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Abstract—Identifying driving anomalies is of great sig-
nificance for improving driving safety. The development of
the Internet-of-Vehicle (loV) technology has made it feasi-
ble to acquire big data from multiple vehicle sensors, and
such big data play a fundamental role in identifying driving
anomalies. Existing approaches are mainly based on either
rules or supervised learning. However, such approaches of-
ten require labeled data, which are typically not available in
big data scenarios. In addition, because driving behaviors
differ under vehicle statuses (e.g., speed and gear position),
to precisely model driving behaviors needs to fuse multiple
sources of sensor data. To address these issues, in this
paper, we propose SafeDrive, an online and status-aware
approach, which does not require labeled data. From a his-
torical dataset, SafeDrive statistically offline derives a state
graph (SG) as a behavior model. Then, SafeDrive splits the
online data stream into segments and compares each seg-
ment with the SG. SafeDrive identifies a segment that sig-
nificantly deviates from the SG as an anomaly. We evaluate
SafeDrive on a cloud-based loV platform with over 29 000
real connected vehicles. The evaluation results demon-
strate that SafeDrive is capable of identifying a variety of
driving anomalies effectively from a large-scale vehicle data
stream with an overall accuracy of 93%; such identified driv-
ing anomalies can be used to timely alert drivers to correct
their driving behaviors.

Index Terms—Anomaly, big data, data stream, driving
behavior, Internet-of-Vehicles, on-board diagnostics (OBD),
state graph (SG).
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[. INTRODUCTION

DENTIFYING abnormaldriving behaviors is known to be an
I important research focus due to its significant influence on
people’s daily life. Apart from the impact on fuel consumption
[1], driving behaviors also play a key role in transportation safety
[2]. With in-vehicle sensing and Internet-of-Vehicle (IoV) tech-
nologies, we are capable of collecting abundant driving data,
such as speed and engine parameters, from a large number of
vehicles. Such data are characterized as large volume, multi-
frequency, and multisource, which largely reflect the vehicle
status and thereby are widely used to evaluate driving behav-
iors. For example, insurance companies provide a new “pay-as-
you-drive” service to customers by collecting their driving data
and judging their driving behaviors [3]. With the collected data,
fleet-operating companies regulate their drivers to behave more
properly, lowering the accidental risk and fuel consumption.

These applications have inspired previous research on iden-
tifying driving anomalies. Rule-based techniques are often
adopted to extract abnormal driving behaviors due to its sim-
plicity and high efficiency [4], [5]. Supervised-learning-based
techniques are another kind of popular solution. With predefined
abnormal patterns and manually labeled training data, a classi-
fier can be trained and further used to identify similar patterns
[6], which are marked as anomalies. Such techniques basically
require manually labeled training data, where fixed behavioral
definitions such as patterns and rules (e.g., fast acceleration)
need to be predefined.

However, the prior research cannot effectively identify ab-
normal driving behaviors for three main reasons. First, in IoV,
the volume of data is huge. They are collected from multiple
sensors and are with complicated relations, making it infeasible
to label normal and abnormal behaviors. Second, the process
of manually labeling the huge volume of the data stream can
be difficult and biased because abnormal driving behaviors can
be uncertain and human perceptions can be error-prone. Third,
whether a driving behavior is abnormal or not is heavily depen-
dent on the current vehicle status (e.g., speed and gear position).
For instance, Fig. 1 shows the relationship between acceleration
behaviors and vehicle speed statuses. It can be observed that
drivers would normally accelerate more slowly when driving at
high speed. Such behavior is a kind of contextual-status-related
behaviors. As a comparison, another behavior can be observed in
the relations between different types of data, and such behavior
is a kind of correlational-status-related behaviors.
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Fig. 1. Accelerations when driving at different speed ranges. It can be
observed that acceleration of 1"m/s> when the vehicle speed exceeds
100"km/h would be abnormal, while the same acceleration would be
normal when the speed is lower than 60"km/h.

To effectively identify driving anomalies requires consider-
ing such detailed status-related characteristics. Moreover, the
evaluation criterion for anomaly detection should be based on
objective data instead of subjective judgment. To address the
preceding issues, in this paper, we propose SafeDrive, an on-
line and status-aware approach for detecting driving anomalies.
SafeDrive does not require costly labeled data, by employing
a state graph (SG). SafeDrive fuses data on both the vehicle-
sensor level and the fleet level; such data precisely reflect the
normal driving styles. For the online detection, SafeDrive com-
pares the real-time driving data stream with the SG to detect
anomalies. SafeDrive includes novel techniques to address two
main challenges: 1) uniformly modeling a variety of vehicle
statuses represented by complex data relations; and 2) captur-
ing how people normally drive based on the modeled relations
between statuses.

