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Abstract—This paper describes a pair of virtual Supervisory 

Control and Data Acquisition (SCADA) systems. These 

virtual simulations were built using virtual devices that 

simulate industrial processes, emulate control system ladder 

logic functionality, utilize control system communication 

protocols, and implement industrial Human Machine 

Interfaces (HMI). The first of these focuses on a 

comprehensive virtual SCADA Laboratory using a gas 

pipeline simulation for research and teaching. The second 

details a procedure of exploiting the non-existent 

authentication methodology in Modbus/TCP to both hijack 

control and attack a virtual hydroelectric power system 

(VHPS).  

Keywords; Human Machine Interface (HMI), Industrial 

Control System(ICS), Intrusion Detection System (IDS), 

MODBUS, Programmable Logic Controller (PLC), Supervisory 

Control and Data Acquisition (SCADA), Cyber security 

I. INTRODUCTION  

Industrial Control Systems, also known as Supervisory 

Control and Data Acquisition (SCADA) systems, are 

integral critical infrastructure for vital industries such as 

electricity, oil and gas, water, transportation, and chemical 

manufacture. Cyber security research has highlighted 

fundamental risks associated with SCADA systems and 

cyber security defensive techniques and countermeasures 

are required [1]. 

Fundamental risks in SCADA SYSTEMS can be 

identified and detected with research into the patterns, 

attack vectors, and impacts related to malicious activity. 

Traditionally, such research has required a test bed 

environment that includes a scaled physical model and the 

accompanying hardware, software, and information 

communications technologies (ICT) which form the 

complete cyber physical system. Such an environment 

presents two limitations for researchers. First, only 

researchers with access to the test bed environment can 

engage in SCADA intrusion detection research. Second, 

such test bed environments are expensive, difficult to 

expand, and difficult to maintain.  

This paper describes 2 systems developed in response 

to these difficulties; the first is a virtual SCADA laboratory 

that is portable, distributable, and expandable. This 

environment closely models commercial SCADA products, 

is able to communicate with commercial SCADA products, 

can easily be expanded, is run in a virtual computing 

environment, and was developed in conjunction with 

classroom laboratory exercises to facilitate teaching 

laboratory concepts.  
The second is a Virtual Hydroelectric Power System. Of 

primary focus is the exploitation of the Modbus/TCP 
protocol to implement and deploy attacks against the VHPS.  
 The chief contribution of this work is to presents a 
conglomeration of previous SCADA research components 
into entire virtual SCADA systems that can be used for 
cyber security attack and defense research. 

This paper described related work in this field, gives an 
outline of the virtual SCADA laboratory, attacks against it, 
and uses for the lab, describes the VHPS system, attacks 
against the VHPS, and results of the attacks.  

II. BACKGROUND AND RELATED WORKS 

Most modern industrial processes, such as electricity, oil 

and gas, water, transportation, chemical manufacture, etc., 

are controlled by SCADA SYSTEMS.  These systems are 

made of numerous components, which can be broken down 

into 4 major categories. First, at the lowest level are sensors 

and actuators. Sensors include meters, gauges, calipers, and 

transmitters. Sensors are transducers that convert physical 

phenomenon into an electrical signal. Actuators, such as 

pumps, valves, and motors, receive a control signal and 

manipulate the physical process. Second, there are the 

controllers themselves.  Distributed controllers include 

programmable logic controllers (PLC), programmable 

automation controllers (PAC), and intelligent electronic 

devices (IED). These are special purpose computer systems 

that interface with the sensors, implement custom control 

logic, and control actuators based upon the control logic 

and system state. Distributed controllers also include a 

network communications interface which connects to 

upstream systems including the supervisory control layer 

and HMI.   Third, the supervisory control layer is used to 

store process data, to implement system level control 

schemes, and to control distributed controllers. Last, HMI 

allow the human operator to monitor and control the physical 

process. 
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The test bed described in [2] is typical of small scale 

research environments which use commercial industrial 

equipment to implement model SCADA SYSTEMS. The 

test bed is consists of 7 systems including a gas pipeline, 

storage tank, water tower, industrial blower, assembly line 

conveyor, steel rolling process, and a chemical mixing 

system. Two of these physical systems were used as a basis 

for the virtual systems described in this paper; the gas 

pipeline and storage tank. Figure 1 shows pictures of 

physical systems and HMI screens from the test bed in [2]. 

