
HAIL: A High-Availability and Integrity Layer
for Cloud Storage

Kevin D. Bowers
RSA Laboratories

Cambridge, MA, USA
kbowers@rsa.com

Ari Juels
RSA Laboratories

Cambridge, MA, USA
ajuels@rsa.com

Alina Oprea
RSA Laboratories

Cambridge, MA, USA
aoprea@rsa.com

ABSTRACT
We introduce HAIL (High-Availability and Integrity Layer), a dis-
tributed cryptographic system that allows a set of servers to prove to
a client that a stored file is intact and retrievable. HAIL strengthens,
formally unifies, and streamlines distinct approaches from the cryp-
tographic and distributed-systems communities. Proofs in HAIL
are efficiently computable by servers and highly compact—typically
tens or hundreds of bytes, irrespective of file size. HAIL crypto-
graphically verifies and reactively reallocates file shares. It is ro-
bust against an active, mobile adversary, i.e., one that may progres-
sively corrupt the full set of servers. We propose a strong, formal
adversarial model for HAIL, and rigorous analysis and parameter
choices. We show how HAIL improves on the security and effi-
ciency of existing tools, like Proofs of Retrievability (PORs) de-
ployed on individual servers. We also report on a prototype imple-
mentation.

Categories and Subject Descriptors
E.3 [Data]: [Data Encryption]

General Terms
Security

Keywords
Distributed storage systems, cloud storage, data availability, era-
sure codes, proofs of retrievability

1. INTRODUCTION
Cloud storage denotes a family of increasingly popular on-line

services for archiving, backup, and even primary storage of files.
Amazon S3 [1] is a well known example. Cloud-storage providers
offer users clean and simple file-system interfaces, abstracting away
the complexities of direct hardware management. At the same time,
though, such services eliminate the direct oversight of component
reliability and security that enterprises and other users with high
service-level requirements have traditionally expected.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

To restore security assurances eroded by cloud environments, re-
searchers have proposed two basic approaches to client verifica-
tion of file availability and integrity. The cryptographic commu-
nity has proposed tools called proofs of retrievability (PORs) [23]
and proofs of data possession (PDPs) [2]. A POR is a challenge-
response protocol that enables a prover (cloud-storage provider) to
demonstrate to a verifier (client) that a file F is retrievable, i.e.,
recoverable without any loss or corruption. The benefit of a POR
over simple transmission of F is efficiency. The response can be
highly compact (tens of bytes), and the verifier can complete the
proof using a small fraction of F .

As a standalone tool for testing file retrievability against a single
server, though, a POR is of limited value. Detecting that a file is
corrupted is not helpful if the file is irretrievable and the client has
no recourse. Thus PORs are mainly useful in environments where
F is distributed across multiple systems, such as independent stor-
age services. In such environments, F is stored in redundant form
across multiple servers. A verifier (user) can test the availability of
F on individual servers via a POR. If it detects corruption within a
given server, it can appeal to the other servers for file recovery. To
the best of our knowledge, the application of PORs to distributed
systems has remained unexplored in the literature.

A POR uses file redundancy within a server for verification. In a
second, complementary approach, researchers have proposed dis-
tributed protocols that rely on queries across servers to check file
availability [25, 31]. In a distributed file system, a file F is typically
spread across servers with redundancy—often via an erasure code.
Such redundancy supports file recovery in the face of server errors
or failures. It can also enable a verifier (e.g., a client) to check the
integrity of F by retrieving fragments of F from individual servers
and cross-checking their consistency.

In this paper, we explore a unification of the two approaches to
remote file-integrity assurance in a system that we call HAIL (High-
Availability and Integrity Layer).

HAIL manages file integrity and availability across a collection
of servers or independent storage services. It makes use of PORs
as building blocks by which storage resources can be tested and re-
allocated when failures are detected. HAIL does so in a way that
transcends the basic single-server design of PORs and instead ex-
ploits both within-server redundancy and cross-server redundancy.

HAIL relies on a single trusted verifier—e.g., a client or a service
acting on behalf of a client—that interacts with servers to verify the
integrity of stored files. (We do not consider a clientless model in
which servers perform mutual verification, as in distributed infor-
mation dispersal algorithms such as [16, 17, 8, 20].)

HAIL offers the following benefits:

Strong file-intactness assurance: HAIL enables a set of servers
to prove to a client via a challenge-response protocol that a stored

187

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

file F is fully intact—more precisely, that the client can recover F
with overwhelming probability. HAIL protects against even small,
e.g., single-bit, changes to F .

Low overhead: The per-server computation and bandwidth re-
quired for HAIL is comparable to that of previously proposed PORs.
Apart from its use of a natural file sharing across servers, HAIL im-
proves on PORs by eliminating check values and reducing within-
server file expansion.

Strong adversarial model: HAIL protects against an adversary
that is active, i.e., can corrupt servers and alter file blocks and mo-
bile, i.e., can corrupt every server over time.

Direct client-server communication: HAIL involves one-to-one
communication between a client and servers. Servers need not
intercommunicate—or even be aware of other servers’ existence.
(In comparison, some information dispersal algorithms involve server-
to-server protocols, e.g., [16, 17, 8, 20].) The client stores just a
secret key.

Static file protection: HAIL protects static stored objects, such
as backup files and archives. Constructing protocols to accommo-
date file updates, i.e., to provide integrity assurance for dynamically
changing objects, is left to future work.

Our two broad conceptual contributions in HAIL are:

Security modeling. We propose a strong, formal model that
involves a mobile adversary, much like the model that motivates
proactive cryptographic systems [22, 21]. A mobile adversary is
one capable of progressively attacking storage providers—and in
principle, ultimately corrupting all providers at different times.

None of the existing approaches to client-based file-integrity ver-
ification treats the case of a mobile adversary. We argue that the
omission of mobile adversaries in previous work is a serious over-
sight. In fact, we claim that a mobile adversarial model is the
only one in which dynamic, client-based verification of file integrity
makes sense. The most common alternative model is one in which
an adversary (static or adaptive) corrupts a bounded number of
servers. As real-world security model for long-term file storage,
this approach is unduly optimistic: It assumes that some servers are
never corrupted. More importantly, though, an adversarial model
that assumes a fixed set of honest servers for all time does not re-
quire dynamic integrity checking at all: A robust file encoding can
guarantee file recovery irrespective of whether or not file corrup-
tions are detected beforehand.

HAIL design strategy: Test-and-Redistribute (TAR). HAIL
is designed like a proactive cryptographic system to withstand a
mobile adversary. But HAIL aims to protect integrity, rather than
secrecy. It can therefore be reactive, rather than proactive. We
base HAIL on a new protocol-design strategy that we call TAR
(Test-And-Redistribute). With TAR, the client uses PORs to detect
file corruption and trigger reallocation of resources when needed—
and only when needed. On detecting a fault in a given server via
challenge-response, the client communicates with the other servers,
recovers the corrupted shares from cross-server redundancy built in
the encoded file, and resets the faulty server with a correct share.

Our TAR strategy reveals that for many practical applications,
PORs and PDPs are overengineered. PORs and PDPs assume a
need to store explicit check values with the prover. In a distributed
setting like that for HAIL, it is possible to obtain such check values
from the collection of service providers itself. On the other hand,
distributed protocols for checking file availability are largely under-
engineered: Lacking robust testing and reallocation, they provide
inadequate protection against mobile adversaries.

Three main coding constructions lie at the heart of HAIL:

Dispersal code: In HAIL, we use what we call a dispersal code
for robustly spreading file blocks across servers. For the disper-
sal code in HAIL, we propose a new cryptographic primitive that
we call an integrity-protected error-correcting code (IP-ECC). Our
IP-ECC construction draws together PRFs, ECCs, and universal
hash functions (UHFs) into a single primitive. This primitive is an
error-correcting code that is, at the same time, a corruption-resilient
MAC on the underlying message. The additional storage overhead
is minimal—basically just one extra codeword symbol.

In a nutshell, our IP-ECC is based on three properties of (certain)
universal hash function families h: (1) h is linear, i.e., hκ(m) +
hκ(m′) = hκ(m+m′) for messages m and m′ and key κ; (2) For
a pseudorandom function family (PRF) g, the function hκ(m) +
gκ′(m) is a cryptographic message-authentication code (MAC) on
m; and (3) hκ(m) may be treated as a parity block in an error-
correcting code applied to m.

Server code: File blocks within each server are additionally en-
coded with an error-correcting code that we call a server code. This
code protects against the low-level corruption of file blocks that
may occur when integrity checks fail. (For efficiency, our server
code is a computational or “adversarial” error-correcting code as
defined in Bowers et al. [6].)

Aggregation code: HAIL uses what we call an aggregation code
to compress responses from servers when challenged by the client.
It acts across multiple codewords of the dispersal code. One feature
of the aggregation code is that it combines / aggregates multiple
MACs in our IP-ECC into a single composite MAC. This composite
MAC verifies correctly only if it represents a combination of valid
MACs on each of the aggregated codewords.

Note that while the aggregation code is built on an error-correcting
code, it is computed as needed, and thus imposes no storage or file-
encoding overhead.

