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Chapter 1

What This Book is About

Sensing technology is a broad discipline aimed at extracting information from events that

are beyond the reach of human sensory. Although an individual is equipped with only five

senses, he is able to detect and classify signals emitted from optical, acoustic, chemical, heat

and mechanical energy sources. His senses allow him the enjoyment of life, as well as the

protection from hostile agents. However, the limited range of human senses permits him to

sense events occurring only in his immediate vicinity. Remote sensing, defined as ”sensing

at a distance,” aims at increasing ranges and capabilities of the human sensory. Sensing

technologies include both sensor design and methods of processing the sensor signals.

Sensing technologies have experienced explosive growth in the past 30 years partly due to

demands from the space age, the computer age and the information age, and partly due to the

advancements in computer technology and digital signal processing. Due to the increasing

demands of better health care, higher requirements on national energy reserves, an increased

protection of the environment and usage of land and sea resources, higher safety require-

ments on all modes of transportation and so on, there are numerous sensors and processing

algorithms continuously being developed and implemented. Today, a desktop computer has

more computing power than a mainframe computer fourty years ago. The gigahertz com-

puting speed allows sensors to be operated at near real-time speed. Digital signal processing

algorithms are being constructed, validated and implemented in applications in the global
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2 CHAPTER 1. WHAT THIS BOOK IS ABOUT

economy, space expedition, machine control and food production. Without a doubt, sensing

technology will continue to grow in this century in order to meet new challenges for a better

living environment and meet new threats to our national security.

For a given application, signals from a sensor must be processed to reveal the information

content. Proper use of this information helps to achieve beneficial results for that application.

Major uses for signal processing include signal detection and classification for recognizing

certain events, compression of signals for storage and efficient information transmission,

denoising signals for revealing the true information content, to name a few. Many algorithms

have been designed and implemented for signal processing. They may be classified as linear

or nonlinear techniques, the Fourier spectral method or time domain method, online or

offline processing and so on. Offline processing using Fourier based techniques has been the

dominant approach for the past several decades. They are still the best choices for processing

of periodic or stationary signals.

Although the wavelet analysis (not in the present form) was developed in the early 1900s,

it had been neglected until mid-1980 when several significant developments occurred about

the same time in the fields of mathematics, geophysics and signal processing. The wavelet

theory was fully developed in the early 1990s and its applications to science and engineering

blossomed throughout the decade. Wavelet applications are continually being developed

virtually in every scientific discipline.

Wavelet analysis allows the user to divide a complicated signal into several components

and process them individually. This important property, along with the high efficiency of its

algorithms, makes wavelet analysis a very attractive tool for the analysis of signals. Wavelets

and filter banks have been used in pattern recognition, image compression, mechanical fault

diagnostics, statistical analysis and geophysical signal processing.



1.1. FROM FOURIER ANALYSIS TO WAVELET ANALYSIS 3

1.1 From Fourier Analysis to Wavelet Analysis

The most important problem in signal processing is to represent the signal accurately and

effectively. Since most signals are non-stationary and of finite duration, the spectrum must

contain all frequencies since the Fourier analysis uses sine and cosine functions (infinite dura-

tion function) as its basis. A particular event (in time domain) is dispersed in the spectrum

since time domain information is lost by the transformation. The wavelet representation

uses localized basis (finite duration or fast decaying functions) in the time domain so that

the occurrence of an event can be localized and observed after wavelet transformation. The

wavelet algorithms effectively generate a time-frequency transformation so that a given event

is localized in a region on the time-frequency plane. Compared to the Fourier analysis, the

wavelet analysis gives up a certain amount of frequency resolution but gains a lot of time

domain information. By using the powerful multiresolution analysis, a signal can be effec-

tively separated into components at different resolutions. This transformation is particularly

suitable for adaptively processing these components for best results. Taking advantage of

the multiresolution representation, we can combine wavelet techniques with other powerful

processing tools such as the Markov random field, anisotropic diffusion, Embedded wavelet

zerotree, neural network, support vector machine and so on for processing of one-, two- and

three-dimensional signals.

There have been many books on wavelet analysis written by mathematicians, theoretical

physicists and multirate signal processing theorists. These are monographs reporting the

frontier of research on wavelet analysis in the author’s field of specialty. Several standard

texts covering the wavelet analysis with applications have appeared in the last few years.

Books have been written on specific application areas such as image coding and book chapters

written on multimedia applications. However, it appears that research works on wavelet

applications to sensing technology are scattered among journals and conference proceedings

of different disciplines. As a result, published works in one discipline may not be known

to researchers in other disciplines. This was the motivation for the authors to write this

volume to generate interest in using wavelet analysis for applications in sensing technology.

Our goal for this book is three-fold: (1) introduce to the readers the Wavelet Transforms
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for uses in sensing technology, (2) demonstrate the usefulness of combining the WT with

other signal processing tools to solve many complicated problems in sensing technology and

(3) produce several algorithms and matlab codes for readers to have hands-on experience.

Except for some derivations on multiwavelets and the lifting algorithm, the mathematics can

be understood with basic knowledge of linear algebra and vector space. Some knowledge in

digital signal processing would be very helpful.

The book is organized with emphasis on using wavelets for applications in sensing tech-

nology. After a quick review of the Fourier analysis, the wavelet analysis is introduced in a

parallel fashion. Without giving rigorous proofs, different types of wavelets are introduced

and a brief outline on the wavelet construction is included in the appendices of Chapter

2. We emphasize the multiwavelet theory and algorithm for signal compression. Wavelet

decomposition algorithm and other signal processing algorithms are introduced to demon-

strate their power in solving problems in sensing technology. Neural network and the lifting

algorithm are considered for efficient computation in solving real-time recognition and clas-

sification problems. Speckle noise filtering and smoothing is a major problem in satellite

remote sensing. Various wavelet-based statistical techniques are considered for removing the

speckles. Directional clutter is difficult to be removed from optical images captured by aerial

photography. However, the development of directional wavelet transform (the X-ray wavelet

transform) greatly reduces the clutter due to waves on the ocean surface. Compression al-

gorithms are developed for remote compressing the satellite images before down linking to

earth stations. Neural networks and support vector machine algorithms are coupled with

statistical recognition techniques based on wavelet transforms to detect and classify wheel

bearing faults. The Markov random field and best wavelet basis help to identify malignant

masses and microcalcifications in screening mammograms. Wavelet techniques are used in

well-log analysis to detect subsurface layer boundaries and the discrete wavelet transform

has been used in two- and three-dimensional data for reduction of reservoir data.