In particular, SafeDrive includes an SG to model 1) contex-
tual relations between statuses of the same type of data, such as
speed, at different timings and 2) correlational relations between
statuses of different types of data, such as the vehicle revolu-
tions per minute (RPM) and gear position, at the same timing.
SafeDrive represents all the statuses as states and connected
with edges in the graph. To construct an objective driving model,
SafeDrive fuses different vehicles’ historical data together and
statistically calculates the structure of the SG. In the online set-
ting, SafeDrive identifies driving anomalies by splitting the data
stream into segments and comparing each segment with the SG.
SafeDrive considers as abnormal those segments that largely
deviate from the SG.

We implement SafeDrive on a real-world cloud-based IoV
platform, which connects over 29 000 vehicles from 60 cities.
Each vehicle is equipped with an on-board diagnostics (OBD)
connector to collect the vehicle’s parameter values and send the
data to the server through the mobile wireless network. The eval-
uation results demonstrate that SafeDrive is able to effectively
identify driving anomalies including aggressive acceleration,
sudden braking, fast turn, and even mismatching of RPM with
speed.

In summary, this
contributions.

1) A status-aware behavior model, which is able to com-
bine multisensor data of different vehicles, to characterize
normal driving behaviors quantitatively.

2) A lightweight online anomaly detector for detecting a
variety of abnormal driving behaviors from large-scale
vehicle data.

3) An implementation of SafeDrive upon a large-scale
cloud-based IoV platform, and an evaluation of SafeDrive
with a huge volume of real-world driving data.

The remainder of this paper is organized as follows. Section II
summarizes related work. Section III presents an overview of the
proposed SafeDrive approach. Section IV illustrates SafeDrive’s
online detection of driving anomalies. Section V presents our
evaluation of SafeDrive. Section VI concludes this paper.

paper makes the following main

[I. RELATED WORK

Safe driving is one of the major public concerns, and iden-
tifying abnormal driving behaviors is an indispensable part of
improving driving safety [2], [7]. In recent years, various tech-
niques have been proposed to detect driving anomalies.

Rule-based techniques employ thresholds to filter out data of
specific ranges and mark these data as driving events. These
techniques are often adopted in previous work as system so-
lutions and basic behavior-evaluation mechanisms due to their
simplicity and efficiency [4], [5]. For example, using sensor
data collected from smartphones, Zhao et al. [8] detect ag-
gressive driving events based on thresholds. To detect drunk
driving, Dai et al. [9] propose a pattern-matching algorithm that
compares acceleration with predefined drunk driving thresh-
olds. Fazeen et al. [10] combine rule-based behavior analysis
with road-condition evaluation to construct a smartphone-based
safe driving system. Moreover, Taha and Nasser [11] propose
a threshold-based framework to evaluate the driving behaviors
from controller area network (CAN-bus) data collected by OBD
connectors.

Supervised-learning-based techniques are another kind of
widely adopted techniques. By using labeled data, a classifier
can be trained and further used to predict unlabeled data. Specif-
ically, Chen et al. [4] propose a classifier based on a support
vector machine (SVM) to recognize abnormal driving styles,
such as swerving and fast U-turn, from smartphone sensors in
real time. Quintero et al. [12] propose a technique based on an
artificial neural network to detect erratic driving from OBD and
GPS data, and the model is evaluated on a driving simulator.
Hong et al. [6] propose a technique of data fusion by combin-
ing accelerometer data with OBD data and using a naive Bayes
classifier to identify aggressive driving behaviors. Jaramillo and
Narvez [13] propose an online monitoring system based on a
fuzzy clustering algorithm.

In addition, Johnson and Trivedi [14] use dynamic time warp-
ing to detect aggressive driving using smartphone sensor data.
Li et al. [15] construct a driving analysis system via operation-
mode classification. Miyajima et al. [19] propose a Gaussian
mixture model to model driving behaviors and further to iden-
tify drivers. As foundational research, Constantinescu et al. [17]
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Fig. 2. Overview of SafeDrive.

investigate driving-style categories with a clustering algorithm.
Bolovinou et al. [16] survey techniques of driving-style recog-
nition for cooperative driving. Banerjee et al. [22] propose an
algorithm named skill-aggression-quantifier (SAQ) to evaluate
driving behaviors. They also implement a tool named MyDrive
based on the SAQ algorithm. Lei [23] designs a framework to
detect anomalies in trajectory behaviors, which can be consid-
ered as another kind of driving behaviors. There are also various
other techniques [20], [21] in this research area.

In summary, although there exist various previous tech-
niques [24]-[26] of unsupervised or semisupervised anomaly
detection, in driving-analysis scenarios, previous work is mainly
based on the definition of driving behaviors, such as rules or
patterns. To identify a specific type of driving anomalies, it is
usually necessary to define anomaly patterns and prepare la-
beled data first. However, in a real-world IoV scenario, such
labeled data are not available because the data are collected
automatically, and thus, manually labeling driving styles is not
applicable. In addition, driving behaviors are status aware, and
the behavioral model should be able to reflect detailed char-
acteristics of driving. Therefore, based on an IoV system and
the huge volume of collected data, in this paper, we propose
SafeDrive, an online, data-driven, and status-aware approach
for driving-anomaly detection.

