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Week 4. Hardware: Sensor Mote Architecture and Design 
 

From Dr. Fei Hu's written textbook 
 

Outline: 
- analog sensors 
- microcontroller 
- memory 
- RF (Radio Frequency) communication unit 
- Battery   
- put everything together into an intelligent sensor mote system. 
 

Review: 
 

 WSN features 
 Difference between MANET & WSN 

 
 

2.1 Components of a Sensor Mote [Jason03] 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.1.1 Sensors 
 
 

Remember: A mote (i.e., a WSN sensor node) is a typical embedded 
system from computer engineering design viewpoint. As we know, any 
embedded system needs a microprocessor (also called CPU or 
microcontroller) to control all other chips. But a mote needs to achieve 
wireless networking with other motes, its CPU needs to interface to RF 
transceiver. How do we interface CPU and radio chips in a fast, low-
energy way is a challenging issue.   
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Discrete Sample Voltage
Sensor Type Current Time Requirement Manufacturer

Photo 1.9 mA 330 uS 2.7 - 5.5V Taos
Temperature 1 mA 400 mS 2.5 - 5.5V Dallas Semiconductor

Humidity 550 uA 300 mS 2.4 - 5.5V Sensirion
Pressure 1 mA 35 mS 2.2 - 3.6V Intersema

Magnetic Fields 4 mA 30 uS Any Honeywell
Acceleration 2 mA 10 mS 2.5 - 3.3V Analog Devices

Acoustic 0.5 mA 1 mS 2 - 10V Panasonic
Smoke 5 uA -- 6 - 12V Motorola

Passive IR (Motion) 0 mA 1 mS Any Melixis
Photosynthetic Light 0 mA 1 mS Any Li-Cor

Soil Moisture 2 mA 10 mS 2 - 5V Ech2o  
 
Table 2.1 Power consumption and capabilities of commonly available sensors [Jason03] 
  

 
Analog and digital sensors:  
 
(1) Analog sensors generate raw analog voltage values based on the physical 

phenomena that they are measuring.  

Due to measurement noise and other factors, analog sensors typically have a non-linear 
response to external stimuli. Therefore analog sensors often require external linearization.  

After receiving those raw analog data, a CPU must then process such analog data.  
 
 (2) Digital sensors actually put all of the abovementioned voltage processing hardware in a 

sensor to directly provide a clean digital interface.  
Because they have implemented all required compensation and linearization internally, their 

output is already a digital reading with an appropriate scale.  
If you purchase a commercial microcontroller (CPU) to interface the above sensors, it 

typically has multiple interfaces to either analog or digital sensors.   
Although most sensors have the capability of producing thousands of samples per second, in 

practice we are only interested in a few samples per minute. Such a low duty cycle can greatly 
save energy.  

It is important to turn on/off a sensor as quickly as it can in order to save energy. For example, 
if a sensor takes 100 ms to turn on and reads a sample, assume the sample reading consumes just 1 
mA at 3 V, it will cost 300 µJ (=V.I.T) in total to get a sample. This is the same amount of energy as a 
sensor that consumes 1000 mA of current at 3 V but takes just 100 us to turn on and read a sample. 

It needs some extra circuitry if a sensor’s voltage requirements do not match the capabilities of 
the system. For instance, some sensors require +/- 6 V. If a sensor just uses AA or lithium batteries, 

we need special voltage converters and regulators in order to use this sensor. The power 
consumption and turn-on times of converters and regulators’ circuitry must be included in the total 
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energy budget for the sensor. 
 
 
 
 
 
 
 
 
 
 
 

2.1.2 Microprocessor 
 

microcontrollers (i.e. tiny CPUs, also called microprocessors or processors),  
When selecting a commercial microcontroller family for a WSN application, we need to 

consider some of the key requirements including energy consumption, voltage 
requirements, cost, support for peripherals, and the number of external 
components required. 

The power consumption when a CPU is in sleep mode is an important 
performance metric. In sleep mode the CPU stops execution except that it maintains basic 
memory activities and time synchronization in case later on it needs to timely wake-up. The current 

consumption in sleep mode varies between 1 µA and 50 µA across CPU families. Since the 
CPU is expected to be idle 99.9% of the time, such a 50x µA difference can have a more significant 
impact on mote performance than mA differences in peak power consumption.  

Besides the energy consumption level in sleep mode, we also care about how much time the 
operation of entering / exiting sleep mode takes. Such a transition time (entering sleep / wake-up time) 
could take 6 µs ~ 10 ms. The wake-up delay is used to start and stabilize system clocks. The faster 
a CPU can enter or leave the sleep mode, the more energy a mote can save. As a matter of fact, by 
quickly wake-up, we can put a mote into sleep mode even at a very short period of inactivity. For 
example, during a message transmission, the controller can enter the sleep mode 
between each bit of transmission. Active current consumption of the controller is reduced by 
longer sleep time.  

CPU performance also depends on the operating voltage range. Traditional WSN 
microcontrollers operate between 2.7V and 3.3 V. Recently, new generations of low-power 
CPUs can even operate on 1.8 V. WSN applications need a wide voltage tolerance. 