Chapters 2 and 3 are devoted to the basics of wavelet analysis. The Fourier analysis is

briefly reviewed for use in the parallel development of wavelet analysis. Window Fourier

Transform is developed for the understanding of localized spectrum. Definitions for win-

dow measures are shown and comparisons are made between the window function and the



1.1. FROM FOURIER ANALYSIS TO WAVELET ANALYSIS 5

wavelet. The Continuous Wavelet Transform is defined and the scale and translation param-

eters are explained. The multiresolution analysis is briefly discussed so that the readers are

familiar with the concept of nested subspaces. The two-scale relations and the decomposi-

tion relations are given without proof so that they can be used in the development of the

discrete wavelet algorithms. The types of wavelet: the orthonormal, semi-orthogonal and

the biorthogonal are defined and discussed. For efficient processing, the multiwavelet has

been used in image compression. The GHM multiwavelets and optimal design multiwavelet-

s are shown without proof. The latter is applied to SAR image compression. For those

who wish to design wavelets for specific applications, two design methods are outlined in

Chapter 2. The decomposition (analysis) and reconstruction (synthesis) wavelet algorithms

are derived in Chapter 3. Their implementations using discrete convolution with up- and

down-sampling are shown. For higher computational efficiency, the wavelet-lifting algorithm

is given in Chapter 3. For certain applications, the wavelet packet algorithms are preferred

over the wavelet algorithms. The generation of the wavelet packets and the associated al-

gorithm are given. Finally, the Markov random field and the neural network algorithms are

briefly mentioned. The application of these algorithms is shown in subsequent chapters.

Noise removal from SAR images is an important topic in remote sensing applications.

The SAR is an active remote sensing device whose receiver is susceptible to electromagnetic

scattering from objects around the target. The speckle noise comes from this backscatter-

ing. In Chapter 4, the noise statistics are reviewed and compared with those of the wavelet

coefficients. The anisotropic diffusion method combined with a wavelet algorithm produces

the best results compared to the conventional wavelet thresholding, wavelet Bayesian thresh-

olding and wavelet Bayesian Markov random field. Aerial photography is a useful tool in

subsurface sensing of the ocean. The aerial images often suffer from noise caused by the

wind and tide. Since the motion of the ocean wave is directional, the x-ray wavelet algo-

rithm is constructed to smooth out the wave. A subband filtering approach is performed on

the wavelet coefficients for removing the directional ocean wave to reveal the ocean bottom

sedimentary map.

Image compression techniques are introduced in Chapter 5. Traditional coding algorithms

such as the Huffman code, arithmetic code, scalar and vector quantization code can be
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applied to wavelet coefficients. However, the embedded zero tree code and the spatial oriented

tree approach are adaptive coding techniques such that the coding gains can be controlled

by the user. They are also capable of real-time progressive transmitting of the code words.

The EZW and SPIHT algorithms are applicable to 2-D and 3-D compression. In addition,

by combining the SPIHT and wavelet thresholding, it is possible to achieve noise removal

and image compression simultaneously.

The topics in Chapter 6 include detection and classification of signals in remote sensing

applications. In the last two chapters of this book, the meaning of remote sensing is broad-

ened to include sensing systems other than satellite and aerial SAR imaging of the earth

surface. In these chapters, signals to be analyzed include acoustic signals from faulty bear-

ings and mammographic x-ray images. In Chapter 6, we apply multilayer perceptrons and

support vector machines to the wavelet coefficients for detection and classification of bearing

signals issued from the wheels of a train. Features and feature extraction are discussed in

detail. Genetic algorithm is used to select the best subbands from wavelet decomposition and

also select the most prominent features to reduce the computation load. The oversampling

wavelet technique and wavelet packet transform for texture classification are also included in

this chapter. Various neural network algorithms have been used in conjunction with wavelet

transforms for classification of textures in SAR images.

Chapter 7 concerns two approaches for detection of malignant masses and microcalcifi-

cation from mammograms. Multiresolution Markov random field is the main algorithm for

separating images of the masses from the rest of the tissues. As a preprocessor, the fractal

dimension is computed for each subimage to rule out those that contain no mass. Image

features are defined for a binary tree detector. For detection of microcalcification, an adap-

tive wavelet packet algorithm is used to detect small bright spots on the mammogram. Rule

based classification is employed to locate possible microcalcifications. Both algorithms have

been tested using a mammographic image data base from great Britian.

The material of this book comes from the teaching notes and research articles of the

authors. We also used other research articles in the literature to supplement the contents of

certain topics. The book is designed not only as a reference for researchers and practicing
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engineers in the field of remote sensing, it is also suitable as a supplementary text for a

course in remote sensing techniques at the senior or graduate level. Topics can be selectively

taught and amplified to supplement the contents of remote sensing courses. Several Matlab

codes are furnished for hands-on practices.
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Chapter 2

Wavelet Fundamentals

In the history of signal analysis, various ways have been used to represent a signal. A

continuous time signal (analog signal) represented by x(t) may exist in the time interval

(−∞ < t < ∞). In most engineering applications, the signals to be considered usually are

causal signals, which exist only for t > 0. They may be finite duration signals (x(t) = 0

outside of the interval t0 ≤ t ≤ t1). These signals may be represented by a linear combination

of basis functions such that a component associated with the chosen basis set may be singled

out for analysis and processing. A signal representation takes on the form x(t) =
∑
k ckφk(t)

where {φk(t)} , k ∈ Z is the basis function set and Z is the set of all integers. Intuitively, it is

easy to see that if the signal x(t) is an infinite duration signal, it is more natural to have φk(t)

also be infinite duration. Hence, it is awkward and cumbersome to use an infinite duration

basis function set to represent a finite duration signal. For example, it is well known that it

takes an infinite number of sinusoidal functions (they are infinite duration basis functions)

to exactly represent a finite duration rectangles pulse. Before the development of Fourier

analysis, an analog signal way represented by a power series of complex variables. The

basis functions used in this series representation are
{
tk
}
, k ∈ Z+, where Z+ is the set

of all positive integers. The work of Joseph Fourier opens up a new territory for signal

presentation and analysis. Infinite duration signals (particularly periodic signals) are best

represented by a linear combination of sinusoidal functions of different frequencies. One

9
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may alter the given signal by processing the Fourier coefficients (frequency filtering) in order

to achieve the objectives of a specific application. Since the development of the Haar basis

(1910), a continuous function may be approximated arbitrarily close by an orthonormal basis

with local support (finite duration). In engineering terminology, the Haar representation

of a signal is the well-known staircase approximation of a function. Representation using

the Haar basis has not found great popularity because the staircase approximation is a

discontinuous function. Analog signals represented by orthonormal basis with local support

become extremely useful after the development of Daubechies’ orthonormal approximation

function and wavelet in the mid 1980s..

