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Abstract—In recent years, research on medical device inte-
gration has attracted a lot of attentions because of its great
potential to improve treatment safety and efficiency. The lead-
ing role in this research is the Medical Device Plug-and-Play
(MDPnP) Interoperability program. The continuous effort of the
program has led to the publication of the Integrated Clinical
Environment (ICE) architecture which defines the functional
components for an integrated medical system. However, while
applying the architecture to enable medical device coordination
in the realistic clinical settings, there still exist many issues,
such as device heterogeneity, unreliable communications, etc. To
address these issues, we aim at building a middleware (called
VirLoop) which can provide rich services to ease this task. The
prominent features of VirLoop are as follows. i) It considers the
realistic network condition in the clinical environment, where
communications are unreliable and asynchronous. ii) It enables
automatic medical device composition to build an integrated
system for easy coordination. iii) It creates a virtually perfect
network environment for medical device coordination, so that
development of the coordination logic is independent of the
underlying network complications. iv) Safety can be ensured
while invoking the middleware services. We build VirLoop on
some emulated medical devices to test its safety property and
performance. Trace-based emulation results show that VirLoop
not only ensures safety, but also achieves high clinical efficiency,
low response time and low communication overhead.

I. INTRODUCTION

The past decades have witnessed the appearance and pop-
ularity of a variety of plug-and-play (PnP) technologies in
pervasive computing environment [1], such as Universal Plug
and Play (UPnP), Jini, Salutation. The primary goal of these
technologies is to hide the underlying device heterogeneity and
complications, as well as the environmental changes. Hence,
the upper-layer user applications can continuously enjoy the
services in the environment without being distracted.

Recently, the PnP concept has been introduced into the
clinical area. This idea originates from the fact that in the
clinical procedures, medical devices are commonly configured
and controlled by human beings who are prone to generate
medical errors [2]. As revealed in [2], medical errors are
the leading cause of death and injury in the hospital. This
situation raises the demand of medical device plug-and-play
and automatic control to prevent the human error-induced ac-
cidents. This increasing demand has led to the establishment of
the Medical Device Plug-and-Play (MDPnP) Interoperability
program [3], which developed the first MDPnP standard. The

standard proposes an Integrated Clinical Environment (ICE)
architecture (Fig. 1a), which defines the functional components
in an integrated device system. In particular, a controller, called
supervisor, has been introduced to coordinate medical devices.

In this paper, we call the ICE-compliant medical device
system for a particular clinical procedure as a MDPnP system.
MDPnP systems are safety-critical in general, i.e., patient safe-
ty is of paramount importance. It is not acceptable for patients
to be harmed by the MDPnP system in any circumstances.
As the central controller, it is critical for the supervisor to
run certain medical device coordination mechanisms to ensure
safety and enable medical treatment. However, developing
safe device coordination mechanism is non-trivial. It usually
requires knowledge and collaboration of experts from multiple
domains, such as clinical medicine, control theory and dis-
tributed systems. The ICE architecture standard [4] illustrates
several effective coordination methods, like safety interlock
and physiological closed-loop control, by concrete clinical
scenarios [4]. But these scenarios all assume perfect inter-
device communications. In reality, communications in the open
clinical environment are unreliable and asynchronous. The
increasing adoption of wireless medical devices (especially
medical sensors) and occasional disconnection of cables can
result in message loss [5][6][7]. Retransmission and network
congestion may also lead to variations of message transmission
delay.

Therefore, while applying the ICE architecture to the re-
alistic clinical scenarios, it is necessary to take into account
the non-perfect communications while designing device co-
ordination mechanism. Furthermore, device heterogeneity is
another big obstacle hindering medical device coordination.
The majority of of existing medical devices are designed for
isolated use and lack interoperability. Both semantic-level data
inconsistency and communication protocol difference among
devices can lead to failure of coordination, which compromises
the safety. In this paper, we aim at building a middleware,
called VirLoop, that can provide safety-assured support for
general MDPnP scenarios. The design principle is that we try
to make the device heterogeneity and communication problems
transparent to the device coordination mechanisms. Hence, the
coordination logic will be simplified, and thus become easy
to design, check and verify. We summarize the prominent
features of VirLoop as follows.
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• VirLoop can automatically composes medical devices
to an integrated system for easy device coordination,
regardless of device heterogeneity.

• VirLoop is able to hide communication complications
from the device coordination mechanisms. It provides a
virtually perfect network environment for them.

• The provided middleware services are proved to be safe
even in the cases when messages are lost and suffer long
delay.

To evaluate the middleware, we build the middleware on
some emulated medical devices, and construct a well-known
MDPnP scenario, airway-laser surgery. Trace-based emulation
results confirm that safety can be guaranteed by using the
VirLoop services. In addition, we test the performance of
VirLoop by contrasting it with a state-of-the-art device co-
ordination framework, NASS [5], which can tolerate network
failures. The results show that our middleware achieves high
clinical efficiency, and drastically outperforms NASS in terms
of response time and communication cost (with maximum
decease by a factor of 10 and 100, respectively).

The reminder of the paper is organized as follows. Related
work is discussed in Section II. Section III introduces sys-
tem architecture, device coordination and interaction model.
Middleware services are elaborated in Section IV, V and VI
respectively. Then, in Section VII we evaluate the middleware.
Finally, Section VIII concludes the paper with future research
directions.

II. RELATED WORK

The MDPnP Interoperability program [3] was launched with
the purpose of promoting medical device interoperability, safe
integration, as well as seeking for regulatory paths for system
approval. The program proposed an architecture to create
Integrated Clinical Environment (ICE) [4]. Major components
of an ICE architecture are shown in Fig. 1a. This architecture is
an standard model to follow while designing medical device
coordination mechanisms, and has motivated a lot of work
on safe coordination mechanism design. Li et al. propose
to use run-time model checking to enhance the safety of
device coordination [8]. King et al. [9] build a Medical
Device Coordination Framework (MDCF) to enable model-
based development of medical device coordination applica-
tions. However, both works neglect the problem of unreliable
and asynchronous communication in the design.