I1l. OVERVIEW OF SafeDrive

Modeling of driving behaviors plays a fundamental role for
detecting driving anomalies but is quite challenging. As stated
earlier, to detect driving anomalies, a behavioral model should
be able to 1) cover variable relationships of driving data and
2) reflect driving styles quantifiably. From the data perspective,
the model should reflect the relationships of different types of
data and their patterns. To that end, we propose an SG-based
behavioral model, as discussed in detail in this section.

The overview of SafeDrive is shown in Fig. 2. The model
contains two main parts: the offline building of a driving be-
havioral model and the online detection of driving anomalies.
Overall, we use the model built offline based on the historical
data to online identify the newly arrived data stream.

A. Offline Building of a Driving Behavioral Model

Our basic idea is to uniformly model the status relations of
streamed vehicle data in a weighted SG, in which the state
is a term used to represent the value (or its range) of data
attributes. Specifically, we adopt discrete states to quantify status
(data values) and employ weighted edges (connections between
states) to measure the relationship between states. The states
are generated from different sensor data and connected with
each other via weighted edges, in which manner the model can
combine multiple data, even those with different frequencies.
The structure of the graph is constructed based on statistics of
the historical data; as a result, the graph becomes a detailed be-
havioral model for fusing different vehicles’ data. In this way,
the graph structure can objectively reflect how people usually
drive under different conditions or statuses since the weights are
generated from real-world data. The formal definition of an SG
is given in Definition 1.

Definition 1 (SG): An SG =< S, E > is a weighted directed
graph, where S is a set of states and £ is a set of weighted
edges. A weighted edge e € E corresponds to a kind of relation
between states, where weight w € (0, 1.

B. Online Anomaly Detection

In many cloud-based applications, the collected driving data
are often organized as a stream or data sequence where each
data instance contains different attributes. The stream, as stated
earlier, reflects driving behaviors (related to contextual and
correlational statuses) where anomalies may occur. To detect
anomalies online, we first split the newly arrived data instances
in data stream into segments and then map each segment as a
temporal subgraph (TS-SG), which is further evaluated by being
compared with the offline-generated SG model. The subgraph
(or segment) that significantly deviates from the SG model is
considered as an anomaly. The formal definition of a temporal
subgraph is given in Definition 2.

Definition 2 (TS-SG): A TS-SG = < S§*, E* > is a temporal
subgraph of an SG, generated by a data subsequence, where
S* € Sand E* € E. A specific state may repeatedly, with dif-
ferent time stamps, appear in a TS-SG.

Formally, in SafeDrive, a state s € .S represents a category or
a set of data instances. For numerical data, states can be acquired
by discretization, while for categorical data, the category itself
can be used as a state. In our evaluation (described in Section V),
for example, the vehicle speed is generated into 100 states, each
of which covers a speed range of +1 km/h. Acceleration and de-
celeration behaviors can be reflected by the transitions between
those speed states. Therefore, the abnormal level of acceleration
behaviors can be evaluated by the connection weight from speed
states with a smaller value to states with higher values. We re-
gard the edge between the same type of states as the contextual
edge, which models the contextual driving behaviors reflected
by the same kind of OBD data parameters. Note that for nu-
merical data attributes, a potential risk of discretization is state
explosion: a huge number of states might be generated and thus
cause an extremely large graph. However, in most of the real-
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world cases, only a limited scope of ranges or data sources are
used in practice, largely limiting the scale of the graph.

In SafeDrive, different parameters are separately generated
into different types of states. The co-occurrence relations be-
tween different types of data reflect the correlational-state-
related behaviors. For instance, the speed has a correlation with
RPM, e.g., ahigh RPM value usually implies high vehicle speed.
To strengthen the expression ability of SafeDrive, we use corre-
lational weighted edges to represent the co-occurrence relation-
ships between different types of states. As a result, two kinds of
edges are enclosed in the SG, i.e., contextual edges and correla-
tional edges. Fig. 3 illustrates an abstract example of a SG with
two types of states, S* and S°. Note that in SafeDrive, the SG
may contain cycles since the data in a stream can be repeatable.