In a WSN, the CPU needs to execute the wireless communication protocols and perform 
local data processing. Those operations do not need a high-speed CPU. That’s why 
most of today’s WSN CPUs have a speed of less than 4M Hz.  

Some WSN CPUs can dynamically change the operating frequency. CMOS power 
consumption obeys the equation P=CV2F. Therefore, higher CPU frequency 
brings more power consumption. But the COU execution time is inversely proportional to 

Today, almost all analog sensors convert environmental parameters into a 
readable low voltage level. How to interpret those voltage levels from 
event detection perspective is a difficult issue. Moreover, we need to 
capture such a weak current and use ADC to get digital signals. During the 
ADC the noise from hardware and environments should be removed.   
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frequency. That is, higher frequency makes a program run faster, which also saves energy. 
Therefore, it is hard to say that the system energy will change a lot by increasing or reducing CPU 
frequency. 

Table 2.2 lists some important features to be considered when selecting a CPU, such as 
power, memory size, fast reprogrammability, A/D channels, and operating supply. It compares some 
suitable CPUs in different motes on the market. Typically Atmel AT90LS8535 offers a good 
performance in most WSN applications.  

 
 

Atmel AVR 
AT90LS8535

Microchip 
PIC16F877 

(preliminary)

MC68H(R)C 
908JL3 

Amtel AT91M404000 
16/32 bit Strong 

Thumb

Flash Memory 4K 8Kx14 4K external memory

Endurance 1k 1k 10k N/A

MIPS/mA 1.25 (min) 1.66 (preliminary) 0.1 (typical)
0.6 MIPS/mA        

(1.35 mA static 
current)

A/D channels 8 (10 bit) 8 (10 bit) 12 (8 bit) 0

In-application 
programming 

(IAP)
No Yes Yes Yes

Operating 
voltage

2.7 - 5.5V 2.0 - 5.5V 2.7V - 3.6V 2.7V - 3.6V

I/O pins 35 40 23 100  
 

 
Table 2.2 Comparison of Microprocessors [Seth00] 
 
 
 
 
 
 
 
 
 
 
 
 

 A CPU design example: SNAP/LE [Virantha04] 
 

a low-energy mote processor called SNAP/LE (Sensor Network Asynchronous 
Processor/Low Energy), optimized for data monitoring operations in WSNs.  

Note that the above table does not intend to list all advanced CPUs used in 
different embedded systems. Instead, it only lists some popular 
microcontrollers that may be suitable to small, low-power, low-cost motes. 
In some products, the microcontrollers are integrated with different 
memories (such as flash, ROM, etc.).  
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A dominant feature of SNAP/LE is to use asynchronous circuits, which results in 
automatic, fine-grained power management, which can be seen from the following fact: when a 
circuit does not perform a particular operation, it won’t have any switching activity. 
Asynchronous circuits also remove glitches / switching hazards in the CPU, which avoids 
another source of energy waste.  

Another interesting feature of SNAP/LE is that its hardware directly supports 
event execution, which means that we don’t need an operating system! No OS 
reduces static and dynamic instruction counts. It also simplifies CPU design since we don’t need 
to worry about precise exceptions and virtual memory translation. 

Traditional mote CPU designs mostly adopt a commodity off-the-shelf (COTS) 
microcontroller such as Berkeley motes’ Atmel Mega128L [Atmel08]. SNAP/LE 
doesn’t use commercial CPU, instead, it is a processor designed specifically for WSNs. It not 
only meets the computational demands of a WSN node, but also consumes much less energy 
than other CPUs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
SNAP/LE aims to design a CPU with all the following features: 
 

(1) A simple programming model: A good CPU design should allow easy 
programming.  

(2)  Lower-power sleep mode: As we mentioned before, sensors remain in sleep status 
during most of the time.  

(3) Low-overhead wakeup mechanism:  SNAP/LE aims to achieve around 10ns of 
transition time, which is much less than an event handling time (a few ms).   

(4) Low power consumption while awake: Besides keeping a low power consumption 
during sleep status,  
SNAP/LE uses a 16-bit data path. Its instructions can be one or two 16-bit words long 

(two-word instructions take two cycles).  
Simultaneous execution of several instructions is supported in SNAP/LE. 

Its potential concurrency can be seen from its microarchitecture in Figure 2.2: the event queue 
stores outstanding events that are yet to be processed. These instruction tokens travel through the 
pipeline and are transformed by the computation blocks (adders, decoders, etc.).  

 

 

Good Idea 

Customized VLSI vs. COTS design: It is hard to say which one 
is the dump winner. Typically, from time and complexity viewpoint, 
most researchers choose to use COTS since so many different companies 
are providing high-performance, low-cost chips to assemble a mote. 
However, from cost and performance viewpoint, customized VLSI 
design is final solution since you could minimize chip size and achieve 
the best speed/energy performance. Later on, we will cover Spec 
[Jason03]. Like SNAP/LE, it is also a customized design. 
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Figure 2.2 - Microarchitecture of SNAP/LE showing major units. [Virantha04] 
 

SNAP/LE CPU core includes an important component, i.e., the event queue. It works 
with the instruction fetch unit to form a hardware implementation of a FIFO task scheduler. The 
scheduler first executes the boot code. When the scheduler reaches “done” instruction, which is 
also the last instruction in the boot code, it will stop fetching instructions and wait for an event 
token to appear at the head of the event queue.  

