
Lab 2 - Compressive Sensing for biomedical signal

 Compressive Sensing Tutorial -What & Why is CS?

How to use it? (on biomedical signals)
 Lab Task 2.1 (need 1 week)

Learning Goal: Understand Compressive sensing concept; Content: Use a simple
transform to see how sparse samples could achieve comparable performance to
Nyquist theorem.

 Lab Task 2.2 (need 1 week)

Learning goal: Use compressive sensing theory to acquire EEG signals. Content:
design a random matrix matched with real application to perform compressive
sampling.

 Lab Task 2.3 (need 1 week)

Learning goal: Use L1 optimization to reconstruct ECG/EEG signals.

What & Why is CS?

1. Compressive Sensing Tutorial

Compressive sensing is a technique for finding sparse solutions to underdetermined linear
systems. In engineering, it is the process of acquiring and reconstructing a signal utilizing the
prior knowledge that the signal is sparse or compressible.

a) Background & Motivation

As the fast development of digital sensor system, we have much more data
to store or transmit than before based on higher resolution, large numbers
of sensors and increasing numbers of modalities.

 In point of energy saving which is considered important in many real
applications, how to reduce the data size and keep the good reconstruction
results is under nowadays research.

 Figure 1 More data is generated by new tech & applications

 Shannon/Nyquist theorem

– Shannon theorem is much over sampling
– 2x oversampling Nyquist rate is a worst-case bound

for any bandlimited data
– sparsity/compressibility irrelevant
– Shannon sampling is a linear process while compression is a

nonlinear process

b) CS and System Setup

Most of the data are sparse or compressible in different domains.
When data is sparse or compressible, we can directly acquire a
condensed representation with no/little information loss. This one is
obtained by a new sensing theory which is based on uncertainty
principles.

For the linear system illustrated in the above Figure, we have αΦΨ=Φ= xy ,
where y is the measurement, x is the signal, is the measurement matrix, is
the signal bases, and is sparse representation of signal x using bases. �
�

 We surprisingly find out that when is random which satisfy with the
R.I.P.

(Restricted Isometry Property) the measurement matrix is far less than

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

=

y

a

signal’s length, the original signal can be reconstructed very well.

and K satisfy

����������To solve αΦΨ=Φ= xy , we have the non-linear optimal question
for

reconstruction.

An example of sparse coefficients of a signal is shown in the following
Figure.

To solve the NP-hardness problem αΦΨ=Φ= xy . We choose different methods to compare.

 Use the matching pursing method,

8 10 12 14 16 18 20 22 24

10

12

14

16

18

20

22

24

26

Wavelet Basis Pursuit

How to use CS?

=

 Orthogonal Maching Pursiut

0 50 100 150 200 250 300
-5

0

5

10

15

20

25

30

35

40

45

Recovery
Original

 Figure simple DCT Basis pursuit

OMP:

• Suppose Φ is orthogonal, Φ−1 = ΦT
• Solution to Exact problem is unique
 c = Φ−1x= ΦT x i.e., cl=<x, ψl>
• Solution to Sparse problem similar
 Let l1 be s.t. |< x, ψl1>| maximized. Set cl ←−< x, ψl1>.
 Let l2 be s.t. |< x, ψl2>| maximized. Set c2 ←−< x, ψl2>.

Repeat k times.
Set cl ←− 0 for l != l1, l2, . . . , lk
Approximate

 Lab Task 2.2 (need 1 week) - Learning goal: Use compressive sensing theory to acquire ECG/EEG signals.
Content: design a random matrix to perform compressive sampling.

NPNNNP

NN

NN

PNKNKNM Iw

Iw
Iw

××

×

×

××

−−

−−
−

=Φ

)(

2

1

)()()(
000

000

000

...

1010

1010

0101

1111

1111

1111

1110

1110

0111

Number of Samples

S
am

pl
in

g
C

ha
nn

el
 N

o.

Random Sampling of 16 Channels

100 200 300 400 500 600 700 800 900 1000

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000
1

0

0.05

0. 1

Number of Samples

S
um

 o
f W

ei
gh

ts

Bernoulli Coding Scheme

Lab Task 2.3 (need 1 week) - Learning goal: Use L1 optimization to reconstruct ECG/EEG signals.

