
Virtual SCADA Systems for Cyber Security

 Zach Thornton
Distributed Analytics and

Security Institute (DASI)

Mississippi State University
Mississippi State, MS, USA

jzt3@msstate.edu

David Mudd
Distributed Analytics and
Security Institute (DASI)

Mississippi State University

Mississippi State, MS, USA
dbm157@msstate.edu

Dr. Thomas Morris
Distributed Analytics and
Security Institute (DASI)

Mississippi State University

Mississippi State, MS, USA
morris@ece.msstate.edu

Dr. Fei Hu
Electrical and Computer

Engineering
University of Alabama

Tuscaloosa, AL, USA

fei@eng.ua.edu

Abstract—This paper describes a pair of virtual Supervisory

Control and Data Acquisition (SCADA) systems. These

virtual simulations were built using virtual devices that

simulate industrial processes, emulate control system ladder

logic functionality, utilize control system communication

protocols, and implement industrial Human Machine

Interfaces (HMI). The first of these focuses on a

comprehensive virtual SCADA Laboratory using a gas

pipeline simulation for research and teaching. The second

details a procedure of exploiting the non-existent

authentication methodology in Modbus/TCP to both hijack

control and attack a virtual hydroelectric power system

(VHPS).

Keywords; Human Machine Interface (HMI), Industrial

Control System(ICS), Intrusion Detection System (IDS),

MODBUS, Programmable Logic Controller (PLC), Supervisory

Control and Data Acquisition (SCADA), Cyber security

I. INTRODUCTION

Industrial Control Systems, also known as Supervisory

Control and Data Acquisition (SCADA) systems, are

integral critical infrastructure for vital industries such as

electricity, oil and gas, water, transportation, and chemical

manufacture. Cyber security research has highlighted

fundamental risks associated with SCADA systems and

cyber security defensive techniques and countermeasures

are required [1].

Fundamental risks in SCADA SYSTEMS can be

identified and detected with research into the patterns,

attack vectors, and impacts related to malicious activity.

Traditionally, such research has required a test bed

environment that includes a scaled physical model and the

accompanying hardware, software, and information

communications technologies (ICT) which form the

complete cyber physical system. Such an environment

presents two limitations for researchers. First, only

researchers with access to the test bed environment can

engage in SCADA intrusion detection research. Second,

such test bed environments are expensive, difficult to

expand, and difficult to maintain.

This paper describes 2 systems developed in response

to these difficulties; the first is a virtual SCADA laboratory

that is portable, distributable, and expandable. This

environment closely models commercial SCADA products,

is able to communicate with commercial SCADA products,

can easily be expanded, is run in a virtual computing

environment, and was developed in conjunction with

classroom laboratory exercises to facilitate teaching

laboratory concepts.
The second is a Virtual Hydroelectric Power System. Of

primary focus is the exploitation of the Modbus/TCP
protocol to implement and deploy attacks against the VHPS.
 The chief contribution of this work is to presents a
conglomeration of previous SCADA research components
into entire virtual SCADA systems that can be used for
cyber security attack and defense research.

This paper described related work in this field, gives an
outline of the virtual SCADA laboratory, attacks against it,
and uses for the lab, describes the VHPS system, attacks
against the VHPS, and results of the attacks.

II. BACKGROUND AND RELATED WORKS

Most modern industrial processes, such as electricity, oil

and gas, water, transportation, chemical manufacture, etc.,

are controlled by SCADA SYSTEMS. These systems are

made of numerous components, which can be broken down

into 4 major categories. First, at the lowest level are sensors

and actuators. Sensors include meters, gauges, calipers, and

transmitters. Sensors are transducers that convert physical

phenomenon into an electrical signal. Actuators, such as

pumps, valves, and motors, receive a control signal and

manipulate the physical process. Second, there are the

controllers themselves. Distributed controllers include

programmable logic controllers (PLC), programmable

automation controllers (PAC), and intelligent electronic

devices (IED). These are special purpose computer systems

that interface with the sensors, implement custom control

logic, and control actuators based upon the control logic

and system state. Distributed controllers also include a

network communications interface which connects to

upstream systems including the supervisory control layer

and HMI. Third, the supervisory control layer is used to

store process data, to implement system level control

schemes, and to control distributed controllers. Last, HMI

allow the human operator to monitor and control the physical

process.