As discussed earlier, the SG behavioral model is built by two
steps: state generation and graph construction. The first step
uses discretization to transfer data ranges of OBD parameters
into states, while the second step scans the historical dataset sta-
tistically, from which the edges between states and their weights
are derived and calculated. The value of the weight of a contex-
tual edge is computed by (1), where ¢ is a time stamp referring
to the relative temporal relationship between states. The value
of connection weight denotes the conditional probability of sy
appearing at time (¢ 4+ 1) when s, appears at ¢

w(s1,s2) = p(sa(t+1)s1(2)). )

For a correlational relationship between two different types
of states s* and s”, with the objective of presenting a detailed
reflection of the correlation, we implement it with two condi-
tional edges separately, i.e., from s to s* and from s’ to s°.
Their weights can be calculated according to (2). As can been
seen in (2), the values of connection weights denote the proba-
bility of s appearing at time ¢ given the condition of s¢ appears
at ¢, and the probability of s appearing at time ¢ given the
condition of s” appears at t. Note that the correlational edges
between 5% and s” are asymmetric since w(s®, s”) is usually not
equal to w(s’, s*)

w(s®, s") = p(s" (B)]s" (1))
w(s’, ") = p(s* (t)]s"(1)). @

The finally realized model includes 308 states: 100 states for
driving speed from 0 to 200 km/h, 100 states for engine RPM
from 0 to 5000, 100 states for swing angle from 0° to 360°, and
the remaining eight states for gear positions.

Building an SG model that combines different types of data
makes it feasible to model a variety of driving behaviors. For

example, the speed states and their connections reflect accelera-
tion and deceleration behaviors, while the connections between
states of speed and gear position reflect the combined control
behaviors of vehicle speed and gear position.

IV. ONLINE ABNORMAL DETECTION WITH SafeDrive

Typically, we evaluate driving behaviors for each short period
of time. To that end, after the SG is built, we use it to measure the
online stream data. As shown in Fig. 2, the stream is split into
segments, each of which is a behavior unit and being mapped to
a TS-SG. The segmentation length is based on the time duration
for completing a behavior. Our empirical investigation suggests
that an interval of 10-15 s is suitable to represent a driving
behavior.

Unlike other subgraphs, a TS-SG contains contextual infor-
mation of data stream. In such a graph, a state is allowed to
appear repeatedly given that specific data are likely to be gen-
erated repeatedly. For example, when driving in a stable status,
many of the sampled speed data in the uploading stream might
be the same; hence, the TS-SG may contain some recurring
states with different time stamps.

The states of TS-SG are generated in the same way that the
states of the SG are generated. The edges in TS-SG also have
weight values assigned according to their counterpart edges in
the original SG. For example, if there is an edge from s to s” in
a TS-SG, then its weight value equals to the value of w(s”, s*)
in the SG. Specifically, if no such edge exists in the SG, the
graph would be updated by SafeDrive automatically

f(TS—SG):% > w(sis) 3)

5i,5;€59"

After the TS-SG of each segment is generated, according to
(3), we compute an anomaly score for the subgraph TS-SG,
marked as f(TS-SG). Given that the aim of the score is to filter
out those state connections with low probabilities, we hereby
employ an inverse proportional function to construct f(TS-SG).
In this manner, we are able to amplify low probabilities and filter
them out. Note that m is the number of edges in the subgraph.
Basically, we consider the TS-SG with low-probability edges,
which usually cause a high value of f(TS-SG), as an anomaly.
The score is compared with 4, a threshold defined manually. If
f(TS-SG) > ¢, then the subgraph is marked as an anomaly. In
practice, it is suggested to choose the threshold ¢ according to
the distribution of score f(TS-SG).

Fig. 4 shows two abstract examples of the subgraph with dif-
ferent types of anomalies caused by contextual and correlational
relationships, respectively. In real-world driving scenarios,
contextual and correlational driving anomalies may occur si-
multaneously because the data are generated by vehicle compo-
nents closely working together, and a specific abnormal driving
behavior or operation may cause various anomalies.

By analyzing the structure of the abnormal TS-SG and
evaluating which kind of edge causes a high score value,
data analysts are able to understand the detailed reason for
this anomaly. For example, if the cause of high f(TS-SG) is
vehicle-speed state transition, it signifies that the driver be-
haves not so well in accelerating or decelerating. While if
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Fig. 4. Temporal subgraph that contains an anomaly, where a red-
dashed line represents an abnormal connection with low probability.
(a) Contextual anomaly. (b) Correlational anomaly.

Algorithm 1: Online Anomaly Detection Algorithm.
Input: (1) DS;(2) SG.
Output: (1) Anomaly.
1: SegmentSet — Split{DS}
2: //split the data sequence into segments
3: for each Segment Seg in SegmentSet do
4: TS-SG «— Match{Seg, SG}
5 matching the Seg with SG, generate a 7S-SG
6: calculate f(T'S — SG)
7: if (f(TS —SG) > )
8.
9:

: Output Seg and 7S-SG as an anomaly
end for

RPM states cause the high score, it signifies that the driver
does not take a smooth control of accelerator pedal or gear po-
sition, suggesting that the driver drives either aggressively or
unskillfully.