Actually, so far there has been few work considering the
network problems in designing device coordination mecha-
nism. Arney et al. [10] proposed an UPPAAL-verified safe
control mechanism to tolerate communication failures. But
its limitation is that it requires an accurate patient model,
and is specifically designed for patient-controlled analgesia
scenario. NASS [5] and its successor PVSC [6] are two
coordination frameworks that can ensure safety under com-
munication failures. They rely on periodic supervisor-medical
device interaction model, resulting in long response delay
and high communication cost. Another drawback is that it is
difficult to determine the proper cycle length for NASS and
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PVSC. However, our VirLoop middleware is applicable for
more general MDPnP scenarios and overcomes the limitations
of NASS and PVSC, as will shown later.

III. SYSTEM OVERVIEW

A MDPnP system consists of a supervisor and a collection
of medical devices that are connected through network. In
general, medical devices can be categorized into two groups:
monitoring devices and delivery devices [11]. The first group,
such as heart rate and blood pressure sensors, monitors pa-
tient’s physiological state or physical environment parameters.
The supervisor is loaded with certain device coordination
mechanism for a specific clinical procedure. In what follows,
we will use device to refer to either a medical device or a
supervisor.

A. System Overview

The architecture of a MDPnP system running VirLoop
is shown in Fig. 2. The application layer runs the medical
device coordination mechanisms to maintain safety for clinical
scenarios. VirLoop middleware provides services to support
the application. The middleware services are listed as follows.
• Plug-and-Play (PnP) service: it deals with the medical de-

vice heterogeneity problem. It enables device registration,
discovery, control, and eventing. Based on PnP service,
we then can build more sophisticated services.

• Synchronization service: it maintains a global clock for
the system.

• Device Composition service: it composes the individual
medical devices to an integrated system to enable device
coordination.
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• Virtual Network Maintenance service: it ensures safety
of medical device coordination, and maintains a virtually
perfect network environment for the application layer.

• Data Logging service: it helps to log the critical device
status and interaction behavior for online/offline analysis
and forensic purposes.

The prerequisite of device coordination is that the required
medical devices can interoperate and be composed together
as an integrated system. Specifically, before medical device
coordination phase, there are three steps that happen automat-
ically by running VirLoop: i) device registration and discovery,
ii) time synchronization, ii) device composition. Actually,
VirLoop provides full support these steps.

B. Device Coordination Model in Perfect Network

Here, we introduce the device coordination model assuming
ideal device interoperability and a perfect network environment
where there is no message loss and transmission delay. A
MDPnP system is modeled as a 4-tuple Sys = {S,D,H,R}.
D is the set of medical devices. S is the supervisor that
coordinates the medical devices. For each medical device
d ∈ D, d = {Stated, s−−→,Moded,

m−−→,moded0, Space
d},

where Stated is the set of device states (states, for short);
s−−→⊂ Stated × Stated is a relation denoting the set of

valid state transitions; Moded is the set of supervisory modes
(modes, for short) specified by the supervisor for d; m−−→⊂
Moded ×Moded is a relation denoting the set of valid mode
transitions; moded0 ∈Moded is d’s initial mode; and Spaced

is a function that defines the operational state space for each
mode. When d is assigned with mode moded ∈Moded by the
supervisor, it is restricted to operate within Spaced(moded).
On the contrary, state transition within Spaced(moded) is free
to happen. It should be noted that mode transition implies state
transition, that is, a medical device is forced to change its state
if mode transition happens. Besides, since monitoring devices
keep measuring the physical parameters, we consider them
always staying in the SAMPLING mode.
H is the set of hazards. A hazard h ∈ H is the combination

of states of a medical device subset Dh, where Dh ⊆ D,
i.e., h =

∧
di∈Dh state

di

h . If all medical devices di ∈ Dh

enter state statedi

h simultaneously, then hazard h will be
generated. Essentially a hazard h is a conjunctive predicate
of the device states. There have been a lot of work on
conjunctive predicate detection in distributed and pervasive
environment, e.g., [12][13], but we differ from them in that

our goal is conjunctive predicate avoidance. Actually, the
safety interlock mechanism proposed in ICE standard [4]
shares the similar idea with the hazard definition. A safety
interlock links multiple devices to prohibit them from entering
hazardous states simultaneously. Note that if multiple medical
devices stay in their initial modes, no hazards must be yielded.
Otherwise, it is nonsense that the initial system configuration
is unsafe.

In essence, hazards are risky system states. The supervisor
S runs a set of supervisory control rules (or control rules,
for short), denoted by R, to coordinate medical devices to
circumvent the hazards. A control rule r ∈ R consists of a
condition field and a decision field, i.e.,( ∧

di∈Dr

statedi
r

)
∧ cmdr =⇒ modedr

r . (1)

The condition field defines the states for a medical device
subset Dr as well as the input command cmdr from the
caregivers. If the condition field is satisfied, the supervisor will
execute the rule to designate a new mode modedr

r to device
dr. In the case of automatic control, caregiver’s intervention
is not needed. So, Equ. 1 can be simplified as follows.∧

di∈Dr

statedi
r =⇒ modedr

r . (2)

C. Device Interaction in Perfect Network

Fig. 3 shows the virtual interaction and real interaction
happening above and beneath the middleware layer during
device coordination phase, respectively. The virtual interaction
demonstrates the application layer’s behavior by considering
a perfect underlying network. As there is no need to update
monitoring devices’ modes (they always operate in SAM-
PLING mode), the supervisor only computes the modes for
delivery devices. Each delivery device follows the mode from
the supervisor to operate and treat the patient, leading to
the change of patient’s state. Then, the feedback information,
containing the up-to-date states from the monitoring devices
and the delivery devices, are sent back to the supervisor. The
feedback state information may trigger certain control rules,
and then the supervisor will execute the rules to update the
modes of the delivery devices. In this way, control loop in the
system is closed from the application layer’s point of view.