Organization. We review related work in Section 2. We give an
overview of the HAIL construction and its main technical ingredi-
ents in Section 3. We introduce our adversarial model in Section 4
and describe technical building blocks for HAIL in Section 5. The
details of the HAIL protocol are described in Section 6, and its se-
curity properties in Section 7. We give implementation results in
Section 8 and conclude in Section 9.

2. RELATED WORK
HAIL may be viewed loosely as a new, service-oriented version

of RAID (Redundant Arrays of Inexpensive Disks). While RAID
manages sector redundancy dynamically across hard-drives, HAIL
manages file redundancy across cloud storage providers. Recent
multi-hour failures in S3 illustrate the need to protect against ba-
sic service failures in cloud environments. In view of the rich tar-
gets for attack that cloud storage providers will present, HAIL is
designed to withstand Byzantine adversaries. (RAID is mainly de-
signed for crash-recovery.)

Information dispersal. Distributed information dispersal algo-
rithms (IDA) that tolerate Byzantine servers have been proposed [16,
17, 8, 20]. In these algorithms, file integrity is enforced within the
pool of servers itself. Some protocols protect against faulty clients
that send inconsistent shares to different servers [17, 8, 20]. In con-
trast, HAIL places the task of file-integrity checking in the hands of
the client or some other trusted, external service. Unlike previous
work, which verifies integrity at the level of individual file blocks,
HAIL provides assurance at the granularity of a full file. This dif-
ference motivates the use of PORs in HAIL, rather than block-level
integrity checks.

188

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Pencil

Fei
Pencil

Fei
Pencil

Fei
Pencil

Fei
Pencil

Fei
Pencil

Fei
Pencil

Fei
Pencil

Universal Hash Functions. Our IP-ECC primitive fuses sev-
eral threads of research that have emerged independently. At the
heart of this research are Universal Hash-Functions (UHFs). (In
the distributed systems literature, common terms for variants of
UHFs are algebraic signatures [31] or homomorphic fingerprint-
ing [20].) UHFs can be used to construct message-authentication
codes (MAC) [19, 4, 14] (see [28] for a performance evaluation
of various schemes). In particular, a natural combination of UHFs
with pseudorandom functions (PRFs) yields MACs.

PORs and PDPs. Juels and Kaliski (JK) [23] formally define
PORs and propose a POR protocol that only supports a limited
number of challenges. Shacham and Waters (SW) [32] offer al-
ternative constructions based on the idea of storing block integrity
values that can be aggregated to reduce the communication com-
plexity of a proof. They construct symmetric-key POR protocols
based on the UHF + PRF paradigm and publicly verifiable PORs
based on publicly verifiable homomorphic authenticators.

In concurrent and independent work, Bowers et al. [6] and Dodis
et al. [12] give frameworks for POR protocols that generalize the
JK and SW protocols. Both papers propose the use of an error-
correcting code in computing server responses to challenges with
the goal of ensuring file extraction through the challenge-response
interface. The focus of [12] is mostly theoretical in providing ex-
traction guarantees for adversaries replying correctly to an arbitrary
small fraction of challenges. In contrast, Bowers et al. consider
POR protocols of practical interest (in which adversaries with high
corruption rates are detected quickly) and show different parameter
tradeoffs when designing POR protocols.

Ateniese et al. [2] propose a closely related construction called
a proof of data possession (PDP). A PDP detects a large fraction
of file corruption, but does not guarantee file retrievability. Subse-
quent work gives file update protocols in the PDP model [3, 13].
Curtmola et al. [11] proposed an extension of PDPs to multiple
servers. Their proposal essentially involves computational cost re-
duction through PDP invocations across multiple replicas of a sin-
gle file, rather than a share-based approach. Earlier closely related
constructions to PORs and PDPs include [15, 33, 27].

Distributed protocols for dynamic file-integrity checking. Lillib-
ridge et al. [25] propose a distributed scheme in which blocks of a
file F are dispersed across n servers using an (n, m)-erasure code.
Servers spot-check the integrity of one another’s fragments using
message authentication codes (MACs).

Schwartz and Miller (SM) [31] propose a scheme that ensures
file integrity through distribution across multiple servers, using error-
correcting codes. They employ keyed algebraic encoding and stream-
cipher encryption to detect file corruptions. Their keyed encoding
function is equivalent to a Reed-Solomon code in which codewords
are generated through keyed selection of symbol positions. We
adopt some ideas of simultaneous MACing and error-correcting in
our HAIL constructions, but we define the construction rigorously
and prove its security properties.

Proactive cryptography. Our adversarial model is inspired by
the literature on proactive cryptography initiated by [22], which has
yielded protocols resilent to mobile adversaries for secret sharing
(e.g., [22, 7]) as well as signature schemes (e.g., [21]). In previous
proactive systems, key compromise is a silent event; consequently,
these systems must redistribute shares automatically and provide
protections that are proactive. Corruption of a stored file, however,
is not a silent event. It results in a change in server state that a
verifier can detect. For this reason, HAIL can rely on remediation
that is reactive. It need not automatically refresh file shares at each
interval, but only on detecting a fault.

3. HAIL OVERVIEW
In this section, we present the key pieces of intuition behind

HAIL. We start with simple constructions and build up to more
complex ones.

In HAIL, a client distributes a file F with redundancy across n
servers and keeps some small (constant) state locally. The goal of
HAIL is to ensure resilience against a mobile adversary. This kind
of powerful adversary can potentially corrupt all servers across the
full system lifetime. There is one important restriction on a mobile
adversary, though: It can control only b out of the n servers within
any given time step. We refer to a time step in this context as an
epoch.

In each epoch, the client that owns F (or potentially some other
entity on the client’s behalf) performs a number of checks to as-
sess the integrity of F in the system. If corruptions are detected
on some servers, then F can be reconstituted from redundancy in
intact servers and known faulty servers replaced. Such periodic
integrity checks and remediation are an essential part of guarantee-
ing data availability against a mobile adversary: Without integrity
checks, the adversary can corrupt all servers in turn across �n/b�
epochs and modify or purge F at will.

Let us consider a series of constructions, explaining the short-
comings of each and showing how to improve it. In this way, we
introduce the full conceptual complexity of HAIL incrementally.

Replication system.
A first idea for HAIL is to replicate F on each of the n servers.

Cross-server redundancy can be used to check integrity. To perform
an integrity check, the client simply chooses a random file-block
position j and retrieves the corresponding block Fj of F from each
server. Provided that all returned blocks are identical, the client
concludes that F is intact in that position. If it detects any incon-
sistencies, then it reconstructs F (using majority decoding across
servers) and removes / replaces faulty servers. By sampling mul-
tiple file-block positions, the client can boost its probability of de-
tecting corruptions.

A limitation of this approach is that the client can only feasibly
inspect a small portion of F . Another is that while the client checks
consistency across servers, it does not directly check integrity, i.e.,
that the retrieved block for position j is the one originally stored
with F . Consequently, this simple approach is vulnerable to a
creeping-corruption attack. The adversary picks a random position
i and changes the original block value Fi to a corrupted value F̂i in
all b servers corrupted during a given epoch. After T = �n/(2b)�
epochs, the adversary will have changed Fi to F̂i on a majority of
servers. At that point, majority decoding will fail to reconstruct
block Fi.

Because the client can feasibly check only a small fraction of the
file, the probability that it will detect temporary inconsistencies in-
troduced by the adversary’s corruptions is low. Thus, the adversary
can escape detection and render F unretrievable with high proba-
bility in T epochs.

Replication system with POR.
To achieve better resilence against a creeping-corruption attack,

we might employ a POR system (e.g., [23, 32, 6]) on each of the
n servers. In a single-server POR system, F is encoded under an
error-correcting code (or erasure code) that we refer to in HAIL as
the server code. The server code renders each copy of F robust
against a fraction εc of corrupted file blocks, protecting against the
single-block corruptions of our previous approach. (Here εc is the
error rate of the server code.)

189

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Oval

Figure 1: Encoding of file F : on the left, original file represented as a matrix; on the right, encoded file with parity blocks added for
both the server and dispersal codes.

There are then two options to check the integrity of F . One is to
use the single-server POR approach of embedding integrity checks
within each server’s copy of F . This approach, however, imposes
high storage overhead: It does not take advantage of cross-server
redundancy.

An alternative approach is to perform integrity checks by com-
paring block values in a given position j using cross-server redun-
dancy as in our previous construction. With this approach, the sys-
tem is still vulnerable to a creeping-corruption attack, but much less
than in the previous construction. Suppose that the POR can detect
inconsistencies within a server if the adversary modifies at least
εd-fraction of blocks. Assuming that the client performs majority
decoding to replace faulty servers whenever it detects corruption,
this approach will ensure the integrity of F with high probability
for T = �n/(2b)�× (εc/εd) epochs—improving over the previous
approach by a factor of εc/εd.

