
[ $\mathrm{X}, \mathrm{XN}$ ] = unoi se( NUM N, SNRAT, I NIT) returns previous vector X and XN , but

The six functions are due to Donoho and J ohnstone (See Reference):

```
 \% Generate \(\mathbf{2}^{\wedge} 10\) sampl es of 'Heavy sine' (item 3).
 \(x=\) wnoi \(\operatorname{se}(3,10)\);
```

    \% Generate \(\mathbf{2}^{\wedge} 10\) samples of 'Doppl er' (item 4) and of
    \% noi sy ' Doppl er' with a si gnal-to-noi se ratio of 7 .
        [ x , noi syx] = wnoi se( \(4,10,7\) ) ;
    ```
% To i ntroduce your own rand seed, a fourth
% argument is al lowed:
 i ni t = 2055415866;
 [x, noi syx] = wnoi se(4, 10, 7, i nit);
% Pl ot all the test functions.
 i nd = I i nspace(0, 1, 2^10);
 for i = 1:6
 x = wnoi se(i, 10);
 subpl ot (6, 1, i), pl ot (i nd, x)
 end
0.2
```

See Also
References
won
D.L. Donoho, I.M. J ohnstone(1994), "I deal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.

## Purpose Estimate noise of 1-D wavelet coefficients.

## Syntax <br> STDC $=$ unoi sest( $\mathrm{C}, \mathrm{L}, \mathrm{S})$

Description

Examples

```
% Gener ate Gaussi an white noi se.
 i ni t = 2055415866; randn('seed', i ni t);
 x = randn(1, 1000);
% Decompose x at l evel 2 using db3 wavel et.
 [c,l] = wavedec(x, 2,'db3');
% Estimate standard devi ati on of coefficients
% at each level 1 and 2.
% Si nce x is a Gaussi an white noi se with unit
%variance, esti mates must be close to 1.
 wnoi sest(c, l, 1: 2)
ans =
 1.0111 1.0763
% Now suppose that x contai ns 10 outli ers.
 i nd = 50: 50: 500;
 x(i nd) = 100 * ones(si ze(i nd));
% Decompose x at I evel 1 using db3 wavel et.
 [ca,cd] = dut(x,'db3');
```

```
% Ordi nary estimate of cd standard devi ation
% overestimates noi se l evel.
 std(cd)
ans =
 8. }020
% Robust estimate of cd standard devi ation
%remai ns cl ose to 1 the noi se level.
 medi an(abs(cd)) / 0.6745
ans =
 1. }054
```

Limitations This procedure is well suited for Gaussian white noise.
See Also thsel ect, wavedec, wden
References D.L. Donoho, I.M. J ohnstone (1994), "I deal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.

Purpose Extract wavelet tree from wavelet packet tree.

## Syntax <br> [T, D] = up2utree(T, D)

Description
up2ut ree is a one- or two-dimensional wavelet packet analysis function.
[T, D] = up2ntree(T, D) computes the modified tree structure T and data structure D (see maket ree), corresponding to the wavelet decomposition tree.

## Examples

\% Load si gnal.
I oad noi sdopp; $\mathrm{x}=$ noi sdopp;
\% Decomose x at depth 3 with db1 wavel et packets.
[ wpt, wpd] $=\operatorname{updec}(x, 3, ' d b 1 ')$;
\% PI ot wavel et packet tree structure upt. pl ot tree( wpt )

\% Compute wavel et tree.
[ wt, wd] = wp2wt ree( wpt, upd) ;
\% PI ot wavel et tree structure wt. pl ot tree(wt)


## See Also <br> maket ree, wpdec, wpdec 2

Purpose Wavelet packet coefficients.

$$
\begin{array}{ll}
\text { Syntax } & X=\operatorname{upcoef}(S, D, N) \\
& X=\operatorname{wpcoef}(S, D)
\end{array}
$$

## Description

Examples
\% Load si gnal.
I oad noi sdopp; $\mathrm{x}=$ noi sdopp;
figure(1); subpl ot (211);
pl ot (x); title('Original si gnal');
\% Decompose x at depth 3 with dbl wavel et packets \% usi ng Shannon entropy.
[t,d] $=\operatorname{updec}(x, 3$, db1', 'shannon' $)$;
\% PI ot tree structure. plottree(t)

\% Read packet $(2,1)$ coefficients.
cfs $=\operatorname{mpcoef}(t, d,[21])$;
fi gure(1); subpl ot (212) ;
plot(cfs); title('Packet (2, 1) coefficients');



## Purpose Cut wavelet packet tree.

## Syntax

[T, D] = upcutree(T, D, L)
[T, D, RN] = upcutree(T, D, L)

## Description

## Examples

\% Load si gnal.
$\quad$ I oad noi sdopp; $x=$ noi sdopp;
\% Decompose x at depth 3 with db1 wavel et packets.
[ wpt, upd] = updec(x, 3, 'db1' );
\% PI ot wavel et packet tree structure upt. pl ot tree( wpt )

\% Cut wavel et packet tree at level 2.
[ nupt, nwpd] = upcut ree( upt, upd, 2) ;
\% PI ot new wavel et packet tree structure upt. pl ot tree( nupt)


Purpose Wavelet packet decomposition 1-D.

## Syntax <br> $[\mathrm{T}, \mathrm{D}]=\operatorname{mpdec}\left(\mathrm{X}, \mathrm{N}\right.$, ' $^{\text {uname' }}$, $\left.\mathrm{E}, \mathrm{P}\right)$ $[\mathrm{T}, \mathrm{D}]=\operatorname{mpdec}\left(\mathrm{X}, \mathrm{N}\right.$, ' $^{\text {wname' }}$ ) [T, D] $=\operatorname{updec}(\mathrm{X}, \mathrm{N}$, ' wname' )

## Description

updec is a one-dimensional wavel et packet analysis function.
[ T, D] $=\operatorname{updec}(\mathrm{X}, \mathrm{N}$, 'wname', E, P) returns a tree structure T and a data structure $D$ (see maket ree), corresponding to a wavelet packet decomposition of the vector X , at level N , with a particular wavelet ('wname', see wfilters).
$E$ is a string containing the type of entropy (see went $r$ opy):
E ='shannon', 'threshol d', 'norm','log ener gy','sure','user'
$P$ is an optional parameter:
'shannon' or 'log energy': P is not used
'threshol d' or ' sure': P is the threshold $(0 \leq P)$
' norm: P is a power ( $1 \leq \mathrm{P}<2$ )
'user ' : P is a string containing a name of an user-defined function
[T, D] $=\operatorname{updec}(X, N$, ' wname' ) is equivalent to
[T, D] $=\operatorname{updec}\left(X, N,{ }^{\prime}\right.$ mname',' shannon' ).
The wavelet packets method is a generalization of wavelet decomposition that offers a richer signal analysis. Wavelet packets atoms are waveforms indexed by three naturally interpreted parameters: position and scale as in wavelet decomposition, and frequency.

For a given orthogonal wavelet function, a library of wavelet packets bases is generated. E ach of these bases offers a particular way of coding signals, preserving global energy and reconstructing exact features. The wavelet packets can then be used for numerous expansions of a given signal. The most suitable decomposition of a given signal with respect to an entropy-based criterion is then selected.

Simple and efficient algorithms exist for both wavelet packets decomposition and optimal decomposition selection. Adaptive filtering al gorithms with direct applications in optimal signal coding and data compression can then be produced.