D. MDPnP System Example

This subsection introduces a well-documented MDPnP sys-
tem, airway-laser MDPnP system [5][8] to illustrate the device
coordination model. The airway-laser MDPnP system (see
Fig. 1b) involves following entities: surgeon, patient, O2 sen-
sor, pulse oximeter, ventilator, and supervisor. The application
context is as follows. In the surgery, due to general anesthesia,
the patient is paralyzed, hence has to depend on the ventilator
to breathe. The surgeon requests the laser scalpel to emit
laser so as to cut patient’s trachea. When the laser scalpel
is to emit laser, the oxygen concentration inside the trachea
(measured by O2 sensor) must be lower than a threshold,
i.e., ΘO2

= 30%. Otherwise, the laser may trigger surgical
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(∗ represents any valid sampling result)

fire, which can seriously burn the patient. Therefore, before
the laser scalpel is allowed to emit laser, the ventilator must
have blocked the oxygen flow for a while. On the other hand,
the ventilator can neither block oxygen flow for too long, or
the patient will suffocate due to too low blood oxygen level
(SpO2), e.g., below threshold ΘSpO2 = 95%.

The system model for airway-laser MDPnP system is shown
in Fig. 4. Simply, we can find there are five hazards in
the system: (1) surgical fire h1: (stateO2Sen = [O2 >
30%]) ∧ (stateLaser = Emit), (2) potential surgical fire h2:
(stateO2Sen = [O2 > 30%]) ∧ (stateLaser = NoEmit), (3)
surgical fire h3: (stateVent = Oxy Open)∧(stateLaser = Emit),
(4) potential surgical fire h4: (stateVent = Oxy Open) ∧
(stateLaser = NoEmit), (5) suffocation h5: (stateOxim =
[SpO2 < 95%]) ∧ (stateVent = Oxy Closed).

Hazard h2 and h4 are called potential surgical fire, because
the surgeon is free to initiate laser request. Even though in
h2 and h4, surgical fire does not happen, surgeon’s request
will possibly come in any time, causing the laser scalpel
to switch from NoEmit to Emit state. Then, h2 and h4

turn to be h1 and h3, respectively. Therefore, h2 or h4

are forbidden system states as well. To prevent those five
hazards, the supervisor runs a set of control rules. Due to
space limit, we only show three of them here. i) Rule r1:
(stateVent = Oxy Open) ∧ (stateOxim = [SpO2 > 95%]) ∧
(stateLaser = Req) =⇒ modeVent = BLOCKED. ii) Rule
r2: (stateVent = Oxy Closed) ∧ (stateOxim = [SpO2 >
95%]) ∧ (stateO2Sen = [O2 < 30%]) ∧ (stateLaser = Req) =⇒
modeLaser = ALLOWED. iii) Rule r3: (stateLaser = NoReq)∧
(stateOxim = [SpO2 ≤ 95%])∧(stateVent = Oxy Closed) =⇒
modeVent = NONBLOCKED.

IV. PLUG-AND-PLAY SERVICE IN VIRLOOP

Over the past decade, we have been pursuing PnP tech-
nologies for devices/services in the pervasive environment,
resulting in a variety of PnP middleware technologies, such as
UPnP, Jini, Salutation [1]. In spite of using distinct protocols
and platforms, they are composed by similar features, e.g.,
description, discovery, control, and eventing. Now we are
promoting PnP concept to the hospital environment. Likewise,
we should build similar PnP features as well. However, due
to the uniqueness of MDPnP systems, we should take into

TABLE I: A list of PnP messages

Message Type Usage

ADVERTISE Advertise the existence of a device

DISCOVER Discover the device that satisfies the requirements

SUBSCRIBE Subscribe to receive the interested device information

NOTIFY Notify the subscriber of the needed device information

GET Obtain the value of a device attribute

SET Update the value of a device attribute

ACTION Guide a medical device to make mode transition

REPLY The message is used to give positive/negative ACK

account the specific requirements and knowledge from clinical
domain. In a MDPnP system, the supervisor is a central
controller which coordinates the medical devices’ behavior.
It is usually more powerful than the medical devices running
embedded software. This inspires us to make the supervisor
a central point for device registration. The role that the
supervisor plays is analogous to the control point in UPnP
and the lookup service in Jini [1]. The messages used for PnP
service are listed in Table I.

Device Description. Whether two devices are interoperable
depends on the consistency of the data exchanged in the
application layer as well as the lower communication proto-
cols they use. In healthcare domain, a variety of standards
have been developed to increase interoperability, including
ISO/IEEE 11073 standard family [14][15] and HL7 [16], etc.
So it is likely that different devices adopt different standards.
Our approach to solve this heterogeneity problem is to create
a standard profile for each medical device. By interpreting a
device’s profile, the supervisor will understand the messages
from the device semantically and know how to interact with it.
Specifically, we obtain a lot of hints from the ISO/IEEE 11073
Domain Information Model (DIM) [15], and categorize the
device profile information into five groups. i) Basic Attribute:
is busy, device type, manufacture information, clock, device
model, device health status, application layer standard, med-
ical nomenclature, etc. ii) Sensing: measurement parameter,
sampling period, unit, etc. iii) Actuation: mode transition and
state transition function. iv) Trigger: event-trigger function,
time-trigger function. v) Communication: network interface,
communication protocol, protocol version, etc. As pointed
out in [7], DIM is too complicated to implement. As a
result, very few devices in the market implemented the full
version of DIM. So in our design, we also make certain
simplifications without hurting device interoperability under
our device coordination model.