Dispersal code with POR.
We can improve the storage overhead of the previous approach

with a more intelligent approach to creating file redundancy across
servers. Rather than replicating F across servers, we can instead
distribute it using an error-correcting (or erasure) code. We refer to
this code in HAIL as the dispersal code. In HAIL, each file block
is individually distributed across the n servers under the dispersal
code.

Let (n, �) be the parameters of the dispersal code. We assume
for convenience that this code is systematic, i.e., that it preserves
� message blocks in their original form. Then � is the number of
primary servers, those servers that store fragments of the original
file F . The remaining n − � are secondary servers, or redundant
servers, i.e., servers that maintain additional redundancy/parity blocks
and help recover from failure.

A graphical representation of dispersal encoding is given in Fig-
ure 1. Before transforming the file F into a distributed, encoded
representation, we partition it into � distinct segments F (1),
. . . , F (�) and distribute these segments across the primary servers
S1, . . . , S�. This distributed cleartext representation of the file re-
mains untouched by our subsequent encoding steps. We then en-
code each segment F (j) under the server code with error rate εc.
The effect of the server code is to extend the “columns” of the en-
coded matrix by adding parity blocks. Next, we apply the dispersal
code to create the parity blocks that reside on the secondary servers.

It extends the “rows” of the encoded matrix across the full set of n
servers S1, . . . , Sn.

With this scheme, it is possible to use cross-server redundancy to
check the integrity of F . The client / verifier simply checks that the
blocks in a given position, i.e., “row,” constitute a valid codeword
in the dispersal code. By means of the dispersal code, we reduce
the overall storage cost of our previous construction from n|F | to
(n/�)|F |.

Use of a dispersal code does reduce the number of epochs T over
which it is possible to ensure the integrity of F with high probabil-
ity. This is because the adversary can now corrupt a given “row”
/ codeword merely by corrupting at least (d − 1)/2 blocks, where
d is the minimum distance of the dispersal code. (For an (n, �)-
Reed-Solomon dispersal code, for instance, d = n − � + 1.) In
our next construction, however, we show how to reduce vulnerabil-
ity to creeping-corruption attacks considerably using cryptographic
integrity checks. This improvement greatly extends the integrity
lifetime T of the file F .

Remark. The three simple constructions we have shown thus far
have the attractive property of being publicly verifiable. It may be
that F is encrypted and that the server code is cryptographically
keyed (for reasons we explain below). Thus only the client that
stored F can retrieve it. But it is still possible for any entity to
perform an integrity check on F . Integrity checks only involve ver-
ification of block consistency across servers, and therefore don’t
require any secret keys. In our next construction, we sacrifice pub-
lic verifiability in favor of a much longer lifetime T of integrity
assurance for F .

Embedding MACs into dispersal code.
We now show how to address the problem of creeping-corruption

attacks. Our solution is to authenticate matrix rows with a message-
authentication code (MAC), computed with a secret key known by
the client. A simple approach is to attach a MAC to each file block
on each server. We achieve a solution with lower storage overhead
than this simple approach.

Our key insight (inspired by ideas of Schwartz and Miller [31])
is to embed MACs in the parity blocks of the dispersal code. As
we show, both MACs and parity blocks can be based on a universal
hash function. Consequently, it is possible to create a block that is
simultaneously both a MAC and a parity block. One of our main
contributions is a construction based on this idea that we call an

190

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Pencil

Fei
Pencil

Fei
Pencil

Fei
Highlight

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

integrity-protected error-correcting code (IP-ECC) and whose de-
tails are given in Section 5.4. By inserting MACs into each row of
the encoded matrix, we are able to effectively verify the responses
received from servers. This mechanism protects against creeping-
corruption attacks because it does not just check that rows are self-
consistent as in the simpler approaches described above. Instead,
with MACs, it is possible to ensure that rows do not differ from
their original values in F .

Aggregating responses.
While the client could check individual blocks in the encoded

file, a more efficient approach is to check multiple blocks of the file
simultaneously. Another contribution of our paper is to provide a
mechanism to aggregate MACs across multiple blocks. The client
can specify multiple positions in the file, and verify their correct-
ness via a single, composite response from each server.

We propose to use a linear code in HAIL called the aggrega-
tion code for combining servers’ responses in a challenge-response
protocol. The aggregate response is a linear combination of rows of
the encoded file matrix, and is a codeword (or sufficiently close to
a codeword) in the dispersal code. However, we need to ensure that
by aggregating MAC values on individual blocks, we obtain a valid
MAC. We define the notion of composite MAC in Section 5.3 that,
intuitively, guarantees that a MAC on a vector of messages can not
be obtained unless all the MACs of individual vector components
are known. Note that the aggregation code in HAIL carries zero
storage overhead: It is computed on the fly.

We describe the full HAIL system in detail in Section 6, after
defining the adversarial model in Section 4. The necessary crypto-
graphic building blocks can be found in Section 5.

4. ADVERSARIAL MODEL
We model HAIL as a set of n servers, S1, S2, . . . , Sn, and a

trusted, external entity T . We assume authenticated, private chan-
nels between T and each server. In practice T may be a client or
an external auditor.

We consider an adversaryA that is mobile, i.e., can corrupt a dif-
ferent set of servers in each epoch, and is Byzantine, i.e., can behave
arbitrarily. Obviously, meaningful file availability is not possible
against a fully Byzantine adversary that controls all servers. Con-
sequently, we assume that our adversary controls at most b servers
in any given epoch.

We regard each server Si as containing a distinct code base and
storage system. The code base determines how the server replies
to challenges; the storage system contains a (potentially corrupted)
file segment.

At the beginning of each epoch, A may choose a fresh set of
b servers and arbitrarily corrupt both their code bases and storage
systems. At the end of an epoch, however, we assume that the code
base of every server is restored to a correct state. From a theoretical
perspective, this restoration models the limitation of the adversary
to b servers. From a practical perspective, code-base restoration
might reflect a malware-detection pass, software re-installation, in-
vocation of a fresh virtual machine image, etc. Even when the code
base of a server is restored, however, the adversary’s corruptions to
the server’s storage system remain.

Repair of servers’ storage systems only happens when a client re-
actively invokes the redistribute function—an expensive and gen-
erally rare event. Thus, while the adversary controls only b servers,
it is possible for more than b servers to contain corrupted data in a
given epoch. The aim of the client in HAIL is to detect and repair
corruptions before they render a file F unavailable.

A time step or epoch in HAIL thus consists of three phases:
1. A corruption phase: The adversary A chooses a set of up to b

servers to corrupt (where b is a security parameter).
2. A challenge phase: The trusted entity T challenges some or

all of the servers.
3. A remediation phase: If T detects any corruptions in the chal-

lenge phase, it may modify / restore servers’ file shares.

Let F denote the file distributed by T . We let F
(i)
t denote the

file share held by server Si at the beginning of epoch t, i.e., prior to
the corruption phase, and let F̂

(i)
t denote the file share held by Si

after the corruption phase.

4.1 HAIL: Formal preliminaries
In our formal adversarial model, we let a system HAIL consist

of the following functions:

• keygen(1λ)→ κ: Generates a key κ = (sk, pk) of size security
parameter λ. (For symmetric-key systems, pk may be null.)
• encode(κ, F, �, n, b) → {F (i)

0 }ni=1: Encodes F as a set of file
segments, where F

(i)
0 is the segment designated for server i. The

encoding is designed to provide �-out-of-n redundancy across servers
and to provide resilience against an adversary that can corrupt at
most b servers in any time step.
• decode(κ, t, {F̂ (i)

t }ni=1) → F : Recovers the original file F at
time t from a set of file segments stored at different servers.
• challenge(κ) → {Ci}ni=1: Generates a challenge value Ci for
each server i.
• respond(i, Ci, F̂

(i)
t) → Ri: Generates server’s Si response at

time t to challenge Ci.
• verify(κ, j, {Ci, Ri}ni=1) → {0, 1}. Checks the response of
server j, using the responses of all servers R1, . . . , Rn to chal-
lenge set C1, . . . , Cn. It outputs a ‘1’ bit if verification succeeds,
and ‘0’ otherwise. We assume for simplicity that verify is sound,
i.e., returns 1 for any correct response.

• redistribute(κ, t, {F̂ (i)
t }ni=1) → {F (i)

t+1}ni=1∪ ⊥: Is an interac-

tive protocol that replaces the fragment F̂
(i)
t stored at server i with

F
(i)
t+1. It implements a recreation and distribution of corrupted file

segments, and outputs ⊥ if the file can not be reconstructed.

4.2 Security model: Formalization
The adversary A is assumed to be stateful and have access to

oracles encode and verify; we assume that A respects the bound b
on the number of permitted corruptions in a given epoch. Denote
by π the system parameters (�, n, b, T, εq , nq).
A participates in the two-phase experiment in Figure 2. In the

test phase, A outputs a file F , which is encoded and distributed
to servers. The second phase is a challenge phase that runs for T
epochs. In each epoch, A is allowed to corrupt the code base and
storage system of at most b out of n servers. Each server is chal-
lenged nq times in each epoch, and A responds to the challenges
sent to the corrupted servers. If more than a fraction εq of a server’s
responses are incorrect, the redistribute algorithm is invoked.

