
Lab 2 - Compressive Sensing for biomedical signal 
 
         
 Compressive Sensing Tutorial  -What & Why is CS? 

 
 

How to use it? (on biomedical signals) 
 Lab Task 2.1 (need 1 week)  

 
Learning Goal: Understand Compressive sensing concept; Content: Use a simple 
transform to see how sparse samples could achieve comparable performance to 
Nyquist theorem. 
 

 
 

 Lab Task 2.2 (need 1 week)  
 
Learning goal: Use compressive sensing theory to acquire EEG signals. Content: 
design a random matrix matched with real application to perform compressive 
sampling. 
 

  

 Lab Task 2.3 (need 1 week)  
 
Learning goal: Use L1 optimization to reconstruct ECG/EEG signals. 
 

 

 

 

 

 

 

 

 

 

 

 
What & Why is CS?



 

1. Compressive Sensing Tutorial 
 

Compressive sensing is a technique for finding sparse solutions to underdetermined linear 
systems. In engineering, it is the process of acquiring and reconstructing a signal utilizing the 
prior knowledge that the signal is sparse or compressible.  

 

a) Background & Motivation 
 
As the fast development of digital sensor system, we have much more data 
to store or transmit than before based on higher resolution, large numbers 
of sensors and increasing numbers of modalities. 
 
 In point of energy saving which is considered important in many real 
applications, how to reduce the data size and keep the good reconstruction 
results is under nowadays research.  
 

         

                 Figure 1 More data is generated by new tech & applications 
 
 
 Shannon/Nyquist theorem 

 
– Shannon theorem is much over sampling 
– 2x oversampling Nyquist rate is a worst-case bound  

for any bandlimited data 
– sparsity/compressibility irrelevant 
– Shannon sampling is a linear process while compression is a  

nonlinear process 
 
 

 
b) CS and System Setup 



 
Most of the data are sparse or compressible in different domains. 
When data is sparse or compressible, we can directly acquire a 
condensed representation with no/little information loss. This one is 
obtained by a new sensing theory which is based on uncertainty 
principles.  
 
 
 
 
 
 
 
 
 
 
 
 
 
                                
 
 
                                                        
 
 
 
 
                                                                                                                                                          

 

For the linear system illustrated in the above Figure, we have αΦΨ=Φ= xy , 
where y is the measurement, x is the signal,  is the measurement matrix,  is 
the signal bases, and  is sparse representation of signal x using bases. � 
� 

                                       We surprisingly find out that when  is random which satisfy with the 
R.I.P.  

(Restricted Isometry Property) the measurement matrix is far less than  
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signal’s length, the original signal can be reconstructed very well. 
 

 
 

and K satisfy  

 
 

����������To solve     αΦΨ=Φ= xy , we have the non-linear optimal question 
for  

reconstruction. 

 

An example of sparse coefficients of a signal is shown in the following 
Figure. 

 



 

 
 
 
 

To solve the NP-hardness problem  αΦΨ=Φ= xy . We choose different methods to compare.  
 

 Use the matching pursing method, 
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Wavelet Basis Pursuit                                                      
 
 
 
 

How to use CS? 
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 Orthogonal Maching Pursiut 
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                           Figure simple DCT Basis pursuit 
 
OMP: 
 
• Suppose Φ is orthogonal, Φ−1 = ΦT 
• Solution to Exact problem is unique 
     c = Φ−1x= ΦT x       i.e.,     cl=<x, ψl> 
• Solution to Sparse problem similar 
    Let l1 be s.t. |< x, ψl1>| maximized. Set cl ←−< x, ψl1>. 
    Let l2 be s.t. |< x, ψl2>| maximized. Set c2 ←−< x, ψl2>. 
 
Repeat k times. 
Set cl ←− 0 for l != l1, l2, . . . , lk  
Approximate   

 
 
 
 
 
 
 
 
 
 



 Lab Task 2.2 (need 1 week) - Learning goal: Use compressive sensing theory to acquire ECG/EEG signals. 
Content: design a random matrix to perform compressive sampling. 
 
 

 
 

 
 
 
 
 

NPNNNP

NN

NN

PNKNKNM Iw

Iw
Iw

××

×

×

××























































−−

−−
−



















=Φ

)(

2

1

)()()(
000

000

000

...