 
Figure 1: Laboratory Systems and HMIs 

In [3], Bela Genge et al. propose a framework based on 

Emulab and Simulink to recreate cyber components and 

physical processes for a security analysis of networked 

industrial control systems.  The proposed framework 

includes an architecture that intends to strikes a balance 

between test beds that consist entirely of physical 

components, such as [2], and test beds with entirely 

simulated components. A set of required functionalities for 

cyber-physical experimentation are provided. While the 

proposed architecture is helpful in envisioning a successful 

framework for SCADA experimentation, no realization of 

this framework is discussed in the paper.  

In [4], the authors present a SCADA testing 

environment called the ICS Sandbox. The ICS Sandbox is 

a compromise between a physical ICS implementation and 

a fully virtual simulator. It is an emulator that duplicates 

the behavior of a real system. The goal of the ICS Sandbox 

is to use known attacks to perform impact assessment and 

evaluate the effectiveness of network defenses in 

preventing the known attacks. While the ICS Sandbox 

duplicates the behavior of a real system, it is not easily 

distributable. 

In [5], Reaves and Morris describe an open virtual test 

bed for industrial control system security.  This simulation 

was built in Python as both a process simulator and a PLC 

emulation and was designed to be interoperable with 

commercial SCADA equipment. The virtual test bed uses 

open source implementations of the MODBUS family of 

protocols, models PLC ladder logic programming, and 

models the physical behavior of the gas pipeline and 

storage tank systems using a curve fit for common system 

behaviors.  

There are many simulators for both PLC and process 

simulation, such as those available from Rockwell 

Automation [6], Mathworks Simulink [7], MHJ Software, 

Modellica [8], and many others that are of commercially 

available. These are each significant for their modeling 

capabilities in their respective fields. However, none of 

these are designed for SCADA system modeling, and would 

require custom tools, such as what this paper describes, to 

create a comprehensive SCADA system.  

This paper describes a pair of systems that combines the 

benefits of both physical system, and the simulators 

described. They closely model the behavior real systems, 

but are easily expandable, designed with SCADA modeling 

in mind, and can incorporate other simulators. They also 

benefits from being open source so that further 

development by other researchers is simple. 

III. VIRTUAL SCADA LABORATORY  

A. Laboratory Components 

Three components comprise this virtual laboratory; a 

simulation of a gas pipeline process (sensors and actuators), 

PLC simulation, and an HMI. Also included are attack and 

detection systems. Each piece of the laboratory is run in a 

separate virtual machine (VM). This makes maintenance 

of the systems much easier such that when errors occur, 

the system can easily be restored to a previous working 

state. It also means that a virtual network can be utilized 

across the VMs. Thus all network traffic between the VMs 

is real network traffic that can be logged, disrupted, and 

modified as in a physical system.  

1. Process Simulation 

For this gas pipeline simulation, the components modeled 

were a gas compressor and a solenoid release valve.  There 

are 4 states that are modeled for changes to the pressure of 

system: 

1. If the compressor is compressing and the valve is 

closed, the pressure will indefinitely rise. 

2. If the compressor is not compressing and the valve is 

open, the pressure will fall until it reaches zero. 

3. If the compressor is compressing, and the valve is 

open, the pressure will rise, to an equilibrium 

pressure. 

4.  If the compressor is not compressing and the valve 

is closed, the pressure will remain constant. 

The process simulation was implemented as a curve-fitted 

model of the system described by Morris et al [2]. For the 

first 2 states, the equations are quadratic. These are shown 

in the equations below where “t” represents time, relative 

to the current state and “p” represents pressure: 

 

          𝑝 = 2.0052 ∗ 𝑡2         (1) 

𝑝 = 0.098 ∗ 𝑡2 − 4.439 ∗ 𝑡 + 49.83      (2) 

 

The third state is modeled using a piecewise model, such 

that the pressure will converge to an equilibrium pressure, 

around 7.8. This value was discovered empirically from 

the system described in [2]. The third equation described 

the response as the pressure rises to 7.8, and the fourth 

describes the response once the pressure exceeds 7.8. The 
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rand function below represents a Python uniform random 

number between -0.02 and 0.01: 

 

𝑝 = 𝑡 ∗ (0.77319 − 0.0210857 ∗ 𝑡) + 0.151637         (3) 

p =7.3 + 𝑟𝑎𝑛𝑑(−0.02,0.01)                       (4) 

  

The fourth state requires no equation, as the pressure 

remains constant in this state.  