Each event token tells what event has occurred. Event tokens are inserted into the event 
queue by two components: (1) the timer coprocessor when a timeout finishes; (2) the 

Event 
Queu

Fetch 

Timer 
Coproc. 

Adder, ALU, 
Load/Store Unit, 

Jump/Branch, 
Shifter

Register File 

IMEM 

Decode Message 
FIFO 

Scheduler 

Message 
Coproc. 

DME



7 | P a g e  

 

message coprocessor when data arrives from the sensor node’s radio or from one of its 
sensors.  

SNAP/LE has a “deep sleep” state. It takes only 10’s ns for its CPU to 
wake up from this sleep state. It thus saves energy through “deep sleep” and the low wake-up 
latency. This feature is not seen in conventional WSN CPUs: most of them have several “sleep” 
states. For instance, they may have “deeper” sleep state that consumes less power, but requires 
more time to wake up than a “lighter” sleep state. The Atmel microcontrollers, for example, have 
six sleep states [26]. 

As we can see from Figure 2.2, SNAP/LE CPU has the following hardware units: an 
adder, a logic unit, load-store units, a timer unit for interfacing with the timer 
coprocessor, a jump/branch unit, a linear-feedback shift register (for pseudo-
random number generation), and a shifter. The most commonly-used units (such as 
the adder, the logic unit, the load-store, etc.) are placed on the fast busses and the rest on the 
slow busses. All of the function units were designed with minimal pipelining in order to limit 
SNAP/LE’s power consumption while awake. 
 

2.1.3 Memory 
 

After we discussed CPU, we move to another important mote component – memory. 
Generally WSN motes only require small amounts of storage and program memory. This is 
because sensor data only stays in local sensor for a short time and then are transmitted through the 
network to the base station.  

Today many flash-based CPUs have an on-chip storage that is typically less than 
128K. Such on-chip storage can be used as both program memory and as temporary 
data storage. WSN CPUs also have a data RAM (between 128 and 32KB) that can be 
used for program execution. 

Let’s take a look at the differences between flash memory and SRAM (static 
random access memory):  

(1) Flash technology has higher density than SRAM. For instance, flash memory 
could have a storage density of 150 KB per square millimeter in a .25 micron 
process [AMD03]. While Intel’s recent SRAM density record is 60 KB per square 
millimeter using a 90 nm process [Intel02].  

(2) From energy consumption viewpoint, flash is a persistent storage technology that requires 
no energy to maintain data. However, SRAM requires more energy to retain 
data over time, but does not require as much energy for the initial storage operation.  

(3) From time viewpoint, a flash write operation requires 4 µs to complete compared to .07 
µs for SRAM – both consuming 15 mA.  

Therefore, if we need to store data for long periods of time, it is more efficient to 
use flash instead of SRAM.  
 

2.1.4 Radios 
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Now let’s discuss another important hardware component in a mote: radio transceiver. First, 

let’s remember a few facts on motes’ low-power, short range transceivers: 
(1) It consumes around 15 ~ 300 milliwatts of power during sending and receiving.  
(2) It needs approximately the same amount of energy when in receive or transmit mode.  
(3) As long as the radio is on, whether or not it is receiving actual data, the 

energy is consumed.  
(4) Lots of energy is consumed in receiving packets. The actual power emitted out of the 

antenna (when sending data) only accounts for a small fraction of the transceiver’s energy 
consumption. Therefore the receiver power consumption dominates the 
overall cost of radio communication. This fact is often ignored in wireless 
studies.  

(5) If the receiver is never turned off (that is, it is left on 100% of the time during periods of 
intermittent communication), the receiver will be the single largest energy consumer in the 
system. Do not think that reception is free when no data is received. 
Therefore, try to put transceiver into sleep when no data is received. 

(6) If we use higher transmission power (i.e. putting more energy into a radio signal to be 
sent), we could make the signal propagate for a longer distance. The relationship 
between power output and distance traveled is a polynomial with an 
exponent of between 3 and 4 (this exponent is called path loss, which is 
due to radio interference). As an example, if we want to transmit twice as far 
through an indoor environment, 8 ~ 16 times as much energy must be emitted.  

(7) Although the data transmission distance is mainly determined by the transmitter power, 
other factors could also impact on radio range such as the sensitivity of 
the receiver, the gain and efficiency of the antenna, and the channel encoding 
mechanism.  

(8) In Most WSN applications, due to low-cost requirements, we cannot exploit high gain, 
directional antennas because they require special alignment. Therefore, we assume omni-
directional antennas are used in most WSNs.  

We use dBm to measure both transmission strength and receiver sensitivity. (Note: The dB 
scale is a logarithmic scale where a 10 dB increase represents a 10x increase in power. The baseline of 0 
dBm represents 1 milliwatt, so 1 watt is 30 dBm.) Typical receiver sensitivities are between -85 and -
110 dBm.  

Radio propagation distance can be increased by either increasing receiver’s 
sensitivity or by increasing transmission power. When a sender uses a transmission power 
of 0 dBm, and a receiver sensitivity is set to -85 dBm, the signal may propagate for an outdoor 
free space range of 25-50 meters, while a sensitivity of -110 dBm will result in a range of 100 to 
200 meters. (Note: The use of a radio with a sensitivity of -100 dBm instead of a radio with - 85 dBm 
will allow you to decrease the transmission power by a factor of 30 and achieve the same range.) 

