
The Limitations of Deep Learning
in Adversarial Settings

Nicolas Papernot∗, Patrick McDaniel∗, Somesh Jha†, Matt Fredrikson‡, Z. Berkay Celik∗, Ananthram Swami§
∗Department of Computer Science and Engineering, Penn State University
†Computer Sciences Department, University of Wisconsin-Madison

‡School of Computer Science, Carnegie Mellon University
§United States Army Research Laboratory, Adelphi, Maryland

{ngp5056,mcdaniel}@cse.psu.edu, {jha,mfredrik}@cs.wisc.edu, zbc102@cse.psu.edu, ananthram.swami.civ@mail.mil

Accepted to the 1st IEEE European Symposium on Security & Privacy, IEEE 2016. Saarbrucken, Germany.

Abstract—Deep learning takes advantage of large datasets
and computationally efficient training algorithms to outperform
other approaches at various machine learning tasks. However,
imperfections in the training phase of deep neural networks
make them vulnerable to adversarial samples: inputs crafted by
adversaries with the intent of causing deep neural networks to
misclassify. In this work, we formalize the space of adversaries
against deep neural networks (DNNs) and introduce a novel class
of algorithms to craft adversarial samples based on a precise
understanding of the mapping between inputs and outputs of
DNNs. In an application to computer vision, we show that our
algorithms can reliably produce samples correctly classified by
human subjects but misclassified in specific targets by a DNN
with a 97% adversarial success rate while only modifying on
average 4.02% of the input features per sample. We then evaluate
the vulnerability of different sample classes to adversarial per-
turbations by defining a hardness measure. Finally, we describe
preliminary work outlining defenses against adversarial samples
by defining a predictive measure of distance between a benign
input and a target classification.

I. INTRODUCTION

Large neural networks, recast as deep neural networks
(DNNs) in the mid 2000s, altered the machine learning land-
scape by outperforming other approaches in many tasks. This
was made possible by advances that reduced the computational
complexity of training [20]. For instance, Deep learning (DL)
can now take advantage of large datasets to achieve accuracy
rates higher than previous classification techniques. In short,
DL is transforming computational processing of complex data
in many domains such as vision [24], [37], speech recogni-
tion [15], [32], [33], language processing [13], financial fraud
detection [23], and recently malware detection [14].

This increasing use of deep learning is creating incentives
for adversaries to manipulate DNNs to force misclassification
of inputs. For instance, applications of deep learning use
image classifiers to distinguish inappropriate from appropriate
content, and text and image classifiers to differentiate between
SPAM and non-SPAM email. An adversary able to craft mis-
classified inputs would profit from evading detection–indeed
such attacks occur today on non-DL classification systems [6],
[7], [22]. In the physical domain, consider a driverless car
system that uses DL to identify traffic signs [12]. If slightly
altering “STOP” signs causes DNNs to misclassify them, the
car would not stop, thus subverting the car’s safety.

0 1 2 3 4 5 6 7 8 9
Output classification

9

8

7

6

 5

 4

3

 2

 1

0

In
pu

t c
la

ss

Fig. 1: Adversarial sample generation - Distortion is added
to input samples to force the DNN to output adversary-
selected classification (min distortion = 0.26%, max distortion
= 13.78%, and average distortion ε = 4.06%).

An adversarial sample is an input crafted to cause deep
learning algorithms to misclassify. Note that adversarial sam-
ples are created at test time, after the DNN has been trained by
the defender, and do not require any alteration of the training
process. Figure 1 shows examples of adversarial samples taken
from our validation experiments. It shows how an image
originally showing a digit can be altered to force a DNN to
classify it as another digit. Adversarial samples are created
from benign samples by adding distortions exploiting the
imperfect generalization learned by DNNs from finite training
sets [4], and the underlying linearity of most components used
to build DNNs [18]. Previous work explored DNN properties
that could be used to craft adversarial samples [18], [30], [36].
Simply put, these techniques exploit gradients computed by
network training algorithms: instead of using these gradients
to update network parameters as would normally be done,
gradients are used to update the original input itself, which
is subsequently misclassified by DNNs.

ar
X

iv
:1

51
1.

07
52

8v
1

 [
cs

.C
R

]
 2

4
N

ov
 2

01
5

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

In this paper, we describe a new class of algorithms for
adversarial sample creation against any feedforward (acyclic)
DNN [31] and formalize the threat model space of deep
learning with respect to the integrity of output classification.
Unlike previous approaches mentioned above, we compute
a direct mapping from the input to the output to achieve
an explicit adversarial goal. Furthermore, our approach only
alters a (frequently small) fraction of input features leading
to reduced perturbation of the source inputs. It also enables
adversaries to apply heuristic searches to find perturbations
leading to input targeted misclassifications (perturbing inputs
to result in a specific output classification).

More formally, a DNN models a multidimensional function
F : X 7→ Y where X is a (raw) feature vector and Y is an
output vector. We construct an adversarial sample X∗ from a
benign sample X by adding a perturbation vector δX solving
the following optimization problem:

arg min
δX
‖δX‖ s.t. F

(
X + δX

)
= Y∗ (1)

where X∗ = X + δX is the adversarial sample, Y∗ is the
desired adversarial output, and ‖ · ‖ is a norm appropriate to
compare the DNN inputs. Solving this problem is non-trivial,
as properties of DNNs make it non-linear and non-convex [25].
Thus, we craft adversarial samples by constructing a mapping
from input perturbations to output variations. Note that all
research mentioned above took the opposite approach: it used
output variations to find corresponding input perturbations.
Our understanding of how changes made to inputs affect
a DNN’s output stems from the evaluation of the forward
derivative: a matrix we introduce and define as the Jacobian
of the function learned by the DNN. The forward derivative is
used to construct adversarial saliency maps indicating input
features to include in perturbation δX in order to produce
adversarial samples inducing a certain behavior from the DNN.

Forward derivatives approaches are much more powerful
than gradient descent techniques used in prior systems. They
are applicable to both supervised and unsupervised architec-
tures and allow adversaries to generate information for broad
families of adversarial samples. Indeed, adversarial saliency
maps are versatile tools based on the forward derivative and
designed with adversarial goals in mind, giving greater control
to adversaries with respect to the choice of perturbations. In
our work, we consider the following questions to formalize
the security of DL in adversarial settings: (1) “What is the
minimal knowledge required to perform attacks against DL?”,
(2) “How can vulnerable or resistant samples be identified?”,
and (3) “How are adversarial samples perceived by humans?”.

The adversarial sample generation algorithms are validated
using the widely studied LeNet architecture (a pioneering
DNN used for hand-written digit recognition [26]) and MNIST
dataset [27]. We show that any input sample can be perturbed
to be misclassified as any target class with 97.10% success
while perturbing on average 4.02% of the input features per
sample. The computational costs of the sample generation are
modest; samples were each generated in less than a second

in our setup. Lastly, we study the impact of our algorithmic
parameters on distortion and human perception of samples.
This paper makes the following contributions:
• We formalize the space of adversaries against classifi-

cation DNNs with respect to adversarial goal and capa-
bilities. Here, we provide a better understanding of how
attacker capabilities constrain attack strategies and goals.

• We introduce a new class of algorithms for crafting
adversarial samples solely by using knowledge of the
DNN architecture. These algorithms (1) exploit forward
derivatives that inform the learned behavior of DNNs, and
(2) build adversarial saliency maps enabling an efficient
exploration of the adversarial-samples search space.

• We validate the algorithms using a widely used computer
vision DNN. We define and measure sample distor-
tion and source-to-target hardness, and explore defenses
against adversarial samples. We conclude by studying
human perception of distorted samples.

II. TAXONOMY OF THREAT MODELS IN DEEP LEARNING

Classical threat models enumerate the goals and capabilities
of adversaries in a target domain [1]. This section taxonimizes
threat models in deep learning systems and positions several
previous works with respect to the strength of the modeled
adversary. We begin by providing an overview of deep neural
networks highlighting their inputs, outputs and function. We
then consider the taxonomy presented in Figure 2.

A. About Deep Neural Networks

Deep neural networks are large neural networks organized
into layers of neurons, corresponding to successive represen-
tations of the input data. A neuron is an individual computing
unit transmitting to other neurons the result of the application
of its activation function on its input. Neurons are connected
by links with different weights and biases characterizing the
strength between neuron pairs. Weights and biases can be
viewed as DNN parameters used for information storage.
We define a network architecture to include knowledge of
the network topology, neuron activation functions, as well as
weight and bias values. Weights and biases are determined
during training by finding values that minimize a cost function
c evaluated over the training data T . Network training is tradi-
tionally done by gradient descent using backpropagation [31].