These simulations are not built to model a complex 

response of the physical process, only a very simplified 

response.  This should not be taken negatively. According 

to Reaves, an original architect of this simulation, the main 

functional goal of the testbed is to be able to emulate 

realistic serial and TCP/IP industrial control system 

protocol communications [5]. This process model is further 

discussed in [5], and serves as a starting point. Further work 

on expansion of this model to include more complex physical 

process models is described in the Future Work section. 

 

2. PLC Simulation 

A central part of this laboratory is the simulation of the 

PLC hardware and software. In real world systems, a 

typical PLC controller is programmed to perform 4 steps in 

an infinite loop: read inputs, analyze current state, calculate 

responses, and write outputs.  This process is what the 

controller simulation seeks to emulate. 

The simulations in this laboratory simulates the behavior of 

the PLC ladder logic of the lab described in [2]. These 

simulations emulate the process described above. Each data 

read, calculation, and output setting takes place one at a 

time, emulating each rung of ladder logic. The virtual PLC 

devices (VDEVs) communicate with the process simulator 

by emulating the analog and digital communication 

received from sensors and actuators. PLC simulation is 

implemented with Python. 

The VDEVs communicate with other virtual devices 

using the MODBUS/TCP or MODBUS Serial Line 

protocols by utilizing the modbus_tk Python libraries. This 

enables the VDEVs to communicate with external devices 

such as physical PLCs and HMI using a standard SCADA 

communication protocol.  It also allows researchers and 

students to view, capture, analyze, and route the traffic just 

as in real SCADA systems. The implementation of 

MODBUS within this simulation is indistinguishable from 

MODBUS traffic of real SCADA devices.   

 

3. Human Machine Interface (HMI) 
The third component of the laboratory is the HMI. As is the 

case in any SCADA system, an HMI is needed to visualize 

the changing process and interface with the control system. 

For this laboratory, 2 separate HMI were developed. The 

first HMI is the same HMI used with the modeled SCADA 

SYSTEM. Figure 2 below shows the commercial gas 

pipeline HMI screen. Using the commercial HMI 

maximizes test bed fidelity.  The second HMI is an open 

source version. The open source version is similar to the 

commercial HMI, but, is freely distributable.  

 
Figure 2: Commercial Gas Pipeline Human Machine Interface 

(HMI) Screenshot 

The open source HMI was developed using the Python 

TkInter libraries. Figure 3 shows the open source HMI. 

 
Figure 3: Open Source Python-based Human Machine Interface 

Screenshot 

While these HMIs appear different, one primary way in 

which they are the same is the communication method they 

use. Both use MODBUS to request data from and write data 

to the PLC. All the data being displayed comes a MODBUS 

read request to PLC, and changes made by the user are 

translated into MODBUS write requests. Thus, the reads 

and writes from the HMI appear across the network, much 

like what is shown in Figure 3.  

Because either commercial or experimental HMIs can 

be used, both major industry HMIs and developmental 

HMIs can be ported to this laboratory and tested for 

vulnerabilities. Research like that of Dr. Wesley McGrew in 

analyzing HMI vulnerabilities can take place without 

requiring access to a physical SCADA laboratory [23] 

B. Attacks 

In order to research the patterns and attack vectors of 

malicious activity, cyber-attacks were developed against 

the virtual laboratory SCADA systems. Developed attacks 

against the system include reconnaissance, command 

injection, and denial of service attacks.  

Reconnaissance attacks are a category of attacks used 

by attackers to gain information about the control system 

before any destructive activity can take place. One of the 

reconnaissance attacks implemented is an Address Scan.  In 

the implemented Address Scan attack, the attacker will 

send a request to every MODBUS device from 1 to 255 

requesting to read a particular holding register. If a 
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MODBUS response is received, the attacker knows that a 

MODBUS devices exists at that address.  

Command Injection attacks are another category 

of attacks used by attackers to maliciously adjust settings 

within the SCADA system. One such attack implemented is 

called an Altered Control Set Point attack.  In this attack, 

the attacker purports to be a MODBUS device with a 

unique MODBUS device number, acts as a client, and 

sends a command to the server to alter the set point of the 

system. The server receives this response as any authentic 

command, alters the set point, and begins adjusting the 

process actuators to achieve this new set point.   

A Denial of Service (DOS) attack is another type of 

attack used against SCADA systems. In a denial of service 

attack, the attacker seeks to interrupt network 

communication by any means possible. In one such attack 

developed, the attacker floods the virtual PLC with packets 

of pseudo-random data every 100ms, such that the PLC 

cannot respond to any other device due to the 

overwhelming amount of network traffic. 

