CodeBlue: A Wireless Sensor Network for Medical Care and Disaster Response

Matt Welsh Harvard University Division of Engineering and Applied Sciences

Introduction: Sensor Networks

Telos (UC Berkeley and Moteiv, Inc.)

- Minimal CPU, memory, and radio
 - 8 Mhz CPU, 10 KB RAM
 - 100 m radio range, 802.15.4/Zigbee
- Extremely low power
 - Battery lifetime of months to years

Pluto mote (Harvard)

Potential Medical Applications

Real-time, continuous patient monitoring

- Pre-hospital, in-hospital, and ambulatory monitoring
- Augment or replace wired telemetry systems

Home monitoring for chronic and elderly patients

- Collect periodic or continuous data and upload to physician
- Allows long-term care and trend analysis
- Reduce length of hospital stay

Collection of long-term databases of clinical data

- Correlation of biosensor readings with other patient information
- Longitudinal studies across populations
- Study effects of interventions and data mining

Disasters and Mass Casualty Events

Large accidents, fires, terrorist attacks

- Normal organized community support may be damaged or destroyed
- Large numbers of patients, severe load on emergency personnel

Manual tracking of patient status is difficult

- Current systems are paper, phone, radio based
- No real-time updates on patient condition

CodeBlue Project Goals

Develop tiny, wearable, wireless sensors for medical care and disaster response

Scalable, robust wireless communication protocols

- Support large number of patients and first responders
- Reliable communication despite mobility, limited radio bandwidth

Integrate real-time sensor data into medical care

- Effective interfaces for querying sensor data
- Store in patient care records

Explore a range of clinical applications

- Trauma care and intensive care monitoring
- Motion analysis studies in stroke and Parkinson's Disease

Mote-based pulse oximeter

Measures heart rate and blood oxygen saturation

- Standard vital sign measure based on transmission of light (red and near-infrared) through finger or earlobe
- Widely used metrics for overall patient well-being
- Integration with *iRevive*, PDA-based patient care record system for EMTs

Mote-based two-lead EKG

EKG based on Telos mote platform

- Samples EKG signal 12 bits @ 120 Hz
- Lossless compression using delta encoding transmit at 4 Hz
- Signal is clinically relevant compared with commercial EKG

Integrated GPS and Vital Sign Sensor

with 10Blade, Inc.

Combined GPS and vital sign monitor for patient tracking

- Army STTR project with S. Moulton, Boston Medical Center/10Blade
- Relay patient status and location to trauma center

Motion Capture and EMG Sensors

Special-purpose sensors to capture limb motion and muscle activity

- To be used in stroke and Parkinson's Disease studies
- (with P. Bonato, Spaulding Rehabilitation Hospital)

The Harvard Pluto Mote

Tiny, wearable mote design

- Slim rechargeable battery
- Integrated 3-axis accelerometer (motion and physical activity monitoring)

Sensor Network Challenges

Low computational power

- Current mote processors run at < 10 MIPS
- Not enough horsepower to do real signal processing
- 10 KB of memory not enough to store significant data

Poor communication bandwidth

- 802.15.4 advertises bandwidth of 250 Kbps
- But, raw overhead available to applications ~ 80 Kbps (at best!)
 - Overhead due to CSMA backoff, noise floor detection, start symbol, etc.

Radio congestion

• Even a small number of devices can saturate the radio channel

Limited energy budget

- 2 AA batteries can last about 5-6 days at full power
- Thin rechargeable batteries about 5 hours
- Must use *low duty cycle operation* to extend lifetime

The CodeBlue Network Infrastructure

The CodeBlue Network Infrastructure

CodeBlue use in Clinical Settings

GUI for Real-Time Patient Tracking

© 2005 Matt Welsh - Harvard University

CodeBlue Architecture

Suite of services and protocols for wireless medical devices

- Protocols providing discovery, routing, filtering, and security services
- Runs across a range of devices, from motes to PDAs to PCs

Mesh networking using publish/subscribe data model

- Sensor nodes publish vital signs, location, identity
- Rescue/medical personnel subscribe to data of interest
- Devices cooperate to route data from publishers to subscribers
- In-network filtering and aggregation of data to limit bandwidth and information overload