Note that due to the limitation of historical data, change of en-
vironment, or people’s driving styles, the structure of the graph
may need to be able to evolve over time. Such a characteristic is
known as concept drift in anomaly detection for streaming data
[18]. In this scenario, for example, given two states, s; and s;,
when measured in different times, w(s;, s;) could be different.
As a result, the abnormal level of sequence s;, s; changes over
time. Failing to sense or account for such change could lower the
performance of the detector by causing many false alarms. We
address this problem by designing a module in the cloud named
SG-Maintainer to maintain and update the SG. In practice, the
SG-Maintainer maintains an array that records the connection
number between states. It updates the array when each data ar-
rives and then periodically calculates the connection weights of
the SG according to the array.

Given a data sequence DS, the online detection is described
in Algorithm 1.

V. EVALUATION

We comprehensively evaluate the effectiveness and efficiency
of SafeDrive. In this section, we first present the data description
used in the evaluation, followed by a detailed category analysis
of the detected abnormal driving behaviors. We quantitatively

TABLE |
DATA SPECIFICATION

Name Type Range Description

Speed Numerical 0-200 km/h Vehicle speed

RPM Numerical 0-8000 Engine round per minute
Swerving Numerical 0-270° The change of vehicle direction
Gear position Enum Eight positions Gear position

evaluate the detection accuracy and computational performance
of SafeDrive and compare SafeDrive with other related
approaches.

A. System and Data Description

We evaluate the performance of SafeDrive on a real-world
IoV system. The system is designed as a cloud-based IoV archi-
tecture, in which driving data are collected with OBD devices
plugged in the vehicles. Each OBD device has integrated a wire-
less communication module to maintain connections with the
back-end server and send the collected data to the server with
an adjustable time interval. Over 29 000 real vehicles from 60
cities have been connected to the system. This system collects
around 0.2 billion data instances daily.

Table I lists the details of the data attributes used in the eval-
uation, including speed, RPM, swerve angle, and gear position.
The OBD connector is capable of sampling various attributes
from vehicles, such as the door status or brake pedal status, and
we are aware that employing more parameters may improve the
analysis performance. However, due to the fact that different
vehicle manufacturers use different CAN-Bus protocols, it is
not easy to collect all the parameters from all the vehicles in the
fleet. Hence, to assure the applicability of the learned model,
we construct it based on attributes that could be collected from
almost any kind of vehicles. Also, such attributes are considered
as directly influenced by driving behaviors, and they can reflect
driving behaviors to a large extent. We use these attributes to
evaluate the lateral and longitudinal dynamic of a vehicle. Note
that the swerve angle is not directly collected but is calculated
based on position data collected from the GPS module embed-
ded in the OBD connector.

The vehicles in this system belong to a chauffeur company
and the drivers are hired after a strict selection, most of whom
are experienced and well trained. Thus, we assume that the
behaviors of most of the drivers, under most of the situations,
are normal. Therefore, it makes sense to use the SG generated in
this system as a benchmark for evaluating abnormal driving. In
the training phase, the data collected in the first month are used
to construct the graph, and then, the generated SG is deployed
to analyze the data of subsequent months.

However, note that in other driving scenarios, it is possi-
ble that SafeDrive may ignore some unsafe driving styles if
many drivers perform unsafe behaviors habitually. For exam-
ple, according to a report [27], nearly 35% American drivers
are aggressive. Therefore, some aggressive driving styles might
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be identified as normal by our learned model. In such a situa-
tion, the training data should be collected in a manner such that
the training data represent only nonaggressive driving styles.
Hence, it is suggested to collect the training data with selected
drivers driving under safe instructions.

SafeDrive is initially implemented as a cloud service because
the infrastructure of the system is designed and implemented
with the cloud so that data can be collected. Therefore, the
analysis of driving behaviors is conducted in the cloud. However,
it is known that driving alert is safety critical and the application
may suffer from network delay; thus, to acquire a faster reaction,
the model is further implemented into a smartphone application.
The smartphone is supposed to be in the vehicle and maintains
communication with the OBD connector to sample data in a
higher frequency, and with the cloud to update its model. In this
manner, the back-end server takes charge of collecting driving
data from the fleet and updating the SG model, which is updated
to the smartphone application periodically.

The system is running on a cluster with 25 computation
servers, each of which is equipped with 16-GB memory and
a quad-core processor. The data stream is uploaded from each
vehicle and collected by two TCP servers. Then, the data are
loaded into a distributed data bus system. The streaming com-
puting system takes five of the servers. The information from
the cluster and application monitoring shows that the real-time
data uploaded by the vehicles are easily handled by the system,
and the CPU and memory use ratio maintains lower than 20%.
To further assess the computational cost of SafeDrive, we replay
the historical data with a much higher ratio on a personal com-
puter with quad-core Intel processor and 8-GB memory, and
the data are processed by SafeDrive implemented with Java.
The simulation result suggests that the model is able to process
millions of data instances per second on that single computer,
indicating that SafeDrive has a potential to be employed to deal
with large-scale IoV scenarios.