C. Laboratory Uses & Future work 

This laboratory was developed for use in both teaching and 

research environments. In conjunction with the laboratory, 

a set of 4 laboratory exercises were developed for student 

classroom use.  

In the first laboratory exercise, an overview is given of 

critical SCADA concepts using the virtual pipeline system 

as an example. This includes discussion of process 

components, a brief discussion of the MODBUS protocol, 

and a short discussion of virtualization. And 3 exercises to 

demonstrate the functionality of the HMI and the gas 

pipeline. In the second laboratory exercise, a more 

thorough discussion of the MODBUS protocol is given, 

and 3 attacks are composed by the students involving 

reconnaissance, command injection, and denial of service. 

In the third laboratory exercise, a discussion of common 

distinctions of IDSs is given, a discussion on the SNORT 

IDS, a dissection of a SNORT IDS rule, and 3 rules are 

written to defend the virtual pipeline system against the 

attacks from lab exercise 2. The fourth lab demonstrates the 

effects of distributed controls. This is done by explaining the 

basics of PID math, implementing the PID algorithm within 

the HMI, as opposed to within the PCL, then implementing 

a DOS attack against both the distributed and non-

distributed control schemes, and the benefits of a 

distributed control system are illustrated.  

In addition to teaching uses, this laboratory is written to 

be utilized for SCADA security research.  Because the 

virtual devices emulate real processes and PLC systems, 

and use legitimate SCADA communication protocols, they 

are capable of generating SCADA network traffic data, 

which is useful for intrusion detection research. Due to the 

virtual and open source nature of the laboratory, it is easily 

distributable to other researchers. Given that the current 

simulations described implement a curve-fitted model, 

there is potential for replacing this model with a process 

model built using the Mathworks Simulink modeling 

software. Given that Simulink is an industry standard in 

process modeling, using Simulink also makes replacing a 

given Simulink model with a higher fidelity model easier 

for future researchers. Further development toward this end 

is ongoing. Other use cases include using this laboratory for 

the creation of SCADA datasets for use in machine learning 

algorithms. Because the implementation of 

MODBUS/TCP within this laboratory is indistinguishable 

from MODBUS traffic of real SCADA devices, large 

volumes of authentic SCADA traffic can be collected. 

Using the attacks described as well as further developed 

attacks in conjunction with normal operations, datasets of 

malicious and non-malicious SCADA network traffic can 

then be created. Such datasets are useful in the field of 

intrusion detection research to detect patterns in malicious 

network behavior [9]. Development of such datasets is 

ongoing. 

IV. VIRTUAL HYDROELECTRIC POWER SYSTEM 

A. Overview 

The VHPS is a simple representation of a single 

generator hydroelectric power system. It was developed 

using the open virtual SCADA testbed described [5]. Using 

the environment, the VHPS has virtual devices (VDEVs) in 

the place of PLCs.  

1. Communication 

The VHPS has two VDEVs that control the power 

generation process. Whereas real PLCs are programmed 

with either ladder logic or C, the control logic for the 

VDEVs is written in Python. Stemming from the open 

virtual SCADA testbed, the VHPS behaves according to a 

Master/Slave communication model. In this model, the 

Master sends commands to the Slave VDEV, and the Slave 

responds with system measurements. The Slave uses 

commands from the Master and system measurements from 

sensors and actuators to control the process operation. 

The open virtual testbed allows for VDEVs to 

communicate in all forms of Modbus. For the VHPS, the 

VDEVs are configured to communicate using 

Modbus/TCP. To generate realistic SCADA 

communication traffic, each VDEV is housed within its own 

virtual machine (VM). Placing the VDEVs into their own 

VM gives each its own IP address, which models the 

realistic physical separation of PLCs in real systems. 

2. System Overview 

The VHPS has three operational processes: Start-up, 

Power Generation, and Shutting Down. The Start-up state is 

a transitional period from the system being off to the system 

being ready. Similarly, the Shutting Down state is a 

transitional period from the system being ready to the 

system being off. The Power Generation state represents the 

system being both ready and supplying power. 

During the start-up process, there are a number of stages 

the VHPS steps through.  
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The first step of the start-up process is the sounding of a 
warning alarm for 30 seconds. The purpose of the alarm is 
to warn people that may be on the reservoir that the system 
is about to start. Next, the control gates open to the 
breakaway position, which is roughly 35%. The breakaway 
position is the position the control gates are opened in order 
to overcome static friction and allow for relative motion. 
After this, the gates are slowly brought back down to the 
Speed No Load (SNL) position. The SNL position is 10% 
for the VHPS. After the gates are in the SNL position and 
the system is ready to begin generation, the gates open and 
the system waits for the turbine to reach 95% maximum 
speed. Next, the exciter and the synchronizer are both 
switched on. With a terminal voltage reference point, the 
exciter sends an electrical current to the rotor.  After this, 
the synchronizer closes the breaker and turns off.  