Reliable delivery of critical data

- Content-based prioritization
 - e.g., Patient stops breathing or loss of network connectivity
- Scale transmit power to limit interference or issue "SOS" messages

Decentralized authentication and security

- Handoff of credentials across rescue personnel
- Seamless access control across patient transfers

Query and Routing Model

Query and Routing Model

Query and Routing Model

Challenges and Issues

Routing Protocol Design

CodeBlue requires an *ad hoc* multicast routing protocol

- Ad hoc: No need for fixed infrastructure, forms routes "on demand"
- Multicast: Data from each sensor can be received by multiple end-user devices

Ad hoc routing has been extensively studied in wireless environments

- AODV, CSR, DSDV, ODMRP, ADMR,
- Much of this work done in simulation assuming perfect radio links
- Implementations primarily focus on laptops or PDAs with 802.11 radios

What's new here?

- Very limited radio bandwidth: protocol overhead is a big deal
- Real radios with lossy, asymmetric links
- Nodes have very small memory (< 10KB) and limited computational power

TinyADMR

Adaptive Demand-driven Multicast Routing (ADMR)

- [Jetcheva and Johnson, Proc. MobiHoc 2001]
- Mature, well-designed multicast protocol for wireless networks

We implemented the protocol on motes using TinyOS

• Lots of changes required to get ADMR to work well on this platform

Route selection metric:

• Minimum-hopcount path performs poorly (selects short routes with bad links)

One long (weak) hop

TinyADMR

Adaptive Demand-driven Multicast Routing (ADMR)

- [Jetcheva and Johnson, Proc. MobiHoc 2001]
- Mature, well-designed multicast protocol for wireless networks

We implemented the protocol on motes using TinyOS

• Lots of changes required to get ADMR to work well on this platform

Route selection metric:

• Minimum-hopcount path performs poorly (selects short routes with bad links)

Link asymmetry:

• Node A can hear Node B does not imply that Node B can hear Node A

Memory constraints:

- ADMR keeps several tables with state about active paths and network neighbors
- In a large network this state will rapidly consume available memory

Evaluation Methodology

Testbed of 30 MicaZ nodes distributed throughout our building

Reprogram and debug via web interface at motelab.eecs.harvard.edu

Set up certain nodes as "virtual patients" and others as "virtual doctors"

• Vary parameters such as generated data rate, number of senders and receivers

TinyADMR Route Selection

We make use of CC2420 Link Quality Indicator (LQI) metric:

- Indicates ability of radio to decode start symbol of packet
- LQI is highly correlated with packet delivery ratio
- Can be measured with a single packet reception (no probing traffic required)

TinyADMR Route Selection

Comparison to other route selection metrics

- MIN-HOP: Lowest hopcount path
- MAX-LQI: Path with worst LQI rating per link
- PATH-DR: Estimated path delivery ratio from LQI model

Effect of increasing data rate and number of senders

^{© 2005} Matt Welsh - Harvard University

Effect of increasing data rate and number of senders

MoteTrack: RF-Based Localization

Collect RF signal "signatures" from various points in building

- Use MoteLab testbed with 30 beacon nodes
- Similar to RADAR scheme for 802.11 networks, with much higher density

Nodes compute location by comparing to stored signatures

Centroid of weighted signature distance from known points

Good results: 80th percentile error of 1 meter

Current Status

First prototype of CodeBlue protocol framework is complete

- TinyADMR for multicast routing
- MoteTrack for indoor localization
- Simple query interface for vital sign data
- Java-based GUI for real-time visualization

Range of medical sensors based on motes

- Pulse oximeter, EKG, accelerometer/gyro/EMG board
- Pluto custom mote for wearable applications

Customizing the system for multi-sensor motion analysis

- Collaboration with Spaulding Rehabilitation Hospital
- Study of motion disorders in post-stroke and Parkinson's Disease patients

All hardware and software is publically available at:

http://www.eecs.harvard.edu/~mdw/proj/codeblue

Integrating wireless sensors with the Internet