We use PROC method to solve the L1 optimization problem :

total variation (TV):

0 100 200 300 400 500 600 700 800 900 1000

0

200

400
Compressive EEG meaurements (Compression ratio: 1024/128)

Orginal signal
Scaled Compressive measurement

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

400
Solution found for EEG using L1 minimization

Number of Samples

Orginal signal
Reconstruction signal

0 100 200 300 400 500 600 700 800 900 1000

0

500

1000

Number of Samples

EEG Signal wavelet coefficient
L1 minimization solution

26/1024 37/1024 65/1024 140/1024
0

0. 5

1

1. 5

Signal Sparsity

L2
 R

ec
on

st
ru

ct
io

n
E

rr
or Compression ratio: 1024/256

Compression ratio: 1024/128
Compression ratio: 1024/64

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32

-

+

Figure 2D plot of 32 ICA components from EEG reconstruction

Matlab Code Samples:

1. Matching Pursuit

2. Orthogonal Matching Pursuit code sample

3. Measurement matrix building

4. L1 optimal reconstruction algorithm

1. Matching Pursuit

function [S,R,e,indx] = matchPurs(x,W)

% This function computes the projection of a given input vector or matrix
% onto a "dictionary" of other vectors or matrices using a matching pursuit
% algorithm.
%
% USAGES
% [S,R,e,indx] = matchPurs(x,W)
%
% INPUT
% x: An Mx1 or MxN array. This array synthesized using dictionary
% elements from matrix W.
% W: An MxN or MxNxP array of dictionary elements used to synthesize
% input x. If x is an Mx1 vector, W must be an MxN matrix. If x is
% an MxN array, W must be an MxNxP matrix containing the dictionary
% elements.
%
% OUTPUT
% S: The projection of each residual onto each dictionary element.
% R: The residual x - sum(W,dim), where dim is 2 if x is a vector and
% is 3 if x is a matrix.
% e: The projection coefficients.
% indx The index vector for the dictionary elements used in projections
%
% ---
% TEST
% To ensure that the signal energy is preserved, the following relations
% should hold:
%
% Matrix Case:
%
% (1) x = sum(S,3) + R;
% (2) norm(x,'fro') = sum(e.^2) + norm(R,'fro').^2
%
% Vector Case:
%
% (1) x = sum(S,2) + R;
% (2) norm(x).^2 = sum(e.^2) + norm(R).^2;

%% For Hilbert Spaces Whose Elements are Vectors
% This space has Euclidean inner product. A vector is synthesized as:
%
% x = (x'*W(:,:,1))*W(:,:,1) + (R1'*W(:,:,2))*W(:,:,2) + ...
% (Rk'*W(:,:,k))*W(:,:,k);
%
% Where Rk is the k_th residual.
% ---

if(~isvector(x))

 [M,N,P] = size(W);
 S = zeros(size(W));
 %intialize vectors
 R = x; %the residual
 e = zeros(P,1); %the energy vector
 ipvec = zeros(P,1); %the dictionary indices

 indx = ipvec; %the index for the best match

 for n = 1:P

 for k = 1:P

 ipvec(k) = trace(R'*W(:,:,k))./norm(W(:,:,k), 'fro');

 end;

 [m, i] = max(abs(ipvec));
 px = ipvec(i)*W(:,:,i)./norm(W(:,:,i), 'fro');
 S(:,:,n) = px; %keep each S
 R = R - px;
 indx(n) = i;
 W(:,:,i) = nan(M,N);
 e(n) = ipvec(i);

 end;

end;

% ---
%% For Hilbert Spaces Whose Elements are Vectors
% This space has Euclidean inner product. A vector is synthesized as:
%
% x = (x'*W(:,1))*W(:,1) + (R1'*W(:,2))*W(:,2) + ...
% (Rk'*W(:,k))*W(:,k);
%
% Where Rk is the k_th residual.
% ---

if(isvector(x))

 [M,P] = size(W);
 W = normColumns(W);
 %intialize vectors
 R = x; %the residual
 e = zeros(P,1); %the energy vector
 ipvec = zeros(P,1); %the dictionary indices
 indx = ipvec; %the index for the best match

 for n = 1:P

 for k = 1:P

 ipvec(k) = R'*W(:,k);

 end;

 [m, i] = max(abs(ipvec));
 px = ipvec(i)*W(:,i);
 S(:,n) = px;