Device Registration and Discovery. While a medical
device joins in the network, it automatically broadcasts an
ADVERTISE message to announce its existence. The AD-
VERTISE message contains the profile of itself. On reception
of a advertisement message, a supervisor will record the device
in the registry. On the other hand, a supervisor is able to
initiate a medical device discovery procedure by broadcasting
a DISCOVER message. Detailed requirements related to the
target medical device, e.g., device type, should be contained in



DISCOVER. If a medical device receiving DISCOVER finds
itself matching the requirements, it immediately replies with
a REPLY message along with its profile.

Eventing. Another service that the PnP component provides
is subscription and notification. The supervisor can subscribe
to receive two types of information: sensor measurement and
device state transition. To subscribe the interested informa-
tion, the supervisor will send a SUBSCRIBE message to
the intended device. Acknowledgement by sending a REPLY
message is mandatory to confirm the successful subscription.
Afterwards, the intended devices will spontaneously send the
subscribed information, encapsulated in NOTIFY message,
to the subscriber. Furthermore, in the SUBSCRIBE message,
the subscriber has to specify the notification frequency. To
be specific, there are two types of notification frequency:
event-trigger and time-trigger. The former defines a triggering
condition for the notification procedure. Only in the case
when the condition is satisfied, NOTIFY message is allowed
to be sent. For example, laser scalpel sends NOTIFY to the
supervisor every time when its state switches from NoReq to
Req. The latter determines when the NOTIFY message should
be sent by time, e.g., the subscriber can request a device to
send NOTIFY message at a specific time point, while a timer
fires, or in a periodic manner.

Device Manipulation. Device manipulation includes de-
vice configuration and device control services. Traditionally
medical devices enable configuration by offering an on-board
GUI/panel to the caregivers. By opening up the medical
device interoperability, remote configuration and control of
medical devices will be possible. The PnP module permits
the supervisor to send GET and SET message to obtain and
update the attributes of remote devices, respectively. Mean-
while, ACTION message can be used by the supervisor to
remotely control the delivery devices, i.e., update them with
new supervisory modes.

V. DEVICE COMPOSITION AND SYNCHRONIZATION
SERVICES IN VIRLOOP

By exchanging the PnP messages, eventually the supervisor
S will have a list of network-reachable medical devices, along
with their features, capabilities and interaction mechanisms.
If the device list contains all the devices D required for the
clinical procedure, and meanwhile they are not involved in
other MDPnP systems (i.e., it busy=false), then the supervisor
will initiate to compose those devices to build an integrated
MDPnP system and run the synchronization service.

A. Device Composition Service

In our design, the supervisor initiates the composition
process, because it relies on the state feedback from medical
devices to adjust its control decision. Let us denote F as the set
of devices that appear in the condition fields of the rule set
R. The state update from F may influence the supervisor’s
decision. So it is reasonable for the supervisor to establish
feedback paths from all the devices in F , so as to close the
control loop. If the control loop is closed, we consider device

composition is finished. Then the integrated system operate
in an closed-loop manner. To establish a feedback path from
a device, the supervisor should send a SUBSCRIBE message
with the following subscription requirements.

• For a monitoring device di ∈ F , the supervisor chooses
time-trigger manner to subscribe di’s sampling result
statedi . The notification period equals to the sampling
period, which is defined in di’s profile.

• For a delivery device dj ∈ F , the supervisor subscribes
dj’s state in event-trigger manner. That is, it expects to
receive NOTIFY message, once dj switches to a state
that appears in the condition fields of rule set R.

On reception of supervisor’s SUBSCRIBE message, a med-
ical device will send positive REPLY to the supervisor if
the subscription is accepted. We say a feedback path from
d ∈ F has been established if the supervisor’s subscription
is confirmed by d. The control loop in the MDPnP system is
closed if all the feedback paths from F to the supervisor has
been established. However, because of the unreliable network,
both SUBSCRIBE and REPLY messages may get lost. The
supervisor will retransmit the SUBSCRIBE messages until
the subscription is confirmed. Note that the variability of
the network condition may lead some feedback paths to be
established earlier than others. Then, the supervisor will re-
ceive NOTIFY messages, containing device state information,
from the successful paths. In this case, control rules may be
triggered. In order to ensure safety, the device composition
service has to enforce an additional safety rule: if there
exists any unsuccessful feedback paths, no control rules are
allowed to be executed. With this additional rule, we can easily
conclude that all the medical devices must stay in their initial
modes before the control loop is completely closed. Since it
is hazard-free for multiple devices to stay in the initial modes,
safety is thus guaranteed in the device composition stage.

B. Synchronization Service

In the open clinical environment, the communication is
generally unstable and asynchronous, namely, message trans-
mission may fail or suffer unbounded delay. As we know, in
the asynchronous distributed systems, people often construct
certain level of synchrony to reduce software complexity.
Reduction of complexity leads to simpler logic and less latent
bugs, and thus increases software reliability. This is especially
important for safety-critical systems. A typical example is
Time-Triggered Architecture (TTA) [17], which has been
widely used by the safety-critical real-time distributed systems
in the industry. TTA constructs a very precise global clock for
the distributed system. Since MDPnP systems also fall into the
category of time- and safety-critical systems, we follow this
design philosophy and provide time synchronization service
in the VirLoop middleware to ease application development.
In the real-time distributed system area, there exist a great
deal of work on time synchronization that can be adopted by
VirLoop, such as [18], [19]. So we consider synchronization
protocol design beyond our focus in this paper.



VI. VIRTUAL NETWORK MAINTENANCE SERVICE IN
VIRLOOP

Because of the asynchronous and unreliable communica-
tions, a mode update message may not be received by a
delivery device. Missing critical modes endangers patient’s
life. To deal with this problem, our basic idea is to construct
a Safety Assurance module in the supervisor (see Fig. 3),
which can plan a sequence of safety-assured future modes for
each delivery device, i.e., a time-augmented mode transition
path (TMP) which will be defined later. Therefore, in the case
of missing modes from the supervisor, the delivery device is
still able to follow the sequence to take mode transition, and
meanwhile maintains safety.

