

Implantable Med	dical Devices	American Heart
		Learn and Live
Name of Device	What the Device Does	Reason for Device
Left Ventricular Assist Device (Also known as LVAD)	The left ventricle is the large, muscular chamber of the heart that pumps blood out to the body. A left ventricular assist device (LVAD) is a battery-operated, mechanical pump-type device that's surgically implanted.	Helps maintain the pumping ability of a heart that can't effectively work on its own. Sometimes used as a "bridge to transplant" for patients waiting for a heart transplant.
Pacemaker (Also known as Artificial Pacemaker)	A small device that has wires which are implanted in the heart tissue to send electrical impulses that help the heart beat in a regular rhythm. The device is powered by a battery.	When the heart's "natural pacemaker" is defective and causes the heart to beat too fast, too slow or irregularly, a pacemaker helps the heart beat in a regular rhythm.
Implantable Cardioverter Defibrillator (Also known as ICD)	A device that has wires which are implanted into the heart tissue and can deliver electrical shocks, detect the rhythm of the heart and sometimes "pace" the heart's rhythms, as needed.	Used in patients at risk for recurrent, sustained ventricular tachycardia or fibrillation. Restores the heart to normal rhythm. Helps prevent sudden cardiac death.
To see an illustra	ation of an implantable medical device fro	om this chart, visit:

Background - Definitions					
	radiated emission limits	RF immunity fields			
residential	100-500 μV/m <i>Class B (3m)</i>	3 V/m			
industrial	300-700 μV/m <i>Class A (3m)</i>	10 V/m			
ntertek ETL SEMKO		* @2@			

MC threa	ats - g	general				
	Power	Frequency	I	n Vivo Studies		In Vitro
Device Type	(W)	(MHz)	Health Canada	Univ. of Oklahoma	U.S. FDA	Studies
Analog Cellular Phone	0.6	828	0%	0%	0	0.5%
TDMA-50	0.6	835	3.4%	4.7%	10%	4.2%
TDMA-11	0.6	-	-	-	36.7%	10.5%
CDMA	0.6	-	-	2.8%	-	3.1%
PCS	0.6	1810	0%	0.6%	-	0.2%
GSM	0.6	-	-	_	0	-
FRS	0.1	468	0%	-	-	-
Number of Pacemakers	-	-	20	29	30	975 patients
Incidence of Interference	-	_	3.4%	4.7%	-	20%

NAC					
	threats	– EAS s	amples (F	IC survey	()
Type	Mode	Carrier	Magnetic Field	Effects on Pac	emakers
Type	Piode	Frequency	Strength (µT)*	Inhibition	Reactivatio
	Continuous	535 Hz	450	23%	55%
EAS	Modulated pulse	Carrier: 58.4 KHz modulation:60 Hz	400	36%	68%
	Sweep	7.4-9.1 MHz	0.1	0	0
	Pulse	250-500 Hz	4.5-10	5%	9%
WTMD	Pulse	89 Hz	45	36%	64%
WIND	Modulated pulse	250-909 Hz	18-22	5%	9%
	Modulated pulse	210 Hz	12	9%	14%
HHMD	Continuous	14 kHz-1.8 MHz	0.2-10	0	0
*M	easured at 15 cm fro	om the transmission p indicates	anel of EAS and WTMD no interference effects	systems and 2.5 cm fr	om HHMDs; 0
*M	easured at 15 cm fro	om the transmission p indicates	anel of EAS and WTMD no interference effects	systems and 2.5 cm fr	om HHMDs; 0

Active impla	intable medi	cal devices
EMC threats – RFI	D*	
Carrier frequency	peak field	modulation
134 kHz	65 A/m	10 – 14 Hz
13.56 MHz	7 A/m	2 – 11 Hz
915 MHz		56 kHz
*ISO/IEC JTC1 SC31 study	January 2006	
Intertek ETL SEMKO		@\$₩\$

MC threats	– MRI		
Implant → Potential Interferer ↓	Implanted Cardiac Pacemaker	Implanted Cardiac Defibrillator	Implanted Neurostimulator
Shortwave and Microwave Diathermy	Absolute contraindication	Absolute contraindication	Absolute contraindication
Ultrasound Diathermy	Take Precaution*	Take Precaution*	Absolute contraindication
Electromagnetic Stimulation Device	Take Precaution*	Take Precaution*	Absolute contraindication
MRI	Absolute contraindication	Absolute contraindication	Absolute contraindication
Electrosurgery Device	Take Precaution*	Take Precaution*	Take Precaution*
External Defibrillator	Take Precaution*	Take Precaution*	Take Precaution*
Radiotherapy Device	Take Precaution*	Take Precaution*	Take Precaution*
Lithotripsy or Ultrasound Therapy Device	Take Precaution*	Take Precaution*	Take Precaution*
Fluoroscopy or other X-ray Devices	No contraindication	No contraindication	No contraindication
Echography	No contraindication	No contraindication	No contraindication

