Circuits for sensors

Ideal OP Amps Basic OP Amp Circuit Blocks Analog Computation Nonlinear OP Amp Applications OP Amp Considerations Guarding Passive Filters Active Filters VCO(Voltage Controlled Oscillator)

Ideal OP Amps

Transfer Function = Output / Input

♦ Voltage Amp TF (Gain):

 $A_{v} = \frac{v_{o}}{v_{i}}$

• Usually $A_v \ge 1$

OP Amp is preferred

 Easy to use in circuit designed compared to discrete Transistor circuits

Ideal OP Amps (Cont.)

Assumptions

- Open loop Gain = Infinity
- Input Impedance Rd = Infinity
- ♦ Output Impedance Ro = 0
- Bandwidth = Infinity
 - Infinite Frequency Response

$$v_0 = 0$$
 when $v_1 = v_2$

No Offset Voltage

Ideal OP Amps (Cont.)

Note

 $\bullet \mathbf{v}_0 = \mathbf{A}(\mathbf{v}_2 - \mathbf{v}_1)$

- If $v_0 = \infty$, $A = \infty$ (Typically 100,000)
 - Then $v_2 v_1 = 0 \Rightarrow v_2 = v_1$

Since
$$v_2 = v_1$$
 and $Rd = \infty$

- We can neglect the current in Rd
- Rule 1
 - When the OP Amp is in linear range the two inputs are at the same voltage
- Rule 2
 - No Current flows into either terminal of the OP Amp

Basic OP Amp Circuit Blocks

- Inverting Amplifier
- Noninverting Amplifier
- Unity-Gain Amplifier
- Differential Amplifier
- Instrumental Amplifier
- The Electrocardiogram Amplifier

Inverting Amplifier

Inverting Amp with Gain = - Rf / Ri

From Rule 1 • $V^{-} = V^{+} = 0$ From Rule 2 & KCL $\mathbf{i}_i + \mathbf{i}_f = 0 \Longrightarrow \mathbf{i}_i = -\mathbf{i}_f$ From Ohm's law $\sim i_i = v_i / R_{i_i} i_f = v_o / R_f$ $v_i / R_i = - v_0 / R_f$ $v_{0} / v_{i} = -R_{f} / R_{i}$ **Inverting Amp Gain** \bullet -R_f / R_i

Inverting Amplifier (Cont.)

Linear Range By Power Supply Voltage

Input Impedance

- Low (Ri)
- ♦ Increasing Ri →
 Decreasing Gain
 - Increasing Gain by increasing Rf
 - But there is practical limit

Noninverting Amplifiers

Noninverting Amp By Rule 2 • Gain = (Rf + Ri) / Rf

- $Vo = If \times (Rf + Ri)$
- $Vi = If \times Ri$
- ♦ Vo = Vi × (Rf + Ri)/Ri
- Gain: Vo/Vi = 1 + Rf / Ri
- **Gain** \geq **1**, **Always**
- **Input Impedance**
 - Very Large (Infinite)

Unity-Gain Amplifier

 Verify that the Gain of Unity-Gain Amp is 1

Vo = Vi

Applications

- Buffer amplifier
 - Isolate one circuit from the loading effects of a following stage
- Impedance converter
 - Data conversion System (ADC or DAC) where constant impedance or high impedance is required

Differential Amplifiers

- Combination of Inverting and Noninverting Amp
- Can reject 60Hz interference
- Electrocardiogram amplifier

Differential Amplifiers (Cont.)

Gain of Differential Amp

- By Rule 2
 - ☞ V5 = I2 * R2
 - ✓ V2 = I2 * R1 + V5 = V5 * R1 /R2 + V5
 - ☞ V5 = R2 * V2 / (R1 + R2)
- ♦ By Rule 1

- *☞* V5 = R2 * I1 + V6
- ☞ V6 = (V2 V1) * R2 / R1

Differential Amplifiers (Cont.)