By introducing TMP, Fig. 3 shows the real interaction
beneath the middleware layer. Specifically, the real interac-
tion involves following three types of messages. i) ACTION
message from supervisor to delivery device di, which contains
a TMP tmpdi

ts , generation time of the TMP (ts), and the
sequence number (SEQ); ii) NOTIFY message from delivery
device di to supervisor, which contains the subscribed device
state statedi

ts , the occurrence time of the state transition
(ts), most recently received TMP (tmpdi

tm ), and the sequence
number (SEQ); iii) NOTIFY message from monitoring device
dj to supervisor, which contains the up-to-date sampling
result (statedj

ts ), the sampling time (ts), and the sequence
number (SEQ). Note that the sequence number here is used
to deal with the message out-of-order problem during asyn-
chronous communications. A message that arrives later than
the messages with higher SEQ from the same source will be
discarded. Suppose a message is received at time t, actually
t−ts is the message transmission delay which may vary under
different network conditions.

A. Time-augmented Mode/State Transition Path

Now we give the definition of TMP. For a delivery device d,
a mode moded actually defines a state space in which device
d is allowed to operate. A time-augmented mode 〈moded, t〉
associates a time t with mode moded; it restricts device d
to be in moded starting from time t. A mode transition path
mpd = moded0 → moded1...→ modedl is a sequence of mode
transitions, where each transition from modedi to modedi+1 is
valid. By associating each mode in the path with a time, we
obtain a time-augmented mode transition path (TMP) tmpdt0 .

tmpdt0 = 〈modedt0 , t0〉 → 〈modedt1 , t1〉 → . . .→
〈modedti , ti〉 → . . .→ 〈modedtl , tl〉,

where ti < ti+1 for all 0 ≤ i < l−1, and l is the length of the
path. A TMP specifies not only the order of mode transition
for a device, but also when each transition should take place.
We use tmpdt0 [t] to indicate the specific mode in the path
at time t, where t ≥ t0. When delivery device d receives
tmpdt0 (contained in ACTION message) from the supervisor
at time t, it checks whether t0 ≤ t < t1 hold or not. If yes,
d will immediately switch to modedt0 and accept tmpdt0 as
its TMP. Otherwise, it implies that d misses certain mode

transition deadline required by the supervisor, and thus the
received tmpdt0 is not accepted.

Now let us consider d is a monitoring device. Since d always
operates in the SAMPLING mode, we are more interested in
its state transition, i.e., the variation of its sampling results,
which reflects how the monitored parameter changes. A time-
augmented state transition path (TSP) for d from time t0,
denoted by tspdt0 , is a sequence of sampling result and
sampling time pairs. More formally,

tspdt0 = 〈statedt0 , t0〉 → . . . 〈statedti , ti〉 . . .→ 〈state
d
tl
, tl〉,

where ti is the sampling time of result statedti . Similarly,
tspdt0 [t] represents the d’s state in the path at time t.

The following introduces two basic operations on TMP/TSP.
The first operation is called truncation, denoted by trunc(). A
t-truncation of tmpdt0 (or tspdt0 ), where t ≥ t0, is a sub-path
of tmpdt0 (or tspdt0 ) starting from t. Suppose ti−1 ≤ t < ti,
we have

trunc(tmpdt0 , t) = 〈modedti−1
, t〉 → 〈modedti , ti〉 → . . .

→ 〈modedtl , tl〉. (3)

The second one is called appending, denoted by append(),
which adds a time-augmented mode (or state) at the end of a
TMP (or TSP). For example,

tmpdt0 .append(〈modedtl+1
, tl+1〉) = 〈modedt0 , t0〉 → . . .

→ 〈modedtl , tl〉 → 〈modedtl+1
, tl+1〉. (4)

As a result, the length of the TMP/TSP is incremented by 1.

B. Safety Assurance Mechanism

Recall that we introduced TMP in the real interaction. A key
question is: how does the supervisor generate TMP for delivery
devices? In the following, we will answer this question.

Because of the unreliable network, the TMP sent to the
delivery device may not be received and thus may not take
effect. In this case, the supervisor does not know the exact
TMP that is being used by the delivery device. However, it is
able to estimate all the possible TMPs the delivery device is
using, based on the past delivered TMP. Meanwhile, to reduce
the estimation space, we require each delivery device to report
their current TMP while they are sending NOTIFY message to
the supervisor (see Fig. 3). For a delivery device di ∈ D, the
Safety Assurance module in the supervisor maintains a set of
TMPs, denoted as T Pdi(t), which includes all the possible
TMPs used by di at time t according to the supervisor’s
estimation. T Pdi(t) is initialized to {〈modedi

0 , te〉} while
the closed-loop control setup is accomplished at time te.
Here, modedi

0 is di’s initial mode. Afterwards, there are two
conditions when the supervisor should update T Pdi(t). First,
when the supervisor generates a new TMP n tmpdi

t for di
(see Alg. 1), then

T Pdi(t) = T Pdi(t) ∪ {n tmpdi
t }. (5)

Second, once the supervisor receives a NOTIFY message from
di, which includes di’s most recently received TMP tmpdi

tm ,



Algorithm 1: Algorithm for calculating new TMP

Input: T Pd(t) or tspdt for all d ∈ D
Output: A new TMP n tmpdr

t for device dr
1 for th = t to infinity do
2 foreach d is a delivery device in D do
3 Statedth =

⋃
tmpd

t∈T Pd(t)

(
Spaced(tmpdt [th])

)
;

4 foreach d is a monitoring device in D do
5 statedth = tspdt [th];

6 if there is a control rule r enabled at time th && no
hazards will be generated after executing r then

7 if execute once then
8 n tmpdr

t ← NULL;
9 foreach di ∈ D\{dr} do

10 Freeze T Pdi(t);

11 execute once← false;