Deep learning can be partitioned in two categories, de-
pending on whether DNNs are trained in a supervised or
unsupervised manner [29]. Supervised training leads to models
that map unseen samples using a function inferred from
labeled training data. On the contrary, unsupervised training
learns representations of unlabeled training data, and resulting
DNNs can be used to generate new samples, or to automate
feature engineering by acting as a pre-processing layer for
larger DNNs. We restrict ourselves to the problem of learning
multi-class classifiers in supervised settings. These DNNs are
given an input X and output a class probability vector Y. Note
that our work remains valid for unsupervised-trained DNNs,
and leaves a detailed study of this issue for future work.

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

Architecture
& Training Tools

F,T,c
Architecture

F

Training data
T

Oracle
X→Y

Samples
{(X,Y)}

[13] [36]

Increasing
attack difficulty

Increasing
complexity

Decreasing
knowledge

[29]

ADVERSARIAL GOALS

AD
V

E
R

S
A

R
IA

L
C

A
PA

B
IL

IT
IE

S

Fig. 2: Threat Model Taxonomy: our class of algorithms
operates in the threat model indicated by a star.

Figure 3 illustrates an example shallow feedforward neural
network.1 The network has two input neurons x1 and x2, a
hidden layer with two neurons h1 and h2, and a single output
neuron o. In other words, it is a simple multi-layer perceptron.
Both input neurons x1 and x2 take real values in [0, 1]
and correspond to the network input: a feature vector X =
(x1, x2) ∈ [0, 1]2. Hidden layer neurons each use the logistic
sigmoid function φ : x 7→ 1

1+e−x as their activation function.
This function is frequently used in neural networks because
it is continuous (and differentiable), demonstrates linear-like
behavior around 0, and saturates as the input goes to ±∞.
Neurons in the hidden layers apply the sigmoid to the weighted
input layer: for instance, neuron h1 computes h1(X) =
φ (zh1(X)) with zh1(X) = w11x1+w12x2+b1 where w11 and
w12 are weights and b1 a bias. Similarly, the output neuron
applies the sigmoid function to the weighted output of the
hidden layer where zo(X) = w31h1(X) + w32h2(X) + b3.
Weight and bias values are determined during training. Thus,
the overall behavior of the network learned during training can
be modeled as a function: F : X→ φ (zo(X)).

B. Adversarial Goals

Threats are defined with a specific function to be pro-
tected/defended. In the case of deep learning systems, the
integrity of the classification is of paramount importance.
Specifically, an adversary of a deep learning system seeks
to provide an input X∗ that results in an incorrect output
classification. The nature of the incorrectness represents the

1A shallow neural network is a small neural network that operates (albeit
at a smaller scale) identically to the DL networks considered throughout.

x1 h1

x2 h2

o

w31

w32

w11

w12

w21

w22

Fig. 3: Simplified Multi-Layer Perceptron architecture with
input X = (x1, x2), hidden layer (h1, h2), and output o.

adversarial goal, as identified in the X-axis of Figure 2.
Consider four goals that impact classifier output integrity:

1) Confidence reduction - reduce the output confidence
classification (thereby introducing class ambiguity)

2) Misclassification - alter the output classification to any
class different from the original class

3) Targeted misclassification - produce inputs that force the
output classification to be a specific target class. Contin-
uing the example illustrated in Figure 1, the adversary
would create a set of speckles classified as a digit.

4) Source/target misclassification - force the output clas-
sification of a specific input to be a specific target class.
Continuing the example from Figure 1, adversaries take
an existing image of a digit and add a small number of
speckles to classify the resulting image as another digit.

The scientific community recently started exploring adver-
sarial deep learning. Previous work on other machine learning
techniques is referenced later in Section VII.

Szegedy et al., introduced a system that generates adver-
sarial samples by perturbing inputs in a way that creates
source/target misclassifications [36]. The perturbations made
by their work, which focused on a computer vision application,
are not distinguishable by humans – for example, small
but carefully-crafted perturbations to an image of a vehicle
resulted in the DNN classifying it as an ostrich. The authors
named this modified input an adversarial image, which can
be generalized as part of a broader definition of adversarial
samples. When producing adversarial samples, the adversary’s
goal is to generate inputs that are correctly classified (or
not distinguishable) by humans or other classifiers, but are
misclassified by the targeted DNN.

Another example is due to Nguyen et al., who presented
a method for producing images that are unrecognizable to
humans, but are nonetheless labeled as recognizable objects by
DNNs [30]. For instance, they demonstrated how a DNN will
classify a noise-filled image constructed using their technique
as a television with high confidence. They named the images
produced by this method fooling images. Here, a fooling image
is one that does not have a source class but is crafted solely
to perform a targeted misclassification attack.

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

C. Adversarial Capabilities

Adversaries are defined by the information and capabilities
at their disposal. The following (and the Y-axis of Figure 2) de-
scribes a range of adversaries loosely organized by decreasing
adversarial strength (and increasing attack difficulty). Note that
we only considers attack conducted at test time, any tampering
of the training procedure is outside the scope of this paper.

Training data and network architecture - This adversary
has perfect knowledge of the neural network used for clas-
sification. The attacker has to access the training data T ,
functions and algorithms used for network training, and is
able to extract knowledge about the DNN’s architecture F.
This includes the number and type of layers, the activation
functions of neurons, as well as weight and bias matrices. He
also knows which algorithm was used to train the network,
including the associated loss function c. This is the strongest
adversary that can analyze the training data and simulate the
deep neural network in toto.

Network architecture - This adversary has knowledge of the
network architecture F and its parameter values. For instance,
this corresponds to an adversary who can collect information
about both (1) the layers and activation functions used to
design the neural network, and (2) the weights and biases
resulting from the training phase. This gives the adversary
enough information to simulate the network. Our algorithms
assume this threat model, and show a new class of algorithms
that generate adversarial samples for supervised and unsuper-
vised feedforward DNNs.

Training data - This adversary is able to collect a surrogate
dataset, sampled from the same distribution that the original
dataset used to train the DNN. However, the attacker is not
aware of the architecture used to design the neural network.
Thus, typical attacks conducted in this model would likely in-
clude training commonly deployed deep learning architectures
using the surrogate dataset to approximate the model learned
by the legitimate classifier.

Oracle - This adversary has the ability to use the neural
network (or a proxy of it) as an “oracle”. Here the adversary
can obtain output classifications from supplied inputs (much
like a chosen-plaintext attack in cryptography). This enables
differential attacks, where the adversary can observe the re-
lationship between changes in inputs and outputs (continuing
with the analogy, such as used in differential cryptanalysis)
to adaptively craft adversarial samples. This adversary can be
further parameterized by the number of absolute or rate-limited
input/output trials they may perform.

Samples - This adversary has the ability to collect pairs of
input and output related to the neural network classifier. How-
ever, he cannot modify these inputs to observe the difference
in the output. To continue the cryptanalysis analogy, this threat
model would correspond to a known plaintext attack. These
pairs are largely labeled output data, and intuition states that
they would most likely only be useful in very large quantities.

Fig. 4: The output surface of our simplified Multi-Layer
Perceptron for the input domain [0, 1]2. Blue corresponds to a
0 output while yellow corresponds to a 1 output.

III. APPROACH

In this section, we present a general algorithm for modifying
samples so that a DNN yields any adversarial output. We
later validate this algorithm by having a classifier misclassify
samples into a chosen target class. This algorithm captures
adversaries crafting samples in the setting corresponding to the
upper right-hand corner of Figure 2. We show that knowledge
of the architecture and weight parameters2 is sufficient to
derive adversarial samples against acyclic feedforward DNNs.
This requires evaluating the DNN’s forward derivative in order
to construct an adversarial saliency map that identifies the set
of input features relevant to the adversary’s goal. Perturbing
the features identified in this way quickly leads to the desired
adversarial output, for instance misclassification. Although we
describe our approach with supervised neural networks used
as classifiers, it also applies to unsupervised architectures.

A. Studying a Simple Neural Network

Recall the simple architecture introduced previously in
section II and illustrated in Figure 3. Its low dimensionality
allows us to better understand the underlying concepts behind
our algorithms. We indeed show how small input perturbations
found using the forward derivative can induce large variations
of the neural network output. Assuming that input biases b1,
b2, and b3 are null, we train this toy network to learn the
AND function: the desired output is F(X) = x1 ∧ x2 with
X = (x1, x2). Note that non-integer inputs are rounded up to
the closest integer, thus we have for instance 0.7 ∧ 0.3 = 0
or 0.8 ∧ 0.6 = 1. Using backpropagation on a set of 1,000
samples, corresponding to each case of the function (1∧1 = 1,
1 ∧ 0 = 0, 0 ∧ 1 = 0, and 0 ∧ 0 = 0), we train for 100
epochs using a learning rate η = 0.0663. The overall function
learned by the neural network is plotted on Figure 4 for input
values X ∈ [0, 1]2. The horizontal axes represent the 2 input
dimensions x1 and x2 while the vertical axis represents the
network output F(X) corresponding to X = (x1, x2).