In the orthogonal wavel et decomposition procedure, the generic step splits the approximation coefficients into two parts. After splitting we obtain a vector of approximation coefficients and a vector of detail coefficients, both at a coarser scale. The information lost between two successive approximations is captured in the detail coefficients. The next step consists in splitting the new approximation coefficient vector; successive details are never re-analyzed.
In the corresponding wavel et packets situation, each detail coefficient vector is al so decomposed into two parts using the same approach as in approximation vector splitting. This offers the richest analysis: the complete binary tree is produced in the one-dimensional case or a quaternary tree in the two-dimensional case.

## Examples

```
% Load si gnal.
 I oad noi sdopp; x = noi sdopp;
```

\% Decompose x at depth 3 with db1 wavel et packets
\% usi ng Shannon entropy.
$[t, d]=\operatorname{mpdec}(x, 3, ' d b 1 ', '$ shannon' $)$;
\% The result is the wavel et packets decomposition structure
\% whi ch consists of a tree structure $t$ and the associate
\% data structure d.
\% PI ot tree structure (binary tree, or tree of order 2).
plotree(t)
\% Operations on the structure are defined in M-file \% wdatangr and you are not supposed to handle \%this internal structure directly.


| Algorithm | The algorithm used for the wavelet packets decomposition follows the same line as the wavelet decomposition process (see dwt, wavedec). |
| :---: | :---: |
| See Also | maket ree, wavei nfo o, wdat angr, went ropy, wpdec 2 , wt r eengr |
| References | R.R. Coifman, M.V. Wickerhauser, (1992), "Entropy-based Algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718. |
|  | Y. Meyer (1993), "Les ondelettes. Algorithmes et applications," Colin Ed., Paris, 2nd edition. (English translation: "Wavelets: Algorithms and Applications," SIAM). |
|  | M.V. Wickerhauser, (1991) "INRIA lectures on wavelet packet algorithms," Proceedings onde ettes et paquets d'ondes 17-21 J une, Rocquencourt France, pp 31-99. |
|  | M.V. Wickerhauser, (1994) "Adapted wavelet analysis from theory to software algorithms," A.K. Peters. |

## Purpose Wavelet packet decomposition 2-D.

## Syntax $\quad[T, D]=\operatorname{updec} 2(X, N, '$ uname' , E, P) [T, D] $=\operatorname{updec} 2\left(\mathrm{X}, \mathrm{N}\right.$, ' $^{\text {unare' }}$ )

## Description

updec 2 is a two-dimensional wavelet packet analysis function.
[ T, D] $=\operatorname{updec} 2(\mathrm{X}, \mathrm{N}$, ' uname' , E, P) returns a tree structureT and a data structure $D$ (see maket $r$ ee), corresponding to a wavelet packet decomposition of the matrix $X$, at level $N$, with a particular wavelet ('mnane', see wfilters).
$E$ is a string containing the type of entropy (see went ropy):
E ='shannon', 'threshol d',' norm,'log energy','sure', 'user'
$P$ is an optional parameter:
'shannon' or 'log energy': P is not used
' $\mathrm{threshol} \mathrm{d}^{\prime}$ or ' sure': P is the threshold $(0 \leq \mathrm{P})$
' norm: $P$ is a power ( $1 \leq P<2$ )
' user' $: ~ P$ is a string containing a name of an user-defined function
[T, D] $=\operatorname{mpdec} 2(\mathrm{X}, \mathrm{N}$, ' wname' ) is equivalent to
[T, D] $=\operatorname{updec} 2(X, N, '$ uname',' shannon' $)$.
See updec for a more complete description.

## Examples

## Algorithm

See Also
References
\% Load image.
I oad tire
\% X cont ai ns the I oaded image.
\% For an image the decomposition is performed using:
[ t, d] = updec2(X, 2, 'db1' );
\% default entropy is the shannon one.
\% Pl ot tree structure (quarternary tree, or tree of order 4). pl ot tree(t)


The algorithm used for the wavelet packets decomposition follows the same line as the wavelet decomposition process (see dwt 2, wavedec2).
maket ree, wavei nf o, wdat angr, went ropy, wpdec, wt r eengr
R.R. Coifman, M.V. Wickerhauser, (1992), "E ntropy-based algorithms for best basis selection," IE EE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.
Y. M eyer (1993), "Les ondelettes. Algorithmes et applications," Colin Ed., Paris, 2nd edition. (E nglish translation: "Wavelets: Algorithms and Applications," SIAM ).
M.V. Wickerhauser, (1991) "INRIA lectures on wavelet packet algorithms," Proceedings ondel ettes et paquets d'ondes 17-21 J une Rocquencourt France, pp 31-99.
M.V. Wickerhauser, (1994) "Adapted wavelet analysis from theory to software Algorithms," A.K. Peters.

## Purpose <br> De-noising or compression using wavelet packet.



Description updencmp is a one- or two-dimensional de-noising and compression oriented function.
updencmp performs a de-noising or compression process of a signal or an image, using wavelet packet. The ideas and the procedures for de-noising and compression using wavelet packet are the same as those used in the wavelets framework (see wden and wdencmp).
[ XD, TREED, DATAD, PERFO, PERFL2] = updencmp ( X, SORH, N, 'wname', CRI T, PAR, KEEPAPP) returns a de-noised or compressed version XD of input signal $X$ (one- or two-dimensional) obtained by wavelet packet coefficients thresholding.

Additional output arguments [ TREED, DATAD] are the wavelet packet best decomposition structure (see best tr ee) of XD. PERFL2 and PERFO are $L^{2}$ recovery and compression scores in percentages.
PERFL2 $=100 *(\text { vector-norm of WP-cfs of XD/ vector-norm of WP-cfs of } \mathrm{X})^{2}$.
If $X$ is a one-dimensional signal and 'unare' an orthogonal wavelet, PERFL2 is reduced to $\frac{100\|X D\|^{2}}{\|X\|^{2}}$.

SORH(' s' or ' h' ) is for soft or hard threshol ding (seewt hr esh for more details).
Wavelet packet decomposition is performed at level $N$ and 'wname' is a string containing wavelet name. Best decomposition is performed using entropy criterion defined by string CRI T and parameter PAR (see went r opy for details). Threshold parameter is also PAR. If KEEPAPP = 1, approximation coefficients cannot be thresholded, otherwise it is possible.

```
 [XD, TREED, DATAD, PERFO, PERFL2] =
updencmp(TREE, DATA, SORH, CRI T, PAR, KEEPAPP) has the same output arguments, using the same options as above, but obtained directly from the input wavelet packet decomposition structure[TREE, DATA] (see naket ree and updec) of the signal to be de-noised or compressed.
In addition if CRI T = ' nobest ' no optimization is done and the current decomposition is thresholded.
```


## Examples

```
% Load origi nal si gnal.
```

% Load origi nal si gnal.
I oad sumlichr; x = sumhichr;
I oad sumlichr; x = sumhichr;
% Use mpdencmp for si gnal compression.
% Use mpdencmp for si gnal compression.
%find default val ues (see ddencmp).
%find default val ues (see ddencmp).
[thr, sorh, keepapp, crit] = ddencmp(' cmp',' up', x)
[thr, sorh, keepapp, crit] = ddencmp(' cmp',' up', x)
thr =
thr =
0.5193
0.5193
sorh =
sorh =
h
h
keepapp =
keepapp =
1
1
crit =
crit =
threshol d
threshol d
% Denoi se si gnal using gl obal threshol di ng wi th
% Denoi se si gnal using gl obal threshol di ng wi th
%threshold best basis.