2.1 From Fourier Analysis to Wavelet Analysis

Since its development in the 1800s, Fourier analysis has been used virtually in all branches of

engineering and applied mathematical science. It serves as the backbone of all analyses in the

frequency-domain. The Fourier analysis converts a signal represented in the time-domain

(or spatial-domain) to one in the frequency-domain (or spatial frequency-domain). The

frequency-domain representation reveals information from the signal that is not perceivable

in the time-domain representation. This characteristic is particularly useful in analysis of

acoustic signals and speech analysis in which tonal frequencies and characteristic frequencies

are important features for recognition and classification. We give a very brief review of the

Fourier analysis here primarily for the reader to recall terminologies in linear transformations.

2.1.1 Fourier Series

Let the signal x(t) be periodic such that x(t) = x(t + kT ), k ∈ Z the Fourier series

representation is an infinite sum of exponentials

x(t) =
∞∑

k=−∞
cke

jkω0t. (2.1)
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where ω0 = 2πf0 = 2π
T

is the fundamental angulus frequency of the signal and T is the

period. The coefficients are obtained based on the orthogonality between the exponential

basis functions. Using an expression for the inner product 〈f, g〉 =
∫∞
−∞ f(t)g(t)dt, where

the over bar denotes complex conjugation, orthogonality between two exponential functions

implies 〈
ejkω0t, ej�ω0t

〉
=

∫ T
2

−T
2

ejkω0te−j�ω0tdt = 0 if k �= �. (2.2)

The Fourier coefficients are expressed using the inner product notation

ck =
1

T

〈
x(t), ejkω0t

〉
=

1

T

∫ T
2

−T
2

x(t)e−jkω0tdt. (2.3)

The magnitude of the Fourier coefficient |ck| measures the strength of the kth harmonic in

the signal. The Fourier series is an energy preserving transformation so that the average

power per cycle in the time-domain is the same as that in the frequency-domain

1

T

∫
T
|x(t)|2 dt =

∞∑
k=−∞

|ck|2 . (2.4)

This is the Parseval’s identity for power signals.

2.1.2 Fourier Transform

Since most natural or man-made signals are not periodic, it is difficult to use the series

expansion to access the frequency of a non-periodic signal. We remove the periodicity con-

straint on the signal by extending the period to infinity. Using the series expansion as in

(2.1), we replace the coefficient ck in (2.3)

x(t) =
∞∑

k=−∞

1

T

∫ T
2

−T
2

x(t
′
)e−jkω0t

′
dt

′
eikω0t

=
1

2π

∞∑
k=−∞

ω0

[∫ T
2

−T
2

x(t
′
)e−jkω0t

′
dt

′
]
eikω0t. (2.5)
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As we extend the period T to infinity so that ω0 becomes dω and kω0 approaches ω, the

summation in (2.5) becomes an integral so that

x(t) =
1

2π

∫ ∞

−∞
dω

[∫ ∞

−∞
x(t

′
)e−jωt

′
dt

′
]
eiωt. (2.6)

We denote the quantity in the bracket by

x̂(ω) =
∫ ∞

−∞
x(t)e−jωtdt. (2.7)

x̂(ω) is called the “Frequency spectrum” or simply “Spectrum,” and is a continuous complex

function of the frequency variable ω. Equation (2.7) is usually called the “analysis transform”

or “forward transform.” The magnitude of x̂(ω) represents the strength of the signal at ω

while the phase of x̂(ω) is the signal delay. If we use the inner product notation, the analysis

transform is written as

x̂(ω) =
〈
x(t), ejωt

〉
=

∫ ∞

−∞
x(t)e−jωtdt. (2.8)

The original signal may be recovered from (2.6) by

x(t) =
1

2π

∫ ∞

−∞
x̂(ω)ejωtdω. (2.9)

This inverse transform in (2.9) is a superposition integral and is also called the “Synthesis

transform” in the sense that the original function x(t) may be put back together from its

frequency components in x̂(ω).

From this section, it shows that the Fourier analysis is the best tool for analyzing signals

that are periodic with infinite duration. However, for signals that are transient in nature,

such as music, image, speech, acoustic noise, seismic signals, thunder and lightning, rep-

resentation of these signals by Fourier series or Fourier transform is very cumbersome. If

one compares two signal representations, a rectangular impulse with very narrow time-width

would take an infinite number of frequency components to reconstruct the impulse. On

the other hand, if the signal is a sinusoidal function of a single frequency such as a 60Hz

household electrical signal, the spectrum is a Delta function. It is well understood that fi-
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nite duration signals are efficiently represented by localized finite energy basis functions. In

certain signal processing applications where real-time computation is necessary, the Fourier

transform cannot fulfill this requirement since it requires the knowledge of the entire signal

before the computation begins. Another drawback of the Fourier analysis is that it cannot

provide time domain and frequency-domain information simultaneously.

2.1.3 Window Fourier Transform

In order to gain time domain information from the spectrum, engineers have used the Win-

dow Fourier Transform (WFT), also called the Short Time Fourier Transform (STFT), to

investigate the spectrum at a particular time interval of the signal. The WFT is formally

defined by the integral transform

Wφx(t, ω) =
∫ ∞

−∞
x(τ)φ(τ − t)e−jωτdτ. (2.10)

The function φ(t) is called the window function chosen by the user. There are many windows

that can be chosen. The popular ones are the boxcar (rectangular), the Gaussian, raised

cosine, Hamming and Hanning and so on. The mathematical expression for these window

functions may be found in standard signal processing texts. The time-frequency variable

pair (t, ω) is the result from transforming from a single time variable τ. Hence, the WFT

transforms a one-variable function into a two-variable function. The complex spectrum of

Wφx(t, ω) gives approximate spectral properties of the signal in the vicinity of the time

location t. It is only an approximation since the expression in WFT is the Fourier transform

of the product of the functions x(τ) and φ(τ − t). In other words, WFT gives the spectrum

of the product function x(τ)φ(τ − t) instead of the function x(τ) alone. For example, if

φ(t) is a rectangular window with unit amplitude and x(τ) is a pure sinusoidal function

cos(ω0t), the spectrum of x(τ)φ(τ − t) is not a Delta function in the ω-axis. It actually

displays the convolution of the Delta spectrum with the sinc function spectrum resulting

from the rectangular function. It broadens the Delta spectrum δ(ω − ω0) to a sinc(ω − ω0)

function due to the truncation of the cosine function. This is the windowing effect on the

function x(τ). Intuitively, we want to use a window with long duration (large time-width)
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to capture the low frequency component of a signal and a short time duration window for

high frequency components. One must remember that the time domain resolution and the

frequency resolution are governed by the uncertainty principle. However, the product of the

time-duration and frequency bandwidth is a constant for a given window function φ.