12 n tmpdr
t ← n tmpdr

t .append(〈modedr
r , th〉);

then T Pdi(t) is updated to contain the t-truncation of all the
TMPs generated no earlier than tm, i.e.,

T Pdi(t) = {trunc(n tmpdi
tk
, t)|tm ≤ tk ≤ t}. (6)

On the contrary, for a monitoring device dj ∈ D, the Safety
Assurance module maintains a worst-case estimation of dj’s
future state, i.e., TSP tsp

dj

t . Updating tsp
dj

t happens once a
NOTIFY message is received from dj which contains dj’s
up-to-date feedback state

dj

ts . At first, we use the worst-case
prediction function to generate a TSP tsp

dj

ts as the estimation
of dj’s state starting from time ts. Then, by removing the states
from ts to t, we can obtain tsp

dj

t , i.e., tspdj

t = trunc(tsp
dj

ts , t).
Note that the worst-case prediction function is dependent on
the medical devices’ states and the patient’s characteristics.
Actually, the assumption of having the worst-case state pre-
diction is not unreasonable, because it is common practice that
the surgeon should estimate patient’s future state according
to the past treatment and drugs delivered. However, our
previous work found that long-term estimation of future state
is generally impossible [8]. So, once beyond our estimation
range, we assign the worst valid sampling value of dj , denoted
as WORST dj , into tsp

dj

ts . For example, for pulse oximeter,
WORSTOxim = 0% and our estimation range for SpO2 is
next 6 seconds. Then, a TSP starting from 10 second could be
tspOxim

10 = 〈98%, 10〉 → 〈95%, 12〉 → 〈93%, 14〉 → 〈0%, 16〉.
As the system execution progresses, the Safety Assurance

module will continuously update T Pdi(t) and tsp
dj

t for each
delivery device di and monitoring device dj . Meanwhile,
the module will check whether there is any control rule
enabled. If the execution of a rule r will not yield hazards
by considering all the combinations of r’s resultant state
space Space(modedr

r ) with other devices’ possible states, the
supervisor will execute the rule and continue to generate the
future modes for dr, i.e., obtain a new TMP n tmpdr

t . Alg. 1

BLOCKED

98% 97% 96%

T PLaser(t)

tspO2Sen
t

tspOxim
t

n tmpVent
t

0%

NONBLOCKED

95%

98% 97% 96%tspOxim
ts

0%95%

T PVent(t)

FORBIDDEN

ts t th

BLOCKED NONBLOCKED

35% 45% 90%

Input:

Output:

5 6 7 8 9 10 time

Fig. 5: An example of executing Alg. 1 in the airway-laser
MDPnP system

shows the detailed steps for calculating n tmpdr
t . Line 2-4

describes how to determine a medical device’s state space at
future time th. Procedure from line 7-11 is executed only once,
which freezes T P(t) for the devices except dr, and hence
only allows to execute control rules to generate dr’s future
modes. Line 12 means that once another rule is executed, the
resultant mode is appended into n tmpdr

t . Alg. 1 terminates
until the length of n tmpdr

t is fixed. After the algorithm
finishes, the generated n tmpdr

t will be immediately sent to di
so as to update di’s TMP. Note that there is a possibility that
multiple control rules can be enabled if their condition fields
are satisfied and no hazards yield after their executions. In this
case, we randomly choose one rule to execute, and proceed to
generate the complete TMP.

Fig. 5 illustrates how Alg. 1 works in the context of airway-
laser surgery. Suppose pulse oximeter notifies the supervisor
of its latest sampling result (stateOxim

ts = 98%) at time ts = 5
sec, and the supervisor receives this NOTIFY message at time
t = 5.3 sec. Obviously, t− ts is the transmission delay of the
NOTIFY message. While receiving NOTIFY message from the
pulse oximeter, the first step for the supervisor is to calculate
tspOxim

ts by the worst-case prediction function. Then, tspOxim
t is

obtained by t-truncation over tspOxim
ts . Since at time t there is

a control rule r1 enabled (refer to Section III-D for the control
rules), the supervisor will start running Alg. 1 to generate a
new TMP. Because dr1 = Vent, the supervisor freezes T P(t)
for laser scalpel, and generates a new TMP for ventilator. Exe-
cuting r1 results in n tmpVent

t = 〈BLOCKED, t〉 temporarily.
Then, the algorithm continues to generate the future modes.
At time th = 8 sec, another rule r3 is enabled. Executing
rule r3 forces the ventilator to switch to NONBLOCKED
mode because of low patient’s SpO2 (i.e., ≤ 95%). Thus,
we append 〈NONBLOCKED, th〉 to n tmpVent

t . Finally, we
have n tmpVent

t = 〈BLOCKED, t〉 → 〈NONBLOCKED, th〉,
which is the output of Alg. 1.

Now that the supervisor knows how to calculate TMP for
delivery devices, in the Appendix we prove that safety is
ensured when the TMPs are used by delivery devices.

C. Maintaining Virtually Perfect Network

At last, we introduce how the Safety Assurance module
maintains a virtually reliable network for the application layer.
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Fig. 6: The layout of the experiment

On the supervisor side, the Safety Assurance module filters
the received NOTIFY messages from the medical devices,
and only forwards the device state to the application layer. In
addition, whenever the Safety Assurance module finds there
is a mode transition for delivery device dr, which corresponds
to the execution of control rule r, it forwards the enabling
condition field to the application layer. Thus, the application
layer will execute the rule as well. On the delivery device side,
the Safety Assurance module continuously retrieves the mode
from the most recent TMP received from the supervisor, and
forwards the mode to the application layer. Since executing
r has been verified to be safe by the supervisor’s Safety
Assurance module, from the application layer’s point of view,
the whole system’s safety is guaranteed as well.