mailto:morris@ece.msstate.edu

The test bed described in [2] is typical of small scale

research environments which use commercial industrial

equipment to implement model SCADA SYSTEMS. The

test bed is consists of 7 systems including a gas pipeline,

storage tank, water tower, industrial blower, assembly line

conveyor, steel rolling process, and a chemical mixing

system. Two of these physical systems were used as a basis

for the virtual systems described in this paper; the gas

pipeline and storage tank. Figure 1 shows pictures of

physical systems and HMI screens from the test bed in [2].

Figure 1: Laboratory Systems and HMIs

In [3], Bela Genge et al. propose a framework based on

Emulab and Simulink to recreate cyber components and

physical processes for a security analysis of networked

industrial control systems. The proposed framework

includes an architecture that intends to strikes a balance

between test beds that consist entirely of physical

components, such as [2], and test beds with entirely

simulated components. A set of required functionalities for

cyber-physical experimentation are provided. While the

proposed architecture is helpful in envisioning a successful

framework for SCADA experimentation, no realization of

this framework is discussed in the paper.

In [4], the authors present a SCADA testing

environment called the ICS Sandbox. The ICS Sandbox is

a compromise between a physical ICS implementation and

a fully virtual simulator. It is an emulator that duplicates

the behavior of a real system. The goal of the ICS Sandbox

is to use known attacks to perform impact assessment and

evaluate the effectiveness of network defenses in

preventing the known attacks. While the ICS Sandbox

duplicates the behavior of a real system, it is not easily

distributable.

In [5], Reaves and Morris describe an open virtual test

bed for industrial control system security. This simulation

was built in Python as both a process simulator and a PLC

emulation and was designed to be interoperable with

commercial SCADA equipment. The virtual test bed uses

open source implementations of the MODBUS family of

protocols, models PLC ladder logic programming, and

models the physical behavior of the gas pipeline and

storage tank systems using a curve fit for common system

behaviors.

There are many simulators for both PLC and process

simulation, such as those available from Rockwell

Automation [6], Mathworks Simulink [7], MHJ Software,

Modellica [8], and many others that are of commercially

available. These are each significant for their modeling

capabilities in their respective fields. However, none of

these are designed for SCADA system modeling, and would

require custom tools, such as what this paper describes, to

create a comprehensive SCADA system.

This paper describes a pair of systems that combines the

benefits of both physical system, and the simulators

described. They closely model the behavior real systems,

but are easily expandable, designed with SCADA modeling

in mind, and can incorporate other simulators. They also

benefits from being open source so that further

development by other researchers is simple.

III. VIRTUAL SCADA LABORATORY

A. Laboratory Components

Three components comprise this virtual laboratory; a

simulation of a gas pipeline process (sensors and actuators),

PLC simulation, and an HMI. Also included are attack and

detection systems. Each piece of the laboratory is run in a

separate virtual machine (VM). This makes maintenance

of the systems much easier such that when errors occur,

the system can easily be restored to a previous working

state. It also means that a virtual network can be utilized

across the VMs. Thus all network traffic between the VMs

is real network traffic that can be logged, disrupted, and

modified as in a physical system.

1. Process Simulation

For this gas pipeline simulation, the components modeled

were a gas compressor and a solenoid release valve. There

are 4 states that are modeled for changes to the pressure of

system:

1. If the compressor is compressing and the valve is

closed, the pressure will indefinitely rise.

2. If the compressor is not compressing and the valve is

open, the pressure will fall until it reaches zero.

3. If the compressor is compressing, and the valve is

open, the pressure will rise, to an equilibrium

pressure.

4. If the compressor is not compressing and the valve

is closed, the pressure will remain constant.