After the experiment runs for T time intervals, a decoding of the
file is attempted and the experiment outputs 1 if the file can not
be correctly recovered. We define the HAIL-advantage of A as:
AdvHAIL

A (π) = Pr[ExpHAIL
A (π) = 1].

Remark. In the POR security definition, by analogy with zero-
knowledge proofs, the same interface used for challenge-response
interactions between the client and server is also available for file
extraction. In the POR model, the (single) server is permanently
controlled by the adversary. In contrast, in HAIL only at most b
out of the n servers can be corrupted in one time epoch. We could

191

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Pencil

Fei
Pencil

Fei
Pencil

Fei
Pencil

Fei
Pencil

Experiment ExpHAIL
A (π):

κ = (sk, pk) ← keygen(1λ)
F ← A(“test”, pk, π) /* output file F */

{F (i)
0 }n

i=1 ← encode(κ, F, �, n, b) /* compute file shares */
for t = 0 to T do

At ← A(“corrupt servers”) /* set of corrupted servers */
for i = 1 to n do

Vi ← 0 /* number of correct replies for Si */
for a = 1 to nq do /* generate nq challenges */

C = (C1, . . . , Cn)← challenge(κ)
for j = 1 to n do /* challenge all servers */

if j ∈ At then /*A responds for

Rj ← A(“respond”, Cj , F̂
(j)
t) corrupted servers */

else Rj ← respond(j, Cj, F̂
(j)
t)

for j = 1 to n do /* verify all responses */
if verify(κ, j, {Ci, Ri}n

i=1) = 1 then
Vj ← Vj + 1 /* Sj replied correctly */

Scorr ← Φ /* servers with small fraction of incorrect replies */
for j = 1 to n do /* compute fraction of correct replies */

if
Vj
nq
≥ 1 − εq then

Scorr ← Scorr ∪ {j} /* Sj ’s incorrect replies below εq */
if Scorr = {1, 2, . . . , n} then
{F (i)

t+1}n
i=1 ← {F̂ (i)

t }n
i=1 /* shares remain the same */

else {F (i)
t+1}n

i=1 ← redistribute(κ, t, {F̂ (i)
t }n

i=1)

if decode(κ, T, {F̂ (i)
T }n

i=1) = F output 0 /* F can be recovered */
else output 1 /* F is corrupted */

Figure 2: HAIL security experiment.

construct a stronger security model for HAIL in which the file could
be extracted through the challenge-response protocol if decoding
fails. However, the stronger model would only benefit in extracting
of file fragments for those b servers corrupted by an adversary in
an epoch (the other n− b servers have a correct code base). We do
not investigate this model further in the paper.

5. BUILDING BLOCKS
We introduce the main technical building blocks of HAIL. Proofs

for all claims can be found in the full version of the paper [5].

5.1 UHFs and Reed-Solomon codes
Let I denote a field with operations (+,×). For example, in our

prototype implementation, we work with GF [2128].
A UHF [9] is an algebraic function h : K × I� → I that com-

presses a message m ∈ I� into a compact digest based on a key
κ ∈ K such that the hash of two different messages is different
with overwhelming probability over keys. A related notion is that
of almost exclusive-or universal (AXU) hash functions. Formally:

DEFINITION 1. h is an ε-universal hash function family if for
any x �= y ∈ I�: Prκ←K[hκ(x) = hκ(y)] ≤ ε.

h is an ε-AXU family if for any x �= y ∈ I�, and for any z ∈ I:
Prκ←K[hκ(x)⊕ hκ(y) = z] ≤ ε.

Many common UHFs are also linear, meaning that for any mes-
sage pair (m1, m2), it is the case that hκ(m1)+hκ(m2) = hκ(m1+
m2). In fact, it is possible to construct a UHF based on a linear
error-correcting code (ECC). An (n, �, d) ECC encodes messages
of length � into codewords of size n such that the minimum distance
between any two codewords is d. An (n, �, d) code can correct up
to d− 1 errors and � d−1

2
� erasures.

For example, a UHF may be based on a (n, �, n− � + 1)-Reed-
Solomon code over I . Let �m = (m1, m2, . . . , m�), where mi ∈ I .
�m may be viewed in terms of a polynomial representation of the
form p�m(x) = m�x

�−1+m�−1x
�−2+. . .+m1. A Reed-Solomon

code, then, may be defined in terms of a vector �a = (a1, . . . , an).
The codeword of a message �m is the evaluation of polynomial p�m

at points (a1, . . . , an): (p�m(a1), p�m(a2), . . . , p�m(an)).

A UHF of interest, then, is simply hκ(m) = p�m(κ) with key
space K = I . It is well known that this construction, denoted
RS-UHF (and typically referred as the polynomial evaluation UHF),
is indeed a good UHF [34]:

FACT 1. RS-UHF is a �−1
2α -universal hash family (and, as such,

a �−1
2α -AXU family).

5.2 MACs obtained from UHFs
A UHF, however, is not a cryptographically secure primitive.

That is, it is not generally collision-resistant against an adversary
that can choose messages after selection of κ. Thus a UHF is not in
general a message-authentication code (MAC). A MAC is formally
defined as:

DEFINITION 2. A Message Authentication Code MA = (MGen,
MTag, MVer) is given by algorithms: κ ← MGen(1λ) generates
a secret key given a security parameter; τ ← MTagκ(m) com-
putes a tag on message m with key κ; MVerκ(m, τ) outputs 1 if
τ is a valid tag on m, and 0 otherwise. For adversaryA, we define:
Advuf-mac

MA (A) = Pr[κ← MGen(1λ); (m,τ)← AMTagκ(·),MVerκ(·,·) :
MVerκ(m, τ) = 1 ∧m not tagged before].

We denote by Advuf-mac
MA (q1, q2, t) the maximum advantage of all

adversaries making q1 queries to MTag, q2 queries to MVer and
running in time at most t.

It is well known that a MAC may be constructed as the straightfor-
ward composition of a UHF with a pseudorandom function (PRF)
[35, 24, 30, 34]. A PRF is a keyed family of functions g : KPRF ×
D → R that is, intuitively, indistinguishable from a random family
of functions from D to R.

We define the prf-advantage of an adversary A for family g as
Advprf

g (A) = |Pr[κ ← KPRF : Agκ(·) = 1] − Pr[f ← FD→R :

Af(·) = 1]|, where FD→R is the set of all functions from D to
R. We denote by Advprf

g (q, t) the maximum prf-advantage of an
adversary making q queries to its oracle and running in time t.

Given a UHF family h : KUHF × I� → I and a PRF family g :
KPRF × L → I , we construct the MAC UMAC = (UGen, UTag,
UVer) such as: UGen(1λ) generates key (κ, κ′) uniformly at ran-
dom from KUHF × KPRF; UTag : KUHF ×KPRF × I� → L× I is
defined as UTagκ,κ′(m) = (r, hκ(m) + gκ′(r)); UVer : KUHF ×
KPRF × I�×L× I is defined as UVerκ,κ′(m, (c1, c2)) = 1 if and
only if hκ(m) + gκ′(c1) = c2. The tagging algorithm of UMAC
outputs, in addition to the composition of UHF and PRF, a unique
counter r ∈ L incremented at each invocation. Thus, the UMAC is
stateful and its properties are as follows [34].

FACT 2. Assume that h is an εUHF-AXU family of hash func-
tions and g is a PRF family. Then UMAC is a stateful MAC with
advantage: Advuf-mac

UMAC (q1, q2, t) ≤ Advprf
g (q1 + q2, t) + εUHFq2.

Remark. For the composition of a UHF and PRF to be a MAC, it
is important that the nonces used as input into the PRF be unique.
In our HAIL implementation, when computing the MAC for a file
block, we use as input to the PRF a hash of the file name and the
block offset in the file instead of a counter.

5.3 Aggregating MACs
In our HAIL protocol, we aggregate MACs on a set of file blocks

for bandwidth efficiency. We define here generic composite MAC
algorithms that apply to any MAC outputing tags in a field.

Let MTag : K × J → N be the tagging algorithm of a MAC
MA = (MGen, MTag, MVer) defined on messages from field J

that outputs tags in a field N . Let �M = (m1, . . . , mv) ∈ Jv be a

192

Fei
Highlight

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Pencil

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Pencil

Fei
Pencil

Fei
Rectangle

vector of messages and let �A = (α1, . . . , αv) ∈ Jv be a vector of
scalar values with αi �= 0. We define τ =

∑v
i=1 αiMTagκ(mi)

as the composite MAC of �M for coefficients α1, . . . , αv . If τ
is as above, we define the composite MAC verification algorithm
CMVerκ({mi, αi}vi=1, τ) to output 1.

Consider an adversary that has access to MTag and CMVer or-
acles. Intuitively, a composite MAC has the property that the ad-
versary can generate a vector of messages and a composite MAC
with small probability if it does not query the MTag oracle for all
component messages of the vector.

We give a formal definition of composite MACs below, the first
in the literature to the best of our knowledge.