%threshold best basis.
[xc,treed, datad, perf0, perfl 2] = ...

```
 [xc,treed, datad, perf0, perfl 2] = ...
```

wpdencmp( $x$, sorh, 3, 'db2' , crit, thr, keepapp);

```
Original signal
```




```
\% Load original image.
l oad si nsin
\% Gener ate noi sy image.
init = 2055615866; randn('seed', init);
\(x=X / 18+r a n d n(s i z e(X))\);
\% Use updencmp for i mage de- noi sing.
\%find default val ues (see ddencmp).
[thr, sorh, keepapp, crit] = ddencmp('den' ,' wp' , x)
\(\mathrm{thr}=\)
4. 9685
sorh =
h
```

```
keepapp =
 1
crit =
sure
% Denoi se i mage using gl obal threshol di ng with
% SURE best basis.
xd = updencmp(x, sorh, 3,' sym4', crit,thr, keepapp);
```


\% Gener ate heavy si ne and a noi sy versi on of it. [xref, x] = wnoi se(5, 11, 7, i nit) ;
\% Use wpdencmp for signal de-noising.
$\mathrm{n}=\mathrm{l}$ ength(x);
thr $=\operatorname{sqrt}\left(2^{*} \log \left(n^{*} \log (n) / l o g(2)\right)\right)$;
xwpd $=\operatorname{wpdencmp}(x, ' s ', 4, '$ sym4','sure', thr, 1);
\% Compare wi th wavel et-based de-noi sing result. xud $=$ wden( $x$, 'ri grsure','s',' one' , 4, ' sym4' );


See Also ddencmp, wdencmp, went ropy, updec, updec 2
References A. Antoniadis, G. Oppenheim, Eds. (1995), "Wavelets and statistics," Lecture Notes in Statistics, 103, Springer Verlag.
R.R. Coifman, M.V. Wickerhauser, (1992), "E ntropy-based algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.
R.A. DeVore, B. J awerth, B.J . Lucier (1992), "I mage compression through wavel et transform coding," IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719746.
D.L. Donoho (1993), "Progress in wavelet analysis and WVD: a ten minute tour," in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, pp. 109-128. Frontières Ed.
D.L. Donoho, I.M.J ohnstone(1994), "Ideal spatial adaptation by wavelet shrinkage," Biometrika, vol 81, pp. 425-455.
D.L. Donoho, I.M. J ohnstone, G. Kerkyacharian, D. Picard (1995), "Wavelet shrinkage: asymptopia,"J our. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301369.

## Purpose Wavelet packet functions.

## Syntax [ WPVS, X] = upf un(' mname', NUM PREC) <br> [ WPVS, X] = upf un(' wnare' , NUM)

## Description

wpf un is a wavelet packet analysis function.
[ WPVS, X] = upf un( 'wname', NUM PREC) computes the wavelet packets for a wavelet 'wnare' (see wfilters), on dyadic intervals of length 2 -PREC.
PREC must be a positive integer. Output matrix WPUS contains the $W$ functions of index from 0 to NUM stored rowwise as [ $W_{0} ; W_{1} ; \ldots ; W_{\text {NUM }}$ ]. Output vector X is the corresponding common X -grid vector.
[ WPVS, X] = upf un( 'unane', NUM) is equivalent to
[ WPVS, X] = upf un( 'wnare', NUM 7).
The computation scheme for wavel et packets generation is easy when using an orthogonal wavelet. We start with the two filters of length $2 N$, denoted $h(n)$ and $g(n)$, corresponding to the wavelet. They are the reversed versions of the low-pass decomposition filter and thehigh-pass decomposition filter divided by $\sqrt{2}$ respectively.

Now by induction let us define the following sequence of functions ( $W_{\mathrm{n}}(x), n=0,1,2, \ldots$ ) by:

$$
\begin{gathered}
W_{2 n}(x)=2 \sum_{k=0, \ldots, 2 N-1} h(k) W_{n}(2 x-k) \\
W_{2 n+1}(x)=2 \sum_{k=0, \ldots, 2 N-1} g(k) W_{n}(2 x-k)
\end{gathered}
$$

where $W_{0}(x)=\phi(x)$ is the scaling function and $W_{1}(x)=\psi(x)$ is the wavelet function.

For example for the H aar wavelet we have:
$N=1, h(0)=h(1)=1 / 2$ and $g(0)=-g(1)=1 / 2$.
The equations become:

$$
\begin{gathered}
W_{2 n}(x)=W_{n}(2 x)+W_{n}(2 x-1) \\
W_{2 n+1}(x)=W_{n}(2 x)-W_{n}(2 x-1)
\end{gathered}
$$

$W_{0}(x)=\phi(x)$ is the haar scaling function and $W_{1}(x)=\psi(x)$ is the Haar wavelet, both supported in [0,1].

Then we can obtain $W_{2 n}$ by adding two $1 / 2$-scaled versions of $W_{n}$ with distinct supports $[0,1 / 2]$ and $[1 / 2,1]$ and obtain $W_{2 n+1}$ by subtracting the same versions of $W_{\mathrm{n}}$.

Starting from more regular original wavelets, using a similar construction, we obtain smoothed versions of this system of $W$-functions, all with support in the interval [0, $2 N-1]$.

Examples

## See Also

References
\% Compute the db 2 Wh functions for $\mathrm{n}=0$ to 7 , generating \%the db2 wavel et packets. [ wp, x] = wpf un(' db2', 7) ;

wavef un, wavei nf o
R.R. Coifman, M.V. Wickerhauser, (1992), "E ntropy-based Algorithms for best basis selection," IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713-718.
Y. Meyer (1993), "Les ondelettes. Algorithmes et applications," Colin Ed., Paris, 2nd edition. (E nglish translation: "Wavelets: Algorithms and applications," SIAM ).
M.V. Wickerhauser, (1991) "INRIA lectures on wavelet packet algorithms," Proceedings ondel ettes et paquets d'ondes 17-21J une Rocquencourt France, pp 31-99.
M.V. Wickerhauser, (1994) "Adapted wavelet analysis from theory to software algorithms," A.K. Peters.

## Purpose Recompose wavelet packet.

Syntax $\quad[T, D]=$ wpj oi $n(T, D, N)$
$[T, D, X]=\operatorname{upj}$ oi $n(T, D, N)$
$[T, D]=$ upj oi $n(T, D)$
$[T, D, X]=$ wpj oi $n(T, D)$
Description
wpj oi $n$ is a one- or two-dimensional wavelet packet analysis function. wpj oi $n$ updates the tree and data structures after the recomposition of a node.

The nodes are numbered from left to right and from top to bottom. The root index is 0 .
[T, D] = upj oi $\mathrm{n}(\mathrm{T}, \mathrm{D}, \mathrm{N})$ returns themodified treestructure Tand the modified data structure $D$ (see maket $r$ ee), corresponding to a recomposition of the node $N$.
$[T, D, X]=$ wpj oi $n(T, D, N)$ also returns the coefficients of the node.
$[T, D]=$ wpj oi $n(T, D)$ is equivalent to $[T, D]=$ wpj oi $n(T, D, 0)$.
$[T, D, X]=$ wpj oi $n(T, D)$ is equivalent to $[T, D, X]=$ wpj oi $n(T, D, 0)$.