A VCO (Voltage Controlled Oscillator)-based radio architecture has been used in 
most of today’s RF transceivers. Those transceivers have the ability to communicate at a variety of 
carrier frequencies (each carrier frequency is called a channel). Such a multi-channel 

formula 



9 | P a g e  

 

communication can effectively resist interfering signals. If a channel is found in high noise, the 
transceiver can immediately switch to another channel. 

 

(1) Modulation Schemes 
 

When we talk about RF communications, an important sub-topic is called digital 
modulation, which puts sensor data in high-frequency RF carrier signal. Without modulation, the 
data cannot be transmitted for a long distance. And also it cannot resist noise well. 

Amplitude modulation (AM) and frequency modulation (FM) have 
been used for a long term. AM doesn’t need complex circuit. It is simple to encode and decode. 
However, it is the most susceptible to noise because the data is simply encoded in the amplitude 
(strength) of the carrier signal. Any external noise can change such an amplitude. In contrast, 
FM is less susceptible to noise because all data is transmitted at the same power level.  

However, FM is not the strongest way to resist noise. Spread spectrum transmission 
techniques can greatly increase channel’s tolerance to noise by spreading the signal over a wide 
range of frequencies.  

There are two types of spread spectrum schemes. One is called Frequency hopping 
(FH); the other one is called CDMA (Code Division Multiple Access).  

Dwell times – the duration each channel is used – range from 100’s μs to 10’s ms of 
milliseconds.  

But FH has shortcomings when used in WSNs. For instance, it has high overhead to 
maintain channel synchronization and to discover the current hopping 
sequence. If a sensor tries to find out what their neighbors are, it must attempt to search all possible 
channel locations 

CDMA (also called direct sequencing spread spectrum, i.e. DSSS) doesn’t divide the 
wideband signal into small channels. Instead, the signal is directly spread over a wide frequency band 
by multiplying the signal by a higher rate pseudorandom sequence.  

But for WSNs, CDMA also has too much overhead due to the maintenance of spreading codes 
and the cost of the signal decorrelation. It needs high bit-rate communications, which is not realistic in 
low-rate WSNs.  

[Jason03] illustrates the power consumption of modern low power transceivers through two 
commercial radios, the RF Monolithics TR1000 and the Chipcon CC1000: 

(1) The TR1000 radio consumes 21 mW of energy when transmitting at 0.75 mW. During 
reception, the TR1000 consumes 15 mW when using a receive sensitivity of -85 dBm.  

(2) The CC1000 consumes 50 mW to transmit at 3 mW and consumes 20 mW with a receive 
sensitivity of -105 dBm. When transmitting at the same .75 mW as the TR1000, the 
CC1000 consumes 31.6 mW.  

(3) In practice TR1000 provides an outdoor, line-of-site communication range of up to 300 
feet compared to 900 feet for the CC1000.  

(4) Assume an idealized power source, the CC1000 can transmit for approximately 4 days 
straight or remain in receive mode for 9 days straight. In order to last for one year, the 
CC1000 must operate at a duty cycle of approximately 2%. 
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(2) Bit Rate 
 
Although Internet prefers a high data rate (its backbone speed could be over 30G bps), WSN 

applications do not need such a high speed since most times the sensors just send out some values. 
That’s why many sensors today only offer around 10-100 Kbps of data rate. 

 
 

Some typical RF chips suitable to WSNs communications are summarized in Table 2.3. 
Those chips can be purchased from many semiconductor companies. 
 

Radio            
Features 

Radio      
TR1000  

Radio 
CC1000 

 Radio          
CC2400  

Radio 
nRF240

1  

Radio 
CC2420  

Radio 
MC13191

/92 

 Radio 
ZV4002 

Max Data rate      
(kbps) 

115.2 76.8 1000 1000 250 250 723.2 

RX power         
(mA) 

3.8 9.6 24  18(25) 19.7 37(42) 65 

TX power         
(mA/dBm) 

 12/1.5  6.5/10  19/0  13/0  17.4/0  34(30)/0  65/0 

Powerdown 
power (µA)  

1 1 1.5 0.4 1 1 140 

Turn on time       
(ms)  

0.02 2 1.13 3 0.58 20 * 

Modulation  
OOK/AS

K  
FSK FSK, GFSK  GFSK 

 DSSS-O-
QPSK 

 DSSS-O-
QPSK  

FHSS-
GFSK 

Packet detection no  no programmable  yes  yes  yes  yes 

Address decoding  no  no  no  yes  yes  yes  yes 

Encryption 
support  

no  no  no  no 
 128-bit 

AES 
 no 

 128-bit 
SC 

Error detection  no  no  yes  yes  yes  yes  yes 

Most of radio communication system needs a MODEM (MOdulation and 
DEModulation device) to put low-frequency, narrow-band digital signals 
into high-frequency wide-band carrier signals (such as 2.4 MHz). This is 
because low-frequency signals cannot resist noise well and cannot reach a 
long distance. The above only mentioned a few popular modulation 
schemes. In fact we have dozens of choices. It takes an entire textbook to 
discuss those modulation schemes. This book can only cover some basics.  
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Error correction  no  no  no  no  yes  yes  yes 

Acknowledgment
s  

no  no  no  no  yes  yes  yes 

Time-sync  bit 
SFD/byt

e 
SFD/packet  packet  SFD  SFD  Bluetooth 

Localization  RSSI  RSSI  RSSI  no  RSSI/LQI  RSSI/LQI  RSSI 

 
*  Manufacturer’s documentation does not include additional information. 