The process simulation was implemented as a curve-fitted

model of the system described by Morris et al [2]. For the

first 2 states, the equations are quadratic. These are shown

in the equations below where “t” represents time, relative

to the current state and “p” represents pressure:

 𝑝 = 2.0052 ∗ 𝑡2 (1)

𝑝 = 0.098 ∗ 𝑡2 − 4.439 ∗ 𝑡 + 49.83 (2)

The third state is modeled using a piecewise model, such

that the pressure will converge to an equilibrium pressure,

around 7.8. This value was discovered empirically from

the system described in [2]. The third equation described

the response as the pressure rises to 7.8, and the fourth

describes the response once the pressure exceeds 7.8. The

This paper is based in part upon work supported by the National
Science Foundation Secure and Trustworthy Cyberspace program under

Grant No. 1315726

rand function below represents a Python uniform random

number between -0.02 and 0.01:

𝑝 = 𝑡 ∗ (0.77319 − 0.0210857 ∗ 𝑡) + 0.151637 (3)

p =7.3 + 𝑟𝑎𝑛𝑑(−0.02,0.01) (4)

The fourth state requires no equation, as the pressure

remains constant in this state.

These simulations are not built to model a complex

response of the physical process, only a very simplified

response. This should not be taken negatively. According

to Reaves, an original architect of this simulation, the main

functional goal of the testbed is to be able to emulate

realistic serial and TCP/IP industrial control system

protocol communications [5]. This process model is further

discussed in [5], and serves as a starting point. Further work

on expansion of this model to include more complex physical

process models is described in the Future Work section.

2. PLC Simulation

A central part of this laboratory is the simulation of the

PLC hardware and software. In real world systems, a

typical PLC controller is programmed to perform 4 steps in

an infinite loop: read inputs, analyze current state, calculate

responses, and write outputs. This process is what the

controller simulation seeks to emulate.

The simulations in this laboratory simulates the behavior of

the PLC ladder logic of the lab described in [2]. These

simulations emulate the process described above. Each data

read, calculation, and output setting takes place one at a

time, emulating each rung of ladder logic. The virtual PLC

devices (VDEVs) communicate with the process simulator

by emulating the analog and digital communication

received from sensors and actuators. PLC simulation is

implemented with Python.

The VDEVs communicate with other virtual devices

using the MODBUS/TCP or MODBUS Serial Line

protocols by utilizing the modbus_tk Python libraries. This

enables the VDEVs to communicate with external devices

such as physical PLCs and HMI using a standard SCADA

communication protocol. It also allows researchers and

students to view, capture, analyze, and route the traffic just

as in real SCADA systems. The implementation of

MODBUS within this simulation is indistinguishable from

MODBUS traffic of real SCADA devices.

3. Human Machine Interface (HMI)
The third component of the laboratory is the HMI. As is the

case in any SCADA system, an HMI is needed to visualize

the changing process and interface with the control system.

For this laboratory, 2 separate HMI were developed. The

first HMI is the same HMI used with the modeled SCADA

SYSTEM. Figure 2 below shows the commercial gas

pipeline HMI screen. Using the commercial HMI

maximizes test bed fidelity. The second HMI is an open

source version. The open source version is similar to the

commercial HMI, but, is freely distributable.

Figure 2: Commercial Gas Pipeline Human Machine Interface

(HMI) Screenshot

The open source HMI was developed using the Python

TkInter libraries. Figure 3 shows the open source HMI.

Figure 3: Open Source Python-based Human Machine Interface

Screenshot

While these HMIs appear different, one primary way in

which they are the same is the communication method they

use. Both use MODBUS to request data from and write data

to the PLC. All the data being displayed comes a MODBUS

read request to PLC, and changes made by the user are

translated into MODBUS write requests. Thus, the reads

and writes from the HMI appear across the network, much

like what is shown in Figure 3.

Because either commercial or experimental HMIs can

be used, both major industry HMIs and developmental

HMIs can be ported to this laboratory and tested for

vulnerabilities. Research like that of Dr. Wesley McGrew in

analyzing HMI vulnerabilities can take place without

requiring access to a physical SCADA laboratory [23]

B. Attacks

In order to research the patterns and attack vectors of

malicious activity, cyber-attacks were developed against

the virtual laboratory SCADA systems. Developed attacks

against the system include reconnaissance, command

injection, and denial of service attacks.