Examples

\% Recompose packet (1,1) or 2
[ wpt, wpd] = wpj oi n(wpt, upd, [ 1 1]) ;
\% Pl ot wavel et packet tree struct ure wpt. pl ot tree( wpt )


See Also
maket ree, wpdec, updec 2 , upspl t

## Purpose Reconstruct wavelet packet coefficients.

## Syntax <br> X $=\operatorname{wpr} \operatorname{coef}(\mathrm{T}, \mathrm{D}, \mathrm{N})$

Description

## Examples

upr coef is a one- or two-dimensional wavelet packet analysis function.
$X=\operatorname{upr} \operatorname{coef}(T, D, N)$ computes reconstructed coefficients of the node $N . T$ is the tree structure and Dthe data structure (see maket ree).
$X=\operatorname{mpr} \operatorname{coef}(T, D)$ is equivalent to $X=\operatorname{mprcoef}(T, D, 0)$.
\% Load si gnal.
I oad noi sdopp; $x$ = noi sdopp;
figure(1); subpl ot (211);
pl ot (x); title('Original signal');
\% Decompose x at depth 3 with db1 wavel et packets \% usi ng Shannon entropy.
[t,d] = wpdec(x, 3, 'db1',' shannon' );
\% PI ot tree struct ure.
plot tree(t)


```
% Reconstruct packet (2,1).
 rcfs = wprcoef(t,d,[2 1]);
```

    fi gure(1); subpl ot (212);
    pl ot(rcfs); title('Reconstructed packet (2,1)');
    

## See Also

maket ree, wpdec, wpdec 2, uprec, wprec2
Purpose Wavelet packet reconstruction 1-D.
Syntax X $=\operatorname{mprec}(T, D)$
Description upr ec is a one-dimensional wavel et packet analysis function.
X $=\operatorname{wprec}(\mathrm{T}, \mathrm{D})$ returns the reconstructed vector X corresponding to a waveletpacket decomposition structure [ T, D]. T is the tree structure and Dthe datastructure (see naket ree).
upr ec is the inverse function of updec in the sense that the abstract statement upr ec( wpdec ( X, 'wname') ) gets back to X.
See Also naket ree, wpdec, wpdec 2 , wpj oi n, wpr ec 2, wpspl t

| Purpose | Wavelet packet reconstruction 2-D. |
| :---: | :---: |
| Syntax | $X=\operatorname{uprec} 2(T, D)$ |
| Description | uprec 2 is a two-dimensional wavelet packet analysis function. |
|  | $\mathrm{X}=\operatorname{mprec} 2(\mathrm{~T}, \mathrm{D})$ returns the reconstructed matrix X corresponding to a wavelet packet decomposition structure [T, D]. T is the tree structure and Dthe data structure (see maketree). |
|  | uprec 2 is the inverse function of updec 2 in the sense that the abstract statement mprec2( mpdec 2( X, 'wnane') ) gets back to X. |
| See Also | maket ree, wpdec, updec 2, upj oi n, wprec, wpspl t |

## Purpose <br> Split (decompose) wavelet packet.

## Syntax

[T, D] = upsplt(T, D, N)
$[\mathrm{T}, \mathrm{D}, \mathrm{cA}, \mathrm{cD}]=\operatorname{mpspl} \mathrm{t}(\mathrm{T}, \mathrm{D}, \mathrm{N})$
[T, D, cA, cH, cV, cD] = upsplt(T, D, N)
Description
upspl t is a one- or two-dimensional wavelet packet analysis function. ups pl t updates the tree and data structures after the decomposition of a node.
[T, D] = upsplt(T, D, N) returns themodified treestructureT and the modified data structure D , corresponding to the decomposition of the node N .

For a one-dimensional decomposition:
$[T, D, c A, C D]=$ upspl $t(T, D, N)$ with $c A=$ approximation and $c D=\operatorname{detail}$ of node N .

For a two-dimensional decomposition:
$[T, D, c A, c H, c V, c D]=\operatorname{upspl} t(T, D, N)$ with $c A=$ approximation and $c \mathrm{H}, \mathrm{cV}, \mathrm{cD}=$ details of node N .

Examples
\% Decompose $x$ at depth 3 with db1 wavel et packets.
[ upt, wpd] $=\operatorname{mpdec}(x, 3, ' d b 1 ')$;
\% PI ot wavel et packet tree struct ure wpt. pl ot tree( wpt )

\% Decompose packet (3, 0).
[ upt, wpd] = upsplt(wpt, upd, [30]);
\% or equi val ently wpspl ( mpt, wpd, 7 ).
\% Pl ot wavel et packet tree struct ure wpt. pl ot tree(wpt )


See Also
maket ree, wavedec, wavedec 2 , wpdec, wpdec 2 , wpj oi $n$

## wpthcoef

Purpose Wavelet packet coefficients thresholding.
Syntax NDATA $=$ wpt hcoef ( DATA, TREE, KEEPAPP, SORH, THR)
Description upt hcoef is a one- or two-dimensional de-noising and compression utility.NDATA = upt hcoef ( DATA, TREE, KEEPAPP, SORH, THR) returns a new datastructure obtained from the wavelet packet decomposition structure[ DATA, TREE] (see maket ree) by coefficients thresholding.
If KEEPAPP $=1$, approximation coefficients are not threshol ded, otherwise it is possible.
If SORH = ' s', soft thresholding is applied, if SORH = ' h' , hard threshol ding is applied (see wt hresh).
THR is the threshold value.
See Also maket ree, wpdec, wpdec 2, wpdencmp, wt hresh

Purpose Reconstruct single branch from 1-D wavelet coefficients.

| Syntax | X $=$ wrcoef ('type', C, L, ' wname', N ) |
| :---: | :---: |
|  | X $=\operatorname{wrcoef}($ ' type', C, L, Lo_R, Hi_ R, N) |
|  | X $=$ urcoef ('type', C, L, ' wname' ) |
|  | X $=$ wrcoef ( 'type', C, L, Lo_R, Hi_R) |

Description
wr coef reconstructs the coefficients of a one-dimensional signal, given a wavelet decomposition structure ( C and L ) and either a specified wavelet ('uname', see uf illers) or specified reconstruction filters (Lo_R and Hi _R).

X = wr coef ( 't ype', C, L, 'wname', N) computes the vector of reconstructed coefficients, based on the wavelet decomposition structure[ C, L] (see wavedec), at level N .

Argument 't ype' determines whether approximation ('type' = ' a' ) or detail ('t ype' = ' d' ) coefficients are reconstructed. When 't ype' =' a' , N is allowed to be 0 , otherwise strictly positive $N$ is required. Level $N$ must be an integer such that $\mathrm{N}<=1$ engt $\mathrm{h}(\mathrm{L})-2$.

X = wr coef ( 't ype', C, L, Lo_R, Hi_ R, N) computes coefficients as above, given the reconstruction filters you specify.

X = urcoef ( 't ype', C, L, 'wname') and X = wr coef ('t ype', C, L, Lo_R, Hi_R) reconstruct coefficients of maximum level $\mathrm{N}=\mathrm{I}$ engt $\mathrm{h}(\mathrm{L})-2$.

## Examples

\% Load ori gi nal one- di mensi onal si gnal. load sumsi $n$; s = sumsin;
\% Perform decomposition at level 5 of s using sym4. [c,l] = wavedec(s,5,'sym4');
\% Reconstruct approximation at level 5, \%fromthe wavel et decomposition structure [c,l]. a5 = urcoef('a', c, l,' sym4', 5) ;

Original signal s.



See Also appcoef, det coef, wavedec

Purpose Reconstruct single branch from 2-D wavelet coefficients.