 

2.1.5 Power Sources  
 

One of the most important components in a mote is the power source. If we use batteries, three 

common battery technologies are used in WSNs, i.e., Alkaline, Lithium, and Nickel 
Metal Hydride): [Jason03] 

(1) Alkaline – If you buy an AA Alkaline battery, you will see that its output voltage is rated 

at 1.5V. In reality when it operates, the voltage could change from 1.65V to 0.8V (when it 
is used for longer time, its voltage is lower). Its current is rated at 2850 mAh.  

It is a cheap, high capacity energy source. But some sensors do not tolerate 
its wide voltage range. Its large physical size is also an issue. Even though you 
don’t consume the power, it can self-discharge itself and becomes useless after 5 
years (when its voltage is too low).  

(2) Lithium - Lithium batteries have much smaller physical size than Alkaline ones 
(the smallest versions are just a few millimeters in diameter). Another good thing is that they 
have a constant voltage output. Even the battery is almost drained, its voltage doesn’t 
decay much. Another good thing is that unlike alkaline batteries, lithium batteries are able to 
operate at temperatures down to -40 C. CR2032 is the most common lithium battery. It is 
rated at 3V, 255 mAh and sells for just 16 cents.  

However, it has a big disadvantage - they have very low nominal 
discharge currents. Therefore, they cannot drive most of today’s motes that need 

more than 1000 mA of current. For instance, it may be good to drive Crossbow 
Mica2Dot (the smallest mote from Crossbow), but it cannot drive Mica2 mote. 

(3) Nickel Metal Hydride - Nickel Metal Hydride batteries can be easily recharged. It 
has a few shortcomings: An AA size NiMH battery has approximately half the energy 
density of an alkaline battery (however at approximately 5 times the cost). They only 
produce 1.2 V. But many WSN hardware components require 2.7 volts or more. 

 
Table 2.4 lists the main features of the above three types of batteries [Seth00]. 
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Battery Type Voltage Energy Density Maximum Current 

Alkaline AA             
P107-ND 

1.5 V 90 mWatt-hrs/gram 130mA @ 24 grams 

Nickel-Metal Hybrid       
P014-ND 

 (rechargeable)  
1.2 V 55 mWatt-hrs/gram > 2600mA @ 26 grams 

Lithium 3.0 V 285 mWatt-hrs/gram 10mA @ 10.5 grams 

 
Table 2.4 – WSNs battery types 

       
   If a mote is designed to operate in low voltage, a battery could run for a long time.  For 
instance, suppose a mote consumes 250 mW and its components require 2.7 V. If we provide an AA 
battery, assume it makes the mote run for 1 month. However, if we redesign the mote to 
make its components operate under a voltage down to 2.0 volts, it would last 
approximately 5 times as long off of the same power source. Therefore, a seemingly 
unimportant CPU parameter (i.e. hardware voltage requirement), could result in a 5x difference in 
system lifetime.  

Because a battery could have decaying voltage output when time goes on, voltage 
regulation techniques have been proposed to take in varying input voltages and produce a 
stable, constant output voltage. Standard voltage regulators can only generate an output 
voltage that are lower than input voltage. 

it will be highly advantageous to build motes with components that are tolerant to a 
wide voltage range. If the mote’s components can operate over a range of (2.1-3.3V), it 
will be good enough to use general alkaline batteries. 

Besides the above battery-based power sources, energy harvesting, especially solar 
energy harvesting, has become increasingly important as a way to improve the lifetime and 
maintenance cost of WSNs. While macro-solar power systems have been well studied, the 
micro-solar-based solar energy harvesting is more constrained in energy budget and use of 
energy, and is still under active research.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Good Idea 

Energy, energy, energy. 

Do you know one of the hottest R&D topics is renewable energy system? 
Human beings are facing a great challenge: we cannot simply depend on 
gas! Look at the unlimited power source – Solar! Why don’t we explore it 
for all applications including motes? Easy said than done. We need you – 
smart scientists and engineers, to come up with a feasible, low-cost 
solution to explore solar, wind, nuclear and other renewable sources.   
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2.1.6  Peripheral Support 
 

We have discussed about CPUs (i.e., microcontrollers) and their internal design principle. 
A CPU has some pins to specifically interact with external devices. It has two types of pins: 

(1) Digital I/O (input/output) pins: Standard digital I/O lines are included on all 
CPUs as the base line interface mechanism. It interfaces to RF transceivers, memory 
units and other components that output digital signals.  

Note: In those digital I/O pins, digital communication protocols are used to read 
digital sensors. But some other peripheral chips connect to a CPU through serial 
communication protocols over a radio or RS-232 transceiver. Overall, three 
standard communication protocols are supported by digital 
communication primitives: UART, I2C, and SPI. Both I2C and SPI 
use synchronous protocols with explicit clock signals while UART 
provides an asynchronous mechanism.  
 