DEFINITION 3. Let MA = (MGen, MTag, MVer) be a MAC
algorithm and CMVer the composite MAC verification algorithm
defined above. For adversary A, we define:
Advc-mac

MA (A) = Pr[κ← MGen(1λ); ({mi, αi}vi=1, τ)←
AMTagκ(·),CMVerκ(·,·) : CMVerκ({mi, αi}vi=1, τ) = 1 ∧ ∃i ∈
[1, v] for which mi was not queried to MTagκ(·)].

We denote by Advc-mac
MA (q1, q2, t) the maximum success proba-

bility of all adversaries making q1 queries to MTag, q2 queries to
CMVer and running in time t.

LEMMA 1. Given a MAC MA on field J , MA extended to Jv

as above is a composite MAC with advantage:
Advc-mac

MA (q1, q2, t) ≤ vAdvuf-mac
MA (q1 + vq2 + v − 1, 0, (v + 1)t).

We define a linear composite MAC to be such that a composite
MAC can be verified from a linear combination of messages: �m =∑v

i=1 αimi (without access to individual messages {mi}vi=1).

DEFINITION 4. A composite MAC algorithm is linear if there
exists an algorithm CMVer-Lin such that CMVerκ({mi, αi}vi=1, τ)
= 1 if and only if CMVer-Linκ(

∑v
i=1 αimi, τ) = 1.

LEMMA 2. If the nonces input to the PRF in the UMAC con-
struction are known, the composite MAC defined from UMAC is
linear.

5.4 An integrity-protected error-correcting
code (IP-ECC)

Typically, a MAC is appended to a message. Our goal in this sec-
tion is to define a cryptographic primitive that acts both as a MAC
and an error-correcting (or erasure) code. Moreover, we leverage
the redundancy added by the error-correcting code for construct-
ing the MAC. Such a primitive allows efficient checking of server
response in our HAIL protocol.

DEFINITION 5. For n ≥ �, we define an (n, �, d)-integrity-
protected error-correcting code (denoted IP-ECC) as a tuple of al-
gorithms IC = (KGenECC, MTagECC, MVerECC) such that:

- KGenECC(1λ) selects a random key κ from key space K;

- MTagECC : K×I� → In on input key κ and message m ∈ I�

outputs an integrity-protected codeword c ∈ In that acts as an
encoding of m, and contains an integrity tag for m. The minimum
(Hamming) distance between two codewords is d.

- MVerECC : K × In → ({I�∪ ⊥}, {0, 1}) on input a key
κ and an integrity-protected codeword c ∈ In outputs a message
m ∈ I� (or ⊥ upon decoding failure), as well as a one-bit with
value 1 if c contains a valid integrity tag on m, and 0 otherwise.

For an adversary A, we define: Advuf-ecc
IC (A) = Pr[κ ←

KGenECC(1λ); c← AMTagECCκ(·),MVerECCκ(·) : MVerECCκ(c) =
(m, 1) ∧m not queried to MTagECCκ(·)].

We denote by Advuf-ecc
IC (q1, q2, t) the maximum advantage of all

adversaries making q1 queries to MTagECC, q2 queries to MVerECC
and running in time at most t.

Similarly, integrity-protected erasure codes can be defined.
We give now a construction of an IP-ECC code ECCd based on

a (n, �, n − � + 1) Reed-Solomon (R-S) code. Intuitively, to tag a
message, we encode it under the R-S code, and then apply a PRF to
the last s code symbols (for 1 ≤ s ≤ n a parameter in the system),
effectively obtaining a MAC on each of those s code symbols us-
ing the UMAC construction. A codeword is considered valid if at
least one of its last s symbols are valid MACs under UMAC on its
decoding m. More specifically, the IP-ECC (n, �, d = n− � + 1)
code construction ECCd is defined as:

- KGenECC(1λ) selects keys �κ = {{κi}ni=1, {κ′i}ni=n−s+1} at
random from space K = In × (KPRF)

s. The security parameter λ
specifies the size of I , as well as the length of the keys inKPRF. The
keys {κi}ni=1 define a Reed-Solomon code as described in Section
5.1 (they define the points at which polynomials are evaluated when
constructing a codeword). The keys {κ′i}ni=n−s+1 are used as PRF
keys in the UMAC construction.

- MTagECCκ(m1, . . . , m�) outputs (c1, . . . , cn), where ci =
RS-UHFκi(�m), i = [1, n−s] and ci = UTagκi,κ′

i
(m1, . . . , m�) =

(ri, RS-UHFκi(�m) + gκ′
i
(ri)), i = [n− s + 1, n].

- MVerECCκ(c1, . . . , cn) first strips off the PRF from cn−s+1,
. . . , cn as: c′i = ci− gκ′

i
(ri), i = [n− s + 1, n], and then decodes

(c1, . . . , cn−s, c
′
n−s+1, . . . , c

′
n) using the decoding algorithm of

Reed-Solomon codes to obtain message �m = (m1, . . . , m�). If the
decoding algorithm of the R-S code defined by points {κi}ni=1 fails
(when the number of corruptions in a codeword is beyond � d−1

2
�),

then MVerECC outputs (⊥, 0). If one of the last s symbols of
(c1, . . . , cn) is a valid MAC on �m under UMAC, MVerECC out-
puts (�m, 1); otherwise it outputs (�m, 0).

Error resilience of ECCd. The MVerECC algorithm in ECCd

needs at least one correct MAC block in order to verify the integrity
of the decoded message. This implies that, even if the minimum
distance of the underlying code is d = n− � + 1, the construction
is resilient to at most E − 1 erasures, and �E−1

2
� errors, for E =

min(d, s).

LEMMA 3. If RS-UHF is constructed from a (n, �, n− �+1)-
Reed-Solomon code and g is a PRF family, then the IP-ECC code
ECCd defined above has the following advantage:

Advuf-ecc
ECCd

(q1, q2, t) ≤ 2
[
Advuf-mac

UMAC (q1, q2, t)
]
.

Aggregating MACs for IP-ECC codes. The techniques we de-
veloped in Section 5.3 for aggregating MACs, i.e., for composite
MAC verification, apply in a natural way to IP-ECC codes. Con-
sider the linear combination of IP-ECC codewords �c1, . . . ,�cv as
a composite codeword �c =

∑v
i=1 αi�ci. Implicit in �c are compos-

ite MACs, i.e., linear combinations of MACs from the individual,
contributing codewords. So we can apply MVerECC directly to �c,
thereby verifying the correctness of �c1, . . . ,�cv .

Systematic IP-ECC codes. In a systematic code, codewords
are formed by appending parity blocks to messages. The Reed-
Solomon codes obtained through polynomial evaluation are, in gen-
eral, not systematic. However, it is possible to offer a different view
of R-S encoding that is, in fact, systematic. The codebook for an R-
S code specified by�a = (a1, . . . , an) consists of all polynomials of
degree �− 1 evaluated on {ai}ni=1: CRS = {(f(a1), . . . , f(an))|
deg(f) ≤ � − 1}. A systematic code is one in which a message
is mapped to a codeword whose first � symbols match the message

193

Fei
Pencil

Fei
Rectangle

Fei
Pencil

Fei
Rectangle

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Highlight

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

(given a message �m = (m1, . . . , m�), a unique polynomial f of
degree �− 1 for which f(ai) = mi, i = [1, �] can be determined).

The IP-ECC construction can be adapted for systematic Reed-
Solomon codes as follows: we encode a message under a sys-
tematic code, and then apply the PRF only to the parity blocks.
Our results in Lemma 3 still hold for this systematic encoding for
s = n− �. We employ this systematic code that can recover from
n− �− 1 erasures and �n−�−1

2
� errors in our HAIL protocol.

5.5 Adversarial codes
Adversarial codes [6, 23] are keyed codes resistant to a large

fraction of adversarial corruptions (within classical error-correcting
bounds) against a computationally bounded adversary. BJO [6]
define adversarial codes formally and give the first practical sys-
tematic construction based on cryptographically protected, striped
Reed-Solomon codes. We omit the formal definition of adversarial
codes, but intuitively, an adversary has advantage γ for a secret-key
adversarial code if she is able to output a pair of codewords at small
Hamming distance that decode to different messages. We refer the
reader to [6] for full details of definition. A related notion is that
of computational codes, codes that achieve higher error resilience
than classical error-correcting codes by exploiting computationally
bounded channels [18, 26].

In the BJO construction, the file is permuted first with a secret
key and then divided into stripes. Parity blocks are computed for
each stripe and appended to the unmodified file. To hide stripe
boundaries, parity blocks are encrypted and permuted with another
secret key. The encoding of the file consists of the original file
followed by the permuted and encrypted parity blocks, and is sys-
tematic. The same construction (without rigorous formalization,
though) has been proposed independently by Curtmola et al. [10].
We employ this construction for the server code in HAIL.

6. HAIL: PROTOCOL SPECIFICATION
Using the technical building blocks defined in Section 5, in this

section we give full details on the HAIL protocol.