The spectral domain equivalent of (2.10) comes from the Parseval identity, which gives

Wφx(t, ω) =
∫ ∞

−∞
x(τ)φ(τ − t)e−jωτdτ.

=
1

2π
e−jtω

∫ ∞

−∞
x̂(θ)φ̂(θ − ω)ejtθdθ. (2.11)

Equation (2.11) indicates the time domain windowing process is also a spectral domain

windowing process. It provides information on the spectral energy of the signal near the

center of the window.

The original signal x(t) is uniquely recovered from the WFT. Hence the WFT is a linear

transformation with a unique inverse. The inversion formula for the WFT is given by

x(t) =
1

2π ‖φ‖
∫ ∞

−∞

∫ ∞

−∞
Wφx(τ, ω)φ(τ − t)ejωtdωdτ, (2.12)

where ‖φ‖ is the norm of the function that will be defined in the next section.

2.1.4 Window Measures

Since there are many choices of window, there exist some measures of “goodness” for making

choices on the window function. In wavelet literature, the RMS (Root Mean Square) width

of the window function is used as a measure on the energy concentration in the time and

frequency domains. These measures are explicitly expressed by

∆w =
1

‖w‖
{∫ ∞

−∞
(t− t∗)2 |w(t)|2 dt

} 1
2

, (2.13)
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t∗ =
1

‖w‖2+

{∫ ∞

−∞
t |w(t)|2 dt

}
, (2.14)

and

∆ŵ+ =
1

‖ŵ‖
{∫ ∞

0
(ω − ω∗+

)2 |ŵ(ω)|2 dω
}1

2

, (2.15)

ω∗+

=
1

‖ŵ‖2+

{∫ ∞

0
ω |ŵ(ω)|2 dω

}
. (2.16)

Here, the energy norm of a function

‖w‖ =
{∫ ∞

−∞
|w(t)|2 dt

} 1
2

, (2.17)

‖ŵ‖+ =
{∫ ∞

0
|ŵ(ω)|2 dω

}1
2

(2.18)

has been applied to the RMS width. ∆w measures one-half of the time domain energy con-

centration of the window. A smaller time window width means more energy is concentrated

in a short time. High frequency features in a signal are extracted by adjusting the time

window width to be narrow.

For a real signal, the magnitude of its Fourier transform is symmetric with respect to the

origin of the frequency axis. We only need to use the positive ω−axis. Hence, the frequency

center ω∗ is located on the ω+- axis rather than at the origin. In general, one must compute

the window widths numerically since the window function may or may not be integrable

With some simple algebra, it can be shown that the window area of the WFT on the t−f
plane is given by

[(t+ t∗ −∆w), (t+ t∗ + ∆w)]× [(ω + ω∗+ −∆ŵ+), (ω + ω∗+

+ ∆ŵ)+]. (2.19)

One may choose any window function to satisfy the processing goals, however, once the

window w(t) is chosen, the window widths 2∆w and 2∆ŵ are fixed everywhere in the t− f
plane since they are independent of t and ω. This characteristic causes difficulty in processing

non-stationary signals with time-dependent spectra. The user must scale the window several



16 CHAPTER 2. WAVELET FUNDAMENTALS

times in order to extract features that may be hidden in the signal.

2.1.5 Wavelet Basis

For finite energy transient signals, it is natural to represent these signals by localized finite-

energy bases. Wavelet bases are finite energy bases, and it is very effective to use wavelets

for signal representation so that local signal components at different scales may be analyzed

for various signal processing needs

Wavelets are finite-energy functions that are very different than the sinusoidal functions

with infinite energy (big waves). A “wavelet” implies a function like “a small wave” with finite

energy that can be localized around the RMS center of the function. A wavelet must have

zero mean, which means
∫∞
−∞ ψ(t)dt = 0. In the spectral-domain, ψ̂(0) = 0. In engineering

terms, a wavelet has no d-c offset. In filter design literature, a wavelet always behaves as

a bandpass filter. Some wavelet users have imposed the requirement of a multiresolution

analysis on the wavelet in order for it to be implemented in the Discrete Wavelet Transform

(DWT) algorithm. We will discuss this point in greater detail later in this chapter

For a given wavelet ψ(t), a scaled and translated version of the wavelet forms a two-

parameter function

ψb,a(t) =
1√
a
ψ

(
t− b
a

)
. (2.20)

The parameter “a” corresponds to a scale of size a, while “b” is a translation parameter. The

wavelet ψ0,1(t) = ψ(t) is the basic wavelet. The Daubechies D2 (with four filter coefficients)

wavelet is shown in Fig. 2.1.

The shape of the wavelet remains the same under translation and scaling. Choosing

a parameter set (b, a) with a normalization constant, the set of wavelets ψk,a(t), k ∈ Z

constitutes the basis functions of a Reisz (or stable) basis in the L2 (or finite-energy) space.

Recall that the Fourier series coefficients are the component values of projection onto different

basis functions, the wavelet coefficients are signal components associated with wavelets at

different scales and different locations along the time axis.
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2.2 Continuous and Discrete Wavelet Transform

The Continuous Wavelet Transform (CWT) of a signal x(t) is a linear transform defined by

the integral with a chosen wavelet as the transform kernel

CWTψx(b, a) =
∫ ∞

−∞
x(t)ψb,a(t)dt

=
1√
a

∫ ∞

−∞
x(t)ψ

(
t− b
a

)
dt

= 〈x(t), ψb,a(t)〉 . (2.21)

CWTψx(b, a) is the wavelet coefficient at the time location b and scale a computed via

the inner product formula. It indicates the correlation between x(t) and ψb,a(t). A strong

correlation produces a high coefficient value

From the inner product representations, one may see immediately that the WFT and

CWT are of similar nature since

Wφ(b, ω) =
∫ ∞

−∞
x(t)φ(t− b)e−jωtdt =

〈
x(t), φ(t− b)ejωt

〉
. (2.22)

They are interchangeable if we switch between them

φ(t− b)ejωt ↔ ψb,a(t). (2.23)