 Universal Asynchronous Receiver Transmitter (UART) 
 Serial Peripheral Interface (SPI)  
 I2C (Inter‐IC)  

 
(2) Analog I/O pins: A CPU also has analog I/O pins to interface directly with analog 

sensors. For those pins, the CPU has internal analog-to-digital converters  
 

2.2 Put everything together [Jason03] 
 
2.2.1.1 - Wireless communication requirements 
 . Figure 2.3 illustrates the key phases of a packet-based wireless communication protocol. 
Please note that many of the operations must be performed in parallel with each other.    
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As shown in Figure 2.3, encoding is the first step in the communication process. It encodes the 
analog sensor data into “bits” (i.e. codes) for transmission.  

Today many coding schemes have been proposed. The simple scheme could be DC-balancing 
schemes, such as Manchester encoding. In all encoding schemes, data bits (either 0 or 1) are 
grouped into different units, called “symbols”. Each symbol is coded into a collection of radio 
transmission bits, called chips. Manchester encoding has two chips per symbol which represents 1 bit 
of data.  

When data is passed to wireless communication protocols and ready for sending out to another 
mote, a media access control protocol (MAC) needs to be executed first. If you could recall 
MAC definitions, its main task is to make sure that neighbors can transmit data without conflict.  A 
simple example is carrier sense media access (CSMA). A mote listens to the communication 
channel first before it sends out data. If the channel is busy, it waits for a short, random delay after 
which it reinitiates the transmission. 

After the MAC protocol successfully sends out data, the Routing Layer protocols will 
take care of the data from mote to mote. It finds out an optimal path (from energy saving viewpoint) to 
deliver the data to the destination (such as a base-station). 

When data continuously flows between a sender and a receiver, based on accurate time 
synchronization scheme, the sender precisely controls the timing of each bit transition so that the 
receiver can maintain synchronization.  

When a receiver gets the data, it uses decoding and demodulation to recover original data. 
Noise is removed by some data cleaning algorithms. 

 
(3) Decoupling between RF and processing speed 

 
The mote architecture must allow a decoupling between RF transmission rates and 

CPU processing speed. This is because CPU and RF transceiver have very different optimization 
requirements: (1) A radio prefers to send out data at its maximum transmission rate. This is because a 
shorter transmitting time reduces the energy used. (2) On the other hand, modern studies in low 
power CPU design and dynamic voltage scaling have disclosed a fact: CPUs prefer to spread 
computation out in time as much as possible so that they can run at the lowest 
possible voltage. 

Therefore, from energy saving perspective, it would be preferred that the 
CPU perform all calculations as slowly as possible and just as the computation is 
complete, the radio would burst out the data as quickly as possible.  

Now we know the decoupling between CPU and radio is important since it allows the above 
different operation patterns: CPU slowly processes data and radio quickly sends out 
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data. When the speed of the microcontroller is coupled to the data transmission rate, both pieces of 
the system are forced to operate at non-optimal points.  
 

2.2.1.4 Mote Example: Reno 
 

As shown in Figure 2.4, a shared bus is to interconnect memory, I/O ports, analog-to-
digital converters, system timers, and hardware accelerators. Because of its high-speed, low latency 
interconnect, data can be moved easily between the processor, memory, and peripheral devices. 

Such a bus allows not only direct CPU-peripherals interactions, but also allows a peripheral 
device to interact with another peripheral. Note that a peripheral can use the bus to directly pull data 
from the memory. It can also easily push data into a UART peripheral.  

Therefore, Reno can use the shared bus to enhance RF communications as follows: it allows a 
data encoding peripheral to pull data directly from memory and then push it into a data transmission 

accelerator, such as modulation circuit for RF communications. In such a case the CPU 
doesn’t get involved into communications (DMA). This frees CPU some heavy 
load since the CPU can simply orchestrate the data transmission. 
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Figure 2.4 Generalized Architecture for embedded wireless device [Jason03] 
 

If you could recall “Computer Architecture” course, we could use the same addressing 
schemes to name each memory location and other devices. That is, giving a memory 
address, it could be a real memory location, or it is just the virtual location of a device’s data buffer.  

 
2.3 Mica Mote Design 

 
Mica hardware components include Atmega103 micrcoprocessor (i.e., CPU), a 

RFM TR1000 radio, external storage, and communication accelerators. The 
hardware accelerators optionally assist to increase the performance of key 
phases of the wireless communication. 

Figure 2.5 shows the Mica architecture. It shows five major function modules: CPU, radio 
frequency (RF) communication, power management, I/O expansion, and secondary storage. In 
http://www.tinyos.net the readers could find a quick survey of the major 
modules, a general overview for the system as a whole, and a detailed bill of 
materials, device schematic and datasheet for all hardware components.  
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Figure 2.5 - Block diagram of Mica architecture. The direct connection between application controller 

and transceiver allows the Mica node to be highly flexible to application demands. Hardware 
accelerations optionally assist in communication protocols. [Jason03] 

 
Mica mote uses Atmel ATMEGA103L or ATMEGA128 (4 MHz). Such a CPU also 

connects a 128-Kbyte flash program memory, 4-Kbyte static RAM, internal 8-
channel 10-bit analog-to-digital converter, three hardware timers, 48 general-purpose I/O 
lines, one external Universal Asynchronous Receiver Transmitter (UART), and one 
Serial Peripheral Interface (SPI) port. The Mica radio module consists of an RF 
Monolithics TR1000 transceiver. But it doesn’t use I2C (Inter-IC) interface. 