1010

1010

0101

1111

1111

1111

1110

1110

0111





























 
 
 

Number of Samples

S
am

pl
in

g 
C

ha
nn

el
 N

o.

Random Sampling of 16 Channels

100 200 300 400 500 600 700 800 900 1000

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000
1

0

0.05

0. 1

Number of Samples

S
um

 o
f W

ei
gh

ts

Bernoulli Coding Scheme

 

 

Lab Task 2.3 (need 1 week) - Learning goal: Use L1 optimization to reconstruct ECG/EEG signals. 



 
 
We use PROC method to solve the L1 optimization problem : 
 
 

 
total variation (TV): 
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Figure 2D plot of 32 ICA components from EEG reconstruction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Matlab Code Samples: 



 

 

1. Matching Pursuit 

2. Orthogonal Matching Pursuit code sample 

3. Measurement matrix building 

4. L1 optimal reconstruction algorithm  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Matching Pursuit 
 

function [S,R,e,indx] = matchPurs(x,W) 



% This function computes the projection of a given input vector or matrix 
% onto a "dictionary" of other vectors or matrices using a matching pursuit 
% algorithm. 
% 
% USAGES 
% [S,R,e,indx] = matchPurs(x,W)   
%  
% INPUT 
% x:    An Mx1 or MxN array. This array synthesized using dictionary  
%       elements from matrix W. 
% W:    An MxN or MxNxP array of dictionary elements used to synthesize 
%       input x. If x is an Mx1 vector, W must be an MxN matrix. If x is 
%       an MxN array, W must be an MxNxP matrix containing the dictionary 
%       elements. 
% 
% OUTPUT 
% S:    The projection of each residual onto each dictionary element. 
% R:    The residual x - sum(W,dim), where dim is 2 if x is a vector and 
%       is 3 if x is a matrix. 
% e:    The projection coefficients. 
% indx  The index vector for the dictionary elements used in projections 
% 
% ------------------------------------------------------------------------- 
% TEST 
% To ensure that the signal energy is preserved, the following relations 
% should hold: 
% 
% Matrix Case: 
%  
% (1) x = sum(S,3) + R; 
% (2) norm(x,'fro') = sum(e.^2) + norm(R,'fro').^2 
% 
% Vector Case: 
% 
% (1) x = sum(S,2) + R; 
% (2) norm(x).^2 = sum(e.^2) + norm(R).^2; 
  
  
%% For Hilbert Spaces Whose Elements are Vectors 
% This space has Euclidean inner product.  A vector is synthesized as: 
%  
% x = ( x'*W(:,:,1) )*W(:,:,1) + (R1'*W(:,:,2) )*W(:,:,2) + ... 
%     ( Rk'*W(:,:,k) )*W(:,:,k); 
% 
% Where Rk is the k_th residual. 
% ------------------------------------------------------------------------- 
  
if( ~isvector(x) ) 
     
    [M,N,P] = size(W); 
    S       = zeros(size(W)); 
    %intialize vectors 
    R       = x; %the residual 
    e       = zeros(P,1); %the energy vector 
    ipvec   = zeros(P,1); %the dictionary indices 



    indx    = ipvec; %the index for the best match 
     
    for n = 1:P 
         
        for k = 1:P 
             
            ipvec(k)    = trace(R'*W(:,:,k))./norm( W(:,:,k), 'fro'); 
         
        end; 
         
        [m, i]      = max(abs(ipvec)); 
        px          = ipvec(i)*W(:,:,i)./norm( W(:,:,i), 'fro'); 
        S(:,:,n)    = px; %keep each S 
        R           = R - px; 
        indx(n)     = i; 
        W(:,:,i)    = nan(M,N); 
        e(n)        = ipvec(i); 
         
    end; 
     
end; 
  
% ------------------------------------------------------------------------- 
%% For Hilbert Spaces Whose Elements are Vectors 
% This space has Euclidean inner product.  A vector is synthesized as: 
%  
% x = ( x'*W(:,1) )*W(:,1) + (R1'*W(:,2) )*W(:,2) + ... 
%     ( Rk'*W(:,k) )*W(:,k); 
% 
% Where Rk is the k_th residual. 
% ------------------------------------------------------------------------- 
  
if( isvector(x) ) 
     