After the start-up process has completed, the VHPS 
enters the next operational process: Power Generation. In 
hydroelectric power systems, the system operator receives a 
schedule for how much power the facility is expected to 
produce for given times during the day. The system is 
expected to generate more power at peak load times than at 
non-peak load times. The VHPS assumes peak load times at 
the final stage of the start-up process. An important function 
of the VHPS is that the operator can change the amount of 
power that needs to be generated at any given time.  As per 
the schedule given to the operator, there are periods when 
the system does not need to be online. During this period, 
the VHPS enters the Shutting Down process. First, the 
breaker opens to disconnect the VHPS from the power grid. 
Next, the exciter is turned off and the control gates begin to 
close. The closing of the control gates slows down the 
turbine and the flow rate of water within the penstock. Once 
the control gates are completely shut and all the water has 
drained from the penstock, the system is considered offline.  

B. Attacking The VHPS 

The use of Modbus/TCP and the redundant 
communication nature of the VHPS creates a unique 
vulnerability, exploited by hijacking control over the Slave 
from the Master. Hijacking occurs through the exploitation 
of predictable TCP sequence numbers in redundant 
communication within SCADA systems. Hijacking control 
over the Slave consists of three parts: monitoring the 
SCADA communication stream, predicting the TCP 
sequence numbers, and submitting a Denial-of-Service 
(DoS) attack.  

1. Monitoring Communication 
In order to hijack the session, the attacker must have the 

ability to both monitor and capture network traffic between 
the Master and Slave. Switches have become more common 
in local networks than hubs in modern times. The method 
for monitoring traffic depends upon the local network 
implementation. When connected to a network using an 
unmanaged hub, the attacker can place his or her network 
interface controller (NIC) in promiscuous mode to view 
traffic. For a switched network, executing a Man-in-the-
Middle (MITM) attack is necessary. Wireshark is used to 
view the communication stream between the Master and 

Slave VDEVs. It recognizes the Modbus/TCP protocol and 
allows for easy interpretation of the communication stream. 

2. TCP Sequence Prediction 
Modbus defines a set of function codes (FCs) that 

consist of various commands the Master can send the Slave 
[10]. In Modbus/TCP, the TCP sequence number increases 
according to the protocol data unit (PDU) size. In SCADA 
systems, the number of registers to be read from and written 
to does not change very often. As a result, PDU sizes for a 
specific command do not change very often either. 
Consequently, the next expected TCP sequence number can 
be easily predicted simply by observing the FC. 

For the VHPS, the PDU size for FC 0x03 is 12 bytes, 
and the PDU size for FC 0x010 is 33 bytes. Fig. 5 provides 
an example for the VHPS communication stream between 
the Master and the Slave VDEVs. 

 

Fig. 5. TCP Sequence Number Example. 

 Once a packet is captured, the TCP sequence number 
and the Modbus Transaction Identifier are extracted. The 
purpose of the Modbus Transaction Identifier is to keep the 
command order. It is simply an integer value that is 
incremented by one with every command. These two 
elements are necessary for the final phase of control 
hijacking: the DoS attack. 

3. Denial-of-Service 
In this methodology, the attacker attempts to hijack 

through TCP sequence prediction. The attacker predicts the 
next sequence number by capturing the most recent 
command and examining the FC. In a TCP session, if a 
recipient receives a packet with a sequence number that it 
has already seen, it will ignore the packet. Therefore, 
whichever sender’s (Master or attacker) packet reaches the 
Slave first will be accepted and the other ignored. This is 
called a race condition. The role of the DoS attack in 
hijacking control is to eliminate the race condition between 
the Master and the attacker. 

Due to the nature of TCP and resulting from a lack of 
authentication in Modbus, the attacker only needs to 
successfully send one packet to the Slave to deny the Master 
and take control over the Slave. If the fabricated packet 
reaches the Slave before the legitimate packet, the legitimate 
packet will be ignored by the Slave. The DoS attack for 
hijacking control simply replays the packet captured during 
sequence number prediction. 



4. Function Code Scan 
After eliminating the race condition, the attacker is now 

free to send commands to the Slave. To effectively launch 
an attack, some knowledge about the system or devices is 
necessary.  