- CMV (Common Mode Voltage)
 - ◆ If V1 = V2, then V6 = 0
- CMG (Common Mode Gain) = 0
- DG(Differential voltage Gain)
 - If V1 \neq V2, then V6 = (V2-V1)*(R2/R1)
- In practice, CMG \neq 0
- CMRR (Common Mode Rejection Ratio)
 - Measure of the ability to reject CMV
 - CMRR = DG / CMG
 - The Higher CMRR, the better quality
 - Typically, 100 ~ 10,000
 - ☞ 60Hz noise common to V1 and V2 can be rejected

Instrumentation Amplifiers

One OP Amp Differential Amplifier

- Input Impedance is not so High
 - Good for Low impedance source
 - Strain gage Bridge
 - Bad for High impedance source
- Instrumentation Amplifier
 - Differential Amp with High Input Impedance and Low Output Impedance
 - Two Noninvering Amp + One Differential Amp

Instrumentation Amplifiers (Cont.)

Instrumentation Amp = • We have: Noninverting Amp + **Differential Amp**

- ☞ DG = (V1-V2) / (V3-V4)
 - = (2*R4 + R3) / R3
- V6 = (V3-V4)*DG*R2 / R1
- **First Stage CMRR**
 - CMRR = DG / CMG = DG
 - **Overall CMG = 0**
 - High CMRR
- **High Input Impedance**
- Gain is adjustable by changing **R3**

The Electrocardiogram Amplifier

Analog Computation

Digital Signal Processing is preferred

- Flexibility
- Easy to Change
- Elimination of hardware
- Analog Signal Processing
 - Is preferred when DSP consumes too much time

Inverter and Scale Changer

Inverting Amp with Gain = - Rf / Ri

Inverter

♦ Rf / Ri = 1

- Inverter and Scale Changer
 - Proper choice of Rf / Ri
- Application
 - Use of inverter to scale the output of DAC

Adders (Summing Amplifiers)

Adder

 Inverter with Several inputs

- Vo = -Rf(V1/R1 + V2/R2 +... + Vn/Rn)
 - ♦ If = I1 + I2 + In
 - ◆ I1 = V1/R1, ...
 - ♦ Vo = -If * Rf
- Rf determines overall
 Gain
- Ri determines weighting factor and input impedance

Integrator

$$v_0 = \frac{-1}{RC} \int_0^{t_1} v_i dt + v_{ic}$$

Drawbacks

- Vo will reach saturation voltage, if Vi is left connected indefinitely
 - Integrator operates as an open-loop amplifier for DC inputs

Practical Integrator

Controlled By Relay or Solid State Switch or Analog Switch

Reset

- S1 Closed, S0 Open
 - Inverter
 - C is initialized to Vr

Integrate

- S1 Open, S0 Closed
- Hold
 - ♦ S1 Open, S0 Open
 - Keeps Vo constant
 - Read and Process

Differentiators

Drawbacks

- Instability at High frequencies
- Practical Differentiator

To Stable

 $R_i = \sqrt{\frac{R}{A_0 \omega_0 C}}$

Chap 0

Comparators

Compare Two Inputs

- Vi > Vr
 - ✓ V0 = -Vs
- Vi < Vr

а.

✓ Vo = Vs

Drawbacks

- If Vi = Vr + small noise
 - Rapid fluctuation
 between ± Vs

Comparators with Hysteresis

Positive Feedback

- Hysteresis loop
- Can remove the effect of Small Noise

Reduce Fluctuation

Chap 0

OP Amp Considerations

Effects of Nonlinear characteristics

- Compensation
 - Undesirable Oscillation at High frequency
 - Add external Capacitance according to Spec sheet
- GBW (Gain Bandwidth Product)
 - Gain × Bandwidth = Constant (Typically 1MHz)
 - For Noninverting Amp: Bandwidth = GBW / Gain
- Input Offset Voltage
 - Practical OP Amp
 - Zero input Does NOT give Zero output
 - Input Offset Voltage
 - Applied input voltage to obtain Zero output
 - Nulling the offset Voltage
 - Adding External Resister according to Spec sheet

OP Amp Considerations (Cont.)

Input Bias Current

- Practical OP amp
 - Current flowing into the terminal is NOT Zero
 - To keep the input Tr of OP amp turned on
 - Causes errors proportional to feedback network R
- To minimize errors
 - feedback R should be low (<10KΩ)

Slew Rate

- Maximal rate of change of amplifier output voltage
 - Ex: Slew rate of 741 = 0.5 V / μs
 - Time to output change from –5V to 5V = 20 μs
- To Minimize slew rate problem
 - Use OP amp with smaller external compensating C

OP Amp Considerations (Cont.)