    [M,P]   = size(W); 
    W       = normColumns(W); 
    %intialize vectors 
    R       = x; %the residual 
    e       = zeros(P,1); %the energy vector 
    ipvec   = zeros(P,1); %the dictionary indices 
    indx    = ipvec; %the index for the best match 
     
    for n = 1:P 
         
        for k = 1:P 
             
            ipvec(k)    = R'*W(:,k); 
         
        end; 
         
        [m, i]      = max(abs(ipvec)); 
        px          = ipvec(i)*W(:,i); 
        S(:,n)      = px; 



        R           = R - px; 
        indx(n)     = i; 
        W(:,i)      = nan(M,1); 
        e(n)        = ipvec(i); 
         
    end; 
     
end; 
 
 

 

 

 

 

 

 

 

 

 

 

2.. Orthogonal Matching Pursuit code sample 

 

%  1-Dsignal compressive sensing implementation (Orthogonal Matching Pursuit) 
%  measure number M>=K*log(N/K),K is the sparsity,N is the length of the 
%  signal,reconstruction well 
  
  
clc;clear 
  
%%  1. time domain signal generation 
K=8;      %  sparsity  
N=256;    %  signal length 
M=64;     %  Measurement number(M>=K*log(N/K),more than 40,have possibility for error) 
f1=50;    %  signal frequence 1 
f2=100;   %  signal frequence 2 
f3=200;   %  signal frequence 3 



f4=400;   %  signal frequence 4 
fs=800;   %  sampling frequence 
ts=1/fs;  %  sampling interval 
Ts=1:N;   %  sampling sequence 
x=0.3*sin(2*pi*f1*Ts*ts)+0.6*sin(2*pi*f2*Ts*ts)+0.1*sin(2*pi*f3*Ts*ts)+0.9*sin(2*pi*f4*Ts*ts);  %  
whole signal 
  
%%  2.  time domain signal compressive sensing 
Phi=randn(M,N);                                   %  measurement matrix(Gaussain while noise) 
s=Phi*x.';                                        %  measurement result y  
  
%%  3.  orthogonal matching pursuit reconstruction(same as L_1 norm optimazition problem) 
m=2*K;                                            %  iterative time(m>=K) 
Psi=fft(eye(N,N))/sqrt(N);                        %  Fourier basis matrix 
T=Phi*Psi';                                       %  reconstruction matrix(measurement matrix*orthogonal transposed 
matrix) 
  
hat_y=zeros(1,N);                                 %  reconstruction domain(transfer domain)vector                      
Aug_t=[];                                         %  augument matrix(initial is empty matrix) 
r_n=s;                                            %  resual value 
  
for times=1:m;                                    %  iterative time 
    for col=1:N;                                  %  coloum number 
        product(col)=abs(T(:,col)'*r_n);          %  inner product 
    end 
    [val,pos]=max(product);                       %  position 
    Aug_t=[Aug_t,T(:,pos)];                       %  collected basis 
    T(:,pos)=zeros(M,1);                          %  delete picked bais(set to zero) 
    aug_y=(Aug_t'*Aug_t)^(-1)*Aug_t'*s;           %  LSE 
    r_n=s-Aug_t*aug_y;                            %  reduil 
    pos_array(times)=pos;                         %  record position 
end 
hat_y(pos_array)=aug_y;                           %  reconstructed new domain vector 
hat_x=real(Psi'*hat_y.');                         %  time domain reconstructed signal 
  
%%  4.  comparison between original and reconstrcted signal 
figure; 
  
hold on; 
plot(hat_x,'k.-')                                 %  reconstucted signal 
plot(x,'r')                                       %  original signal 
legend('Recovery','Original') 
norm(hat_x.'-x)/norm(x)                           %  error 
 



 

3. Measurement matrix building 

 

 

function [C, index_C, CC] = get_MeasurementMatrix(m, K, n, i, NON_UNIFORM, BERNOULLI) 
  
CC = zeros(n, m); 
for ii=1:i           %increase the measurement sparsity 
    CC = CC + SparseMeasurementMatrix(n, m, K); 
end 
CC(find(CC~=0))=1; 
  
if NON_UNIFORM 
    non_uniform = repmat(abs(randn(1, m)),[n, 1]); 
    CC = CC.*non_uniform; 
end    
  
if BERNOULLI 
   index=find(CC~=0);    
   aa=randn(length(index),1); 
   aa(aa>0)= 1; 
   aa(aa<0)=-1; 
   CC(find(CC~=0))=CC(index).*aa; 
end      
  