B. Anomaly-Category Analysis

The detection results are classified and analyzed based on
driving behavioral semantics. As previously stated, SafeDrive
calculates an anomaly score for each sequence segmentation
based on its inner data relations and then identifies anomalies
by comparing the score with a threshold. The evaluation itself
does not provide a semantic description for the detected ab-
normal behaviors. Therefore, to better understand what kind
of behaviors SafeDrive is capable of identifying, we manually
classify the results according to the structure of the abnormal
TS-SG. Table II lists the categories of abnormal driving behav-
iors identified by SafeDrive. Seven kinds of abnormal driving
behaviors can be detected.

SafeDrive is a status-aware anomaly detector in that it eval-
uates driving behaviors under a specific status. The connection
weight of the SG is actually the condition probability. The de-
tected anomalies are classified into two categories: contextual
anomalies and correlational anomalies. This classification is
based on the type of edge that causes a high value of f(TS-SG).
If a contextual edge causes a high score, then the anomaly is a

TABLE I
ABNORMAL DRIVING BEHAVIORS DETECTED BY SafeDrive

Anomaly Behavior Corresponding Anomaly in the TS-SG

Rapid Acceleration Speed states with small value connect to states with large
value and the connection weights are low.

Speed states with large value connect to states with small
value and the connection weights are low.

RPM states with large value connect to speed states with
small value and the connection weights are low.

Sudden Braking

RPM-Speed Mismatching

Over speed Speed states with extremely high value occurs. These
“rare states” often have very low connection weight With
Other states.

RPM Anomaly RPM states with extremely high value occurs (which are

rare) and have very low connection weight with
other states.
Rapid Swerving Swerving states with large value connect to speed states
with large value and the connection weights are low.
Neutral gear position states connect to speed states with
value larger than 0 km/h.

Neutral Taxiing

6000 150 . -
RPM Anomaly Rapid Acceleration
5000 | 120
_
4000 | <
E 9
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A.3000 | =
a4 O
8 60
2000 17
1000 | \..._. 30
0 0

Fig. 5. Examples of contextual driving anomalies.

contextual anomaly. If a correlational edge causes a high score,
then the anomaly is a correlational anomaly.

SafeDrive learns an unsupervised model and automatically
detects anomalies, but the detection results provide no semantic
description beyond true or false, limiting the practical use of the
system. Therefore, to provide readable warning information to
drivers, based on Table II and manual analysis, we use a rule
set to translate the detected anomalies into their corresponding
semantic explanations. For example, a rapid acceleration warn-
ing is given if an anomaly is caused by the transition from a
speed state with a small value to a speed state with a large value.
This section provides a number of anomaly examples and dis-
cusses how they are detected. Note that the horizontal axis in
Figs. 5 and 7 (for showing the anomaly examples) represents
the relative index of the data instances, reflecting their temporal
relationships in the stream.

1) Contextual Abnormal Behaviors: In the uploaded data
stream, the value of RPM or speed is a behavioral attribute
and the time is a contextual attribute. Driving anomalies are
identified by evaluating the behavioral attributes under a specific
context. For driving evaluation, the behavioral attributes under
different contexts are quantified and expressed in an SG, and
hence, it is reasonable to apply this model to identify contextual
anomalies.

Fig. 5 illustrates two sequences with detected RPM and accel-
eration anomalies, as marked by the red boxes. Rapid accelera-
tion or deceleration (sudden braking) is the most straightforward
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0 . . . . : : : three kinds of correlational anomalies detected by SafeDrive,
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taxiing. SafeDrive is also able to identify correlational abnor-
Fig. 6. Connection number of each speed state. mal behaviors by jointly evaluating two or more types of data

contextual anomaly. They are detected by SafeDrive for the rea-
son that, given a current speed state, its connection weight with
a much higher speed state is small, causing a higher anomaly
score. These driving styles are considered as anomalies and are
not advocated because they could cause more fuel consumption
and increase vehicle-component wear. Most drivers usually do
not adopt such driving styles.

The RPM anomaly shown on the left-hand side of Fig. 5
suggests that the engine raves are extremely high, being unusual
and considered as an anomaly. These high values correspond to
“rare states” in the SG because the probability of incurring such
states (values) is extremely low, meaning that only a few states
are connected with those states and the edges to them have
low connection weights. As discussed earlier, the SG has 100
initialized RPM states and does not contain a value exceeding
5000. For the implementation, when these rare states occur,
they are inserted into the graph by the SG-Maintainer module
in the case of concept drift. Although they are inserted into the
graph, still these rare states do not have a close relationship
with other states. The rare RPM states with high values are
sensitive to contextual attributes, further causing them to be
identified as an anomaly. SafeDrive detects several overspeed
anomalies exceeding 150 km/h for the same reason. Fig. 6 shows
the number of connections of each speed state. It can be seen
that states of higher speed tend to have sparse connections with
other states in the graph. This sparsity characteristic is the main
reason why the anomalies are detected.