The basis function φ(t − b)ejωt is a single frequency sinusoidal function modulated by the

window function φ(t). The window widths have been fixed by the choice of φ, independent

of b and ω. On the other hand, the window widths for ψb,a(t) depend on the scale while the

window area in the t− f plane

[t+ a(t∗ −∆ψ), t+ a(t∗ + ∆ψ)]× [
1

a
(ω∗

+ −∆ψ̂),
1

a
(ω∗

+ + ∆ψ̂)] (2.24)

remains the same, namely: 4∆ψ∆ψ̂. A large value of a (i.e. at low frequency) makes the time

window width large and the spectral window width small. By varying the scale parameter

a, the fine details of a signal can be separated from its coarse background at the locations
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where the events occur. For signal recognition and classification, wavelet signal processing

has this big advantage over the Fourier approach

The original signal can be uniquely recovered by the double integral

x(t) =
1

Cψ

∫ ∞

−∞

∫ ∞

−∞
CWTψ(x)(b, a)ψb,a(t)

dbda

a2
, (2.25)

where Cψ is a finite constant defined as

Cψ =
∫ ∞

−∞

∣∣∣ψ̂(ω)
∣∣∣2

|ω| dω <∞. (2.26)

Unlike the Discrete Fourier Transform which computes the Fourier transform of a discrete

signal

X̂(ω) =
∞∑

k=−∞
x(k)e−jkω, (2.27)

the Discrete Wavelet Transform (DWT) computes the CWT at a certain discrete set of scale

for a discrete signal. It is a fast algorithm to compute the CWT at a very sparse set of points

on the t − f plane. The perfect reconstruction property of wavelet allows the recovery of

the original signal. Hence, the CWT is a linear transform with redundancy while the DWT

is a shift variant transformation with no redundancy. To understand the basics of DWT,

the multiresolution analysis (MRA) and the associated relationships between the functional

spaces are discussed briefly in the following sections.

2.2.1 Multiresolution Analysis

A thorough understanding of the “Multiresolution Analysis” is important for the construc-

tion of a wavelet basis and for understanding the DWT algorithms. This analysis gives the

user a systematic view of the signal at different resolutions. It acts as a zoom lens of a

camera allowing the user to see the signal details (zoom in) or the broad background (zoom

out). By applying the MRA to a signal, one separates a signal into many components at

different resolutions so that each component may be processed with a different algorithm.

Procedures may be made adaptive to the processing goals and the characteristics of the
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signal. For a specific choice of the scaling parameter a = 2−j, j ∈ Z, the decomposition algo-

rithm is equivalent to putting signal components into successive frequency octaves. Different

filtering algorithms may be applied to different octave bands and the processing results can

be recombined to form the processed signal.

Approximation subspace

A function φ(t) ∈ L2, is a scaling function (or approximate function) that generates a nested

sequence of subspaces (approximation subspaces) {Vj}j∈Z of L2 such that

{0} ←− ... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ... −→ L2 (2.28)

and at the same time satisfies a refinement equation

φ(t) =
∑
k

pkφ(at− k) (2.29)

for some a > 0, a �= 1, and coefficient sequence {pk} ∈ �2. The space �2 is the finite energy

space for discrete signals. We choose a = 2 such that the two adjacent scales are twice and

half of the original scale. This choice generates a dyadic octave-scale in the spectral-domain.

That is, the center frequency of the scaled wavelet will be either half the frequency (coarser

scale) or twice the frequency (finer scale). The subspace V0 is generated by the scaling

function at integer shifts {φ(· − k) : k ∈ Z}. In general, Vn is generated by {φ(2n · −k) : k ∈
Z}. For the parameter-pair (b, a), we use ( k

2j
, 1

2j
) so that the CWT of a signal x (t) at those

parameters

CWTψx(
k

2j
,

1

2j
) =

∫ ∞

−∞
x(t)ψ( k

2j
, 1

2j
)(t)dt

= 2j/2
∫ ∞

−∞
x(t)ψ (2jt− k)dt

=
〈
x(t), ψ( k

2j
, 1

2j
)(t)

〉
. (2.30)

The last expression is the CWT coefficient for x(t) at ( k
2j
, 1

2j
).
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Wavelet subspaces

Let the subspace Vn be an orthogonal sum (for which we use the symbol ⊕)of mutually

orthogonal wavelet subspaces Wj ∈ L2

Vn = ⊕n−1
j=−∞Wj. (2.31)

Then

Vn+1 = ⊕nj=−∞Wj

= ⊕n−1
j=−∞Wj⊕Wn

= Vn⊕Wn. (2.32)

The wavelet subspace Wn orthogonally complements Vn in Vn+1. This is similar to vector

analysis where orthogonal components combine to form the vector in two dimensions. We

observe the following characteristics.

(1) Subspaces {Vj} are nested. That is, Vj is a proper subset of Vj+1.

(2) Subspaces {Wj} are mutually orthogonal

We can write these statement succinctly by

Vj ∩ V� = Vj , � > j (2.33)

Wj ∩W� = {0} , j �= � (2.34)

Vj ∩W� = {0} , j ≤ �. (2.35)

The bases of subspaces {Wn} are the results of the dilations and translations of some function

ψ(t), called a “wavelet,” similar to the {Vn} that are generated by φ(t). For any function

fj(t) ∈ Vj, we write

fj(t) =
∞∑

k=−∞
cj,kφ(2jt− k) =

∞∑
k=−∞

cj,kφj,k, (2.36)
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and another function gj(t) ∈Wj as

gj(t) =
∞∑

k=−∞
dj,kψ(2jt− k) =

∞∑
k=−∞

dj,kψj,k, (2.37)

for some coefficient sets
{
cj,k

}
k∈Z

and
{
dj,k

}
k∈Z

in � 2 space. The equations above use the

indices (j, k) to indicate the level of resolution and the translation location

φj,k = φ(2jt− k),

ψj,k = ψ(2jt− k).

Any real signal f(t) may be separated into many wavelet components gj(t), 1 ≤ j ≤M ′ such

that

fM(t) =
M ′∑
m=1

gM−m(t) + fM−M ′(t) (2.38)

where the function fM(t) is the approximation of f(t) in the space VM .

Two-Scale relations

The two-scale relation formalizes the relationship between two components at adjacent dyadic

scales using

φ(t) ∈ V0 ⊂ V1; (2.39)

ψ(t) ∈ W0 ⊂ V1. (2.40)

These relations are established by two sequences {pk} and {qk} ∈ �2 such that

φ(t) = φ(20t) =
∑
k

pkφ(21t− k) =
∑
k

pkφ1,k(t), (2.41)

ψ(t) = ψ(20t) =
∑
k

qkφ(21t− k) =
∑
k

qkφ1,k(t). (2.42)
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For arbitrary j ∈ Z, we have the two scale relations

φ(2jt) =
∑
k

pkφ(2j+1t− k), (2.43)

ψ(2jt) =
∑
k

qkφ(2j+1t− k). (2.44)

Decomposition Relation

The decomposition relation separates a function at high resolution to two functions at lower

resolutions. The subspace relation in an MRA

Vj+1 = Vj ⊕Wj

indicates that there exists a relationship between the basis functions in these subspaces.