- Power Supply
 - ☞ Usually ±15V
 - Linear Range ±13V
 - Reducing power supply voltage
 - Results reduced linear range
 - Device does not work < 4V
- Different OP Amps
 - Bipolar Op Amps
 - Good input offset stability
 - Moderate input bias current and Input resistances
 - @ FET
 - Very Low input bias current and Very High Input resistances
 - Poor Input offset voltage stability

Guarding

Elimination of Surface Leakage Currents

Elimination of Common Mode Signals

Very important in practice
 But skip in this course

Passive Filters

Passive Circuits

- Contains only passive elements
 - Registers, Capacitors and Inductors
- ♦ Examples
 - Bridge Circuit
 - Voltage Divider
 - Filters

Filters

- Eliminate unwanted signal from the loop
- ◆ Low Pass, High Pass, Band Pass, Notch, ...

Passive first-order Low pass Filter

- Pass desired Audio signal and reject undesired RF
- Order of Filter
 - Number of C and L

$$\frac{V_o}{V_i} = \frac{1}{1 + j\omega\tau}, \quad \tau = RC$$

 Plot Magnitude and Phase plot (Bode plot)

Passive first-order High pass Filter

 Pass desired High frequency signal and reject undesired low frequency signal

Chap 0

$$\frac{V_o}{V_i} = \frac{j\omega\tau}{1+j\omega\tau}, \quad \tau = RC$$

- Plot Magnitude and Phase plot (Bode plot)
- Meaning of $\omega_{\rm C}$

Passive second-order Low pass Filter

- To increase the attenuation of transfer function
- Order of Filter
 - Number of C and L

$$\frac{V_o}{V_i} = \frac{1}{(j\omega/\omega_c)^2 + (2\zeta j\omega/\omega_c) + 1}$$
$$\omega_c = \sqrt{\frac{1}{LC}}, \zeta = \frac{R}{2}\sqrt{\frac{C}{L}}$$

Meaning of Quality factor

$$Q = \frac{1}{2\zeta} = \frac{\omega_c}{\Delta\omega}, \Delta\omega = 3dB BW$$

Passive second-order High pass Filter

- To increase the attenuation of transfer function
- Order of Filter
 - Number of C and L

$$\frac{V_o}{V_i} = \frac{\omega^2}{(j\omega/\omega_c)^2 + (2\zeta j\omega/\omega_c) + 1}$$
$$\omega_c = \sqrt{\frac{1}{LC}}, \zeta = \frac{R}{2}\sqrt{\frac{C}{L}}$$

Active First-order Low Pass Filter

 Inverting Amp + Feedback Capacitor

- Identical frequency response with Passive filter
- Very Low Output impedance
 - Negligible Loading Effect

Active First-order High Pass Filter

 Inverting Amp + Input Capacitor

- Identical frequency response with Passive filter
- Very Low Output impedance
 - Negligible Loading Effect

Active High-order Filters

Low Pass Filters

High Pass Filters

Chap 0

Bandpass and Band-reject Filters

Butterworth Filters

- Maximally Flat Magnitude response in pass band
- High Attenuation Rate

Chebyshev Filters

- Maximum Attenuation Rate
- Ripple in pass band
- Bessel Filters
 - Maximally flat time delay in response to step input
 - Attenuation Rate is very gradual