SafeDrive is able to detect this kind of driving anomalies,
whereas other previous approaches have to rely on a compre-
hensive rule set to accomplish such detection. Still, future work,
such as introducing information of location and road network
into SafeDrive, is required to improve detection of anomalies
such as over speed, because the dangerous level of such anoma-
lies varies depending on the specific road condition.

2) Correlational Abnormal Behaviors: Correlational
behaviors exist between coevolving or correlational sequences,
such as (speed, RPM) and (speed, gear position). A correlational
anomaly can be detected when the data deviate the relationships
between the data sequences. As listed in Table II, there are

attributes.

A representative correlational driving anomaly in this appli-
cation is rapid swerving, which could be identified by speed and
swerving angle. For swerving data, due to a high possibility of
making a turn for a vehicle running on an urban road network,
the extent of swerving angle change by itself would not provide
much value in anomaly detection. But by combining such infor-
mation with vehicle speed, SafeDrive can detect a rapid serving
anomaly.

Fig. 7 shows examples of detected RPM-speed mismatching
and rapid swerving anomalies. It can be seen from the mis-
matching anomaly that the vehicle RPM is too high for the
corresponding vehicle speed. RPM-speed mismatching occurs
when the vehicle speed is low and the driver pushes the gas
pedal aggressively. Fast acceleration usually happens with this
behavior; however, depending on specific road conditions or
gear positions, the vehicle speed does not always dramatically
increase, causing this RPM-speed mismatching. For the rapid
swerving anomaly, the vehicle continuously takes two turns;
before that, the vehicle was running at a fast speed of nearly
100 km/h. Although the driver slows down the vehicle in ad-
vance, the speed is still too fast for turning over 100°. In the SG
model, most of the high-speed states are connected with lower
swerve angle states, causing SafeDrive to identify those fast turn
anomalies.

For a neutral taxiing anomaly, the gear is put in a neutral
position, while the vehicle is still running at a relatively high
speed. Such an anomaly is another representative correlational
driving anomaly that can be detected by SafeDrive. This behav-
ior usually occurs on the downhill path or straight road when
the vehicle speed is high. Some drivers’ driving exhibits such
behavior because they think it is a fuel-efficient way of driving.
But, in fact, neutral taxiing is not fuel efficient for most of the
automatic transmission vehicles, and it could also be dangerous
because it increases the braking distance when danger happens.
This behavior can hardly be detected only by speed data; how-
ever, by combining speed data with gear position, the detection
would be much easier. In the SG model, the gear position states
with higher values tend to connect with vehicle speed states
with higher value, while normally neutral position states only
connect with the speed states with values lower than 10 km/h.
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Fig. 8.  FPR under different threshold values.

In the evaluation, note that some abnormal behaviors, such
as fast acceleration and RPM anomalies, could occur simul-
taneously because the data are generated by highly correlated
vehicle components. Due to the complexity of driving environ-
ments, some behaviors could also occur alone.

C. Quantitative Evaluation

To understand the applicability of SafeDrive, we manually
analyze the detection results of an arbitrarily chosen week. Fig. 8
shows the false positive rate (FPR) evaluation of the model on
detecting contextual and correlational anomalies under different
score threshold §. FPR is the probability that a normal behavior
being detected as abnormal. A long tail effect can be observed
from the curves as the FPR decreases fast with the increase
of threshold §. When setting a smaller threshold §, many false
alarms would be raised by SafeDrive due to the fact that most of
the behaviors are normal with alow score. As shown in the curve,
when the threshold is relatively small, the FPR of correlational
anomaly detection is lower than contextual anomaly detection.
Such a result shows that the discrimination between normal and
abnormal correlational behavior is higher than that of contextual
behavior.

The trend of the FPR curve with threshold also shows the
distribution characteristic of the anomaly score. Therefore, in
practice, it is suggested to set the threshold according to sta-
tistical principles. For example, let 6 > u + 30, where p is the
mean value of anomaly score and o is the standard deviation of
the score.

Many industrial solutions use rule-based techniques to ad-
dress the problem of driving-behavior detection. Therefore, in
our evaluation, we first compare the performance of SafeDrive
with a rule-based approach, which is frequently being used as
an industrial solution. In the rule-based approach, the used rule
set contains a number of rules that define the outlier threshold
such as acceleration > 1.5m/s”.

Fig. 9 shows the recall evaluation and the comparison with
the rule-based approach. The speed anomaly in the figure refers
to fast acceleration, deceleration, and overspeed. In the evalua-
tion, it is found that the rule-based approach may have ignored
anomalies in several specific situations, such as the fast acceler-

Fig. 9. Recall evaluation for different types of anomalies.

