Lab 1 - Wavelet-based biomedical signal processing

Lab Task 1.1 (need 1 week) — \What & Why is wavelet?
Learning goal: Wavelet tutorial;

Content: Use Haar or other basic mother wavelets to study the Time-Frequency
domain features of a downloaded EEG signals.

Lab Task 1.2 (need 1 week) — How to use WT (wavelet transform)?
Learning goal: Wavelet-based compression.

Content: check the compression ratio by wavelets. Reconstruct the compressed EEG
stream.

Lab Task 1.3 (need 1 week) — \What do we need in the signal?

Learning goal: Seek singularity points via LHE algorithm.
Content: Use WTMM theory to find the LHE of the wavelet "dominant" features.

What & Why is wavelet?




1. Wavelet Transform Tutorial

Mathematical transforms are applied to signals to obtain information that is not
readily available in the raw signals. Most popular transforms include Fourier
transform and wavelet transform. Both two transforms are reversible linear

transforms.
a) Fourier Transform

The Fourier Transform is a mathematical operation to transfer the signal from
time to the frequency domain. We can obtain frequency information for signal

analysis.

X(f)=] x()e”"dt

Inverse Fourier Transform

x(t)= [ X(f)e"df

Discrete Fourier Transform:

Fm) =Y f(ne”™""

Inverse Discrete Fourier Transform:
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The matrix implementation of Discrete Fourier Transform:
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The matrix implementation of Discrete inverse Fourier Transform:
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Example:
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One limitation is that the Fourier transform can’t localize the frequency features
on time domain and deal ineffectively with non-stationary signals.

b) Short-time Fourier transform (STFT)

STFT is a Fourier-related transform used to determine the sinusoidal frequency
and phase content of local sections of a signal as it changes over time.

X, f)= jz w(t —T)x(r)e " dr
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where w{f) is a mask window function.
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Separate signal in frequency-time domain for fixed resolution. (figure 2)

¢) Wavelet Transform
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Wavelet transform is to decompose and represent signals by different wavelet
functions to extract useful information we need. It has flexible resolution in both
time and frequency domains and can localize the information easily.

Wavelet transforms are broadly divided into three classes: continuous, discrete
and multiresolution-based.
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e Mother wavelet l//(t ) (figure 3)
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For time-frequency signal analysis we use CWT.
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Inverse CWT:

x(t)——f [ w05

\(o(W)\

where C, _[ dw and Ji‘go(w)‘dw<oo

For implement wavelet transform computation we use DWT.

DWT:

W, = (X(O.,,) =@y [ £ (W (@] (6)—nb,)dt
\Vm,n(t) =da 7m/2\|/(a "t — nb)

IDWT:

X()= DD W W ()

To reduce the numerical complexity, we use one auxiliary function ( farther
function) to represent the DWT. And meanwhile we get a multiresolution
expression of the signal based on wavelet transform. (figure 4)
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Wavelet Transform:

Vo (mgm) =3 £(X)@,, (%)
W, (mn) =Y fOW,, (%)

Inverse Wavelet Transform:

22 W, (mnyy,,, (%)

m=my n

f@) =2V, me,me, ,(x)+

Where for DYADIC wavelet transform:

@0 (X)= 25(p(2’” x —n) 1is the scaling function (father function); and

m,n

And W,, is the orthogonal complement of V,, to the V,,+;.
Vm+l = Vm &3 Wm

The matrix implementation of Discrete Wavelet Transform (Haar):

w (x)=22w(2" x —n)is the wavelet function (mother function).
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where L =1log, N, K =N/2,thatis W =HF .

The matrix implementation of inverse Discrete Wavelet Transform:



F=H'W
An alternative matrix implementation of Discrete Wavelet Transform:

W=H,H,, - HHF

where
- Pr-10 |
Dk _1.m-1 0
H = v, , andK =N/2,M =log, N-L, L €[l,log, N]
Wiama |
. 0 1|

The alternative matrix implementation of Inverse Discrete Wavelet Transform:

F=H'HT-.HT H™W

For example, take the Haar wavelet as the base for a signal of 8 samples,

400,0:%[1 111111 1]
%,ﬁ%[l 111 -1 -1 -1 —1]
wl,o—%[l 1 -1 -1 0 0 0 0]
z//uzé[o 0001 1 -1 —1]

1//2,0:%[1 -1 00 00 0 0]
%,1:%[0 01 -1 00 0 0]
%2:%[0 0001 —-10 0]

1
Vi3 = ﬁ[

000 O0O0O0T1 -1]

The matrix implementation of Discrete Wavelet Transform is
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The matrix implementation of Inverse Discrete Wavelet Transform is
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For the alternative matrix implementation of DWT and IDWT, we have
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It is easy to prove that H = H.H,H,

In practical filter bank are mostly used for wavelet transform implementation.

Original Signals

l

Wavelet Function

—\— Filters I

lowpass highpass
Approximations Details
Figure 5

As shown in figure 5, signal Is filtered to low frequency approximations
and the high frequency details.

For analysis with orthogonal wavelets the high pass filter is calculated as the
quadrature mirror filter (QMF) of the low pass, and reconstruction filters are the
time reverse of the decomposition filters. We implement the WT matrix by
this.(figure 6). And the reconstruction is as the inverse direction and use the up-
sampling operation instead of the down-sampling in the decomposition.
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How to use WT?
)

with filter bank.
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2. EEG Signal de-noising and compression applications with WT.