We are now going to demonstrate how to craft adversarial
samples on this neural network. The adversary considers a
legitimate sample X, classified as F(X) = Y by the network,

2This means that the algorithm does not require knowledge of the dataset
used to train the DNN. Instead, it exploits knowledge of trained parameters.

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

X
X*

�x2

Fig. 5: Forward derivative of our simplified multi-layer per-
ceptron according to input neuron x2. Sample X is benign and
X∗ is adversarial, crafted by adding δX = (0, δx2).

and wants to craft an adversarial sample X∗ very similar to
X, but misclassified as F(X∗) = Y ∗ 6= Y . Recall, that we
formalized this problem as:

arg min
δX
‖δX‖ s.t. F

(
X + δX

)
= Y∗

where X∗ = X + δX is the adversarial sample, Y∗ is the
desired adversarial output, and ‖ · ‖ is a norm appropriate to
compare points in the input domain. Informally, the adversary
is searching for small perturbations of the input that will
incur a modification of the output into Y∗. Finding these
perturbations can be done using optimization techniques, sim-
ple heuristics, or even brute force. However such solutions
are hard to implement for deep neural networks because of
non-convexity and non-linearity [25]. Instead, we propose a
systematic approach stemming from the forward derivative.

We define the forward derivative as the Jacobian matrix of
the function F learned by the neural network during training.
For this example, the output of F is one dimensional, the
matrix is therefore reduced to a vector:

∇F(X) =

[
∂F(X)

∂x1
,
∂F(X)

∂x2

]
(2)

Both components of this vector are computable using the
adversary’s knowledge, and later we show how to compute
this term efficiently. The forward derivative for our example
network is illustrated in Figure 5, which plots the gradient
for the second component ∂F(X)

∂x2
on the vertical axis against

x1 and x2 on the horizontal axes. We omit the plot for
∂F(X)
∂x1

because F is approximately symmetric on its two
inputs, making the first component redundant for our purposes.
This plot makes it easy to visualize the divide between the
network’s two possible outputs in terms of values assigned to
the input feature x2: 0 to the left of the spike, and 1 to its
left. Notice that this aligns with Figure 4, and gives us the
information needed to achieve our adversarial goal: find input
perturbations that drive the output closer to a desired value.

Consulting Figure 5 alongside our example network, we
can confirm this intuition by looking at a few sample points.
Consider X = (1, 0.37) and X∗ = (1, 0.43), which are both
located near the spike in Figure 5. Although they only differ by
a small amount (δx2 = 0.05), they cause a significant change
in the network’s output, as F(X) = 0.11 and F(X∗) = 0.95.

Recalling that we round the inputs and outputs of this network
so that it agrees with the Boolean AND function, we see that
X* is an adversarial sample: after rounding, X∗ = (1, 0) and
F(X∗) = 1. Just as importantly, the forward derivative tells us
which input regions are unlikely to yield adversarial samples,
and are thus more immune to adversarial manipulations.
Notice in Figure 5 that when either input is close to 0, the
forward derivative is small. This aligns with our intuition that
it will be more difficult to find adversarial samples close to
(1, 0) than (1, 0.4). This tells the adversary to focus on features
corresponding to larger forward derivative values in a given
input when constructing a sample, making his search more
efficient and ultimately leading to smaller overall distortions.

The takeaways of this example are thereby: (1) small input
variations can lead to extreme variations of the output of the
neural network, (2) not all regions from the input domain are
conducive to find adversarial samples, and (3) the forward
derivative reduces the adversarial-sample search space.

B. Generalizing to Feedforward Deep Neural Networks

We now generalize this approach to any feedforward DNN,
using the same assumptions and adversary model from Sec-
tion III-A. The only assumptions we make on the architecture
are that its neurons form an acyclic DNN, and each use a dif-
ferentiable activation function. Note that this last assumption is
not limiting because the back-propagation algorithm imposes
the same requirement. In Figure 6, we give an example of
a feedforward deep neural network architecture and define
some notations used throughout the remainder of the paper.
Most importantly, the N -dimensional function F learned by
the DNN during training assigns an output Y = F(X) when
given an M -dimensional input X. We write n the number of
hidden layers. Layers are indexed by k ∈ 0..n + 1 such that
k = 0 is the index of the input layer, k ∈ 1..n corresponds to
hidden layers, and k = n+ 1 indexes the output layer.

Algorithm 1 shows our process for constructing adversarial
samples. As input, the algorithm takes a benign sample X, a
target output Y∗, an acyclic feedforward DNN F, a maximum
distortion parameter Υ, and a feature variation parameter θ.
It returns new adversarial sample X∗ such that F(X∗) = Y∗,
and proceeds in three basic steps: (1) compute the forward
derivative ∇F(X∗), (2) construct a saliency map S based on
the derivative, and (3) modify an input feature imax by θ.
This process is repeated until the network outputs Y∗ or the
maximum distortion Υ is reached. We now detail each step.

1) Forward Derivative of a Deep Neural Network: The first
step is to compute the forward derivative for the given sample
X. As introduced previously, this is given by:

∇F(X) =
∂F(X)

∂X
=

[
∂Fj(X)

∂xi

]
i∈1..M,j∈1..N

(3)

This is essentially the Jacobian of the function corresponding
to what the neural network learned during training. The
forward derivative computes gradients that are similar to those
computed for backpropagation, but with two important dis-
tinctions: we take the derivative of the network directly, rather

fei
Highlight

fei
Highlight

fei
Highlight

fei
Highlight

1

2

1

2

M

1

2

1

2

1

2

N

…

…

…

…

…

…

…

Notations
F: function learned by neural network during training
X: input of neural network
Y: output of neural network
M: input dimension (number of neurons on input layer)
N: output dimension (number of neurons on output layer)
n: number of hidden layers in neural network
f: activation function of a neuron
 : output vector of layer k neurons

Indices
k: index for layers (between 0 and n+1)
i: index for input X component (between 0 and N)
j: index for output Y component (between 0 and M)
p: index for neurons (between 0 and for any layer k)X Yn hidden layers

m1

m2
mn

Hk

mk

Fig. 6: Example architecture of a feedforward deep neural network with notations used in the paper.

Algorithm 1 Crafting adversarial samples
X is the benign sample, Y∗ is the target network output, F
is the function learned by the network during training, Υ is
the maximum distortion, and θ is the change made to features.
This algorithm is applied to a specific DNN in Algorithm 2.

Input: X, Y∗, F, Υ, θ
1: X∗ ← X
2: Γ = {1 . . . |X|}
3: while F(X∗) 6= Y∗ and ||δX|| < Υ do
4: Compute forward derivative ∇F(X∗)
5: S = saliency_map (∇F(X∗),Γ,Y∗)
6: Modify X∗imax

by θ s.t. imax = arg maxi S(X,Y∗)[i]
7: δX ← X∗ −X
8: end while
9: return X∗

than on its cost function, and we differentiate with respect to
the input features rather than the network parameters. As a
consequence, instead of propagating gradients backwards, we
choose in our approach to propagate them forward, as this
allows us to find input components that lead to significant
changes in network outputs.

Our goal is to express ∇F(X∗) in terms of X and constant
values only. To simplify our expressions, we now consider
one element (i, j) ∈ [1..M] × [1..N] of the M × N forward
derivative matrix defined in Equation 3: that is the derivative
of one output neuron Fj according to one input dimension
xi. Of course our results are true for any matrix element. We
start at the first hidden layer of the neural network. We can
differentiate the output of this first hidden layer in terms of
the input components. We then recursively differentiate each
hidden layer k ∈ 2..n in terms of the previous one:

∂Hk(X)

∂xi
=

[
∂fk,p(Wk,p ·Hk−1 + bk,p)

∂xi

]
p∈1..mk

(4)

where Hk is the output vector of hidden layer k and fk,j is
the activation function of output neuron j in layer k. Each

neuron p on a hidden or output layer indexed k ∈ 1..n+ 1 is
connected to the previous layer k − 1 using weights defined
in vector Wk,p. By defining the weight matrix accordingly,
we can define fully or sparsely connected interlayers, thus
modeling a variety of architectures. Similarly, we write bk,p
the bias for neuron p of layer k. By applying the chain rule,
we can write a series of formulae for k ∈ 2..n:

∂Hk(X)

∂xi

∣∣∣∣
p∈1..mk

=

(
Wk,p ·

∂Hk−1

∂xi

)
×

∂fk,p
∂xi

(Wk,p ·Hk−1 + bk,p) (5)

We are thus able to express ∂Hn

∂xi
. We know that output neuron

j computes the following expression:

Fj(X) = fn+1,j (Wn+1,j ·Hn + bn+1,j)

Thus, we apply the chain rule again to obtain:

∂Fj(X)

∂xi
=

(
Wn+1,j ·

∂Hn

∂xi

)
×

∂fn+1,j

∂xi
(Wn+1,j ·Hn + bn+1,j) (6)

In this formula, according to our threat model, all terms are
known but one: ∂Hn

∂xi
. This is precisely the term we computed

recursively. By plugging these results for successive layers
back in Equation 6, we get an expression of component (i, j)
of the DNN’s forward derivative. Hence, the forward derivative
∇F of a network F can be computed for any input X by
successively differentiating layers starting from the input layer
until the output layer is reached. We later discuss in our
methodology evaluation the computability of ∇F for state-
of-the-art DNN architectures. Notably, the forward derivative
can be computed using symbolic differentiation.