6.1 Key Generation
Let � be the number of primary servers, and n the total number

of servers. The client generates the following sets of keys:

- Dispersal-code keys: These are n−� pairs of keys {κj , κ
′
j}nj=�+1,

for the UHF and PRF in the UMAC construction given in Section
5.2, respectively;

- Server-code keys: These are n keys (one per server) for the
server code described in Section 5.5; and

- Challenge keys: These are keys used to generate challenges and
to seed inputs to the aggregation code for responses. They can be
generated from a master key that the client stores locally.

6.2 Encoding Files
The encoding of files in HAIL has been depicted in Figure 1.

We aim at obtaining a distributed, systematic encoding Fd of a file
F . First, we partition F into � distinct segments F (1), . . . , F (�)

and distribute these segments across the primary servers S1, . . . , S�

respectively. Each segment can be viewed as a set of blocks (or
symbols) with values in a field I (in our implementation we use
I = GF [2128]). This distributed cleartext representation of the file
remains untouched by our subsequent encoding steps.

We then encode each segment F (j) under the server code (imple-
mented with the adversarial erasure code construction of BJO [6]
described in Section 5.5) to protect against small corruption at each
server. The effect of the server code is to extend the “columns”

of Fd by adding parity blocks. Next, we apply the dispersal code
ECCd (as defined in Section 5.4) to create the parity blocks that re-
side on the secondary servers S�+1, . . . , Sn. It extends the “rows”
of Fd across the full set of n servers. To embed the dispersal code in
a full-blown IP-ECC, we also add PRF values on the parity blocks
for each row. Viewed another way, we “encrypt” columns � + 1
through n, thereby turning them into cryptographic MAC values.

Finally, to allow the client to confirm when it has successfully
downloaded F , we compute and store on the server a MAC over F .

The steps of encode are detailed below:

1. [File partitioning] Partition the file into � segments and store
segment F (j) on Sj , for j = [1, �]. Denote by mF = |F |/� the
number of blocks in each segment. We have obtained a (mF , �)
matrix {Fij}i=[1,mF],j=[1,�] containing the original file blocks.

2. [Server code application] Encode each file segment F (j) un-
der the systematic server code with symbols in I (viewed as an era-
sure code), and obtain a segment of m blocks at each server (where
blocks mF + 1, . . . , m are parity blocks for the server code).

3. [Dispersal code application] Apply the systematic dispersal
code ECCd as defined in Section 5.4 to the rows of the encoded
matrix from step 2. We determine thus segments F (�+1), . . . , F (n).

If we denote by Fd = {F d
ij}i=[1,m],j=[1,n] the encoded rep-

resentation of F at the end of this step, then F d
ij = Fij ∈ I

(i.e., block i in F (j)), for i = [1, mF], j = [1, �]. F d
ij for i =

[mF + 1, m], j = [1, �] are the parity blocks under the server
code. The columns � + 1, . . . , n are obtained through the appli-
cation of the ECCd construction to columns 1, . . . , � as follows:
F d

ij = RS-UHFκj (Fi1 . . . Fi�) + gκ′
j
(τij), for i = [1, m], j =

[� + 1, n]. τij is a position index that depends on the file handle,
block index i and server index j, e.g., hash of the file name, i and
j. RS-UHF is the universal hash function construction based on
Reed-Solomon codes given in Section 5.1.

4. [Whole-file MAC computation] Lastly, a cryptographic MAC
of the file (and its handle) is computed and stored with the file.

The initial share at time 0 for each server Sj is F
(j)
0 = {F d

ij}mi=1.

6.3 Decoding Files
For decoding the encoded matrix, there are two cases to consider:

- If the dispersal code is an error-correcting code, then up to
�n−�−1

2
� errors can be corrected in each row. This choice imposes

the requirement that b ≤ �n−�−1
2
�. (Otherwise, the adversary

could corrupt all rows in an epoch, obliterating F).
In this case, decoding of the matrix proceeds first on rows, and

then on columns. In the first step, each row of the matrix is decoded
and the corresponding message is checked for integrity using the
MACs embedded in the parity blocks. If a row can not be correctly
decoded (i.e., the number of corruptions exceeds the error correc-
tion capability of the dispersal code) or if none of the MACs in the
parity blocks of a row verifies, then we mark all blocks in that row
as erasures. In the second step, the server code implemented with
an erasure code is used to recover the row erasures from the first
step.

- If the dispersal code is an erasure code, the protocol tolerates
up to b ≤ n − � − 1 failures per epoch. In this case, we could
employ an error-correcting server code. Decoding proceeds first
on columns, to recover from small corruptions within each server.
Then, the rows of the matrix are corrected with the dispersal erasure
code.

A mechanism for determining the positions of errors in a row is
needed. We can find erroneous blocks using the embedded MACs

194

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

on the parity blocks, as long as at least one of the MACs in the par-
ity blocks is valid. This approach requires brute force: We consider
in turn each MAC block to be valid, try all sets of � blocks in the
codeword (among the n− 1 remaining blocks), until we find a de-
coding for which the MAC block is valid. The brute force approach
can recover from n− �− 1 erasures.

Using an erasure code instead of an error-correcting code for
ECCd requires fewer secondary servers. The required brute-force
decoding, though, is asymptotically inefficient, since (n− �)

(
n−1

�

)

combinations of blocks have to be examined. In the rest of the pa-
per, we assume that the dispersal code is an error-correcting code.
Nonetheless, we can construct protocols for erasure dispersal codes.

6.4 The Challenge-Response Protocol
In the HAIL challenge-response protocol, the client verifies the

correctness of a random subset of rows D = i1, . . . , iv in the en-
coded matrix. The client’s challenge consists of a seed κc from
which each server derives set D, as well as a value u ∈ I .

Each server Sj returns a linear combination of the blocks in the
row positions of D, denoted by Rj . To aggregate server responses,
we use an aggregation code ECCa with message size v, imple-
mented also with a Reed-Solomon code. Rj is computed as the
uth symbol in ECCa across the selected rows. The responses of all
servers (R1, . . . , Rn) then represent a linear combination of rows
i1, . . . , iv with coefficients αi = ui−1, i = [1, v].

Intuitively here, because all servers operate over the same subset
of rows D, the sequence R = (R1, . . . , Rn) is itself a codeword
in the dispersal code—with aggregate PRF pads “layered” onto
the responses R�+1, . . . , Rn of the parity servers. Thanks to our
IP-ECC dispersal code and our techniques of aggregating several
MACs into a composite MAC (described in Section 5.3), the client
can check the validity of the combined response R, by decoding
to a message �m and checking that at least one of the (composite)
responses Rj of the secondary servers is a valid (composite) MAC
on �m. Having done so, the client can then check the validity of
each individual response Rj : Rj is a valid response for a primary
server if it matches the j-th symbol in �m; for a secondary server,
Rj is a valid response if it is a valid MAC on �m.

The challenge-response protocol is described below:

1. The client sends a challenge κc to all servers.

2. Upon receiving challenge κc, server Sj derives set D =
{i1, . . . , iv}, as well as a value u ∈ I . The response of server
Sj is Rj = RS-UHFu(F d

i1j , . . . , F
d
ivj).

3. The client calls the linear composite MVerECC algorithm of
the dispersal code (as described in Section 5.4) on (R1, . . . , Rn).
If the algorithm outputs (�m, 0) or (⊥, 0), then verification of the
response fails and verify(κ, j, {κc, Ri}ni=1) returns 0 for all j.

4. Otherwise, let (�m, 1) be the output of the composite MVerECC
algorithm. Algorithm verify(κ, j, {κc, Ri}ni=1) returns 1 if:

- mj = Rj , for j ∈ [1, �]; or

- Rj is a valid composite MAC on �m under UMAC with keys
(κj , κ

′
j) and coefficients {αi}vi=1, for j ∈ [� + 1, n].

As an optimization, the client can first check that the responses
(R1, . . . , Rn) are valid without involving the algorithm MVerECC
of the dispersal code. To do so, the client computes the valid code-
word of the first � positions (R1, . . . , R�) from the vector of re-
sponses. If at least one parity block in this codeword matches the
received response, the client has found the correct message with-
out involving the expensive decoding algorithm of Reed-Solomon
codes used in MVerECC. In this case, the client could skip step 3,
and proceed directly to step 4 in the above algorithm.

As in Section 6.3, a brute force approach to the decoding step in
MVerECC could be applied if the dispersal code is an erasure code,
instead of an error-correcting code.

6.5 Redistribution of Shares
HAIL runs for a number of epochs T . In each epoch the client

issues nq challenges to all servers and verifies their responses. The
client monitors all servers in each epoch, and if the fraction of cor-
rupted challenges in at least one server exceeds a threshold εq , the
redistribute algorithm is called.

In the redistribute algorithm, the client downloads the file shares
of all servers, and applies the decoding algorithm described above.
Once the client decodes the original file, she can reconstruct the
shares of the corrupted servers as in the original encoding algo-
rithm. The new shares are redistributed to the corrupted servers at
the beginning of the next time interval t+1 (after the corruption has
been removed through a reboot or alternative mechanism). Shares
for the servers that have correct shares remain unchanged for time
t+1. We leave the design of more efficient redistribute algorithms
for future work.