Reconnaissance attacks are a category of attacks used

by attackers to gain information about the control system

before any destructive activity can take place. One of the

reconnaissance attacks implemented is an Address Scan. In

the implemented Address Scan attack, the attacker will

send a request to every MODBUS device from 1 to 255

requesting to read a particular holding register. If a

This paper is based in part upon work supported by the National
Science Foundation Secure and Trustworthy Cyberspace program under

Grant No. 1315726

MODBUS response is received, the attacker knows that a

MODBUS devices exists at that address.

Command Injection attacks are another category

of attacks used by attackers to maliciously adjust settings

within the SCADA system. One such attack implemented is

called an Altered Control Set Point attack. In this attack,

the attacker purports to be a MODBUS device with a

unique MODBUS device number, acts as a client, and

sends a command to the server to alter the set point of the

system. The server receives this response as any authentic

command, alters the set point, and begins adjusting the

process actuators to achieve this new set point.

A Denial of Service (DOS) attack is another type of

attack used against SCADA systems. In a denial of service

attack, the attacker seeks to interrupt network

communication by any means possible. In one such attack

developed, the attacker floods the virtual PLC with packets

of pseudo-random data every 100ms, such that the PLC

cannot respond to any other device due to the

overwhelming amount of network traffic.

C. Laboratory Uses & Future work

This laboratory was developed for use in both teaching and

research environments. In conjunction with the laboratory,

a set of 4 laboratory exercises were developed for student

classroom use.

In the first laboratory exercise, an overview is given of

critical SCADA concepts using the virtual pipeline system

as an example. This includes discussion of process

components, a brief discussion of the MODBUS protocol,

and a short discussion of virtualization. And 3 exercises to

demonstrate the functionality of the HMI and the gas

pipeline. In the second laboratory exercise, a more

thorough discussion of the MODBUS protocol is given,

and 3 attacks are composed by the students involving

reconnaissance, command injection, and denial of service.

In the third laboratory exercise, a discussion of common

distinctions of IDSs is given, a discussion on the SNORT

IDS, a dissection of a SNORT IDS rule, and 3 rules are

written to defend the virtual pipeline system against the

attacks from lab exercise 2. The fourth lab demonstrates the

effects of distributed controls. This is done by explaining the

basics of PID math, implementing the PID algorithm within

the HMI, as opposed to within the PCL, then implementing

a DOS attack against both the distributed and non-

distributed control schemes, and the benefits of a

distributed control system are illustrated.

In addition to teaching uses, this laboratory is written to

be utilized for SCADA security research. Because the

virtual devices emulate real processes and PLC systems,

and use legitimate SCADA communication protocols, they

are capable of generating SCADA network traffic data,

which is useful for intrusion detection research. Due to the

virtual and open source nature of the laboratory, it is easily

distributable to other researchers. Given that the current

simulations described implement a curve-fitted model,

there is potential for replacing this model with a process

model built using the Mathworks Simulink modeling

software. Given that Simulink is an industry standard in

process modeling, using Simulink also makes replacing a

given Simulink model with a higher fidelity model easier

for future researchers. Further development toward this end

is ongoing. Other use cases include using this laboratory for

the creation of SCADA datasets for use in machine learning

algorithms. Because the implementation of

MODBUS/TCP within this laboratory is indistinguishable

from MODBUS traffic of real SCADA devices, large

volumes of authentic SCADA traffic can be collected.

Using the attacks described as well as further developed

attacks in conjunction with normal operations, datasets of

malicious and non-malicious SCADA network traffic can

then be created. Such datasets are useful in the field of

intrusion detection research to detect patterns in malicious

network behavior [9]. Development of such datasets is

ongoing.

IV. VIRTUAL HYDROELECTRIC POWER SYSTEM

A. Overview

The VHPS is a simple representation of a single

generator hydroelectric power system. It was developed

using the open virtual SCADA testbed described [5]. Using

the environment, the VHPS has virtual devices (VDEVs) in

the place of PLCs.

1. Communication

The VHPS has two VDEVs that control the power

generation process. Whereas real PLCs are programmed

with either ladder logic or C, the control logic for the

VDEVs is written in Python. Stemming from the open

virtual SCADA testbed, the VHPS behaves according to a

Master/Slave communication model. In this model, the

Master sends commands to the Slave VDEV, and the Slave

responds with system measurements. The Slave uses

commands from the Master and system measurements from

sensors and actuators to control the process operation.