Writing the two distinct basis functions φ(2t) and φ(2t− 1) in V1 using two sequences {ak}
and {bk} in �2 such that

φ(2t) =
∑
k

{a2kφ(t− k) + b2kψ(t− k)};

φ(2t− 1) =
∑
k

{a2k−1φ(t− k) + b2k−1ψ(t− k)}, (2.45)

one may generalize to arbitrary resolution j and for all � ∈ Z

φ�,j+1 = φ(2j+1t− �) (2.46)

=
∑
k

{a2k−�φ(2jt− k) + b2k−�ψ(2jt− k)}

=
∑
k

{a2k−�φj,k + b2k−�ψj,k}.

2.2.2 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) algorithms to be developed are based on the rela-

tions between subspaces described in the previous section. These are the most important

algorithms in wavelet signal processing. It is based on a divide-and-conquer strategy that
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separates a signal into components at various resolutions so that they may be adaptively

processed for specific applications. For basic understanding of these algorithms, it suffices

to state these algorithms for the purpose of explaining the meaning of each operation

The decomposition algorithm consists of two discrete convolutions followed by subsam-

pling by “2” operation. We write

cj,k =
∑
�

a2k−�cj+1,�; (2.47)

dj,k =
∑
�

b2k−�cj+1,�, (2.48)

where cj,k and dj,k are the coefficients of the scaling function and wavelet at resolution “j”

respectively. These formulas relate the coefficients of the scaling function from a given scale

to the scaling function and wavelet coefficients at twice the given scale. In other words, a

signal represented by a set of scaling function coefficients cj+1,� is separated into two signals

represented respectively by the scaling function coefficient cj,k and wavelet coefficients dj,k.

It is easy to see that these relations compute the scaling function and wavelet coefficients

at a resolution j from the scaling function coefficients at a higher resolution j + 1. This is

equivalent to drawing the high frequency information out from the original signal and leaving

the rest in a lower resolution approximation space. The scaling function component at the

resolution “j” can be further decomposed into two components at resolution “j − 1”. This

process may be repeated indefinitely, or until there is no more information left in the signal

The sequence {an} is the lowpass filter corresponding to a given scaling function while

the sequence {bn} is the highpass filter. The wavelet coefficients dj,k contain high frequency

information to be processed to achieve the desired goals. If these wavelet coefficients are not

processed, they may be recombined (reconstructed) to recover the original signal. Sometimes

the reconstruction of a signal is called the inverse DWT or IDWT

The reconstruction equation is expressed by

cj+1,� =
∑
k

[p�−2kcj,k + q�−2kdj,k] (2.49)
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where the right side of the equation corresponds to an up-sampling before discrete convolu-

tion.

2.2.3 Types of wavelet

The basis functions that span the subspace may form an orthogonal, a semi-orthogonal or a

biorthogonal basis. Conditions are imposed on the scaling function and the wavelet for each

type of basis. We will state these conditions separately for each type of basis.

Orthonormal Wavelet Bases

Based on the inner product defined in the L2 space shown in previous sections, two functions

are orthogonal to each other if the inner product of these functions is zero

< f, g >=
∫ ∞

−∞
f(t)g(t)dt = 0. (2.50)

If g(t) = f(t), and < f, f >=
∫∞
−∞ f(t)f(t)dt = 1, the function f(t) is normalized. If the set

of basis functions φj(t), j ∈ Z spans an scaling space Vj with

< φi, φj >=
∫ ∞

−∞
φ(t− i)φ(t− j)dt = δi,j, (2.51)

it is an orthonormal basis set. The same condition applies to the wavelet subspace. A

wavelet is said to be orthonormal if ψj,k = 2j/2ψ(2jt− k) satisfies

< ψi,�, ψj,k >=
∫ ∞

−∞
ψi,�(t)ψj,k(t)dt = δi,jδk,�. (2.52)

Since the wavelet subspace and the approximation subspace are orthogonal, we have

< φ0,i, ψ0,j >=
∫ ∞

−∞
φ0,i(t)ψ0,j(t)dt = 0, ∀ i, j ∈ Z. (2.53)
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Notice that the relationships in (2.51) to (2.53) are all referred to the same level of resolution.

The wavelets at different resolution are also orthogonal to one another. That is

< ψk,i, ψ�,j >= δi,jδk,l. (2.54)

Orthonormal wavelet bases include the Haar system, the Daubechies orthonormal wavelet

bases of all orders, the Meyer wavelets of all orders and the Battle-Lemarie orthonormal

(non-compactly supported) spline wavelets. As a remark, both Meyer and Battle-Lamarie

wavelets are not compactly supported (finite time duration), but the processing coefficients

decay quickly so that the length of the processing filters can be truncated for real-time

implementation.

Semi-orthogonal Wavelet Bases

It is known that the cardinal B-spline functions of orders higher than one, and their associated

compactly supported spline wavelets, the integer translates of the scaling functions, i.e. the

B-splines, as well as the spline wavelets are not orthogonal within their own subspaces.

Mathematically, these conditions are

∫ ∞

−∞
Nm(t− i)Nm(t− j)dt �= δi,j, (2.55)∫ ∞

−∞
ψNm(t− i)ψ

Nm
(t− j)dt �= δi,j. (2.56)

However, orthogonality still holds for the spline function Nm and the spline wavelet ψNm ,

as well as translates of wavelets at different resolutions. They are called a semi-orthogonal

wavelet. For efficient computations of the expansion coefficients, a dual scaling function φ̃

and a dual spline wavelet ψ̃ can be found to satisfy the biorthogonality relation

< φk,i, φ̃�,j >= δi,jδk,l (2.57)

< ψk,i, ψ̃�,j >= δi,jδk,l. (2.58)
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We remark here that both the dual approximation function (the dual B-spline) and the dual

spline wavelet are both functions in the spline space of the same order. In other words, the

B-spline and the dual B-spline are in the same spline space. These duals can be expanded

into B-spline series of the same spline order.

Biorthogonal Wavelet Bases

Finite impulse response filters (FIR) with symmetric or antisymmetric coefficients are known

to have linear phase or psuedo-linear phase characteristics. This property is important for

minimizing signal distortion in the filtering process. The FIR filters {pk} and {qk} of finitely

supported orthonormal wavelets are not symmetric. In designing wavelets, orthogonality may

be given up to gain the symmetric filter property. If there exists a basis function set {φk} in

which the members themselves are not orthogonal to one another, this is not an orthogonal

basis. However if it further exists another basis set
{
φ̃k

}
such that the basis functions in

this basis set is orthogonal to all other basis functions in {φk} except
〈
φk, φ̃k

〉
�= 0. We say

that {φk} and
{
φ̃k

}
are biorthogonal basis for each other. The set

{
φ̃k

}
is called the dual

basis of {φk} and vice versa. Filters designed in a two-channel filter bank are examples of

a biorthogonal basis. Orthogonality between filters is not required. The only requirement

for filter bank design is that the output of the filter bank is a delayed version of the input.