7. SECURITY ANALYSIS
We define the HAIL system to be available if the experiment

from Figure 2 outputs 0; otherwise we say that the HAIL system
is unavailable. HAIL becomes unavailable if the file can not be
recovered either when a redistribute is called or at the end of the
experiment. In this section, we give bounds for HAIL availability
and show how to choose parameters in HAIL for given availability
targets. Full proofs are deferred to the full version of the paper [5].

There are several factors that contribute to HAIL availability.
First is the redundancy embedded in each server through the server
code; it enables recovery from a εc fraction of corruption at each
server. Second is the frequency with which the client challenges
each server in an epoch; this determines the probability of detect-
ing a corruption level greater than εc at each server. Third, the
redundancy embedded in the dispersal code enables file recovery
even if a certain threshold of servers are corrupted.

Challenge frequency. In HAIL, nq challenges are issued by the
client in an epoch. A redistribute operation is triggered if at least
one of the servers replies incorrectly to more than a εq-fraction of
challenges. Recall that at least n − b servers have a correct code
base in a time interval, but might have corruptions in their storage
system. We refer to these corruptions as residual—they were “left
behind” byA. We are interested in detecting servers whose residual
corruptions exceed the correction level εc tolerated by the server
code.

Given a εc fraction of residual corrupted blocks from a server’s
fragment, we can compute a lower bound on the fraction of chal-

lenges that contain at least one incorrect block εq,c = 1− ((1−εc)m
v)

(m
v)

(for m the size of file segments and v the number of blocks aggre-
gated in a challenge). Based on εq,c, we can determine a threshold
εq (chosen at εq,c

2
) at which the client considers the server frag-

ment corrupted and calls the redistribute algorithm. We estimate
the probability pn that we fail to detect corruption of at least a εc-
fraction of blocks.

PROPOSITION 1. Let μ be the uf-ecc advantage of an adver-
sary for the (composite) dispersal code ECCd (as given by Lem-
mas 1 and 3 in Section 5.3 and 5.4, respectively). For εq =

εq,c

2
,

the probability with which the client does not detect a corruption
of εc fraction of blocks at a server with a correct code base is

pn ≤ e
−nq(εq,c−2μ)2

8(εq,c−μ) .

195

Fei
Rectangle

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Highlight

Fei
Rectangle

Fei
Rectangle

Fei
Rectangle

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

N
um

be
r

of
 c

ha
lle

ng
es

Server code redundancy

Challenges for 20 aggregated blocks and different server codes

Detection 0.9
Detection 0.99

Detection 0.999
Detection 0.9999

Detection 0.99999
Detection 0.99999

 0

 50

 100

 150

 200

0.9 0.99 0.999 0.9999 0.99999 0.999999

N
um

be
r

of
 c

ha
lle

ng
es

Detection probability

Challenges for 0.05 server code and different aggregation values

20
50

100
200

Figure 3: Number of challenges for different server codes (left) and different number of blocks aggregated in a challenge (right).

Based on the above proposition, we can choose the frequency of
challenge-response interactions in an epoch based on the desired
probability of detection (1− pn), the redundancy embedded in the
server code and the number of aggregated blocks in a challenge.
The left graph in Figure 3 shows that the number of challenges nq

increases when the server code shrinks, and also when the detection
probability increases (this graph assumes that 20 blocks are aggre-
gated in a challenge). The right graph in Figure 3 shows that the
client needs to issue less challenges in an epoch if more blocks are
aggregated in a challenge (this graph is done for a server code with
redundancy 5%).

Role of dispersal code. The adversary controls up to b ≤
�n−�−1

2
� out of the n servers in epoch t and corrupted up to b

servers in epoch t − 1. Therefore, we can only guarantee that at
least n− 2b servers successfully completed at least one challenge-
response round with the client in epoch t − 1 with a correct code
base, and still have a correct code base.

For those n − 2b servers, there are still two cases in which a
server’s fragment is too heavily corrupted to be recovered with the
server code: (1) The corruption level is below εc, but the server
code can not correct εc—a low probability side-effect of using an
“adversarial code” or (2) The corruption level is≥ εc, but the HAIL
challenge-response protocol didn’t successfully detect the corrup-
tion. We can bound the probability of Case (1) by the adversarial
code advantage γ. The probability of Case (2) is bounded above by
pn, as computed in Proposition 1.

These two bounds apply to a single server. In order to compute
the availabilty of the whole HAIL system, we must treat the sys-
tem as a stochastic process. Our goal, then, is to obtain an upper
bound on the probability that enough fragments become unrecov-
erable that F is unavailable. We do so in the following theorem.

THEOREM 1. Let U be the probability that HAIL becomes un-
available in a time epoch. Then U is upper bounded by:

-
[

eβ

(1+β)1+β

](n−2b)(γ+pn)
, for β = n−2b−�−1

(n−2b)(γ+pn)
− 1, if b <

n−�−1
2

and γ + pn < n−2b−�−1
n−2b

.

- 1− [1− (γ + pn)]�+1, if b = n−�−1
2

.
The probability that HAIL becomes unavailable over an interval

of t epochs is upper bounded by tU .

Figure 4 shows HAIL’s availability (per epoch) for b = 3 faults
tolerated in an epoch, different configurations for the dispersal code
and different detection probabilities. In the left graph from Figure
4, the number of primary servers is fixed to 8 and the number of
total servers varies from 15 to 24. In the right graph of Figure 4,

the total number of servers is constant at 20 and the number of
primary servers is between 6 and 13.

Consider epochs of length one week for a 2-year time interval
(about 100 epochs). A 10−6 unavailability target for 2 years trans-
lates to 10−8 unavailability per epoch. This availability level can
be obtained, for instance, from a (17,8) dispersal code at detection
level 0.99999 or (20,9) code at detection level 0.999. Once the de-
tection level is determined, parameters such as server code redun-
dancy and frequency of challenge-response protocol in an epoch
can be determined from Proposition 1.

Weaker adversarial model. Our experiment in Figure 2 defines
a very strong adversarial model: As A is fully Byzantine, it can
corrupt both the code base and the storage systems of servers. As
servers and storage can be separate systems, it is interesting to con-
sider a model in which the adversary only corrupts storage systems.
Such a “storage-limited” adversarial model yields better security
bounds: n−b servers are needed to decode the file instead of n−2b
(under the technical condition that n − b ≥ � + 1). Table 1 illus-
trates several code parameters and the availability they offer for the
weaker, “storage-limited” adversarial model.

b n � Unavailability b n � Unavailability
1 3 1 2 · 10−6 2 7 4 5 · 10−6

1 4 2 3 · 10−6 2 8 3 6 · 10−9

1 5 3 4 · 10−6 3 6 2 3 · 10−6

1 6 2 4 · 10−9 3 7 3 3 · 10−6

2 5 2 3 · 10−6 3 8 4 5 · 10−6

2 6 3 4 · 10−6 3 9 3 6 · 10−9

Table 1: Several code parameters and their availability per
epoch for a weaker model.

8. IMPLEMENTATION
We have implemented HAIL file-encoding functionality in or-

der to test the effect of dispersal code choice on encoding time.
The code was written in C++ and experiments were run on an Intel
Core 2 processor running at 2.16 GHz. All cryptographic opera-
tions utilize the RSA BSAFE C library.

The dispersal code was implemented using the Jerasure [29] op-
timized library written in C. In order to implement the integrity-
protected ECC algorithm, PRF values are added to the fragments
stored on secondary servers. One subtle issue when implementing
the IP-ECC construction is that the symbol size of Reed-Solomon
encoding should be equal to the security parameter (e.g., 128 bits).
However, Jerasure implements codes with symbol sizes up to 32

196

Fei
Rectangle

 1e-050

 1e-040

 1e-030

 1e-020

 1e-010

 1

 15 16 17 18 19 20 21 22 23 24

P
ro

ba
bi

lit
y

of
 d

at
a

no
t a

va
ila

bi
le

Total number of servers

HAIL unavailability for 8 primary servers and 3 faults per epoch

Detection 0.9
Detection 0.99

Detection 0.999
Detection 0.9999

Detection 0.99999
Detection 0.999999

 1e-040

 1e-035

 1e-030

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 6 7 8 9 10 11 12 13

P
ro

ba
bi

lit
y

of
 d

at
a

no
t a

va
ila

bi
le

Number of primary servers

HAIL unavailability for 20 total servers and 3 faults per epoch

Detection 0.9
Detection 0.99

Detection 0.999
Detection 0.9999

Detection 0.99999
Detection 0.999999

Figure 4: Probability that HAIL is unavailable for 8 primary servers (left) and 20 total servers (right) for b = 3 faults per epoch.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

HAIL (15,8) HAIL (17,8) HAIL (19,8) HAIL (21,8)

T
im

e
(s

ec
)

HAIL Encoding: 8 Primary Servers

Dispersal Encoding
Server Encoding
Dispersal PRF
Server PRF
Server PRP
MAC
Other

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

HAIL (20,6) HAIL (20,8) HAIL (20,10) HAIL (20,12)

T
im

e
(s

ec
)

HAIL Encoding: 20 Total Servers

Dispersal Encoding
Server Encoding
Dispersal PRF
Server PRF
Server PRP
MAC
Other

Figure 5: Encoding time for HAIL: on the left, 8 primary servers; on the right, 20 total servers.

bits. In order to obtain a UHF on 128 bits, we combine four blocks
of size 32 bits, construct a polynomial of degree 4�, and evaluate
that polynomial four times at different random points to obtain four
UHF outputs of size 32 bits.