The open virtual testbed allows for VDEVs to

communicate in all forms of Modbus. For the VHPS, the

VDEVs are configured to communicate using

Modbus/TCP. To generate realistic SCADA

communication traffic, each VDEV is housed within its own

virtual machine (VM). Placing the VDEVs into their own

VM gives each its own IP address, which models the

realistic physical separation of PLCs in real systems.

2. System Overview

The VHPS has three operational processes: Start-up,

Power Generation, and Shutting Down. The Start-up state is

a transitional period from the system being off to the system

being ready. Similarly, the Shutting Down state is a

transitional period from the system being ready to the

system being off. The Power Generation state represents the

system being both ready and supplying power.

During the start-up process, there are a number of stages

the VHPS steps through.

This paper is based upon work supported by the National Science
Foundation Secure and Trustworthy Cyberspace program under Grant No.

1315726

The first step of the start-up process is the sounding of a
warning alarm for 30 seconds. The purpose of the alarm is
to warn people that may be on the reservoir that the system
is about to start. Next, the control gates open to the
breakaway position, which is roughly 35%. The breakaway
position is the position the control gates are opened in order
to overcome static friction and allow for relative motion.
After this, the gates are slowly brought back down to the
Speed No Load (SNL) position. The SNL position is 10%
for the VHPS. After the gates are in the SNL position and
the system is ready to begin generation, the gates open and
the system waits for the turbine to reach 95% maximum
speed. Next, the exciter and the synchronizer are both
switched on. With a terminal voltage reference point, the
exciter sends an electrical current to the rotor. After this,
the synchronizer closes the breaker and turns off.

After the start-up process has completed, the VHPS
enters the next operational process: Power Generation. In
hydroelectric power systems, the system operator receives a
schedule for how much power the facility is expected to
produce for given times during the day. The system is
expected to generate more power at peak load times than at
non-peak load times. The VHPS assumes peak load times at
the final stage of the start-up process. An important function
of the VHPS is that the operator can change the amount of
power that needs to be generated at any given time. As per
the schedule given to the operator, there are periods when
the system does not need to be online. During this period,
the VHPS enters the Shutting Down process. First, the
breaker opens to disconnect the VHPS from the power grid.
Next, the exciter is turned off and the control gates begin to
close. The closing of the control gates slows down the
turbine and the flow rate of water within the penstock. Once
the control gates are completely shut and all the water has
drained from the penstock, the system is considered offline.

B. Attacking The VHPS

The use of Modbus/TCP and the redundant
communication nature of the VHPS creates a unique
vulnerability, exploited by hijacking control over the Slave
from the Master. Hijacking occurs through the exploitation
of predictable TCP sequence numbers in redundant
communication within SCADA systems. Hijacking control
over the Slave consists of three parts: monitoring the
SCADA communication stream, predicting the TCP
sequence numbers, and submitting a Denial-of-Service
(DoS) attack.

1. Monitoring Communication
In order to hijack the session, the attacker must have the

ability to both monitor and capture network traffic between
the Master and Slave. Switches have become more common
in local networks than hubs in modern times. The method
for monitoring traffic depends upon the local network
implementation. When connected to a network using an
unmanaged hub, the attacker can place his or her network
interface controller (NIC) in promiscuous mode to view
traffic. For a switched network, executing a Man-in-the-
Middle (MITM) attack is necessary. Wireshark is used to
view the communication stream between the Master and

Slave VDEVs. It recognizes the Modbus/TCP protocol and
allows for easy interpretation of the communication stream.

2. TCP Sequence Prediction
Modbus defines a set of function codes (FCs) that

consist of various commands the Master can send the Slave
[10]. In Modbus/TCP, the TCP sequence number increases
according to the protocol data unit (PDU) size. In SCADA
systems, the number of registers to be read from and written
to does not change very often. As a result, PDU sizes for a
specific command do not change very often either.
Consequently, the next expected TCP sequence number can
be easily predicted simply by observing the FC.