| Syntax | X $=$ wr coef 2( 'type', C, S, 'mname', N) |
| :---: | :---: |
|  | X $=$ urcoef 2('type', C, S, Lo_R, Hi_ R, N) |
|  | X $=$ wr coef 2('type', C, S, ' wnane') |
|  | X $=$ wrcoef 2( 'type', C, S, Lo_R, Hi _R) |

wr coef 2 is a two-dimensional wavelet analysis function. wr coef 2 reconstructs the coefficients of an image.

X = wr coef 2 ( 't ype', C, S, 'wname', N) computes the matrix of reconstructed coefficients of Ievel N , based on the wavelet decomposition structure [ $\mathrm{C}, \mathrm{S}$ ] (see wavedec2).
'wname' is a string containing the name of the wavelet. If 't ype' = ' a', approximation coefficients are reconstructed; otherwise if 't ype' =' h' (' v' or ' d' respectively), horizontal (vertical or diagonal respectively) detail coefficients are reconstructed.

Level $N$ must be an integer such that: $0<=N<=\operatorname{size}(S, 1)-2$ if 't ype' $=$ ' $a^{\prime}$ and such that $1<=N<=\operatorname{size}(S, 1)-2$ if 't ype' $=$ ' $h$ ' , 'v' or 'd'.
Instead of giving the wavelet name, you can give the filters.
For $X=$ wr coef 2 ('type', C, S, Lo_R, Hi_R, N) , Lo_R is the reconstruction low-pass filter and $\mathrm{Hi}_{\mathrm{Z}} \mathrm{R}$ is the reconstruction high-pass filter.
X = wr coef 2 ('t ype', C, S, 'wnane') or X = wr coef 2 ('type', C, S, Lo_R, Hi _R) reconstructs coefficients of maximum level $\mathrm{N}=$ si ze( $\mathrm{S}, 1$ ) -2 .
Examples
\% Load ori gi nal i mage.
I oad noman;
\% X contai ns the I oaded image.
\% Perform decomposition at level ..... 2
\% of X using symb.[ c, s] = wavedec2(X, 2,'symb' );
\% Reconstruct approxi mations at
\% l evels 1 and 2, fromthe wavel et\% decomposition structure [c,s].a1 = wr coef 2(' a' , c, s, ' symb', 1);a2 = wr coef 2('a', c, s,' symb', 2);
\% Reconstruct details at level 2,
\%fromthe wavel et decomposition
\% structure [c,s].
$\%{ }^{\prime} h^{\prime}$ is for horizontal,
\%'v' is for vertical,
\%'d' is for diagonal.
hd2 = wr coef 2('h', c, s, ' symら', 2) ;
vd2 = wr coef 2('v', c, s,' symБ', 2);
dd2 $=$ wrcoef 2('d', c, s,' symら', 2);
\% Al l these images are of same size sX

            sX = size( \(X\) )
    sX =

    256256
    
    sal = size(a1)
    sal =
256256
shd2 = size( hd2)
shd2 $=$
256256
See Also appcoef 2, det coef 2, wavedec2
Purpose Flip vector.
Syntax $Y=\operatorname{wrev}(X)$
Description wrev is a general utility.
$\mathrm{Y}=\mathrm{wrev}(\mathrm{X})$ reverses the vector X .
Examples
\% Set si mple vector. $v=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] ;$
\% Reverse v.wrev(v)
ans $=$
$\begin{array}{lll}3 & 2 & 1\end{array}$
\% Reverse v transpose.
wrev( $v^{\prime}$ )
ans $=$
3
2
1
See Also fliplr,flipud

## Purpose Wavelet coefficients thresholding 1-D.

| Syntax | NC = wt hcoef ( ${ }^{\text {d }} \mathrm{d}$ ', C, L, $\mathrm{N}, \mathrm{P}$ ) |
| :---: | :---: |
|  | NC $=$ wt hcoef ( ${ }^{\text {d }}$ ', C, L, N) |
|  | NC = wt hcoef ( ' a', C, L) |
|  | NC = wt hcoef ('t', C, L, N, T, SORH) |

## Description

wh hcoef is a one-dimensional de-noising and compression oriented function.
$N C=$ wt hcoef ( ' d' , C, L, N, P) returns coefficients obtained from the wavelet decomposition structure [ C, L] (see wavedec), by rate compression defined in vectors $N$ and $P$. N contains the detail levels to be compressed and $P$ the corresponding percentages of lower coefficients to be set to zero. N and P must be of same length. Vector $N$ must be such that $1<=N(i)<=1$ engt $h(L)-2$.

NC = wt hcoef ( ' d' , C, L, N) returns coefficients obtained from [ C, L] by setting to zero all the coefficients of detail levels defined in N .

NC = wt hcoef ( ' a' , C, L) returns coefficients obtained by setting approximation coefficients to zero.

NC = wt hcoef ( ' t ' , C, L, N, T, SORH) returns coefficients obtained from the wavel et decomposition structure [ C, L] by soft (if SORH= s') or hard (if SORH= h' ) threshol ding (see wt hr esh) defined in vectors N and T . N contains the detail levels to be thresholded and T the corresponding thresholds. N and T must be of the same length.
[ NC, L] is the resulting wavelet decomposition structure.

[^3]Purpose Wavelet coefficients thresholding 2-D.

Syntax

Description

See Also wavedec 2 , wt hr esh

## Purpose Perform soft or hard thresholding.

## Syntax $\quad Y=$ wh hresh $(X$, SORH, T)

Description $\quad Y=$ wt hresh( $X$, SORH, T) returns the soft (if SORH $=$ ' $s^{\prime}$ ) or hard (if SORH $=$ ' $h$ ') T-thresholding of the input vector or matrix $X$. $T$ is the threshold value.
$\mathrm{Y}=$ wh hresh $\left(\mathrm{X}, \mathrm{I}^{\prime} \mathrm{s}\right.$ ', T$)$ returns $\quad Y=\operatorname{SIGN}(X) \cdot(|X|-T)_{+}$, soft threshol ding is wavelet shrinkage.
$\mathrm{Y}=$ wh hresh( $\mathrm{X}, \mathrm{h} \mathrm{h}$, T ) returns $Y=X .1_{(|X|>T)}$, hard thresholding is more crude.
\% Generate signal and set $\mathrm{threshol} d$.