In addition to signal analysis, based on this features the wavelet transform (WT)
could also be used for signal compression and noise removal.

a) De-noising
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Base on the wavelet transformation, we can cancel the small coefficients of signal
to reduce the noise interferences.

50

Original signal
401 1

30T 1

20 i

107 1

0 1’00 2’00 360 4‘00 5‘00 6‘00 760 860 9‘00 160
Number of Samples

500

Reconstruction signal
400 7

300 1

200 1

100 1

-10

1b0 260 360 4b0 SbO 6b0 7100 8b0 9b0 1600
Number of Samples

(@

Figure 7 Original and reconstructed EEG signals using wavelets
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Figure 9 EEG signals after WT de-noising

b) Compression

When signals transferred into wavelets domain they would be sparse or
compressible. Therefore we could keep part of the large coefficients to reconstruct

the original signals meanwhile without much quality loss. (Figure 10)
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Figure 10 Wavelet coefficients (a) (b) (¢)

I Cormpression ratio: 1024/256
[ compression ratio: 1024/128
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Figure 11 Wavelet reconstruction based on different compression ratio

What do we need in the signal? i

3. EEG Signal structure feature extraction
a) Smoothing
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Different from other wavelet transform, in this lab we use uniform sampling other
than down sampling to see the derivation detail in the whole ECG signal. Then we
get the max value for WTMM.
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Figure 12 smoothed signal by different scale WT

b) Wavelet Transform Modulus Maxima.

When a mother wavelet is a gradient of a smoothing function, multi-scale
gradients can be computed as wavelet transform.

Two wavelet functions are the 1-order and 2-order gradients of a smooth, finite
support function [10(x),

dO(x) b d’0(x)
) X)=—"7>5—
dx Vi) dx’
A function with dilation s is denoted by

w(x)=
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w(x)= 1 !//(5) :
S S

The wavelet transform of a function f(x) is given by

W L) = e (fj WP F(0) = () w(fj

S S S

b

where “*’ represents convolution.

Therefore, by detecting the modulus maxima of the wavelet transform of a signal,
f(x), the structure information of the signal can be captured.

Use WTMM for the sparse and simple signals, we can detect it and get the
information we need meanwhile deduce the size and save the resources.
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Figure 13 Signal structure captured by WTMM

Figure 13 showed the structure feature extracted by WTMM after multi-scale

smoothing.

Matlab Experiments:



Lab 1.1: Write a piece of code that can develop the matrix implementation (in size of 256x256)
of DWT and IDWT using the Haar base.

Lab 1.2: Download a piece of EEG signal and perform DWT and IDWT. Compare the wavelet
coefficients of different level wavelet transform. Replace some coefficients of small magnitudes

with zeros; plot the reconstruction errors with respect the compression ratio.

Lab 1.3: Perform the wavelet transform of a piece of EEG signal and detect the modulus maxima
to capture the structure of the EEG signal.

Matlab Code Samples:

1. Build filter function for different wavelets

2. Build wavelet transform matrix

3. Load EEG signals

4. Perform wavelet decomposition and reconstruction

5. WTMM

1. Build filter function for different wavelets
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function f = MakeONFilter(Type,Par)
% Outputs

% qmf quadrature mirror filter

if stremp(Type, Haar"),
f=[11]./sqrt(2);

end

if stremp(Type,'Beylkin'),
f=[ .099305765374 .424215360813 .699825214057 ...
449718251149 -.110927598348 -.264497231446 ...
026900308804 .155538731877 -.017520746267 ...
-.088543630623 .019679866044 .042916387274 ...
-.017460408696 -.014365807969 .010040411845 ...

001484234782 -.002736031626 .000640485329 ];

end

if stremp(Type,'Coiflet"),
if Par==1,
f=[ .038580777748 -.126969125396 -.077161555496 ...

607491641386 .745687558934 .226584265197 1;

end

(Different filter has different coefficients to make the QMF)
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2. Build wavelet transform matrix

function W = WavMat(h, N, kO, shift)

%--make QM filter G

h=h(:)'; g=fliplr(h .* (-1).(1:length(h)));

for k=k0:-1:1
clear gmat; clear hmat;
ubJk = 27(J-k); ubJk1 = 2~(J-k+1);
for jj= l:ubJk
for ii=1:ubJk1
modulus = mod(N+ii-2*jj+shift,ubJk1);
modulus = modulus + (modulus == 0)*ubJk1;
hmat(ii,jj) = h(modulus);
gmat(ii,jj) = g(modulus);
end
end
W = [oldmat * hmat'; gmat' ];
oldmat = W;

end
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3. Load EEG signals

4. Perform wavelet decomposition and reconstruction

load test_eeg;

n = 1024;

filter = MakeONFilter( Daubechies’, )
'} = WavMat (filter, n, 1J;

] = W78

w20 =aall; )

wi = Wuxxl;

¥wl (find (abs (w0)<100))=0;

x0 = W w0,

xxl = awgnixx0, 10, measured’ ) ;
wl = Wexxl;

w2 = wl;

w2 (abs (wl)<1001=0;

xl = W oswl;

x2 = W xw2;
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5. WTMM.

sr=size (wff) ;
maxmap = zerosisz) |
wff ahs (wff)

figure

for t=1:m
for k=2:n-1
kplus=k+1;
kminus=k-1;
if wif(t,k) » wif(t,kplus) && wEfit,k) » wif (t,kminus)
maxmap (t, k) = wif(t,k);
end
end
subplot (m, 1,1} ;
plot (maxmap (t, 1)

end
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