For the VHPS, the PDU size for FC 0x03 is 12 bytes,
and the PDU size for FC 0x010 is 33 bytes. Fig. 5 provides
an example for the VHPS communication stream between
the Master and the Slave VDEVs.

Fig. 5. TCP Sequence Number Example.

 Once a packet is captured, the TCP sequence number
and the Modbus Transaction Identifier are extracted. The
purpose of the Modbus Transaction Identifier is to keep the
command order. It is simply an integer value that is
incremented by one with every command. These two
elements are necessary for the final phase of control
hijacking: the DoS attack.

3. Denial-of-Service
In this methodology, the attacker attempts to hijack

through TCP sequence prediction. The attacker predicts the
next sequence number by capturing the most recent
command and examining the FC. In a TCP session, if a
recipient receives a packet with a sequence number that it
has already seen, it will ignore the packet. Therefore,
whichever sender’s (Master or attacker) packet reaches the
Slave first will be accepted and the other ignored. This is
called a race condition. The role of the DoS attack in
hijacking control is to eliminate the race condition between
the Master and the attacker.

Due to the nature of TCP and resulting from a lack of
authentication in Modbus, the attacker only needs to
successfully send one packet to the Slave to deny the Master
and take control over the Slave. If the fabricated packet
reaches the Slave before the legitimate packet, the legitimate
packet will be ignored by the Slave. The DoS attack for
hijacking control simply replays the packet captured during
sequence number prediction.

4. Function Code Scan
After eliminating the race condition, the attacker is now

free to send commands to the Slave. To effectively launch
an attack, some knowledge about the system or devices is
necessary.

The Modbus Protocol Specification defines a set of
commands that a Master device can send a Slave device
[10]. Each command is assigned an FC. With each FC, there
is a formation for both the command and the response. All
responses will either be formed normally as specified by the
protocol specification or will be formed as an error
response. An error response contains two bytes. The first
byte is the FC plus 0x80. The second byte is known as the
exception code and provides information about the nature of
the error. Although Modbus provides these commands,
those that are not needed can be disabled and, therefore, not
supported by the Slave device. Sending commands with
unsupported FCs results in wasted effort. Thus, it is
beneficial to know which FCs are supported and which are
not.

The Function Code Scan attack is a Reconnaissance
attack. Its purpose is to determine supported and
unsupported FCs. It is built from the packet captured for
sequence number prediction. As needed with the DoS
attack, the TCP sequence number and the Modbus
Transaction Identifier are updated accordingly. The data
field in the Modbus PDU does not need to change with the
FCs for the attack. Changing the FC field is enough to
determine which are supported and which are not. The
simplest way the update the FC field is through the use of a
loop. With each iteration of the loop, the FC is incremented
by 0x01, and the command packet is built and sent to the
Slave.

From the results of the FC Scan attack, the attacker
knows that the Slave VDEV supports various write
commands: FCs 0x05, 0x06, 0x0F, and 0x10. Using any of
these FCs allows the attacker to change certain system
operation set points.

5. Set point Manipulation
After executing a FC Scan the attacker can now launch

a variety of attacks. From the results of the previous attack,
the attacker knows that the FC 0x10 Write Multiple
Registers is supported. With this command, the attacker can
choose to alter the values of one or more Slave input Points.
The Slave’s input Points are referred to as set points.

The Set point Manipulation attack is a Command
Injection attack. Whereas the FC Scan attack’s goal is
information retrieval, the goal of this attack is to alter system
behavior in some manner. For the VHPS, the attacker has
the ability to start or shutdown the system, disconnect the
system from the power grid, adjust the position of the
control gate, or alter the amount of power the system is
providing. The fabricated packet is built from examining
communication traffic and analyzing legitimate packets
with FC 0x10. From the analysis, the set point memory
locations and order can be determined. Depending upon the
desired outcome of the attack, the attacker can change one
or multiple set points with a single packet.
For this attack, FC 0x10 ‘Write Multiple Registers’ was

used to alter the system set point that changes the amount

of power the system needs to produce to maintain power

grid stability. Fig.10 shows the results of this attack on the

power generated by the system. During control hijacking, a

DoS attack is executed in which the attacking VM takes

over control of the Slave VDEV from the Master VDEV.