$y=1 i n s p a c e(-1,1,100)$;
$\mathrm{thr}=0.4$;
\% Perform hard t hreshol di ng. ythard = wthresh(y, ' h' ,thr);
\% Performsoft threshol di ng. ytsoft = wthresh(y, 's',thr);




## See Also

wden, wdencmp, wpdencmp

| Purpose | Manager for tree structure. |
| :---: | :---: |
| Syntax | [ OUT1, OUT2, OUT3, OT4] = wt r eengr ( OPT, STRUCTURE, I N3, I N4, I N5) |
| Description | wt reengr is a tree management utility. |
|  | Allowed values for OPT and associated uses are described in the functions listed in the See Also section: |
|  | ' al Inodes' : All nodes |
|  | ' i snode' : Check if node |
|  | ' i stnode' : Check ifterminal node |
|  | ' create' : Create a tree |
|  | ' nodeasc' : Node ascendants |
|  | ' nodedesc' : Node descendants |
|  | 'nodepar' : Node parent |
|  | ' nt node' : Number of terminal nodes |
|  | 'tnodes' : Terminal nodes |
|  | ' order ' : Order of tree |
|  | ' dept h' : Depth of tree |
|  | F or tree structure implementation see maket ree. |
| See Also | al I nodes, i s node, i st node, maket ree, nodeasc, nodedesc, nodepar, nt node, t nodes, treedpth, treeord |

## GUI Reference

A-3 General Features
A-3 Color Coding
A-3 Connectedness of Plots
A-4 Using the Mouse
A-6 Controlling the Colormap
A-7 Controlling the Number of Colors
A-8 Controlling the Coloration Mode
A-8 Customizing Graphical Objects
A-10 Customizing Print Settings
A-11 Using Menus
A-14 Continuous Wavelet Tool Features
A-15 Wavelet 1-D Tool Features
A-15 Tree Mode
A-15 M ore Display Options
A-17 Wavelet 2-D Tool Features
A-18 Wavelet Packet Tool Features (1-D and 2-D)
A-19 Node Action F unctionality
A-22 Wavelet Display Tool
A-23 Wavelet Packet Display Tool

This appendix explains some of the features of the Wavelet Toolbox graphical user interface (GUI) that have not been described in the previous chapters. Topics include:

- General Features
- Continuous Wavelet Tool Features
- Wavelet 1-D Tool Features
- Wavelet 2-D Tool Features
- Wavelet Packet Tool Features (1-D and 2-D)
- Wavelet Display Tool
- Wavelet Packet Display Tool


## General Features

Some features of the Wavel et Tool box's graphical user interface apply to all or several of the tools in the toolbox. These include:

- Color coding
- "Connectedness" of plots
- Using the mouse
- Controlling the col ormap
- Controlling the number of colors
- Controlling the col oration mode
- Customizing graphical objects
- Customizing print settings
- Using menus


## Color Coding

In all the graphical tools, the various signals and analysis components are color coded in this way:

| Signal | Show $\mathbf{n}$ in |
| :--- | :--- |
| Original | Red |
| Reconstructed or synthesized | Yellow |
| Approximations | Variegated shades of blue <br> (high level = darker) <br> Details |
| Variegated shades of green <br> (high level = darker) |  |

## Connectedness of Plots

Plots that contain related information and are graphed on the same abscissa are "connected" in the sense that manipulations performed on one plot affect all the others in the same way.

F or example, the approximations and details shown in the separate mode view of a decomposition all respond together when any of the plots is magnified or "zoomed":


## Using the Mouse

The Wavelet Tool box uses three distinct types of mouse control:

| Left Mouse Button | Middle Mouse Button | Right Mouse Button |
| :--- | :--- | :--- |
| Make selections, <br> activate controls. | Display a cross-hair to <br> show <br> position-dependent <br> information | Translate plots up and <br> down, and left and <br> right |
|  | Shift + |  |

## Making Selections and Activating Controls

Most of the work you do with the Wavelet Tool box graphical tools invol ves making selections and activating controls. You do this using the left (or only) mouse button.


## Translating Plots

By holding down the right mouse button (or its equivalent on a one- or two-button mouse), you can move the mouse to draw a rectangle in either a horizontal or vertical orientation. Releasing the middle mouse button then causes the plot to shift horizontally or vertically by an amount proportional to the size of the rectangle.


## Displaying Position-Dependent Information

When you hold down the middle mouse button (or its equivalent on a one- or two-button mouse), a cross-hair cursor appears over the graph or plot.
Position-dependent information also appears in the Position box located at the bottom center of the tool.

The type of information that appears depends on what tool you are using and on what plot your cursor is in.


## Controlling the Colormap



Colormap

The Colormap selection box, located at the bottom right of the window, allows you to adjust the colormap that is used to plot images or wavelet coefficients. This is more than an esthetic adjustment: you are likely to see different features depending on your colormap selection.

Consider these images of the Mandel brot set generated in the Wavelet Packet 2-D tool, here using the bone and 1-bone col ormaps:

bone


1-bone

## Controlling the Number of Colors



Nb. Colors

The Nb. Colors slider, also located at the bottom right of the window, allows you to adjust how many colors the tool uses to plot images or wavelet packet coefficients (you can also use the edit control). At first glance, this might not seem to be particularly important. H owever, adjusting the number of colors can highlight different features of the plot.
Consider the coefficients plot of the K och curve generated in the Continuous Wavelet tool, here using 129 colors:

and here using 68 colors:


## Controlling the Coloration Mode



## Coloration mode

In Wavelet 1-D tool and Continuous Wavelet tool the col oration of coefficients can be done in several different ways.


Three parameters are used to do coefficients coloration:
init or current:
When init is selected, coloration is per-
formed with all the coefficients values.
When current is selected, only a por-
tion of the coefficients is used to make the coloration. This portion is taken from the current axis limits of the displayed coefficients.
by level or all levels:
When by level is selected, the coloration is done separately for each detail level. Otherwise the wavelet coefficients at all levels are used to scale the coloration.
abs (or not):
When abs is selected, the absolute values of the coefficients are used.

## Customizing Graphical Objects

In order to customize your graphics settings, you can select in all the windows the Options $\Rightarrow$ Handles Graphics Settings menu option. When the Axes Settings sub-menu option is selected, you are asked to disable or not the Dynamical Visualization Tool (DVT), located at the bottom of the window. So, after the desired customization is performed, you must disable the Axes Settings sub-menu option in order to reactive the DVT.

When the sub-menu Window Settings is enabled, you can edit the current figure parameters.


When the sub-menu Axes Settings is enabled, clicking with the mouse on an axis will select it for editing.


When the sub-menu Texts Settings is enabled, double-clicking with the mouse on an axis will select it for editing.


## Customizing Print Settings

Using the menu option File $\Rightarrow$ Print Settings you can access to the Print Parameters window.


## Using Menus

Almost all the windows provide a similar structure at the top of the window. The main analysis windows have a File $\Rightarrow$ Demo Analysis menu option which allows you to select an example of analysis with pre-defined parameters. Here is an example of the Wavelet 1-D tool.


The Options menu allows you to change the current settings in your windows.


Choosing Zoom Preferences:


Enabling or disabling the graphical objects settings modification:


Choosing the Default Display M ode you want to be used in the first display of the Wavelet 1-D tool:


The Windows menu allows to jump directly from a window to another.


## Continuous Wavelet Tool Features

The Continuous Wavelet Tool has been almost completely described in the section "Continuous Analysis Using the Graphical Interface" on page 2-7. Here is an example of an option, previously not described, that allows you to perform analysis using different scale modes.


## Wavelet 1-D Tool Features

The Wavelet 1-D Tool has been almost completely described in the section "One-Dimensional Analysis Using the Graphical Interface" on page 2-22. Here are two examples of options not covered previously.

## Tree Mode

This is one of the display options in which by selecting a node in the tree you can view the corresponding signal.

Here on the left, the node d3 is selected and the corresponding detail is displayed under the original signal.


## More Display Options

This option allows you to customize what is displayed and is dependent on the current visualization mode.

In this example for the Separate Mode, we have chosen not to display the coefficients of approximation for levels2 and 3, as well as the coefficients of detail for levels 4 and 5 . The coefficients' col oration mode has been changed,
and the synthesized signal is displayed in the right hand column, rather than the original signal.


## Wavelet 2-D Tool Features

The Wavelet 2-D Tool has been almost completely described in the section "Two-Dimensional Analysis Using the Graphical Interface" on page 2-52.