This is the perfect reconstruction condition imposed on the design. Biorthogonal wavelets

of Cohen, Daubechies and Feauvears are examples of this class of wavelet bases. One should

know that in filter bank design, there may not be a scaling function or wavelet associated

with designed filters, because the iterative procedure (described in the Appendices) may not

converge to produce a graph of the wavelet. In other words, there may not be nested V

spaces with the FIR filters as their two-scale sequences. For this reason, the two-channel

filter bank is an excellent alternative for digital signal processing. Some properties of these

biorthogonal wavelets are considered here

Given two biorthogonal basis pairs {φj, φ̃j} and {ψj , ψ̃j}, If φj(x), j ∈ Z spans an

approximation space Vj and ψj(x), j ∈ Z spans an wavelet space Wj , we have a biorthogonal

MRA
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For a given function f(t) ∈ V0, we may expand it in terms of the biorthogonal basis

f(t) =
∑
k

ckφk(t) (2.59)

and get the coefficients are obtained by

ck =< f, φ̃k > . (2.60)

Similarly, if f(x) ∈ Ṽ0, we may also expand it in terms of the dual basis and get the

coefficients through the biorthogonal basis. One can see clearly that V0 and Ṽ0 are two

different approximation subspaces. Each of which may generate a MRA of its own.

2.3 Multiwavelets

In [13] , it is stated that in order to reach the best performance in wavelet-based image com-

pression, wavelet filters need many desirable properties including orthogonality and symme-

try. However, these desirable properties are mutually exclusive and cannot be attained by

the design of a single wavelet. The design objectives can be accomplished if more wavelet-

s associated with the scaling function are considered in MRA. Hence, a multiwavelet set

offers more design options and achieves several desirable properties. As stated in [15], multi-

wavelets (sometimes called the vector wavelets) offer the possibility of better performance for

an image processing application than that from using scalar wavelets. It has been shown that

the GHM mutliwavelet constructed by Donovan et.l. defeats scalar wavelet in signal denois-

ing in [14] and [4]. However, the GHM multwavelet has no advantages in image compression

[15]. In this section, we introduce a new multiwavelet family, the “optimum time-frequency

resolution (OPTFR)” multiwavelet that is designed for image compression [11]. In [12],

compression experiments show that the results from using OPTFR multiwavelets are better

than using Daubechies’ orthogonal wavelets and Daubechies’ least asymmetric wavelets. The

OPTFR performs even better than scalar (9-7)-tap biorthogonal wavelet for some images.

Some generalities on multiwavelets and the GHM multiwavelets are presented here. Basic

concepts on the construction of the OPTFR will be given in later sections
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A set of functions ψ1, ψ2, · · ·ψr ∈ L2(R) is called “orthogonal multiwavelet of multiplicity

r” if {ψ1(2
jx− k), · · · , ψr(2jx− k), j, k ∈ Z} forms an orthogonal basis of L2(R). The MRA

discussed earlier in this chapter plays a vital role in multiwavelet construction. A MRA of

multiplicity r is a nested sequence of closed subspaces {Vj} in L2(R) satisfying the following

conditions [11].

1.Vj ⊂ Vj+1, j ∈ Z.

2.
⋂
j∈Z Vj = {0}

3.
⋃
j∈ZVj = L2(R)

4.f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1

5.There exist r functions φ1, φ2, · · · , φr such that the collection of integer translates

{φj(x− k), 1 ≤ j ≤ r, k ∈ Z} forms a Riesz basis of V0.

The functions φ1, φ2, · · · , φr are called scaling functions. If there exists a set of compact-

ly supported approximation functions whose integer translates form an orthogonal basis of

V0, then {φj(x − k), 1 ≤ j ≤ r, k ∈ Z} is called an orthogonal basis of V0. The {Vj}
is called an orthogonal MRA. For an orthogonal MRA {Vj}, subspaces {Wj} is defined by

Wj = Vj+1�Vj . If there exists a set of functions ψ1, · · · , ψr such that the integer translates of

them form an orthogonal basis of W0, then ψ1, · · · , ψr are called orthonormal multiwavelets

Let Φ = (φ1, · · · , φr)T be a vector scaling function in a MRA of muliplicity r, there exist

r × r matrix filter H = {Hk} such that

Φ(x) = 2
∑
k∈Z

HkΦ(2x− k). (2.61)

The frequency response of the matrix filter is defined by Ĥ(ω) =
∑
k∈Z Hke

−jkω so that we

have Φ̂(ω) = H(ω/2)Φ̂(ω/2) in the frequency domain. Let G = {Gk} be another matrix

filter such that Ψ(x) = 2
∑
k∈Z

GkΦ(2x − k), where Ψ = (ψ1, · · · , ψr)T is the vector wavelet.

The quantity (H,G) is called a multiwavelet filter bank, where H is called low-pass vector

filter and G is called high-pass vector filter. The modulation matrix of an FIR multifilter
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bank (H,G) is defined by

Hm(ω) =

 H(ω) H(ω + π)

G(ω) G(ω + π)

 . (2.62)

Since a large value for muliplicity r brings a huge burden in computation, mathematicians

and engineers design only multiwavelet of multiplicity 2. This multiwavelet is good enough

to achieve many wavelet design objectives. For the remaining of this section, we focus on

multiwavelet of multiplicity 2.

The GHM multiwavelet is the first example of orthogonal multiwavelets that was constructed

by J. Geronimo, D. Hardin and P. Massopust as shown in [14] and [4]. The GHM multiwavelet

has r = 2 and the filter length is 4. The two approximation functions are shown in Fig. 2.2

and Fig. 2.3, and the two wavelets are shown in Fig. 2.4 and Fig. 2.5.