2) Adversarial Saliency Maps: We extend saliency maps
previously introduced as visualization tools [34] to construct
adversarial saliency maps. These maps indicate which input
features an adversary should perturb in order to effect the
desired changes in network output most efficiently, and are

fei
Highlight

fei
Highlight

thus versatile tools that allow adversaries to generate broad
classes of adversarial samples.

Adversarial saliency maps are defined to suit problem-
specific adversarial goals. For instance, we later study a
network used as a classifier, its output is a probability vector
across classes, where the final predicted class value corre-
sponds to the component with the highest probability:

label(X) = arg max
j

Fj(X) (7)

In our case, the saliency map is therefore based on the forward
derivative, as this gives the adversary the information needed
to cause the neural network to misclassify a given sample.
More precisely, the adversary wants to misclassify a sample
X such that it is assigned a target class t 6= label(X). To do so,
the probability of target class t given by F, Ft(X), must be
increased while the probabilities Fj(X) of all other classes
j 6= t decrease, until t = arg maxj Fj(X). The adversary
can accomplish this by increasing input features using the
following saliency map S(X, t):

S(X, t)[i] =

 0 if ∂Ft(X)

∂Xi
< 0 or

∑
j 6=t

∂Fj(X)

∂Xi
> 0(

∂Ft(X)

∂Xi

) ∣∣∣∑j 6=t
∂Fj(X)

∂Xi

∣∣∣ otherwise
(8)

where i is an input feature. The condition specified on the first
line rejects input components with a negative target derivative
or an overall positive derivative on other classes. Indeed,
∂Ft(X)

∂Xi
should be positive in order for Ft(X) to increase

when feature Xi increases. Similarly,
∑
j 6=t

∂Fj(X)

∂Xi
needs to

be negative to decrease or stay constant when feature Xi is
increased. The product on the second line allows us to consider
all other forward derivative components together in such a way
that we can easily compare S(X, t)[i] for all input features. In
summary, high values of S(X, t)[i] correspond to input fea-
tures that will either increase the target class, or decrease other
classes significantly, or both. By increasing these features, the
adversary eventually misclassifies the sample into the target
class. A saliency map example is shown on Figure 7.

It is possible to define other adversarial saliency maps using
the forward derivative, and the quality of the map can have a
large impact on the amount of distortion that Algorithm 1
introduces; we will study this in more detail later. Before
moving on, we introduce an additional map that acts as a
counterpart to the one given in Equation 8 by finding features
that the adversary should decrease to achieve misclassification.
The only difference lies in the constraints placed on the
forward derivative values and the location of the absolute value
in the second line:

S(X, t)[i] =

 0 if ∂Ft(X)

∂Xi
> 0 or

∑
j 6=t

∂Fj(X)

∂Xi
< 0∣∣∣∂Ft(X)

∂Xi

∣∣∣ (∑j 6=t
∂Fj(X)

∂Xi

)
otherwise

(9)
3) Modifying samples: Once an input feature has been

identified by an adversarial saliency map, it needs to be
perturbed to realize the adversary’s goal. This is the last step

Fig. 7: Saliency map of a 784-dimensional input to the LeNet
architecture (cf. validation section). The 784 input dimensions
are arranged to correspond to the 28x28 image pixel alignment.
Large absolute values correspond to features with a significant
impact on the output when perturbed.

in each iteration of Algorithm 1, and the amount by which
the selected feature is perturbed (θ in Algorithm 1) is also
problem-specific. We discuss in Section IV how this parameter
should be set in an application to computer vision. Lastly,
the maximum number of iterations, which is equivalent to
the maximum distortion allowed in a sample, is specified by
parameter Υ. It limits the number of features changed to craft
an adversarial sample and can take any positive integer value
smaller than the number of features. Finding the right value
for Υ requires considering the impact of distortion on humans’
perception of adversarial samples – too much distortion might
cause adversarial samples to be easily identified by humans.

IV. APPLICATION OF THE APPROACH

We formally described a class of algorithms for crafting
adversarial samples misclassified by feedforward DNNs using
three tools: the forward derivative, adversarial saliency maps,
and the crafting algorithm. We now apply these tools to a DNN
used for a computer vision classification task: handwritten
digit recognition. We show that our algorithms successfully
craft adversarial samples from any source class to any given
target class, which for this application means that any digit
can be perturbed so that it is misclassified as any other digit.

We investigate a DNN based on the well-studied LeNet
architecture, which has proven to be an excellent classifier for
handwritten digits [26]. Recent architectures like AlexNet [24]
or GoogLeNet [35] are heavily reliant on convolutional layers
introduced in the LeNet architecture, thus making LeNet a
relevant DNN to validate our approach. We have no reason
to believe that our method will not perform well on larger
architectures. The network input is black and white images
(28x28 pixels) of handwritten digits, which are flattened as

Fig. 8: Samples taken from the MNIST test set. The
respective output vectors are: [0, 0, 0, 0, 0, 0, 0.99, 0, 0],
[0, 0, 0.99, 0, 0, 0, 0, 0, 0], and [0, 0.99, 0, 0, 0, 0, 0, 0, 0], where
all values smaller than 10−6 have been rounded to 0.

vectors of 784 features, where each feature corresponds to a
pixel intensity taking normalized values between 0 and 1. This
input is processed by a succession of a convolutional layer (20
then 50 kernels of 5x5 pixels) and a pooling layer (2x2 filters)
repeated twice, a fully connected hidden layer (500 neurons),
and an output softmax layer (10 neurons). The output is a
10 class probability vector, where each class corresponds to
a digit from 0 to 9, as shown in Figure 8. The network then
labels the input image with the class assigned the maximum
probability, as shown in Equation 7. We train our network
using the MNIST training dataset of 60,000 samples [27].

We attempt to determine whether, using the theoretical
framework introduced in previous sections, we can effectively
craft adversarial samples misclassified by the DNN. For in-
stance, if we have an image X of a handwritten digit 0
classified by the network as label(X) = 0 and the adversary
wishes to craft an adversarial sample X∗ based on this image
classified as label(X∗) = 7, the source class is 0 and the target
class is 7. Ideally, the crafting process must find the smallest
perturbation δX required to construct the adversarial sample
X∗ = X+ δX. A perturbation is a set of pixel intensities – or
input feature variations – that are added to X in order to craft
X∗. Note that perturbations introduced to craft adversarial
samples must remain indistinguishable to humans.

A. Crafting algorithm

Algorithm 2 shows the crafting algorithm used in our exper-
iments, which we implemented in Python (see Appendix A for
more information regarding the implementation). It is based
on Algorithm 1, but several details have been changed to ac-
commodate our handwritten digit recognition problem. Given
a network F, Algorithm 2 iteratively modifies a sample X by
perturbing two input features (i.e., pixel intensities) p1 and p2

selected by saliency_map. The saliency map is constructed
and updated between each iteration of the algorithm using the
DNN’s forward derivative ∇F(X∗). The algorithm halts when
one of the following conditions is met: (1) the adversarial
sample is classified by the DNN with the target class t, (2) the
maximum number of iterations max_iter has been reached,
or (3) the feature search domain Γ is empty. The crafting
algorithm is fine-tuned by three parameters:
• Maximum distortion Υ: this defines when the algorithm

should stop modifying the sample in order to reach the ad-

versarial target class. The maximum distortion, expressed
as a percentage, corresponds to the maximum number
of pixels to be modified when crafting the adversarial
sample, and thus sets the maximum number of iterations
max_iter (2 pixels modified per iteration) as follows:

max_iter =

⌊
784 ·Υ
2 · 100

⌋
where 784 = 28×28 is the number of pixels in a sample.