Here is an example of an option that allows you to view a selected part of the window at a full window resolution.


## Wavelet Packet Tool Features (1-D and 2-D)

The Wavelet Packet 1-D Tool and Wavelet Packet2-D Tool have been described in Chapter 5. They are almost identical in their layout and function. The only difference involves the extra coloration modes available in the Wavelet Packet 1-D tool, as well as the ability of the tools to work with signals or images as appropriate. Let us focus on the 1-D capabilities.



Coefficients coloration:
NAT or FRQ is for Natural or
Frequency order (see Wavelet Packet Atoms on page 101 of Chapter 6).
By level or Global is for a coloration made level by level or taking all detail levels.
abs is used to take the absolute values of coefficients.

Node Action : Visualize


## Node Action:

When you select a node in the tree, the selected option is performed. A complete description of options is provided on the next page.


## Node Label:

The node labels may be changed using the pop-up menu. For example, the Type option labels the with (a) for approximation and (d) for detail.

## Node Action Functionality

The available options in the Node Action pop-up menu are:

- Visualize: When you select a node in the wavel et packet tree the corresponding signal is displayed.

- Split/Merge: If a terminal node is selected it is split, growing the wavelet packet tree. Selecting other nodes, has the behavior of merging all the nodes below it in the wavelet packet tree.

- Recons.: When you select a node in the wavelet packet tree, the corresponding reconstructed signal is displayed.

Node Action: Recons.
- Select On/Off: When On, you can select many nodes in the wavel et packet tree and then you can reconstruct a synthesized signal from the selected nodes using the Reconstruct push-button in the main window. The Off selection is used to unselect all the previous selected nodes.

- Statistics: When you select a node in the wavelet packet tree, the Statistics Tool is displayed using the signal corresponding to the selected node.

Node Action : Statistics


- View Col. Cfs.: When active, this option removes all the colored coefficients di splayed and lets you redraw only the corresponding coefficients, by selecting a node in the wavelet packet tree.



## Wavelet Display Tool

The Wavelet Display Tool is mentioned in the section "An Introduction to the Wavelet Families" on page 30 of Chapter 1.

Here, the main window and the associated information windows are displayed with some additional comments.

This parameter decides the


Information on the selected wavelet


## Wavelet Packet Display Tool

The Wavelet Packet Display Tool is very similar to the Wavelet Display Tool.
Here, the main window and the associated information windows are displayed with some additional comments.


B GUI Reference

## A

Adding a new wavelet 7-2-7-16
Algorithm
Cascade 8-144
Coifman-Wickerhauser 1-28, 6-112
Decomposition 6-24-6-27, 6-29-6-30
F ast Wavel et Transform (F WT) 6-21
Filters 6-21-6-24
For biorthogonal 6-29
Mallat 1-16, 6-21
Rationale 6-29-6-33
Reconstruction 6-26-6-29, 6-32-6-33
Aliasing 1-17
Analysis
Biorthogonal 6-29, 6-67-6-68
Case study 4-36-4-47
Continuous 1-10-1-15, 2-3-2-12, 6-15-6-16
Continuous or discrete 6-56
Discrete 1-16-1-19, 2-13-??, 6-15-6-16
I Ilustrated examples 4-3-4-35
Local 1-5
Local and global 6-16
Multiscale 4-35, 4-36
One-dimensional discrete wavelet 2-13-??
One-dimensional wavelet packet 5-6-??
Orthogonal 6-21, 6-31, 6-62, 6-64
Redundant 6-16
Time-scale 1-5, 1-12, 6-16
Two-dimensional discrete wavel et ??-2-65
Two-dimensional wavelet packet ??-5-25
Wavel et 1-5, 1-7
Wavelet Packet 5-2-??
analysis
Discrete ??-2-65
Two-dimensional discrete wavel et 2-43-??
Approximation 1-16-1-18, 6-5, 6-18-6-20
Coefficients 2-17, 2-47, 6-24-6-25

Definition 6-3, 6-19
Quality 6-18
Reconstruction 1-21-1-22, 2-17

## B

Basis 6-29-6-32, 6-104
Biorthogonal wavelets 1-32, 6-67-6-68
See also Analysis
Border distortion 6-46
B oundary value replication 6-46
Periodic extension 6-46
Periodized Wavelet Transform 6-55
Smooth padding 6-47, 6-51, 6-55
Symmetric extension 6-49, 6-54
Symmetrization 6-46
Zero-padding 6-47, 6-49, 6-52
Breakdown 3-6, 4-18-4-23, 4-25, 4-27, 4-35
F requency 3-3-3-4, 4-10-4-11

## C

Chirp 5-7, 6-97, 6-102
Coefficients
Approximation 2-17, 2-47, 6-24-6-25
Continuous Wavelet 2-5
Detail 2-17, 2-47, 6-24-6-25
Discrete Wavelet 2-41, 2-64
L oad 2-41, 2-64
Save 2-12, 2-39, 2-60, 5-27, 5-28
Coiflets 1-33, 6-66
Coloration mode 2-11, A-3, A-6
colormap (matrix)
RGB components 2-66
Compression 2-14, 2-50, 2-58, 3-21-3-22, 5-23, 6-90

Default values 5-4, 6-93
Difference with de-noising 6-90
Procedure 5-5, 6-90
Continuous Wavelet Transform
See Analysis, Transform
CWT
See Transform

## D

Daubechies wavelets 1-31, 6-63
Decomposition 1-19, 1-25, 2-24, 2-27, 6-25-6-27, 6-34, 6-41-6-42
Best 6-112
Best-level 6-112
Entropy-based criteria 6-105-6-110
Hierarchical organization 6-11
M ulti-step 1-25
Optical comparison 6-5
Optimal 6-105-6-112
Save 2-61, 5-28
Structure 2-64, 5-27-??, 6-34, 6-111, 6-113
Wavelet Packet 6-111
See also Tree
Default values
See De-noising, Compression
De-noising 2-14, 2-19-2-21, 2-30-2-33, 3-18-3-20, 6-113
Basic model 6-80, 6-88
Default values 5-4, 6-93
Fixed form threshold 6-82
Geometrical images 6-88
Image 6-88
Minimax performance 6-82
N oise size estimate 6-84
Non-white noise 6-84
Procedure 5-5, 6-80

SURE estimate 6-82
White noise 6-79
Detail 1-16-1-18, 6-5, 6-18-6-20
Coefficients 2-17, 2-47, 6-24-6-25
Decomposition 6-95-6-96
Definition 6-3, 6-19
Orientation 6-27
Reconstruction 1-21-1-22, 2-17
Dilation 1-9, 6-21
Discontinuity 1-5, 3-3-3-6, 4-10, 4-20, 4-22, 6-49
See also breakdown
Discrete Wavelet Transform
See Analysis, Transform
Downsampling 1-17, 6-25, 6-27
DWT
See Transform

## E

Edge effects
See Border distortion
Entropy 1-28, 6-106-6-110
Exporting from the GUI
Continuous Wavelet 2-11
Discrete Wavel et 2-59

## F

Fast multiplication of Iarge matrices 4-48
Fast Wavelet Transform (FWT)
SeeTransform
Filter
Banks 1-16
Decomposition 6-25
FIR 6-21, 6-60, 6-68, 6-73, 7-5
High-pass 6-24
Low-pass 6-24

Minimum phase 6-65
Quadrature mirror 1-21, 1-25, 6-23
Reconstruction 1-21, 6-25
Scaling 6-21
Fingerprint 3-21-3-22
Fourier 1-3, 1-8
Analysis 4-9, 4-11, 6-17, 6-60
Short-time analysis (STFT) 1-4-1-5
Windowed analysis 4-11
F ractal 3-11, 6-16
Frequency 1-4-1-5, 1-13, 1-16, 2-19, 3-12
Parameter 6-102
See also Fourier
FWT
See Transform

## G

GUI 2-2, 5-2, 8-149, A-2-A-23
Coloration mode 2-11, A-3, A-6, A-8
Continuous wavelet 2-7
Scale mode A-14
Customizing graphical objects A-8
Full window resolution A-17
Using menus A-11
U sing the mouse A-4
Wavel et Display A-22
Wavelet one-dimensional 2-22
Full decomposition mode 2-28
M ore display options 2-30, A-15
Separate mode 2-28
Show and scroll mode 2-29
Superimpose mode 2-28
Tree mode 2-28, A-15

Wavelet Packet 5-6
Coefficients coloration A-18
N ode action A-18-??