The Modbus Protocol Specification defines a set of 
commands that a Master device can send a Slave device 
[10]. Each command is assigned an FC. With each FC, there 
is a formation for both the command and the response. All 
responses will either be formed normally as specified by the 
protocol specification or will be formed as an error 
response. An error response contains two bytes. The first 
byte is the FC plus 0x80. The second byte is known as the 
exception code and provides information about the nature of 
the error. Although Modbus provides these commands, 
those that are not needed can be disabled and, therefore, not 
supported by the Slave device. Sending commands with 
unsupported FCs results in wasted effort. Thus, it is 
beneficial to know which FCs are supported and which are 
not. 

The Function Code Scan attack is a Reconnaissance 
attack. Its purpose is to determine supported and 
unsupported FCs. It is built from the packet captured for 
sequence number prediction. As needed with the DoS 
attack, the TCP sequence number and the Modbus 
Transaction Identifier are updated accordingly. The data 
field in the Modbus PDU does not need to change with the 
FCs for the attack. Changing the FC field is enough to 
determine which are supported and which are not. The 
simplest way the update the FC field is through the use of a 
loop. With each iteration of the loop, the FC is incremented 
by 0x01, and the command packet is built and sent to the 
Slave. 

From the results of the FC Scan attack, the attacker 
knows that the Slave VDEV supports various write 
commands: FCs 0x05, 0x06, 0x0F, and 0x10. Using any of 
these FCs allows the attacker to change certain system 
operation set points.  

5. Set point Manipulation 
After executing a FC Scan the attacker can now launch 

a variety of attacks. From the results of the previous attack, 
the attacker knows that the FC 0x10 Write Multiple 
Registers is supported. With this command, the attacker can 
choose to alter the values of one or more Slave input Points. 
The Slave’s input Points are referred to as set points. 

The Set point Manipulation attack is a Command 
Injection attack. Whereas the FC Scan attack’s goal is 
information retrieval, the goal of this attack is to alter system 
behavior in some manner. For the VHPS, the attacker has 
the ability to start or shutdown the system, disconnect the 
system from the power grid, adjust the position of the 
control gate, or alter the amount of power the system is 
providing. The fabricated packet is built from examining 
communication traffic and analyzing legitimate packets 
with FC 0x10. From the analysis, the set point memory 
locations and order can be determined. Depending upon the 
desired outcome of the attack, the attacker can change one 
or multiple set points with a single packet.  
For this attack, FC 0x10 ‘Write Multiple Registers’ was 

used to alter the system set point that changes the amount 

of power the system needs to produce to maintain power 

grid stability. Fig.10 shows the results of this attack on the 

power generated by the system. During control hijacking, a 

DoS attack is executed in which the attacking VM takes 

over control of the Slave VDEV from the Master VDEV. 

As a result, commands changing Slave set point values are 

not reflected on the HMI. Using FC 0x10, the attack alters 

the ‘Power Needed’ set point on the Slave VDEV to 48 kW. 

Upon receiving this fabricated command, the Slave begins 

closing the control gates to meet this set point, and the 

Master does not receive any communication of this action. 

V. CONCLUSION  

This paper has described 2 systems: First, a Virtual 

SCADA Laboratory, built by modeling small scale 

industrial processes, modeling commercial PLC 

programming, employing the widely used MODBUS/TCP 

network protocol, and utilizing popular commercial HMIs. 

The system is capable of interfacing with physical 

commercial SCADA devices, such as PLCs and HMIs. 

Attacks against this system have been developed, and are 

included in the laboratory. As well as attacks, detection 

rules have been developed for the included attacks.  This 

laboratory is portable due to its small size and virtual nature 

and is a useful research tool. It is also a useful tool for 

teachers in the cyber-physical system classroom.  

The second is a simple, virtual hydroelectric power system 

(VHPS) that uses the common SCADA communication 

protocol Modbus, specifically Modbus/TCP, for 

communication between virtual PLCs or VDEVs. The 

system is comprised of a Master VDEV, which issues 

commands, and a Slave VDEV, which alters system 

operations based upon the commands. A control hijacking 

scheme combining a TCP sequence prediction attack and a 

DoS attack was presented. Following control hijacking, a 

FC Scan attack was developed with the purpose of 

garnering knowledge about supported and unsupported 

function codes. Spawning from the FC Scan attack, a Set 

point Manipulation attack was developed with the goal of 

altering system operation. 

 

 
 

Fig. 10. Power Output Set point Change by Attacker. 
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