• Saliency map: subroutine saliency_map generates a
map defining which input features will be modified at
each iteration. Policies used to generate saliency maps
vary with the nature of the data handled by the considered
DNN, as well as the adversarial goals. We provide a
subroutine example later in Algorithm 3.

• Feature variation per iteration θ: once input features
have been selected using the saliency map, they must
be modified. The variation θ introduced to these features
is another parameter that the adversary must set, in
accordance with the saliency maps she uses.

The problem of finding good values for these parameters is
a goal of our current evaluation, and is discussed later in
Section V. For now, note that human perception is a limiting
factor as it limits the acceptable maximum distortion and
feature variation introduced. We now show the application of
our framework with two different adversarial strategies.

Algorithm 2 Crafting adversarial samples for LeNet-5
X is the benign image, Y∗ is the target network output, F is
the function learned by the network during training, Υ is the
maximum distortion, and θ is the change made to pixels.

Input: X, Y∗, F, Υ, θ
1: X∗ ← X
2: Γ = {1 . . . |X|} . search domain is all pixels
3: max_iter =

⌊
784·Υ
2·100

⌋
4: s = arg maxj F(X∗)j . source class
5: t = arg maxjY

∗
j . target class

6: while s 6= t & iter < max_iter & Γ 6= ∅ do
7: Compute forward derivative ∇F(X∗)
8: p1, p2 = saliency_map(∇F(X∗),Γ,Y∗)
9: Modify p1 and p2 in X∗ by θ

10: Remove p1 from Γ if p1 == 0 or p1 == 1
11: Remove p2 from Γ if p2 == 0 or p2 == 1
12: s = arg maxj F(X∗)j
13: iter + +
14: end while
15: return X∗

B. Crafting by increasing pixel intensities

The first strategy to craft adversarial samples is based
on increasing the intensity of some pixels. To achieve this
purpose, we consider 10 samples of handwritten digits from
the MNIST test set, one from each digit class 0 to 9. We use
this small subset of samples to illustrate our techniques. We
scale up the evaluation to the entire dataset in Section V. Our

Fig. 9: Adversarial samples generated by feeding the crafting algorithm an empty input. Each sample produced corresponds
to one target class from 0 to 9. Interestingly, for classes 0, 2, 3 and 5 one can clearly recognize the target digit.

goal is to report whether we can reach any adversarial target
class for a given source class. For instance, if we are given
a handwritten 0, we increase some of the pixel intensities to
produce 9 adversarial samples respectively classified in each
of the classes 1 to 9. All pixel intensities changed are increased
by θ = +1. We discuss this choice of parameter in section V.
We allow for an unlimited maximum distortion Υ = ∞. We
simply measure for each of the 90 source-target class pairs
whether an adversarial sample can be produced or not.

The adversarial saliency map used in the crafting algorithm
to select pixel pairs that can be increased is an application
of the map introduced in the general case of classification in
Equation 8. The map aims to find pairs of pixels (p1, p2) using
the following heuristic:

arg max
(p1,p2)

 ∑
i=p1,p2

∂Ft(X)

∂Xi

×
∣∣∣∣∣∣
∑

i=p1,p2

∑
j 6=t

∂Fj(X)

∂Xi

∣∣∣∣∣∣ (10)

where t is the index of the target class, the left operand of the
multiplication operation is constrained to be positive, and the
right operand of the multiplication operation is constrained to
be negative. This heuristic, introduced in the previous section
of this manuscript, searches for pairs of pixels producing
an increase in the target class output while reducing the
sum of the output of all other classes when simultaneously
increased. The pseudocode of the corresponding subroutine
saliency_map is given in Algorithm 3.

The saliency map considers pairs of pixels and not individ-
ual pixels because selecting pixels one at a time is too strict,
and very few pixels would meet the heuristic search criteria
described in Equation 8. Searching for pairs of pixels is more
likely to match the condition because one of the pixels can
compensate a minor flaw of the other pixel. Let’s consider
a simple example: p1 has a target derivative of 5 but a sum
of other classes derivatives equal to 0.1, while p2 as a target
derivative equal to −0.5 and a sum of other classes derivatives
equal to −6. Individually, these pixels do not match the
saliency map’s criteria stated in Equation 8, but combined, the
pair does match the saliency criteria defined in Equation 10.
One would also envision considering larger groups of input
features to define saliency maps. However, this comes at a
greater computational cost because more combinations need
to be considered each time the group size is increased.

In our implementation of these algorithms, we compute the
forward derivative of the network using the last hidden layer
instead of the output probability layer. This is justified by
the extreme variations introduced by the logistic regression

computed between these two layers to ensure probabilities sum
up to 1, leading to extreme derivative values. This reduces
the quality of information on how the neurons are activated
by different inputs and causes the forward derivative to loose
accuracy when generating saliency maps. Better results are
achieved when working with the last hidden layer, also made
up of 10 neurons, each corresponding to one digit class 0 to 9.
This justifies enforcing constraints on the forward derivative.
Indeed, as the output layer used for computing the forward
derivative does not sum up to 1, increasing Ft(X) does not
imply that

∑
j 6=t ∂Fj(X) will decrease, and vice-versa.

Algorithm 3 Increasing pixel intensities saliency map
∇F(X) is the forward derivative, Γ the features still in the
search space, and t the target class

Input: ∇F(X), Γ, t
1: for each pair (p, q) ∈ Γ do
2: α =

∑
i=p,q

∂Ft(X)

∂Xi

3: β =
∑
i=p,q

∑
j 6=t

∂Fj(X)

∂Xi

4: if α > 0 and β < 0 and −α× β > max then
5: p1, p2 ← p, q
6: max← −α× β
7: end if
8: end for
9: return p1, p2

The algorithm is able to craft successful adversarial samples
for all 90 source-target class pairs. Figure 1 shows the 90
adversarial samples obtained as well as the 10 original samples
used to craft them. The original samples are found on the
diagonal. A sample on row i and column j, when i 6= j, is a
sample crafted from an image originally classified as source
class i to be misclassified as target class j.

To verify the validity of our algorithms, and more specifi-
cally of our adversarial saliency maps, we run a simple exper-
iment. We run the crafting algorithm on an empty input (all
pixels initially set to an intensity of 0) and craft one adversarial
sample for each class from 0 to 9. The different samples shown
in Figure 9 demonstrate how adversarial saliency maps are able
to identify input features relevant to classification in a class.

C. Crafting by decreasing pixel intensities

Instead of increasing pixel intensities to achieve the adver-
sarial targets, the second adversarial strategy decreases pixel
intensities by θ = −1. The implementation is identical to the
exception of the adversarial saliency map. The formula is the

fei
Highlight

0 1 2 3 4 5 6 7 8 9
Output classification

9

 8

7

 6

5

 4

3

 2

 1

0

In
pu

t c
la

ss

Fig. 10: Adversarial samples obtained by decreasing pixel
intensities. Original samples from the MNIST dataset are
found on the diagonal, whereas adversarial samples are all
non-diagonal elements. Samples are organized by columns
each corresponding to a class from 0 to 9.

same as previously written in Equation 10 but the constraints
are different: the left operand of the multiplication operation
is now constrained to be negative, and the right operand to be
positive. This heuristic, also introduced in the previous section
of this paper, searches for pairs of pixels producing an increase
in the target class output while reducing the sum of the output
of all other classes when simultaneously decreased.

The algorithm is once again able to craft successful adver-
sarial samples for all source-target class pairs. Figure 10 shows
the 90 adversarial samples obtained as well as the 10 original
samples used to craft them. One observation to be made is that
the distortion introduced by reducing pixel intensities seems
harder to detect by the human eye. We address the human
perception aspect with a study later in Section V.

V. EVALUATION

We now use our experimental setup to answer the following
questions: (1) “Can we exploit any sample?”, (2) “How can
we identify samples more vulnerable than others?” and (3)
“How do humans perceive adversarial samples compared to
DNNs?”. Our primary result is that adversarial samples can
be crafted reliably for our validation problem with a 97.10%
success rate by modifying samples on average by 4.02%. We
define a hardness measure to identify sample classes easier to
exploit than others. This measure is necessary for designing
robust defenses. We also found that humans cannot perceive
the perturbation introduced to craft adversarial samples mis-
classified by the DNN: they still correctly classify adversarial
samples crafted with a distortion smaller than 14.29%.