Active in EMC standards in	nplantable mec n place	lical devices
	USA FDA	EU MDD/AIMD
Cochlear implants	IEC 60601-1-2 ANSI C63.19 FDA Guidance 8-1-0	EN 60118-13 (MDD) 3
Cardiac pacemakers	IEC 60601-1-2 AAMI PC69	EN 45502-2-1 (AIMD) ISO 14708-2
Infusion pumps		
Intertek ETL SEMKO		@S≈≩€€

А	ctive implant	able medic	cal devices
Radio sta	andards – progi	ramming the	implant
Global Frequency ba	Catego	Ŋ	Comments
9 – 315 kHz	EU med	lical implant	not so allocated outside EU
13.56 MHz	ISM and	I SRD	RFID frequency*
27.12 MHz	ISM and	I R/C	congested
40.68 MHz	ISM and	I SRD	protocol restrictions in USA
402 – 405 MH	z Medical	Implant Comm.	Reserved for implants
2.45 GHz	ISM and microw	l SRD and ave oven	802.11b/g (BT, Wi-Fi)
5.8 GHz	ISM		802.11a
* See FDA Gu	iidance 12-10-2004 on I	RFID transponders	for patient ID.
Intertek ETL SEMKO			@S₩ &(€

-		
Radio standar	ds – programming t	he implant
Global Frequency bands	FCC regulation	EU regulation
9 – 315 kHz	15.209 general (not 90-110 kHz)	EN 302 195-1, -2 (radio) EN 301 489-1, -31 (EMC)
13.56 MHz	15.225 general	EN 300 330-1, -2 (radio) EN 302 291-1, -2 (inductive)
27.12 MHz	15.227 and 95C	EN 300 220-1, -2 (radio) EN 301 489-1, -3 (EMC)
40.68 MHz	15.231	EN 300 220-1, -2 (radio) EN 301 489-1, -3 (EMC)
402 – 405 MHz	951	EN 301 839-1, -2
2.45 GHz	14.247, 15.249	EN 300 440-1, -2; EN 300 328
5.8 GHz	15.247; 15.407	EN 300 440-1, -2; EN 301 893

Active impla Radio standards – Mer 402	antable medical devices dical Implant Communications (MICS), 2 – 405 MHz
Jurisdiction	Regulation
USA	47 CFR Part 95 subpart I
EU	EN 301 839-1, -2 EMC per EN 301 489-1, -27
Japan	Ordinance regulating radio equipment, article 49.14
Australia	Radiocommunications (Low Interference Potential) Class License, item 48
Intertek ETL SEMKO	@\$₩\$€€

	Active impla	ntable medical devices
	Radio standards – Me	edical Implant Communications (MICS)
	Key parameters	
	Frequency band	402 – 405 MHz.
	Transmitter power	25 μW or 9.1 mV/m at 3m on anechoic site (if implant, measured in torso simulator.
	Bandwidth	300 kHz maximum.
	Frequency stability	100 ppm.
	Programmer access protocol	listen-before-talk.
Intertek	ETL SEMKO	€) € (€)

36

 Using Pulse Width Modulation for Wireless Transmission of Neural Signals in Multichannel Neural Recording Systems

Ming Yin, Maysam Ghovanloo IEEE Transactions on Neural Systems and Rehabilitation engineering, august2009

MPLAN	T CIR	CUIT	DESIG	ŦN			
M - + 11 -	£ 1	1 .	1				
Method (n analysi	s and e	valuatio	n			
EF Supe	FECTIVE ELEC	TRICAL PAR. VER IS GIVE	TABLE I AMETERS OF N AT 1 m WH	Different en Max 1-	g SAR =	ES AND 1.6 W/kg)	
		Substrate			Superstrate Parameters		
	Teflon	eflon Macor Alumina		(substrate is Macor)		acor)	
ε _τ	2.1	6.1	9.4	3.1	6.2	9.3	
ε _{r_}	eff 2.28	5.54	8.24	5.54	6.12	6.69	
λ _{el} (m	n 0.115	0.179	0.218	0.115	0.188	0.197	
Po (d)	wer -29.51 Bw)	-31.60	-18.69	-31.60	-10.97	-6.28	
Ef (%	f. 4.16 5)	21.37	35.18	21.37	9.62	6.36	
	1	•					

Reference

- [6] www.americanhear t.org/heartattack
- [7] Chen-Hua Kao, Kea-Tiong Tang, Wireless Power and Data Transmission with ASK Demodulator and Power Regulator for a Biomedical Implantable SOC, 2009 IEEE
- [8] Ming Yin, Maysam Ghovanloo, Using Pulse Width Modulation for Wireless Transmission of Neural Signals in Multichannel Neural Recording System, IEEE Transactions on Neural Systems and Rehabilitation engineering, august2009
- [9] Pichitpong Soontornpipit, Cynthia M. Furse, ,Design of Implantable Microstrip Antenna for Communication With Medical Implants, IEEE Transactions on Microwave theory and techniques 2004
- [10] Rizwan Bashirullah, Wireless Implants
- [11] Mohamad Sawan, Yamu Hu, and Jonathan Coulombe , Wireless Smart Implants Dedicated to Multichannel Monitoring and Microstimulation