N ode label A-18
Wavelet Packet Display A-23
Wavelet two-dimensional 2-52
Square mode 2-55
Tree mode 2-56

## H

Haar wavelet 1-31, 6-64
Heisenberg uncertainty principle 6-17
History 1-29

## I

IDWT
See Transform
Image 2-62
image types
indexed 2-66
Importing in the GUI
Continuous Wavelet 2-11
Discrete Wavelet 2-38, 2-59
Wavel et Packet 5-26
indexed image 2-66
matrix indices, shifting 2-67

## L

Level 1-19, 1-22, 1-27, 2-16, 2-24, 2-27, 2-54, 6-2-6-3, 6-5
See also Multi-level
See also Wavel et Packet, Best level
Load
Coefficients 2-41, 2-64, 5-30

Image 2-62
Signal 2-11, 2-40, 5-29
Local
See Analysis
L ong-term evolution 3-8, 4-9, 4-11, 4-25, 4-27, 4-31, 4-35

## M

Mathematical conventions 6-2
Merge
See Wavelet Packet
M exican hat 1-34, 6-71
Meyer wavelets 1-35, 6-69
Minimax 6-82
Missing data 4-47
M orlet wavel et 1-34, 6-72
Multi-level 2-16, 2-18, 2-27, 2-47-2-50
Multiresolution 6-21, 6-29-6-31
Multi-step 1-25

## N

Noise 2-30, 4-24-4-29, 4-32, 4-43
ARMA 4-15
Colored 4-26
Gaussian 6-77, 6-80
Processing 4-13, 4-15, 4-25, 4-27, 4-29, 6-77
Suppressing 3-15-3-17
See also Denoising
Unscaled 6-84
White 4-12, 4-16, 4-24, 4-28, 6-79

## 0

Outliers 4-46

## P

## Packet

See Wavelet Packet

## Padding

See Border distortion
Periodized Wavelet Transform
See Border distortion
Positions 1-16

## Q

Quadrature mirror filters (QMF ) 1-21, 1-25, 6-23

## R

Reconstruction 1-20-1-23, 1-25, 6-26, 6-29, 6-34
Approximation 1-21
Detail 1-21
Filters 1-21
Multi-step 1-25
Redundancy 6-56
Regularity 6-73
Definition 6-57
Resemblance index 3-10

## S

Save
Coefficients 2-12, 2-39, 2-60, 5-27-5-28
Decomposition 2-61, 5-28
Synthesized image 2-60, 5-27
Synthesized signal 2-38, 5-26
Scale 1-9, 1-14
And frequency 1-13
Choosing 2-6
Dyadic 1-16, 6-2, 6-4
Scaling filter 6-4, 6-21

Scaling function 1-25, 6-3, 6-6, 6-8
Self-similarity 1-6, 3-10
Shift 1-9-1-10
See also Translation

## Shrink

See Threshol ding
Signal-end effects
See Border distortion
Spline 6-29, 6-63, 6-70
Split
See Wavelet Packet
STFT
See Fourier
Support
See Wavelet Families
Symlets 1-33, 6-65
Symmetry
See Wavelet Families
Synthesis 1-20, 6-17

## T

Thresholding 2-20
Hard 6-81-6-82
Rules 6-82-6-83
Soft 6-81
See also De-noising
Time-scale
See Analysis
Transform
Continuous versus discrete 6-16
Continuous Wavel et (CWT) 1-8, 1-10-1-12, 1-15, 6-73
Discrete Wavelet (DWT) 1-16, 6-24-6-25, 6-27, 6-73
Fast Wavelet (FWT) 6-21
Inverse (IDWT) 1-20, 6-17, 6-26, 6-29

Periodized 6-55
Transient 1-3
See also Breakdown
Translation 6-10-6-11, A-5
Dyadic 6-2
See also Shift
Tree
Best 5-10
Best-level 6-112
Decomposition 1-27-1-28
M ode 2-28, 2-56, A-15
Wavelet 1-19, 1-27, 6-29
Wavel et Packet 1-27, 6-95, 6-104, 6-111
Trend 1-3
See Long-term evolution
Twin-scale relation 6-21, 6-31, 6-32, 6-59

## U

Upsampling 1-20, 6-26, 6-29

## V

Vanishing moments 3-17, 6-57, 6-73

## W

Wavelet 6-3, 6-6, 6-8
Add new 7-2-7-16
Applications 3-1-3-22
Associated family 6-4, 6-8-6-13
B attle-Lemarie 6-70
Biorthogonal 1-32, 6-67
Candidate to be a 6-59
Coefficients 1-8
Coiflets 1-33, 6-66
Daubechies 1-31, 6-63

Haar 1-31, 6-64
History of 1-29
Mexican hat 1-34, 6-71
Meyer 1-35, 6-69
M orlet 1-34, 6-72
One-dimensional capabilities 2-13, 6-34-6-39
Order 7-4
Organization 6-13
Relationship of filters to 1-23
Shapes 6-6
Symlets 1-33, 6-65
Translation 6-2, 6-10-6-11
See also Shift
Tree 1-19, 1-27, 2-28, 5-10, 6-29, 6-110
Two-dimensional 6-8
Two-dimensional capabilities 2-43, 6-40-6-45
Type 7-4
Vanishing moments 3-17, 6-57, 6-62, 6-73
Wavelet Families 1-30, 6-3, 6-62, 6-73
Add new 7-3
Full name 7-3
Properties 6-73
Regularity 6-57, 6-62
Short name 7-3
Support 6-62
Symmetry 6-62
Vanishing moments 6-62, 6-73, 6-74
Wavelet Packet 1-27, 5-1, 6-95-6-113
Atoms 6-101
Best level 1-28, 5-4, 6-112
Best tree 1-28, 5-4, 5-10, 5-17
Building 6-98
Compression 5-11, 6-113
Decomposition 6-111, 6-113
Denoising 5-14-??
Frequency order 6-102
From wavelets to 6-95

Merge 6-105
Natural order 6-102
Organization 6-104
Split 6-105
Tree 1-27, 6-95, 6-104, 6-111

## Z

Zoom 2-9, 2-26, 2-57, 6-58


[^0]:    » save warma

[^1]:    See Also
    i nd2depo, maket ree, wt r eengr

[^2]:    Limitations
    Periodized wavelet transform is handled separately (see dwt per 2 and i dwt per 2).

[^3]:    See Also wavedec, wt hresh