A. Crafting large amounts of adversarial samples

Now that we previously showed the feasibility of crafting
adversarial samples for all source-target class pairs, we seek
to measure whether the crafting algorithm can successfully
handle large quantities of distinct samples of hand-written
digits. That is, we now design a set of experiments to evaluate
whether or not all legitimate samples in the MNIST dataset can
be exploited by an adversary to produce adversarial samples.
We run our crafting algorithm on three sets of 10,000 samples
each extracted from one of the three MNIST training, valida-
tion, and test subsets3. For each of these samples, we craft 9
adversarial samples, each of them classified in one of the 9
target classes distinct from the original legitimate class. Thus,
we generate 90,000 samples for each set, leading to a total of
270,000 adversarial samples. We set the maximum distortion
to Υ = 14.5% and pixel intensities are increased by θ = +1.
The maximum distortion was fixed after studying the effect of
increasing it on the success rate τ . We found that 97.1% of the
adversarial samples could be crafted with a distortion of less
than 14.5% and observed that the success rate did not increase
significantly for larger maximum distortions. Parameter θ was
set to +1 after observing that decreasing it or giving it negative
values increased the number of features modified, whereas
we were interested in reducing the number of features altered
during crafting. One will also notice that because features are
normalized between 0 and 1, if we introduce a variation of
θ = +1, we always set pixels to their maximum value 1. This
justifies why in Algorithm 2, we remove modified pixels from
the search space at the end of each iteration. The impact on
performance is beneficial, as we reduce the size of the feature
search space at each iteration. In other words, our algorithm
performs a best-first heuristic search without backtracking.

We measure the success rate τ and distortion of adversarial
samples on the three sets of 10,000 samples. The success rate
τ is defined as the percentage of adversarial samples that were
successfully classified by the DNN as the adversarial target
class. The distortion is defined to be the percentage of pixels
modified in the legitimate sample to obtain the adversarial
sample. In other words, it is the percentage of input features
modified in order to obtain adversarial samples. We compute
two average distortion values: one taking into account all
samples and a second one only taking into account successful
samples, which we write ε. Figure 11 presents the results for
the three sets from which the original samples were extracted.
The results are consistent across all sets. On average, the
success rate is τ = 97.10%, the average distortion of all
adversarial samples is 4.44%, and the average distortion of
successful adversarial samples is ε = 4.02%. This means that
the average number of pixels modified to craft a successful
adversarial sample is 32 out of 784 pixels. The first distortion
figure is higher because it includes unsuccessful samples, for
which the crafting algorithm used the maximum distortion Υ,
but was unable to induce a misclassification.

3Note that we extracted original samples from the dataset for convenience.
Any sample can be used as an input to the adversarial crafting algorithm.

Source set
of 10, 000
original
samples

Adversarial
samples
successfully
misclassified

Average distortion
All
adversarial
samples

Successful
adversarial
samples

Training 97.05% 4.45% 4.03%
Validation 97.19% 4.41% 4.01%
Test 97.05% 4.45% 4.03%

Fig. 11: Results on larger sets of 10, 000 samples

We also studied crafting of 9, 000 adversarial samples using
the decreasing saliency map. We found that the success rate
τ = 64.7% was lower and the average distortion ε = 3.62%
slightly lower. Again, decreasing pixel intensities is less suc-
cessful at producing the desired adversarial behavior than
increasing pixel intensities. Intuitively, this can be understood
because removing pixels reduces the information entropy, thus
making it harder for DNNs to extract the information required
to classify the sample. Greater absolute values of intensity
variations are more confidently misclassified by the DNN.

B. Quantifying hardness and building defense mechanisms

Looking at the previous experiment, about 2.9% of the
270, 000 adversarial samples were not successfully crafted.
This suggests that some samples are harder to exploit than
others. Furthermore, the distortion figures reported are aver-
aged on all adversarial samples produced but not all samples
require the same distortion to be misclassified. Thus, we now
study the hardness of different samples in order to quantify
these phenomena. Our aim is to identify which source-target
class pairs are easiest to exploit, as well as similarities between
distinct source-target class pairs. A class pair is a pair of a
source class s and a target class t. This hardness metric allows
us to lay ground for defense mechanisms.

1) Class pair study: In this experiment, we construct a
deeper understanding of the crafting algorithm’ success rate
and average distortion for different source-target class pairs.
We use the 90,000 adversarial samples crafted in the previous
experiments from the 10,000 samples of the MNIST test set.

We break down the success rate τ reported in Figure 11 by
source-target class pairs. This allows us to know, for a given
source class, how many samples of that class were successfully
misclassified in each of the target classes. In Figure 12, we
draw the success rate matrix indicating which pairs are most
successful. Darker shades correspond to higher success rates.
The rows correspond to the success rate per source class while
the columns correspond to the success rate per target class. If
one reads the matrix row-wise, it can be perceived that classes
0, 2, and 8 are hard to start with, while classes 1, 7, and 9 are
easy to start with. Similarly, reading the matrix column-wise,
one can observe that classes 1 and 7 are very hard to make,
while classes 0, 8, and 9 are easy to make.

In Figure 13, we report the average distortion ε of successful
samples by source-target class pair, thus identifying class pairs
requiring the most distortion to successfully craft adversarial

Fig. 12: Success rate per source-target class pair.

Fig. 13: Average distortion ε of successful samples per source-
target class pair. The scale is a percentage of pixels.

samples. Interestingly, classes requiring lower distortions cor-
respond to classes with higher success rates in the previous
matrix. For instance, the column corresponding to class 1 is
associated with the highest distortions, and it was the column
with the least success rates in the previous matrix. Indeed, the
higher the average distortion of a class pair is, the more likely
samples in that class pair are to reach the maximum distortion,
and thus produce unsuccessful adversarial samples.

To better understand why some class pairs were harder to
exploit, we tracked the evolution of class probabilities during
the crafting process. We observed that the distortion required
to leave the source class was higher for class pairs with high
distortions whereas the distortion required to reach the target
class, once the source class had been left, remained similar.
This correlates with the fact that some source classes are more
confidently classified by the DNN then others.

Fig. 14: Hardness matrix of source-target class pairs. Darker
shades correspond to harder to achieve misclassifications.

2) Hardness measure: Results indicating that some source-
target class pairs are not as easy as others lead us to question
the existence of a measure quantifying the distance between
two classes. This is relevant to a defender seeking to identify
which classes of a DNN are most vulnerable to adversaries.
We name this measure the hardness of a target class relatively
to a given source class. It normalizes the average distortion of
a class pair (s, t) relatively to its success rate:

H(s, t) =

∫
τ

ε(s, t, τ)dτ (11)

where ε(s, t, τ) is the average distortion of a set of samples
for the corresponding success rate τ . In practice, these two
quantities are computed over a finite number of samples by
fixing a set of K maximum distortion parameter values Υk in
the crafting algorithm where k ∈ 1..K. The set of maximum
distortions gives a series of pairs (εk, τk) for k ∈ 1..K. Thus,
the practical formula used to compute the hardness of a source-
destination class pair can be derived from the trapezoidal rule:

H(s, t) ≈
K−1∑
k=1

(τk+1 − τk)
ε(s, t, τk+1) + ε(s, t, τk)

2
(12)

We computed the hardness values for all classes using
a set of K = 9 maximum distortion values Υ ∈
{0.3, 1.3, 2.6, 5.1, 7.7, 10.2, 12.8, 25.5, 38.3}% in the algo-
rithm. Average distortions ε and success rates τ are averaged
over 9,000 adversarial samples for each maximum distortion
value Υ. Figure 14 shows the hardness values H(s, t) for all
pairs (s, t) ∈ {0..9}2. The reader will observe that the matrix
has a shape similar to the average distortion matrix plotted on
Figure 13. However, the hardness measure is more accurate
because it is plotted using a series of maximum distortions.

Fig. 15: Adversarial distance averaged per source-destination
class pairs computed with 1000 samples.

3) Adversarial distance: The measure introduced lays
ground towards finding defenses against adversarial samples.
Indeed, if the hardness measure were to be predictive instead
of being computed after adversarial crafting, the defender
could identify vulnerable inputs. Furthermore, a predictive
measure applicable to a single sample would allow a defender
to evaluate the vulnerability of specific samples as well as class
pairs. We investigated several complex estimators including
convolutional transformations of the forward derivative or
Hessian matrices. However, we found that simply using a
formulae derived from the intuition behind adversarial saliency
maps gave enough accuracy for predicting the hardness of
samples in our experimental setup.