To maximize the size of files that can be encoded efficiently us-
ing our algorithm, the file is first dispersed across the primary and
secondary servers before application of the server code. Applying
the server code involves a logical permutation of the file fragment
using a PRP and can be done much more efficiently if each server’s
fragment fits into main memory. For the server code, we use a (35,
32, 3) Cauchy Reed-Solomon code over GF [232] that adds 9% re-
dundancy to data stored on each server.

Disk access is expensive and comprises 50% - 60% of our encod-
ing time, depending on the parameters. In the graphs we present,
I/O time has been removed to make the other encoding functions
more visible. Figure 5 shows the encoding cost of HAIL for a 1GB
file divided into several components: Jerasure dispersal code appli-
cation, Jerasure server code application, the application of a PRF to
the parity blocks both in the dispersal and server encoding, the time
to logically rearrange the fragment on a server before application
of the server code using a PRP, the computation of a MAC over the
entire file, and additional data manipulations necessary to support
the encoding functions. Reflecting parameter choices from Figure
4, on the left graph in Figure 5, we present the encoding cost as the
number of primary servers remains constant at 8 and the total num-
ber of servers varies from 15 to 21. On the right graph in Figure
5 we keep the total number of servers constant at 20 and vary the
number of primary servers between 6 and 12.

We get an encoding throughput between 2MB and 4MB per sec-
ond, not including the disk I/O time. As noticed from Figure 5,
time spent performing dispersal code application using Jerasure is
the dominant factor in file encoding speed (at least 50% of the total
encoding cost, excluding I/O). For instance, for the (20,12) disper-
sal code, HAIL encoding throughput is 4MB per second, compared
to 7MB per second given by the dispersal code encoding. For the
(21,8) dispersal code, Jerasure encoding is 5MB per second, while
HAIL achieves an encoding throughput of 2.5MB per second.

As the number of secondary servers increases, the dispersal cost
increases linearly, both in terms of time spent in Jerasure, as well as
the time necessary to compute the required PRF values. The time
spent to perform server encoding, including Jerasure application
and PRP and PRF computation, increases linearly with the total
amount of data to be encoded (the size of the dispersed file), which
depends on both the number of primary and secondary servers.

9. CONCLUSION
We have proposed HAIL, a high-availability and integrity layer

that extends the basic principles of RAID into the adversarial set-
ting of the Cloud. HAIL is a remote-file integrity checking protocol
that offers efficiency, security, and modeling improvements over
straightforward multi-server application of POR protocols and over
previously proposed, distributed file-availability proposals. Through
a careful interleaving of different types of error-correcting layers,
and inspired by proactive cryptographic models, HAIL ensures file
availability against a strong, mobile adversary.

197

There are a number of interesting HAIL variants to explore in
follow-up work. The protocols we have described above for HAIL
only provide assurance for static files. We are investigating in cur-
rent work design of similar protocols that accommodate file up-
dates. We believe that the HAIL techniques we have introduced in
this paper help pave the way for valuable approaches to distributed
file system availability.

Acknowledgements
We thank James Hendricks, Burt Kaliski and Ron Rivest for care-
fully reading the paper and providing detailed comments and sug-
gestions. We also thank Yevgeniy Dodis and Daniel Wichs for
many insights on protocol design.

10. REFERENCES
[1] Amazon.com. Amazon simple storage service (Amazon S3),

2009. Referenced 2009 at aws.amazon.com/s3.
[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,

Z. Peterson, and D. Song. Provable data possession at
untrusted stores. In 14th ACM CCS, pages 598–609, 2007.

[3] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik.
Scalable and efficient provable data possession, 2008. IACR
ePrint manuscript 2008/114.

[4] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and
P. Rogaway. UMAC: Fast and secure message authentication.
In CRYPTO, volume 1666 of LNCS, pages 216–233, 1999.

[5] K. D. Bowers, A. Juels, and A Oprea. HAIL: A
high-availability and integrity layer for cloud storage, 2008.
IACR ePrint manuscript 2008/489.

[6] K. D. Bowers, A. Juels, and A Oprea. Proofs of
retrievability: Theory and implementation, 2008. IACR
ePrint manuscript 2008/175.

[7] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl.
Asynchronous verifiable secret sharing and proactive
cryptosystems. In 9th ACM CCS, pages 88–97, 2002.

[8] C. Cachin and S. Tessaro. Asynchronous verifiable
information dispersal. In 24th IEEE SRDS, pages 191–202,
2005.

[9] L. Carter and M. Wegman. Universal hash functions. Journal
of Computer and System Sciences, 18(3), 1979.

[10] R. Curtmola, O. Khan, and R. Burns. Robust remote data
checking. In 4th ACM StorageSS, pages 63–68, 2008.

[11] R. Curtmola, O. Khan, R. Burns, and G. Ateniese. MR-PDP:
Multiple-replica provable data possession. In 28th IEEE
ICDCS, pages 411–420, 2008.

[12] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of retrievability
via hardness amplification. In 6th IACR TCC, volume 5444
of LNCS, pages 109–127, 2009.

[13] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia.
Dynamic provable data possession. In 16th ACM CCS, 2009.
To appear.

[14] M. Etzel, S. Patel, and Z. Ramzan. SQUARE HASH: Fast
message authentication via optimized universal hash
functions. In CRYPTO, volume 1666 of LNCS, pages
234–251, 1999.

[15] D.L.G. Filho and P.S.L.M. Barreto. Demonstrating data
possession and uncheatable data transfer, 2006. IACR
eArchive 2006/150.

[16] J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin. Secure
distributed storage and retrieval. Theoretical Computer
Science, 243(1-2):363–389, 2000.

[17] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.
Efficient byzantine-tolerant erasure-coded storage. In 34th
IEEE DSN, pages 135–144, 2004.

[18] P. Gopalan, R.J. Lipton, and Y.Z. Ding. Error correction
against computationally bounded adversaries, 2004.
Manuscript.

[19] S. Halevi and H. Krawczyk. MMH: Software message
authentication in the Gbit/second rates. In Fast Software
Encryption, volume 1267 of LNCS, pages 172–189, 1997.

[20] J. Hendricks, G. R. Ganger, and M. K. Reiter. Verifying
distributed erasure-coded data. In 26th ACM PODC, pages
139–146, 2007.

[21] A. Herzberg, M. Jakobsson, H. Krawczyk, and M. Yung.
Proactive public key and signature systems. In 4th ACM
CCS, pages 100–110, 1997.

[22] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung.
Proactive secret sharing, or: How to cope with perpetual
leakage. In CRYPTO, volume 1963 of LNCS, pages 339–352,
1995.

[23] A. Juels and B. Kaliski. PORs: Proofs of retrievability for
large files. In 14th ACM CCS, pages 584–597, 2007.

[24] H. Krawczyk. LFSR-based hashing and authentication. In
CRYPTO, volume 839 of LNCS, pages 129–139, 1994.

[25] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and
M. Isard. A cooperative Internet backup scheme. In USENIX
Annual Technical Conference, pages 29–41, 2003.

[26] S. Micali, C. Peikert, M. Sudan, and D. Wilson. Optimal
error correction against computationally bounded noise. In
TCC, pages 1–16.

[27] M. Naor and G. N. Rothblum. The complexity of online
memory checking. In 46th IEEE FOCS, pages 573–584,
2005.

[28] W. Nevelsteen and B. Preneel. Software performance of
universal hash functions. In EUROCRYPT, volume 1233 of
LNCS, pages 24–41, 1997.

[29] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. W.
O’Hearn. A performance evaluation and examination of
open-source erasure coding libraries for storage. In 7th
USENIX FAST, pages 253–265, 2009.

[30] P. Rogaway. Bucket hashing and its application to fast
message authentication. In CRYPTO, volume 963 of LNCS,
pages 29–42, 1995.

[31] T. J. E. Schwarz and E. L. Miller. Store, forget, and check:
Using algebraic signatures to check remotely administered
storage. In 26th IEEE ICDCS, page 12, 2006.

[32] H. Shacham and B. Waters. Compact proofs of retrievability.
In ASIACRYPT, volume 5350 of LNCS, pages 90–107, 2008.

[33] M. A. Shah, M. Baker, J. C. Mogul, and R. Swaminathan.
Auditing to keep online storage services honest. In 11th
USENIX HotOS, pages 1–6, 2007.

[34] V. Shoup. On fast and provably secure message
authentication based on universal hashing. In CRYPTO,
volume 1109 of LNCS, pages 313–328, 1996.

[35] M. Wegman and L. Carter. New hash functions and their use
in authentication and set equality. Journal of Computer and
System Sciencies, 22(3):265–279, 1981.

198