 R = R - px;
 indx(n) = i;
 W(:,i) = nan(M,1);
 e(n) = ipvec(i);

 end;

end;

2.. Orthogonal Matching Pursuit code sample

% 1-Dsignal compressive sensing implementation (Orthogonal Matching Pursuit)
% measure number M>=K*log(N/K),K is the sparsity,N is the length of the
% signal,reconstruction well

clc;clear

%% 1. time domain signal generation
K=8; % sparsity
N=256; % signal length
M=64; % Measurement number(M>=K*log(N/K),more than 40,have possibility for error)
f1=50; % signal frequence 1
f2=100; % signal frequence 2
f3=200; % signal frequence 3

f4=400; % signal frequence 4
fs=800; % sampling frequence
ts=1/fs; % sampling interval
Ts=1:N; % sampling sequence
x=0.3*sin(2*pi*f1*Ts*ts)+0.6*sin(2*pi*f2*Ts*ts)+0.1*sin(2*pi*f3*Ts*ts)+0.9*sin(2*pi*f4*Ts*ts); %
whole signal

%% 2. time domain signal compressive sensing
Phi=randn(M,N); % measurement matrix(Gaussain while noise)
s=Phi*x.'; % measurement result y

%% 3. orthogonal matching pursuit reconstruction(same as L_1 norm optimazition problem)
m=2*K; % iterative time(m>=K)
Psi=fft(eye(N,N))/sqrt(N); % Fourier basis matrix
T=Phi*Psi'; % reconstruction matrix(measurement matrix*orthogonal transposed
matrix)

hat_y=zeros(1,N); % reconstruction domain(transfer domain)vector
Aug_t=[]; % augument matrix(initial is empty matrix)
r_n=s; % resual value

for times=1:m; % iterative time
 for col=1:N; % coloum number
 product(col)=abs(T(:,col)'*r_n); % inner product
 end
 [val,pos]=max(product); % position
 Aug_t=[Aug_t,T(:,pos)]; % collected basis
 T(:,pos)=zeros(M,1); % delete picked bais(set to zero)
 aug_y=(Aug_t'*Aug_t)^(-1)*Aug_t'*s; % LSE
 r_n=s-Aug_t*aug_y; % reduil
 pos_array(times)=pos; % record position
end
hat_y(pos_array)=aug_y; % reconstructed new domain vector
hat_x=real(Psi'*hat_y.'); % time domain reconstructed signal

%% 4. comparison between original and reconstrcted signal
figure;

hold on;
plot(hat_x,'k.-') % reconstucted signal
plot(x,'r') % original signal
legend('Recovery','Original')
norm(hat_x.'-x)/norm(x) % error

3. Measurement matrix building

function [C, index_C, CC] = get_MeasurementMatrix(m, K, n, i, NON_UNIFORM, BERNOULLI)

CC = zeros(n, m);
for ii=1:i %increase the measurement sparsity
 CC = CC + SparseMeasurementMatrix(n, m, K);
end
CC(find(CC~=0))=1;

if NON_UNIFORM
 non_uniform = repmat(abs(randn(1, m)),[n, 1]);
 CC = CC.*non_uniform;
end

if BERNOULLI
 index=find(CC~=0);
 aa=randn(length(index),1);
 aa(aa>0)= 1;
 aa(aa<0)=-1;
 CC(find(CC~=0))=CC(index).*aa;
end

C = zeros(n-m+1, n);
for ii = 1: n-m+1
 C(ii,:) = [zeros(1, ii-1) CC(ii,:) zeros(1, n-m+1-ii)];
end
index_C = find(any(C,2));
C = C(index_C,:);