We name this predictive measure the adversarial distance
of sample X to class t and write it A(X, t). Simply put, it
estimates the distance between a sample X and a target class
t. We define the distance as:

A(X, t) = 1− 1

M

∑
i∈0..M

1S(X,t)[i]>0 (13)

where 1E is the indicator function for event E (i.e., is 1 if
and only if E is true). In a nutshell, A(X, t) is the normalized
number of non-zero elements in the adversarial saliency map
of X computed during the first crafting iteration in Algo-
rithm 2. The closer the adversarial distance is to 1, the more
likely sample X is going to be harder to misclassify in target
class t. Figure 15 confirms that this formulae is empirically
well-founded. It illustrates the value of the adversarial distance
averaged per source-destination class pairs, making it easy to
compare the average value with the hardness matrix computed
previously after crafting samples. To compute it, we slightly
altered Equation 13 to sum over pairs of features, reflecting
the observations made during our validation process.

fei
Highlight

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0% - 1.53% 1.53% - 2.8% 2.8% - 5.61% 5.61% - 14.29% 14.29% - 100%

Respondents identifying a digit Respondents correctly classifying the digit

Fig. 16: Human perception of different distortions ε.

This notion of distance between classes intuitively defines
a metric for the robustness of a network F against adversarial
perturbations. We suggest the following definition :

R(F) = min
(X,t)

A(X, t) (14)

where the set of samples X considered is sufficiently large to
represent the input domain of the network. A good approxi-
mation of the robustness can be computed with the training
dataset. Note that the min operator used here can be replaced
by other relevant operators, like the statistical expectation. The
study of various operators is left as future work.

C. Study of human perception of adversarial samples

Recall that adversarial samples must not only be misclas-
sified as the target class by deep neural networks, but also
visually appear (be classified) as the source class by humans.
To evaluate this property, we ran an experiment using 349
human participants on the Mechanical Turk online service.
We presented three original or adversarially altered samples
from the MNIST dataset to human participants. To paraphrase,
participants were asked for each sample: (a) ‘is this sample a
numeric digit?’, and (b) ‘if yes to (a) what digit is it?’. These
two questions were designed to determine how distortion and
intensity rates effected human perception of the samples.

The first experiment was designed to identify a baseline
perception rate for the input data. The 74 participants were
presented 3 of 222 unaltered samples randomly picked from
the original MNIST data set. Respondents identified 97.4% as
digits and classified the digits correctly 95.3% of the samples.

Shown in Figure 16, a second set of experiments attempted
to evaluate how the amount of distortion (ε) impacts human
perception. Here, 184 participants were presented with a total
of 1707 samples with varying levels of distortion (and features
altered with an intensity increase θ = +1). The experiments
showed that below a threshold (ε = 14.29% distortion),
participants were able to identify samples as digits (95%) and
correctly classify them (90%) only slightly less accurately
than the unaltered samples. The classification rate dropped
dramatically (71%) at distortion rates above the threshold.

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

-1 -0.7 -0.5 0.1 0.3 0.5 0.7 1

Respondents identifying a digit Respondents correctly classifying the digit

Fig. 17: Human perception of different intensity variations θ.

A final set of experiments evaluate the impact of intensity
variations (θ) on perception, as shown Figure 17. The 203
participants were accurate at identifying 5, 355 samples as
digits (96%) and classifying them correctly (95%). At higher
absolute intensities (θ = −1 and θ = +1), specific digit classi-
fication decreased slightly (90.5% and 90%), but identification
as digits was largely unchanged.

While preliminary, these experiments confirm that the over-
whelming number of generated samples retain human recog-
nizability. Note that because we can generate samples with
less than the distortion threshold for the almost all of the
input data, (ε ≤ 14.29% for roughly 97% in the MNIST
data), we can produce adversarial samples that humans will
mis-interpret—thus meeting our adversarial goal. Furthermore,
altering feature distortion intensity provides even better results:
at −0.7 ≤ θ ≤ +0.7, humans classified the sample data at
essentially the same rates as the original sample data.

VI. DISCUSSION

We introduced a new class of algorithms that systemati-
cally craft adversarial samples misclassified by a DNN once
an adversary possesses knowledge of the DNN architecture.
Although we focused our work on DL techniques used in the
context of classification and trained with supervised methods,
our approach is also applicable to unsupervised architec-
tures. Instead of achieving a given target class, the adversary
achieves a target output Y∗. Because the output space is
more complex, it might be harder or impossible to match Y∗.
In that case, Equation 1 would need to be relaxed with an
acceptable distance between the network output F(X∗) and
the adversarial target Y∗. Thus, the only remaining assumption
made in this paper is that DNNs are feedforward. In other
words, we did not consider recurrent neural networks, with
cycles in their architecture, as the forward derivative must be
adapted to accommodate such networks.

One of our key results is reducing the distortion—the num-
ber of features altered—to craft adversarial samples, compared
to previous work. We believe this makes adversarial crafting
much easier for input domains like malware executables,

which are not as easy to perturb as images [11], [16]. This dis-
tortion reduction comes with a performance cost. Indeed, more
elaborate but accurate saliency map formulae are more expen-
sive to compute for the attacker. We would like to emphasize
that our method’s high success rate can be further improved
by adversaries only interested in crafting a limited number
of samples. Indeed, to lower the distortion of one particular
sample, an adversary can use adversarial saliency maps to
fine-tune the perturbation introduced. On the other hand, if an
adversary wants to craft large amounts of adversarial samples,
performance is important. In our evaluation, we balanced these
factors to craft adversarial samples against the DNN in less
than a second. As far as our algorithm implementation was
concerned, the most computationally expensive steps were the
matrix manipulations required to construct adversarial saliency
maps from the forward derivative matrix. The complexity
is dependent of the number of input features. These matrix
operations can be made more efficient, notably by making
better use of GPU-accelerated computations.

Our efforts so far represent a first but meaningful step to-
wards mitigating adversarial samples: the hardness and adver-
sarial distance metrics lay out bases for defense mechanisms.
Although designing such defenses is outside of the scope of
this paper, we outline two classes of defenses: (1) adversarial
sample detection and (2) improvements of DNN robustness.

Developing techniques for adversarial sample detection is
a reactive solution. During our experimental process, we
noticed that adversarial samples can for instance be detected
by evaluating the regularity of samples. More specifically, in
our application example, the sum of the squared difference
between each pair of neighboring pixels is always higher for
adversarial samples than for benign samples. However, there
is no a priori reason to assume that this technique will reliably
detect adversarial samples in different settings, so extending
this approach is one avenue for future work. Another approach
was proposed in [19], but it is unsuccessful as by stacking the
denoising auto-encoder used for detection with the original
DNN, the adversary can again produce adversarial samples.

The second class of solutions seeks to improve training to
in return increase the robustness of DNNs. Interestingly, the
problem of adversarial samples is closely linked to training.
Work on generative adversarial networks showed that a two
player game between two DNNs can lead to the generation of
new samples from a training set [17]. This can help augment
training datasets. Furthermore, adding adversarial samples to
the training set can act like a regularizer [18]. We also
observed in our experiments that training with adversarial
samples makes crafting additional adversarial samples harder.
Indeed, by adding 18,000 adversarial samples to the original
MNIST training dataset, we trained a new instance of our
DNN. We then run our algorithms again on this newly trained
network and crafted a set of 9,000 adversarial samples. Pre-
liminary analysis of these adversarial samples crafted showed
that the success rate was reduced by 7.2% while the average
distortion increased by 37.5%, suggesting that training with
adversarial samples can make DNNs more robust.

VII. RELATED WORK

The security of machine learning [2] is an active research
topic within the security and machine learning communities. A
broad taxonomy of attacks and required adversarial capabilties
are discussed in [22] and [3] along with considerations for
building defense mechanisms. Biggio et al. studied classifiers
in adversarial settings and outlined a framework securing
them [8]. However, their work does not consider DNNs but
rather other techniques used for binary classification like
logistic regression or Support Vector Machines. Generally
speaking, attacks against machine learning can be separated
into two categories, depending on whether they are executed
during training [9] or at test time [10].

Prior work on adversarial sample crafting against DNNs
derived a simple technique corresponding to the Architecture
and Training Tools threat model, based on the backpropagation
procedure used during network training [18], [30], [36]. This
approach creates adversarial samples by defining an optimiza-
tion problem based on the DNN’s cost function. In other
words, instead of computing gradients to update DNN weights,
one computes gradients to update the input, which is then
misclassified as the target class by a DNN. The alternative
approach proposed in this paper is to identify input regions
that are most relevant to its classification by a DNN. This is
accomplished by computing the saliency map of a given input,
as described by Simonyan et al. in the case of DNNs handling
images [34]. We extended this concept to create adversarial
saliency maps highlighting regions of the input that need to
be perturbed in order to accomplish the adversarial goal.