In order to obtain a unique identification for each mote, Mica uses a 
Maxim DS2401 silicon serial number, which is a low-cost ROM device with a 
minimal electronic interface without power requirements [Dallas08].  

 
Mica’s I/O subsystem interface consists of a 51-pin expansion connector. Those pins 

allow the mote to interface with a variety of sensing and programming boards. The 51-pin 
connector has the following interfaces: 8 analog lines, 8 power control lines, 3 
pulse width modulated lines, 2 analog compare lines, 4 external interrupt lines, 1 
serial port, a collection of lines dedicated to programming the microcontrollers, 
and some bus interfaces. 

Mica uses TR1000 radio to allow the CPU to directly access to the signal strength 
of the incoming RF transmission. Such a radio interface also allows the CPU to sample the 
level of background noise during periods when there is no active data transmission. In multi-hop 
networking applications, such information (radio signal strength, noise levels) 
can dramatically improve routing efficiency by selecting links with good signal-
to-noise ratios.  

Mica allows software to power on / off radio quickly and predictably.  
 

2.4 Customized Mote – Spec 
 

Although it is a quick and simple way to integrate off-the-shelf components into a mote, from 
manufacturing cost, energy consumption and system performance viewpoint, it is 
more efficient to design a custom integrated solution.  

If using off-the-shelf chips, the chip-to-chip communications can sacrifice 
the system delay and power performance due to interface overhead. Therefore, [Jason03] 
developed a custom ASIC for mote board, which is called Spec. By designing the customized silicon it 
achieves orders-of-magnitude efficiency improvements on key communication primitives. 

Spec is much smaller than off-the-shelf motes. It is just 2.5 mm on a side in a 
0.25 um CMOS process even though it integrates a microcontroller, SRAM, 
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communication accelerators and a 900 MHz multi-channel transmitter. 
Of course, although its CPU, RF transceiver, memory are based on single-chip design, it still 

needs some low-cost external components, which include a crystal, battery, inductor and an 
antenna to be a complete WSN mote. 

Spec has a general architecture as shown in Figure 2.7. [Jason03] first used the VHDL digital 
logic tools to synthesize Spec’s behavioral characteristics. After VHDL simulation, they map 
the high-level VHDL code into standard cells provided by National 
Semiconductor using Ambit Build Gates. Its layout was performed with Silicon 
Ensemble – a tool from Cadence Design Systems. In addition to VHDL simulation, the 
functionality of the Spec core was also verified by downloading it onto a Xilinx FPGA. 

Spec’s data processing speed is much higher than Mica in many applications.  
 

 
 
 

Figure 2.7- Block Diagram of Spec, the single chip wireless mote [Jason03] 
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2.5 - COTS Dust Systems [Seth00] 
 
 In [Seth00], several interesting sensor systems were built. Its mote used the Atmel 
AT90LS8535 (as the microcontroller) and RF Monolithics 916MHz RF transceiver. The mote 
controls 7 different types of analog sensors (temperature, light, barometric 
pressure, 2-axis acceleration, and 2-axis magnetometers). Regarding the power source, it 
uses a single 3-V lithium coin cell battery. It can operate for five days of continuous operation or 1.5 
years at 1% duty cycling.  

Figure 2.8 shows its single-hop communication protocol,  
 

 

 
 
 

Figure 2.8 - Protocols used for Base and Floating Mote [seth00] 
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2.6 - Telos mote [Joseph05]  -- Show Xbow.com website 
 

The Telos- series mote (such as Telos-B) is popularly used sensor platform today. Figure 
2.9 shows an example. Unlike Spec that integrates the design into silicon, Telos uses COTS 
components with hardware accelerators to build a power efficient system that does not sacrifice 
performance.  
 

 
 

Figure 2.9 Telos (a type of mote) with IEEE 802.15.4 wireless transceiver. [Joseph05] 
 
 

   After comparing the CPU performance from Atmel, Motorola, and Microchip, Telos 

developers select MSP430 CPU due to its following advantages: 

(1) It has lowest power consumption in sleep and active modes (see Table 2.8).  
(2) It can tolerate a low operation voltage of 1.8V. If we use other CPUs, say 

ATmega128 MCU (Mica family), it can only run down to 2.7V, 
leaving almost 50% of the AA batteries unused.  

(3) We know that a faster wake-up time helps to conserve energy.  takes <6μs  
(4) From memory viewpoint, Table 2.8 shows that the MSP430 has the largest on-

chip RAM buffer (10kB). It is good for on-chip signal processing. A 
larger RAM allows more sophisticated applications. 