C  = zeros(n-m+1, n); 
for ii = 1: n-m+1 
    C(ii,:) = [zeros(1, ii-1) CC(ii,:) zeros(1, n-m+1-ii)]; 
end     
index_C     = find(any(C,2)); 
C           = C(index_C,:);    
  

 

 

 

 

 

 



4. L1 optimal reconstruction algorithm 

 

function xest = cspocs_l1(Phi, aPhi, l1val, y, niter) 
% Syntax : 
%  xest = cspocs_l1(Phi, aPhi, l1val, y, niter) 
% 
% Description : Testing Candes and Romberg POCS (alternate Projection Onto 
% Convex Sets) for CS recovery, aka recovering of x from y = Phi*x when 
% size(Phi,1) < size(Phi,2), using l1 criterion. 
%  
% In : 
% * Phi, aPhi : Measurement matrix and its reconstruction 
% * l1val : the l1 norm of the intial signal x, i.e. norm(x,1) 
% * niter : maximun number of alternate projections. 
% 
% Out : 
% * xest : the recovered (or estimated) signal x 
% 
% Author of this mfile : L. Jacques, LTS2/EPFL, 2008. 
%     
% Reference :  
%    Algo described in "Practical Signal Recovery from Random Projections", 
%    Emmanuel Candès and Justin Romberg 
% Example : 
% >> N=128; K=20; 
% >> x=[rand(1,K) zeros(1,N-K)]'; x=x(randperm(128));     
% >> m=floor(3.5*K);Phi=randn(m,N)/sqrt(m);aPhi=Phi';           
% >> y=Phi*x; 
% >> figure; plot(x); 
% >> nx=cspocs_l1(Phi,aPhi,norm(x,1),y,10000);       
% Stop at n=2157, score=9.987234e-11 ... 
% Final score = 9.987234e-11 ... 
% >> hold on; plot(nx,'ro'); 
%  
% Remark: This algo seems highly sensitive to the a priori l1 norm of x. To 
% convince yourself of that, repeat the same experiment as above with 
% norm(x,1)*0.99 and norm(x,1)*1.01 and observe the 
% results. Recovery/NoRecovery transition points seems located around 3.2K 
% 
% This script/program is released under the Commons Creative Licence 
% with Attribution Non-commercial Share Alike (by-nc-sa) 
% http://creativecommons.org/licenses/by-nc-sa/3.0/ 
% Short Disclaimer: this script is for educational purpose only. 
% Longer Disclaimer see  http://igorcarron.googlepages.com/disclaimer 
     
    [m,N] = size(Phi); 
     
    pPhi = pinv(Phi); 
     
    %% First projector (on the hyperplane Phi*x=y) 
    P = @(u) u + pPhi*(y - Phi*u); 
     



    %% Second projector on the l1 ball of radius l1val 
    H = @(u, l1val) sft_th(u, l1toth(u,l1val)); 
     
    %% Intializations 
    xest = pPhi*y; 
    Tol1 = 1e-7; 
    score = 0; 
     
    %for i=1:10; 
         
    for n = 1:niter; 
        xest = P(xest); 
        xest = H(xest, l1val); 
         
        oldscore = score; 
        score = norm(Phi*xest - y) / norm(xest); 
         
        if (score < Tol1) 
            fprintf('Tolerance reached. Stop at n=%i\n',n); 
            break 
        end 
    end 
     
    %x=W'*xest; 
     
    %xsmooth=x-norm(diff(W')).*xest; 
     
    %xest=W*xsmooth; 
     
     
    %end 
  
    fprintf('Final score: ||y - Phi*xest|| = %e\n', score); 
     
     
function out = l1toth(x,l1val) 
% (Internal function) 
% Obtain the threshold level corresponding to the one such that the l1 
% norm of the corresponding soft thresholded signal is lesser than l1val 
    N = length(x); 
    k = (1:N)'; 
    ax = abs(x); 
     
    xs = sort(ax, 'descend'); 
    cxs = cumsum(xs); 
    pos = (cxs - k.*xs) < l1val; 
    out = xs(pos); 
    out = out(end); 
     
function out = sft_th(x, gamma) 
% (Internal function) 
% Soft Thresholding 
    out = sign(x) .* (abs(x) - gamma) .* (abs(x) >= gamma);  
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