TABLE Il
PRECISION OF HMM-BASED DETECTOR AND SafeDrive

Model Contextual ~ Correlational ~ Average Precision
SafeDrive 94.0% 92.0% 93.0%
HMM 90.0% 88.0% 89.0%
HMM 85.0% 84.0% 84.5%

ation when driving at a high speed requiring a smaller threshold
for the rules, and also the swerving anomaly, which might need
a more comprehensive rule set. It might be possible to build
a comprehensive rule set to perform much better. However, in
some cases, such as driving monitoring, it might be hard to build
such a reasonable rule set manually because the data might have
many attributes and have complex relationships with each other.
SafeDrive fills this gap by automatically extracting complex re-
lationships from the data set and representing such relationships
with an SG model.

Recent research uses the hidden Markov model (HMM) and
the SVM to detect driving anomalies. Thus, we further compare
SafeDrive with an HMM-based detector and an SVM-based
detector. As shown in Table III, with our dataset, SafeDrive
outperforms both SVM-based and HMM-based detectors in the
detection accuracy. Given that the dataset of SafeDrive is too
huge to label them all, to train the model, parts of the training
data are labeled as a training data set for the HMM and the SVM.
The testing result is even lower than 86%. The performance is
improved as we increase the labeled training set. However, in
IoV scenarios, it is hard to prepare sufficient labeled data to train
the model because the collected data volume is too huge to label.
Our SafeDrive approach outperforms those popular supervised
algorithms because SafeDrive does not require labeled data, and
thus, it can largely utilize the huge training set to improve the
performance. It is believed that supervised learning algorithms
can also produce a better result, but the high cost in large-scale
industrial scenarios might not be desirable.

By fusing different data in an SG, SafeDrive is able to detect
detailed anomalies from streamed driving data. However, the
fusion of multiple data in one model may also have negative ef-
fects. As the results suggest, the combination may cover several
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anomalies because the data may interfere with each other and
thus lower the sensitivity of the model. In practice, for different
data attributes, it is suggested to do a correlation analysis for
different data attributes and to regulate the SG by removing the
connections between attributes with no obvious correlations.

Compared with other approaches, SafeDrive has several main
advantages. First, it uses an SG to represent normal driving be-
havior. The graph is derived from a large dataset, and thus, this
metric is more objective. Second, SafeDrive does not require
labeled data to train the detector. Such a factor is important for
IoV scenarios because labeled abnormal data are often hard to
acquire. Third, the SG can be updated with new data arriving,
making SafeDrive sensitive and adaptive to the change of the
environment. Finally, SafeDrive has low computation cost. Its
major cost is matching the newly arrived data as a temporal sub-
graph, and such matching can be very efficiently implemented
by indexing. These advantages make SafeDrive applicable for
large-scale IoV scenarios.

However, SafeDrive also has its limitations as driving is not
only status aware but also environment aware. Since driving
behaviors are affected by many environment factors such as
traffic and road conditions, and they can be also affected by
other drivers’ behaviors. Therefore, several detected unsafe be-
haviors may actually correspond to safe behaviors depending
on specific environments. For example, a hard brake to avoid
a collision may be considered as safe behaviors when the ve-
hicle driving in the front suddenly brakes or there are some
obstacles on the way. Unfortunately, this problem can hardly
be solved solely with vehicle data. Other data types such as
video or radar data should be introduced to sense environment
conditions. In fact, part of our ongoing work is to develop a
mobile-phone-based application to collect and analyze driving
video and g-sensor data, aiming at extracting information about
road conditions and thus to enhance the detection of traffic con-
ditions from driving video data. But, for the time being, this
application has not been widely deployed. Nevertheless, to con-
struct a comprehensive driving sensing platform, it is necessary
to fuse different types of driving data. Such direction is becom-
ing an important research trend. Another potential limitation
of this work could be not taking personal characteristics into
consideration. This model addresses the problem of the driver’s
behavior evolution in general but does not consider the change
of personal behaviors as one might change his or her driving
style over time. The personalized behavioral analysis should be
carefully addressed because a driver may have a habitual bad
driving behavior, which might be inappropriately considered as
normal and thus be ignored in our solution.

VI. CONCLUSION

We have proposed an online, unsupervised, and status-aware
approach, named SafeDrive, to detect abnormal driving behav-
iors from large-scale vehicle data. Compared with other ap-
proaches, SafeDrive uses normal behaviors, which are repre-
sented by an SG extracted from a large dataset, as benchmarks
for identifying abnormal behaviors. The real-time-uploaded
driving data stream is split into segments by SafeDrive and each

segment is mapped as a TS-SG, which is further compared with
the SG. A real-world IoV system with over 29 000 real vehicles
connected is used to evaluate the performance of SafeDrive.
The results suggest that our model performs well in detecting
various driving anomalies without using labeled training data.
The computational cost of SafeDrive is very low, and a single
PC is capable of dealing with millions of data instances per
second, enabling SafeDrive as an ideal option to detect driving
anomalies from large-scale vehicle data. Still, future work on
analyzing driving behavior patterns by fusing vehicle data and
video, and even road network, needs to be conducted to provide
comprehensive understanding of driving behaviors.
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