As a result, commands changing Slave set point values are

not reflected on the HMI. Using FC 0x10, the attack alters

the ‘Power Needed’ set point on the Slave VDEV to 48 kW.

Upon receiving this fabricated command, the Slave begins

closing the control gates to meet this set point, and the

Master does not receive any communication of this action.

V. CONCLUSION

This paper has described 2 systems: First, a Virtual

SCADA Laboratory, built by modeling small scale

industrial processes, modeling commercial PLC

programming, employing the widely used MODBUS/TCP

network protocol, and utilizing popular commercial HMIs.

The system is capable of interfacing with physical

commercial SCADA devices, such as PLCs and HMIs.

Attacks against this system have been developed, and are

included in the laboratory. As well as attacks, detection

rules have been developed for the included attacks. This

laboratory is portable due to its small size and virtual nature

and is a useful research tool. It is also a useful tool for

teachers in the cyber-physical system classroom.

The second is a simple, virtual hydroelectric power system

(VHPS) that uses the common SCADA communication

protocol Modbus, specifically Modbus/TCP, for

communication between virtual PLCs or VDEVs. The

system is comprised of a Master VDEV, which issues

commands, and a Slave VDEV, which alters system

operations based upon the commands. A control hijacking

scheme combining a TCP sequence prediction attack and a

DoS attack was presented. Following control hijacking, a

FC Scan attack was developed with the purpose of

garnering knowledge about supported and unsupported

function codes. Spawning from the FC Scan attack, a Set

point Manipulation attack was developed with the goal of

altering system operation.

Fig. 10. Power Output Set point Change by Attacker.

VI. REFERENCES

[1] Dept. Homeland Security. “Recommended practice: Improving
industrial control systems cyber security with defense-in-depth
strategies”, 2009

[2] Morris, T., Vaughn, R., Dandass, Y. A Testbed for SCADA Control

System Cybersecurity Research and Pedagogy. The 7th Annual
ACM Cyber Secruity and Information Intelligence Research

Workshop (CSIIRW). October 12-14, 2011. Oak Ridge, TN.

[3] Genge, B., Siaterlis, C., Fovino, I., Masera, M., A cyber-physical
experimentation environment for the security analysis of networked

industrial control systems. Computers and Electrical Engineering.

Elsevier. Volume 38 (2012) Page 1146–1161. DOI:
10.1016/j.compeleceng.2012.06.015

[4] A. Lemay, J. Fernandex, and S. Knight, “An isolated virtual cluster
for SCADA network security research,” Proceedings of the 1st
Internationsl Symposium for ICS and SCADA Cyber Security
Research, 2013.

[5] Reaves, B., Morris, T. An Open Virtual Testbed for Industrial
Control System Security Research. International Journal of
Information Security (IJIS). Springer. Volume 11, Issue 4 (2012),
Page 215 -229. DOI: 10.1007/s10207-012-0164-7

[6] RSLogix Emulate 500 Getting Results Guide, Version 21.00,
Rockwell Automation, Milwaukee, WI, Publication LGEM5K-
GR016G-EN-E, January 2013

[7] Modeling Guidelines for High-Integrity Systems, Rev 1.10,
TheMathWorks Inc, Natick, MA, October 2014

[8] Mattsson, S. Elmqvist, H. Otter, M. Physical System Modeling with

Modelica. Control Engineering Practice, Volume 6, Issue 4, April

1998, pg. 501-510, DOI: 10.1016/S0967-0661(98)00047-1
[9] Beaver, Justin M., Borges-Hink, Raymond C., Buckner, Mark A.,

"An Evaluation of Machine Learning Methods to Detect Malicious
SCADA Communications," in the Proceedings of 2013 12th
International Conference on Machine Learning and Applications
(ICMLA), vol.2, pp.54-59, 2013. doi: 10.1109/ICMLA.2013.10

[10] Modbus Organization, “Modbus Application Protocol
Specification,” 2006

[11] McGrew, R.W. Vulnerability Analysis Case Studies of Control
Systems Human Machine Interfaces, Doctoral Dissertation,
Mississippi State University, 2012