From RF communication viewpoint, Telos has the following features: 
(1) It uses the IEEE 802.15.4 standard. Such a standardized radio allows a Telos 

to communicate with many radio devices from other vendors.  
(2) It uses the Chipcon CC2420 radio. It uses 2.4GHz RF band, a wideband radio with O-

QPSK modulation with DSSS at 250kbps. Such a high data rate (other 
motes typically operates under 150kbps) shortens the operation time (which 
helps to reduce energy consumption).  
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2.7 - CargoNet [Mateusz07] 
 
In [Mateusz07] a mote, called CargoNet, is designed to bridge the gap between 

WSNs and radio frequency identification (RFID).  
The CargoNet nodes uses a new concept, called Quasi-Passive Wakeup, to 

achieve an asynchronous, multi-modal wakeup, which can wake up (from 
sleep mode) to perform extremely low power operations.  

CargoNet uses external stimuli signals to wake up its sensor mote. This idea 
is not new. For instance, researchers at Northwestern University have used a 
similar wake-up strategy for vibration detection and autonomous crack 
monitoring. Their platform uses a single geophone as the input sensor, and 
wakes up to record aperiodic shocks to ensure structural integrity of buildings.  

Radio-frequency identification (RFID), aims to improve traditional barcodes 
when used in the transport and distribution of goods. Traditional bar codes require line-of-
sight between interrogator and tagged object. Therefore human operators must align a tagged 
object to ensure a successful read. Moreover, those bar codes have very short information. The 
distance between the interrogator and bar codes is very short (typically a few centimeters).  

On the other hand, RFID uses a reader to read tags that are attached in products. The 
distance between the reader and tags could be even a few meters depending on the used radio 
frequency. Moreover, the reader can read a tag’s data through non-light-of-sight signals 
that propagates widely and permeates through most nonconductive materials, allowing 
identification without human involvement. While traditional bar code is printed onto a surface 
and cannot be changed, we can change the data in RFID tags since they are electronic circuits 
that can change state based on external stimuli. 

A concept, called “active RFID”, has been proposed recently. It is actually a special 
sensor device that has battery and CPUs to provide better “visibility” into their supply 
chains. “Active RFIDs” can accurately collect data about environmental conditions experienced 
by goods in transit, and better manage risk and maintain flexibility. It can detect potentially 
damaged goods before they reach their destination and reordered if necessary.  

CargoNet node is such a type of “active RFID”. Its “quasi-passive wakeup” is based on 
the following interesting fact: the external stimuli could actually be used to wake up and even 
provide energy to the CPU! It desensitizes the sensors following repeating stimuli. This further 
reduces frequency of redundant wakeup to save power. Quasi-passive wakeup allows a cargonet 
RFID tag to simultaneously and continuously monitor many sensor modalities for exceptional 
activity while dissipating minimal power. 

Figure 2.10 is a system diagram with the CargoNet “active RFID” tags and RFID reader. 
Its core hardware consists of the MSP430 microcontroller, real-time-clock, and CC2500 2.4GHz 
radio. The MSP430F135 flash-based microcontroller is made from Texas 
Instruments (TI). It has a specified standby current of less than 0.1µA when entering sleep 
state. 
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Figure 2.10 - CargoNet system diagram [Mateusz07] 

 
The “active RFID” tags use the CC2500 from Chipcon to communicate wirelessly with 

RFID readers/interrogators. Different from traditional RFID systems, the CC2500 
radio is fully bidirectional, such that the “active RFID” tags can also receive 
instructions from the RFID readers besides sending tag data to the reader. 
This feature bridges the gap between the “active RFID” and WSNs since WSN motes requires 
bi-directional communications between nodes. Such a bi-directional radio communication 
capability enables useful applications, such as synchronizing clocks, recording the identity of 
neighbors, or qualifying the validity of sensor readings.  

CargoNet system also uses the following two sensors, the RF wakeup receiver and 
“vibration dosimeter”. They have linear amplifiers to boost or integrate weak signals.  

Table 2.9 lists CargoNet sensors that assemble a suite of measurements relevant to the 
transport of equipment and goods. 
 

Sensor Type Measurement or Application 

Shock Sensor   Potential impact damage 

Vibration Dosimeter  Average low-level vibrations 

Tilt Switch  Package orientation and shaking 

Piezo Microphone   Events causing loud nearby sounds 

Light Sensor  Container breach or box opening 
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Magnetic Switch   Package removed or box opened 

Temperature Sensor  Overheating or potential spoilage 

Humidity Sensor   Potential moisture damage 

RF Wakeup  Query from reader or another tag 

 
Table 2.9 - CargoNet sensor types [Mateusz07] 

 
 
 
 
 
 
 
 
 
 
 
Now let’s provide more details on CargoNet’s “Quasi-passive wakeup” strategy. Figure 

2.11 shows its basic wake-up procedure. After an “active RFID” tag receives a 
stimulus signal, it compares the results against a threshold. If the stimulus is 
strong enough to warrant interest, the tag wakes up a larger system.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 

Good Idea 

Normally people distinguish RFID from mote very clearly. But CargoNet 
designs a device that can serve as both RFID tag and a WSN node. It can 
collect data from environment into a “tag”, and then let a RFID reader to 
remotely read such data. The reason we use “active RFID” here is because 
CargoNet makes its RFID tag battery-driven and have close performance 
to an intelligent sensor node. 