VII. EVALUATIONS

This section evaluates the safety property and performance
of VirLoop middleware. Due to the fact that most of existing
medical devices are not programable and do not support
remote control, we use other equipment, such as laptops and
wireless sensors, to simulate the real medical devices. The
simulated medical devices are called virtual medical devices.
We implement VirLoop on the virtual medical devices, and
run a well-known MDPnP scenario, airway-laser surgery.

A. Experiment Settings

Three laptops are used to simulate a ventilator, a laser
scalpel, and a pulse oximeter, respectively. Meanwhile, we use
another two laptops, each associated with a TelosB sensor, to
simulate a supervisor and a O2 sensor. In the supervisor and
O2 sensor, the laptop is connected with the TelosB sensor
via USB port. We implement all the modules of VirLoop in
each simulated device. Additionally the supervisor runs the
control rules for airway-laser surgery. Firstly, by exchanging
PnP messages, these devices are able to recognize each other.
Then, Synchronization module and Closed-loop Setup module
enable the devices to be synchronized and integrated as a
MDPnP system whose layout is shown in Fig. 6. The link
names and communication types are depicted in the figure as
well. The rationale under such setting is that we try to test
VirLoop’s PnP capability and safety property in the case of
diverse communication interfaces and wireless environments.

B. Trace Analysis

In the experiment, we collect real-world traces to serve as
the measurements for pulse oximeter and O2 sensor. However,
we confront one problem. That is, due to the limitation of

existing devices and traces, we are not able to collect traces
about airway O2 concentration. Fortunately, CO2 data can be
found, and thus we use CO2 data to replace O2 measurements
because of the negative correlation between O2 and CO2

measurements in patient’s trachea [8], i.e., high (low) O2

concentration implies low (high) CO2 concentration. To be
specific, the trace we use is called HKPolyU Trace, retrieved
from an emulated airway-laser surgery [8]. Note that the time
span of the HKPolyU Trace is 1200 seconds, i.e., the airway-
laser surgery lasts 1200 seconds. Because of the negative
correlation between O2 and CO2 measurements, in the sequel,
we will replace all the parameters regarding O2 by CO2 values.
For example, the O2 threshold (ΘO2 = 30%) in the control
rules is replaced by CO2 threshold (ΘCO2 = 15 mmHg).

Recall that the Safety Assurance module relies on the worst-
case prediction to obtain the TSPs of the monitoring devices.
A reasonable way of constructing the worst-case prediction
functions for SpO2 and CO2 is to obtain the worst-case
variations in one sampling period. Then we can reason out
the whole TSP by considering how many sampling periods
have passed. For pulse oximeter, the lower SpO2 implies
worse patient’s physiological condition. So we are interested
in its maximum decrease in one sampling period. Similarly,
we should figure out the maximum decrease in one sampling
period for constructing CO2’s TSP. These results are obtained
through trace analysis (see Tab. II). Note that the worst-case
prediction function depends on the states of medical devices.

TABLE II: Trace analysis results for the worst-case prediction

Parameter Unit Sampling
Period

Maximum Decrease in One
Sampling Period

SpO2 % 2 sec
1 (stateVent = Oxy Open)
1 (stateVent = Oxy Closed)

CO2 mmHg 2 sec
29 (stateVent = Oxy Open)
10 (stateVent = Oxy Closed)

C. Evaluation Results

MDPnP systems not only help to enhance patient safety, but
also have to provide satisfiable quality of medical services. So
in the following, we will evaluate VirLoop’s safety property,
as well as its service metrics, including clinical efficiency and
average response time. In the context of airway-laser surgery,
clinical efficiency means the percentage of time when the laser
scalpel is in the ALLOWED mode, in which the surgeon can
use the laser to cut patient’s trachea. Average response time
means the average delay from the time of surgeon’s request to
use laser to the time when the request is met. Meanwhile, we
also evaluate the communication cost of VirLoop, i.e., the total
number of messages that have been sent, regardless of whether
message reception is successful or not. Note that VirLoop is
compared with NASS [5] in the experiment.

In the experiment, we create two types of unliable com-
munications. First, we adjust the distance and line-of-sight
condition for link links2p and links2o to achieve different
levels of wireless link quality. To be specific, we set up four
placements for them: (1) 1M: 1-meter distance with line-of-
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sight, (2) 3M: 3-meter distance with line-of-sight, (3) 5M: 5-
meter distance with line-of-sight, (4) 5M W: 5-meter distance
with a wall in the middle. The link quality becomes worse
from placement 1 to 4. Second, we intentionally disconnect
link links2l or links2v , so that we can investigate the system’s
behavior in the case of network disconnection. Specifically,
links2l is disconnected from 500-510 second and 1000-1010
second; links2v is disconnected from 800-810 second. Aside
from the network setting, we also need to model the surgeon’s
behavior during the surgery. As real surgeon’s behavior is
very complex, in our experiment we choose a simple model,
that is, surgeon decides whether to initiate a request in every
Di seconds, where Di follows a uniform distributed in [2, 5].
The probability of initiating a request is 0.5 at the beginning
of Di, and the request is not released until Di ends. For
each following test, we will run 20 times to cancel out the
randomness generated by surgeon’s behavior.

1) Safety Property: Along the 1200-second surgery, we
collected the states of all the virtual medical devices to check
whether hazards happened or not. The results show that no
hazards had happened in any circumstances, which validates
the safety property of VirLoop. Due to space limit, we only
show one system state diagram (Fig. 7) between 500-510
second (disconnection) in the case of 1M placements for pulse
oximeter and O2 sensor. We can find from the figure that, no
hazards happen (refer to Section III-B for the hazard list).
Furthermore, even though laser scalpel is disconnected from
the supervisor at 500 second, it is still able to allow surgeon to
use laser, i.e., stateLaser = Emit from 502-503.2 second. This
is because laser scalpel receives from the supervisor a TMP
tmpLaser

498.72 at 498.72 second, which allows the laser scalpel to
continue operating in the ALLOWED mode till 504 second.