4. L1 optimal reconstruction algorithm

function xest = cspocs_l1(Phi, aPhi, l1val, y, niter)
% Syntax :
% xest = cspocs_l1(Phi, aPhi, l1val, y, niter)
%
% Description : Testing Candes and Romberg POCS (alternate Projection Onto
% Convex Sets) for CS recovery, aka recovering of x from y = Phi*x when
% size(Phi,1) < size(Phi,2), using l1 criterion.
%
% In :
% * Phi, aPhi : Measurement matrix and its reconstruction
% * l1val : the l1 norm of the intial signal x, i.e. norm(x,1)
% * niter : maximun number of alternate projections.
%
% Out :
% * xest : the recovered (or estimated) signal x
%
% Author of this mfile : L. Jacques, LTS2/EPFL, 2008.
%
% Reference :
% Algo described in "Practical Signal Recovery from Random Projections",
% Emmanuel Candès and Justin Romberg
% Example :
% >> N=128; K=20;
% >> x=[rand(1,K) zeros(1,N-K)]'; x=x(randperm(128));
% >> m=floor(3.5*K);Phi=randn(m,N)/sqrt(m);aPhi=Phi';
% >> y=Phi*x;
% >> figure; plot(x);
% >> nx=cspocs_l1(Phi,aPhi,norm(x,1),y,10000);
% Stop at n=2157, score=9.987234e-11 ...
% Final score = 9.987234e-11 ...
% >> hold on; plot(nx,'ro');
%
% Remark: This algo seems highly sensitive to the a priori l1 norm of x. To
% convince yourself of that, repeat the same experiment as above with
% norm(x,1)*0.99 and norm(x,1)*1.01 and observe the
% results. Recovery/NoRecovery transition points seems located around 3.2K
%
% This script/program is released under the Commons Creative Licence
% with Attribution Non-commercial Share Alike (by-nc-sa)
% http://creativecommons.org/licenses/by-nc-sa/3.0/
% Short Disclaimer: this script is for educational purpose only.
% Longer Disclaimer see http://igorcarron.googlepages.com/disclaimer

 [m,N] = size(Phi);

 pPhi = pinv(Phi);

 %% First projector (on the hyperplane Phi*x=y)
 P = @(u) u + pPhi*(y - Phi*u);

 %% Second projector on the l1 ball of radius l1val
 H = @(u, l1val) sft_th(u, l1toth(u,l1val));

 %% Intializations
 xest = pPhi*y;
 Tol1 = 1e-7;
 score = 0;

 %for i=1:10;

 for n = 1:niter;
 xest = P(xest);
 xest = H(xest, l1val);

 oldscore = score;
 score = norm(Phi*xest - y) / norm(xest);

 if (score < Tol1)
 fprintf('Tolerance reached. Stop at n=%i\n',n);
 break
 end
 end

 %x=W'*xest;

 %xsmooth=x-norm(diff(W')).*xest;

 %xest=W*xsmooth;

 %end

 fprintf('Final score: ||y - Phi*xest|| = %e\n', score);

function out = l1toth(x,l1val)
% (Internal function)
% Obtain the threshold level corresponding to the one such that the l1
% norm of the corresponding soft thresholded signal is lesser than l1val
 N = length(x);
 k = (1:N)';
 ax = abs(x);

 xs = sort(ax, 'descend');
 cxs = cumsum(xs);
 pos = (cxs - k.*xs) < l1val;
 out = xs(pos);
 out = out(end);

function out = sft_th(x, gamma)
% (Internal function)
% Soft Thresholding
 out = sign(x) .* (abs(x) - gamma) .* (abs(x) >= gamma);

Reference

[1] Stephane Mallat and Sifen Zhong, “Characterization of Signals from Multiscale Edges”,

 IEEE TRANSACTIONS ON PATIERN ANALYSIS AND MACHINE INTELLIGENCE

[2] Stephane Mallat, A Wavelet Tour of Signal Processing

[3] Ingrid Daubechies, “10 couses on wavelet”

[4] Mallat, S. G.，A Theory for Multiresolution Signal Decomposition: The Wavelet

Representation, IEEE Trans. PAMI, vol. 11, no. 7, July 1989, pp. 674-693.

[5] http://en.wikipedia.org/wiki/Wavelet

[6] http://en.wikipedia.org/wiki/Fourier_transform

[7] Qi Hao, Fei Hu, “ A Compressive Eletroencephalography (EEG) Sensor Design”, 2010

 IEEE Sensors

[8] Tutorial on Compressive Sensing, Richard Baraniuk, Rice University, Justin Romberg,

Georgia Tech, Michael Wakin University of Michigan.

[9] Anna C. Gilbert, Sparse approximations in image processing, Department of Mathemtics

University of Michigan

[10] Emmanuel Cand` es and Justin Romberg, “Practical Signal Recovery from Random
Projections”, Department of Applied and Computational Mathematics, Caltech