Filter Design Table

• C when $\omega_0 = R_0 = 1$

Poles	C,	C ₂	C3	C ₁	C_3	C3
Bessel				Butterworth		
2	9.066 -1	6.799 -1		1.414 +0	7.071 -1	
3	1.423 +0	9.880 - 1	2.538 -1	3.546 ÷0	1.392 + 0	2.024 - 1
4	7.351 - 1	6.746 - 1		1.082 +0 2.613 +0	9.241 - 1 3.825 - 1	
S	1.009 + 0 1.041 ± 0	8.712 - 1	3.095 -1	1.753 + 0 3.235 + 0	1.354 ± 0 3.089 - 1	4.214 -1
6	6.352 - 1 7.225 - 1 1.073 + 0	6.098 - 1 4.835 - 1 2.561 - 1		1.035 +0 1.414 +0 3.863 +0	9.660 - 1 7.071 - 1 2.588 - 1	
	2-dB Chebyshev			0.25-dB Chebyshev		
2	2.672 +0	5.246 - 1		1.778 +0	6.789 -1	
3	2.782 + 1	3.113 +0	3.892 - 2	8.551 +0	2.018 +0	1.109 - 1
4	4.021 + 0 9.707 + 0	1.163 + 0 1.150 - 1		2.221 +0 5.363 +0	1.285 + 0 2.084 - 1	
5	1.240 + 1 1.499 + 1	4.953 + 0 7.169 - 2	1.963 -1	5.543 +0 8.061 +0	2.898 + 0 1.341 - 1	3,425 -1
6	5.750 ±0 7.853 ±0 2.146 ±1	$\begin{array}{r} 1.769 \ +0 \\ 2.426 \ -1 \\ 4.902 \ -2 \end{array}$		3.044 ,+0 4.159 +0 1.136 +1	1.875 + 0 4.296 - 1 9.323 - 2	

Filter Design Example

- Low pass five-pole Butterworth filter with a corner frequency of 200Hz and input resistance of 50KΩ
 - Economic Solution = 3rd order + 2nd order
 - Desired R and C ?
 - $\sim C_{1A} = (\omega_0 R_0 C_0) / (\omega R)$

= 1x1x1.753 / 2πx200x50K = 27.9 nF

∽ C_{2A} = 21.6 nF, C_{3A} = 6.7 nF, C_{1B} = 51.5 nF, C_{2B} = 4.9 nF

Chap 0

VCO(Voltage Controlled Oscillator)

 VCO = Voltage to Frequency(V/F) Converter

 VCO converts an input voltage to a series of output digital pulses whose frequency is proportional to the input voltage

- Applications
 - ADC
 - Digital Transmission
 - Telemetry
 - Digital Voltmeter

VCO (Cont.)

Module form

 Better linearity, Lower Gain drift, Higher full-scale frequencies than IC

Monolithic IC form

- ◆ Less expensive, Small size
- Lower drift, Better flexibility of frequency range

Examples

- LM331
 - Low cost VCO from National Semiconductor
 - Maximum nonlinearity 0.01% over 1 ~ 100KHz

◆ CD4046B

- PLL contains VCO
- Maximum nonlinearity 1.0% over 1 ~ 400MHz

PLL(Phase Locked Loop)

- VCO is commonly used in PLL
- **Applications**
 - Communications
 - Radar
 - Time and frequency control
 - Instrumentation system

Control loop

- Goal
 - Minimize z(t)

$$\rightarrow$$
 s(t) = r(t)

- Change r(t) until z(t)=0
 - s(t) can be obtainedBy reading r(t)

VCO Interfacing

Output of VCO

 Digital pulses whose frequency is proportional to input voltage # of pulse / Duration

- Duration
 - Controlled by
 Sampling Gate
- # of Pulse
 - Counted in Counter

Divider Circuit

Convert Register • Output Voltage Variations to Voltage **Variations**

◆ Vo = {R2 / (R1 + R2)} Vs

Divider Circuit: Drawbacks

Vo is not linearly changed

• Ex: Vs = 5V, R1 = 1K Ω , R2 = 0 ~ 1K Ω (Sensor)

- Output Impedance(R1 || R2) is not so High
- Large Power Consumption

Divider Circuit: Example

- R1 = 10KΩ, R2 = (4K ~ 12KΩ), Vs = 5V
 - ♦ Maximum Vo = 5 {12 / (10+12)} = 2.73V
 - Minimum Vo = 5 { 4 / (10 + 4)} = 1.43V
 - Maximum Z = (10K || 12K) = 120/22 KΩ
 - Minimum Z = (10K || 4K) = 40/14 K Ω
 - Maximum Power = $(Vo)^2/R^2$
 - $= (2.73)^2 / 12 K = 0.62 mW$

• Minimum Power = $(1.43)^2/4K = 0.51mW$