2) Clinical Efficiency: Fig. 8 shows the clinical efficiency
diagram in different settings. As we can see, the clinical
efficiency decreases as the link quality becomes worse, i.e., the
placement changes from 1M to 5M W. Because the supervisor
conservatively uses the worst-case prediction to estimate future
SpO2 and CO2 values, more severe message loss leads the
supervisor to underestimate the real SpO2 and CO2 values
more frequently, and give less time for the laser scalpel to

operate in ALLOWED mode. However, under the moderate
message loss condition, i.e., links2o=3M and links2p=3M,
VirLoop still achieves comparable efficiency value (24.20%)
in contrast with the best case scenario where links2o=1M and
links2p=1M (29.20%). This result proves VirLoop’s capability
of tolerating message loss.

3) Average Response Time: Response time affects the sur-
geon’s experience and clinical efficiency. Fig. 9 plots the
results of average response time for VirLoop and NASS when
links2p and links2o vary. In the figure, NASS 200 and NASS
400 refer to the NASS framework with cycle length equal to
200ms and 400ms, respectively. Besides, mode vector length
is set to a large value 20 for NASS 200 and NASS 400 to
eliminate the impact of vector length. We can see that VirLoop
has much shorter response time compared to NASS. This
difference is mainly due to the periodic interaction mechanism
used by NASS. In NASS, supervisor’s response to device state
change has to be deferred to the next cycle, resulting in longer
delay, no matter how long the cycle length is. However, no
such delay is posed by VirLoop. In fact, the response delays
in NASS 200 and 400 are 5-10 times of that of VirLoop, in
our experimental cases.

4) Communication Cost: As NASS needs periodic message
exchange between the supervisor and medical devices, we
can easily determine the total message number for the cases
of NASS 200 and 400. To be specific, in each cycle, there
are 8 messages exchanged. So in total, NASS 200 geneates
1200 ∗ 1000ms

200ms ∗ 8 = 48000 messages within the 1200-second
surgery. Similarly, we can figure out the total message number
for NASS 400, that is, 1200∗ 1000ms

400ms ∗8 = 24000. The results
of communication cost for VirLoop are depicted in Fig. 10. As
network condition becomes worse the total message number
decreases slightly, because worse network condition results in
less chances of control rule execution. Hence, mode/state up-
date messages are generated. In contrast with NASS, VirLoop
maintains significantly lower communication cost (around a
factor of 100 less).

VIII. CONCLUSION AND FUTURE WORK

In this paper we proposed VirLoop middleware to support
safe medical device coordination. Through VirLoop, devices
are able to discover and recognize each other, and integrate
together to enable device coordination. By using VirLoop
services, unreliable and asynchronous communication prob-
lems will not compromise patient safety. Instead, VirLoop
is able to hide the device heterogeneity and network issues,
so that device coordination logic can be much simplified.
Furthermore, VirLoop achieves high clinical efficiency and low
delay to respond user’s request, which enables its application
for time-stringent clinical scenarios. Our future work includes
investigating the impact of synchronization error on safety,
and supporting run-time joining and leaving of medical device
during device coordination.
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APPENDIX

For a monitoring device d ∈ D, suppose there are two states
stated and stated∗, and stated is no worse than stated∗, from
clinical point of view. For example, stateOxim = [SpO2 =
96%] is no worse than stateOxim = [SpO2 = 94%]. Appar-
ently, we have the following lemma.

Lemma 1. If a control rule r ∈ R is safe to be executed when
d is in stated, then r is also safe to be executed in the case
when d’s state is stated∗.

Now we check the safety property of Alg. 1.

Theorem 1. Alg. 1 makes sure that all the generated TMPs
are safe to use by delivery devices at any time.

Proof: Suppose current time is tc, and a delivery device
d receives an ACTION message from the supervisor, which
contains TMP tmpdtm . Apparently we have tm < tc. If tmpdtm
is accepted by d, the implication is that none of the TMPs
generated by the supervisor between tm and tc have been
received by d. In the following, we will prove that it is safe
for d to use tmpdtm at time tc. Three cases are possible to
happen during [tm, tc] period.

Case 1: The most recent time that the supervisor runs
Alg. 1 is tm. On the one hand, for all delivery device
di ∈ D\{d}, any TMPs accepted by di during [tm, tc] period
must be contained in T Pdi(tm). At time tm, Alg. 1 utilizes
T Pdi(tm) to calculate new TMP for d and safety is ensured
while executing control rules in the calculation. Therefore, the
resultant TMP for d is safe for d to use, no matter which TMP
is finally used by di at time tc. On the other hand, for all
monitoring device dj ∈ D\{d}, at time tm the supervisor uses
worst-case prediction to generate dj’s TSP. The real sampling
results of dj during [tm, tc] period must be no worse than
the values in the TSP. Lemma 1 implies that the generated
tmpdtm must be safe to d. In summary, regardless of the real
TMP used by di and the real sampling results of dj , tmpdtm
generated by Alg. 1 is safe for d to use.

Case 2: After tm, the supervisor runs Alg. 1 to update d’s
TMP again. Since the new TMP has not been received by d
and has not take effect, there is no need to check its safety.

Case 3: After tm, there exists a delivery device di ∈ D\{d}
whose TMP is updated by the supervisor at time th. Here,
tm < th ≤ t. Because of Equation 5 and 6, T Pd(th)
always includes th-truncation of tmpdtm , no matter whether
the supervisor generates new TMPs for d or not during (tm, t]
period. Let us denote by n tmpdi

th
the new TMP generated by

Alg. 1 for di at th. While the supervisor calculates n tmpdi
th

,
it already considers tmpdtm to check the safety of control rule
execution. Therefore, even though n tmpdi

th
will be accepted

by di during (th, tc], safety is still ensured.
To summarize the above cases, we ensure the safety when

delivery device d uses tmpdtm for its future operation. Because
of the arbitration of d and tc, we prove Theorem 1.