Previous work by Yosinki et al. investigated how features
are transferable between deep neural networks [38], while
Szegedy et al. showed that adversarial samples can indeed
be misclassified across models [36]. They report that once an
adversarial sample is generated for a given neural network
architecture, it is also likely to be misclassified in neural
networks designed differently, which explains why the attack
is successful. However, the effectiveness of this kind of attack
depends on (1) the quality and size of the surrogate dataset
collected by the adversary, and (2) the adequateness of the
adversarial network used to craft adversarial samples.

VIII. CONCLUSIONS

Broadly speaking, this paper has explored adversarial be-
havior in deep learning systems. In addition to exploring the
goals and capabilities of DNN adversaries, we introduced a
new class of algorithms to craft adversarial samples based
on computing forward derivatives. This technique allows an
adversary with knowledge of the network architecture to con-
struct adversarial saliency maps that identify features of the
input that most significantly impact output classification. These
algorithms can reliably produce samples correctly classified by
human subjects but misclassified in specific targets by a DNN
with a 97% adversarial success rate while only modifying on
average 4.02% of the input features per sample.

Solutions to defend DNNs against adversaries can be
divided in two classes: detecting adversarial samples and

improving the training phase. The detection of adversarial
samples remains an open problem. Interestingly, the universal
approximation theorem formulated by Hornik et al. states one
hidden layer is sufficient to represent arbitrarily accurately a
function [21]. Thus, one can intuitively conceive that improv-
ing the training phase is key to resisting adversarial samples.

In future work, we plan to address the limitations of
DNN trained in an unsupervised manner as well as cyclical
recurrent neural networks (as opposed to acyclical networks
considered throughout this paper). Also, as most models of
our taxonomy have yet to be researched, this leaves room for
further investigation of DL in various adversarial settings.

ACKNOWLEDGMENT

The authors would like to warmly thank Dr. Damien Octeau
and Aline Papernot for insightful discussions about this work.
Research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views
and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES

[1] E. G. Amoroso. Fundamentals of Computer Security Technology.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[2] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar. The security of
machine learning. Machine Learning, 81(2):121–148, 2010.

[3] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar.
Can machine learning be secure? In Proceedings of the 2006 ACM
Symposium on Information, computer and communications security,
pages 16–25. ACM, 2006.

[4] Y. Bengio. Learning deep architectures for AI. Foundations and trends
in Machine Learning, 2(1):1–127, 2009.

[5] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-
jardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a cpu and
gpu math expression compiler. In Proceedings of the Python for scientific
computing conference (SciPy), volume 4, page 3. Austin, TX, 2010.

[6] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli. Evasion attacks against machine learning at
test time. In Machine Learning and Knowledge Discovery in Databases,
pages 387–402. Springer, 2013.

[7] B. Biggio, G. Fumera, and F. Roli. Pattern recognition systems under
attack: Design issues and research challenges. International Journal of
Pattern Recognition and Artificial Intelligence, 28(07):1460002, 2014.

[8] B. Biggio, G. Fumera, and F. Roli. Security evaluation of pattern
classifiers under attack. Knowledge and Data Engineering, IEEE
Transactions on, 26(4):984–996, 2014.

[9] B. Biggio, B. Nelson, and P. Laskov. Support vector machines under
adversarial label noise. In ACML, pages 97–112, 2011.

[10] B. Biggio, B. Nelson, and L. Pavel. Poisoning attacks against support
vector machines. In Proceedings of the 29th International Conference
on Machine Learning, 2012.

[11] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona, G. Giacinto,
and F. Roli. Poisoning behavioral malware clustering. In Proceedings
of the 2014 Workshop on Artificial Intelligent and Security Workshop,
pages 27–36. ACM, 2014.

[12] D. Cireşan, U. Meier, J. Masci, et al. Multi-column deep neural network
for traffic sign classification. Neural Networks, 32:333–338, 2012.

[13] R. Collobert and J. Weston. A unified architecture for natural language
processing: Deep neural networks with task learning. In Proceedings of
the 25th international conference on Machine learning, pages 160–167.
ACM, 2008.

[14] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-scale malware
classification using random projections and neural networks. In Acous-
tics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 3422–3426. IEEE, 2013.

[15] G. E. Dahl, D. Yu, et al. Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. IEEE Transactions
on Audio, Speech, and Language Processing, 20(1):30–42, 2012.

[16] P. Fogla and W. Lee. Evading network anomaly detection systems:
formal reasoning and practical techniques. In Proceedings of the 13th
ACM conference on Computer and communications security, pages 59–
68. ACM, 2006.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, et al. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harness-
ing adversarial examples. In Proceedings of the 2015 International
Conference on Learning Representations. Computational and Biological
Learning Society, 2015.

[19] S. Gu and L. Rigazio. Towards deep neural network architectures
robust to adversarial examples. In Proceedings of the 2015 International
Conference on Learning Representations. Computational and Biological
Learning Society, 2015.

[20] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for
deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[21] K. Hornik, M. Stinchcombe, et al. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[22] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar.
Adversarial machine learning. In Proceedings of the 4th ACM workshop
on Security and artificial intelligence, pages 43–58. ACM, 2011.

[23] E. Knorr. How paypal beats the bad guys with machine learn-
ing. http://www.infoworld.com/article/2907877/machine-learning/how-
paypal-reduces-fraud-with-machine-learning.html, 2015.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural
information processing systems, pages 1097–1105, 2012.

[25] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring
strategies for training deep neural networks. The Journal of Machine
Learning Research, 10:1–40, 2009.

[26] Y. LeCun, L. Bottou, et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[27] Y. LeCun and C. Cortes. The mnist database of handwritten digits, 1998.
[28] LISA lab. http://deeplearning.net/tutorial/lenet.html, 2010.
[29] K. P. Murphy. Machine learning: a probabilistic perspective. MIT 2012.
[30] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily

fooled: High confidence predictions for unrecognizable images. In In
Computer Vision and Pattern Recognition (CVPR 2015). IEEE, 2015.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning represen-
tations by back-propagating errors. Cognitive modeling, 5, 1988.

[32] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak. Convolutional, long
short-term memory, fully connected deep neural networks. 2015.

[33] H. Sak, A. Senior, and F. Beaufays. Long short-term memory recurrent
neural network architectures for large scale acoustic modeling. In
Proceedings of the Annual Conference of International Speech Com-
munication Association (INTERSPEECH), 2014.

[34] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps.
arXiv preprint arXiv:1312.6034, 2013.

[35] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions.
arXiv preprint arXiv:1409.4842, 2014.

[36] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. In Proceedings
of the 2014 International Conference on Learning Representations.
Computational and Biological Learning Society, 2014.

[37] Y. Taigman, M. Yang, et al. Deepface: Closing the gap to human-level
performance in face verification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1701–1708. IEEE, 2014.

[38] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are
features in deep neural networks? In Advances in Neural Information
Processing Systems, pages 3320–3328, 2014.

APPENDIX

A. Validation setup details

To train and use the deep neural network, we use
Theano [5], a Python package designed to simplify large-
scale scientific computing. Theano allows us to efficiently
implement the network architecture, the training through back-
propagation, and the forward derivative computation. We con-
figure Theano to make computations with float32 precision,
because they can then be accelerated using graphics proces-
sors. Indeed, all our experiments are facilitated using GPU
acceleration on a machine equipped with a Xeon E5-2680 v3
processor and a Nvidia Tesla K5200 graphics processor.

Our deep neural network makes some simplifications, sug-
gested in the Theano Documentation [28], to the original
LeNet-5 architecture. Nevertheless, once trained on batches
of 500 samples taken from the MNIST dataset [27] with a
learning parameter of η = 0.1 for 200 epochs, the learned
network parameters exhibits a 98.93% accuracy rate on the
MNIST training set and 99.41% accuracy rate on the MNIST
test set, which are comparable to state-of-the-art accuracies.

	I Introduction
	II Taxonomy of Threat Models in Deep Learning
	II-A About Deep Neural Networks
	II-B Adversarial Goals
	II-C Adversarial Capabilities

	III Approach
	III-A Studying a Simple Neural Network
	III-B Generalizing to Feedforward Deep Neural Networks
	III-B1 Forward Derivative of a Deep Neural Network
	III-B2 Adversarial Saliency Maps
	III-B3 Modifying samples

	IV Application of the Approach
	IV-A Crafting algorithm
	IV-B Crafting by increasing pixel intensities
	IV-C Crafting by decreasing pixel intensities

	V Evaluation
	V-A Crafting large amounts of adversarial samples
	V-B Quantifying hardness and building defense mechanisms
	V-B1 Class pair study
	V-B2 Hardness measure
	V-B3 Adversarial distance

	V-C Study of human perception of adversarial samples

	VI Discussion
	VII Related Work
	VIII Conclusions
	References
	Appendix
	A Validation setup details