GHM low-pass matrix filters are

H0 =

 3
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√
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√
2
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 (2.63)

H2 =

 0 0
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√
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− 3

10

 , H3 =

 0 0

− 1
10

√
2

0


and the high-pass matrix filters are

G0 =
1

10

 − 1√
2
−3

1 3
√
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 .
It has been shown that GHM multiwavelet has many useful properties. Two scaling functions

are symmetric; one wavelet is symmetric and the other one is antisymmetric. One scaling

function is compactly supported in [0,1] and another scaling function and wavelet functions

are compactly supported in [0,2]. The system achieves approximation of order 2. The

following procedure demonstrate the use of multiwavelet in processing a signal
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Given a signal x(t) ∈ Vj, we expand the signal into components with scaling functions

x(t) = 2j
∑
n

2∑
i=1

sjniφi(2
jt− n), (2.65)

where sjni = 〈x(·), 2jφi(2j · −n)〉 are the scaling function coefficients

The coefficient set
{
sjn =

(
sjn1, · · · , sjnr

)T
: n ∈ Z

}
in the above function completely de-

termines x(t). Since Vj = Vj−1 ⊕Wj−1, we write x(t) as

x(t) = 2(j−1)/2
∑
n

2∑
i=1

sj−1
ni φi(2

j−1t− n) + 2(j−1)/2
∑
n

2∑
i=1

dj−1
ni ψi(2

j−1t− n). (2.66)

where
{
djn =

(
djn1, · · · , djnr

)T
: n ∈ Z

}
is the set of multiwavelet coefficients

Replacing x(t) in (2.66) by (2.65), multiplying both sides of the equation with 2(j−1)/2φi(2
jt−

k), and taking an integral over R, we obtain

sj−1
k =

√
2
∑
n

Hn−2ks
j
n. (2.67)

Multiplying both sides of the above equation with 2(j−1)/2ψi(2
jt− k), and taking an integral

over R, we obtain

dj−1
k =

√
2
∑
n

Gn−2ks
j
n. (2.68)

The reconstruction formula is given by the expression,

sjn =
√

2
∑
n

Hk−2ns
j−1
n +

√
2
∑
n

Gk−2nd
j−1
n . (2.69)

In processing signals with multiwavelets, the user needs to generate multiple input data

streams for the vector filter. It is very important to map the one-dimensional signal into a

multi-dimensional data format. This mapping procedure is calledmultiwavelet prefiltering.

For r = 2, the basic multiwavelet prefilter is a 2× 2 matrix such that

s0
k = P

 x2k−1

x2k

 . (2.70)
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The data stream is partitioned into a sequence of two one−dimensional vectors and applied

to a filter defined by 2 × 2 matrix P . The postfilter Q satisfies the following condition

PQ = I, where I is the identity matrix. It is necessary to apply prefiltering before MWT

and postfiltering after inverse MWT. If the MWT is nothing but an identity matrix, the

output of the pre- and post-filtering will produce a signal identical to the input. Two

commonly used prefilters are listed as follows.

1. The subsample prefilter P =

 1 0

0 1



2. The Xia prefilter P =

 2 +
√

2
10

2−
√

2
10√

2 + 3
20

√
2− 3

20


The diagram of 1-D DMWT is shown in the Fig. 2.6. It is trivial to generalize 1-D DMWT

to 2-D DMWT. The diagram of 2-D DMWT (2-level) is shown in Fig 2.7.

The procedure for processing an image using the 2-D DMWT is given below

1. A prefilter is applied to all rows of an image. Every row is partitioned into two data

streams

2. The DMWT is applied to each prefiltered row. The first half of each row contains

coefficients corresponding to the two lowpass filters. The second half of each row contains

coefficients corresponding to the two highpass filters

3. The same prefilter is applied to all columns of the image. Every column is partioned

into two data streams

4. Perform the same DMWT to all columns as in step 2

The output of 1-level 2D-DMWT is shown in Table 2.1.

The identity of the data H1L2 contains high-frequency components corresponding to the

first wavelet filter and low-frequency components from the second lowpass filter. Just as

in 2-D DWT, it is straightforward to process multi-level 2-D DMWT. The second lev-

el of 2-D DMWT is obtained by applying the DMWT to the sub-image composed of



32 CHAPTER 2. WAVELET FUNDAMENTALS

L1L1, L2L1, L1L2,and L2L2. Fig. 2.9 shows an example of 2-D DMWT on a SAR image

shown in Fig. 2.8.

2.4 Wavelet Design

2.4.1 Orthogonal Wavelet Construction from Orthonormal Quadratic Mirror

Filter

Not all wavelets are suitable for a particular application. Different applications require dif-

ferent wavelets with specified properties for efficient and effective processing. In the process

of constructing a wavelet, there are choices to be made on certain parameters so that the

wavelet may be designed to achieve certain processing goals. This section highlights the

procedure for construction of wavelets from an orthonormal Quadratic Mirror Filter bank

(QMF). In section 2.4.1, an orthonormal QMF filter is denoted by (H,G), where H is the

low-pass filter and G is the corresponding high-pass filter

Assuming the filter length L > 0 is given, the perfect reconstruction condition for H is

given by
L−1∑
l=0

hlhl+2k = δ0k and the normalizing condition is given by
L−1∑
l=0

hl =
√

2. Combining

both conditions, one obtains an equation system for H = (h0, h1, · · · , hL−1). There are L

unknown variables and (L
2

+ 1) equations in this system. That means L
2
− 1 free parameters

can be chosen in the wavelet design process. In her paper [1], Daubechies gives a method for

constructing compactly supported orthogonal wavelet filterbanks {H,G} from QMF filters.

Given the low past filter H , the highpass filter G = (g0, g1, · · · , gL−1) is determined from gi =

(−1)ihL−1−i. She adds the highest vanishing moments to the QMF filterbank and generates

the famous Daubechies wavelet family. Since then, several optimal wavelet design approaches

have been proposed that have relaxed the vanishing moment constraints for wavelet designs

based on other new criteria. In [8], a new class of wavelets has been designed with interesting

approximation properties. In [9], the optimal wavelets for image representation have been

constructed. In [10], the signal-adapted wavelet design is formulated as a linear semi-infinite

programming (SIP). The SIP technique is capable of locating the globally optimal wavelet
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for a given input signal.

Parameterization of FIR filters satisfying the orthogonal condition and normalized conditon

is given by

HL(z) = 1√
2

L−1∑
k=0

hkz
k, (2.71)

GL(z) = 1√
2

L−1∑
k=0

gkz
k.

By induction, one obtains

 HL(z)

GL(z)

 =
1√
2

 PL
2
(z)

(−1)
L
2QL

2
(z)

 (2.72)

, where Pi(z), Qi(z) are determined by the following equations

 Pi(z)

Qi(z)

 =

 cos(αi−1) sin(αi−1)

− sin(αi−1) cos(αi−1)


 1 0

0 z2


 Pi−1(z)

Qi−1(z)

 (2.73)

and  P1(z)

Q1(z)

 =

 cos(α0) sin(α0)

− sin(α0) cos(α0)


 1

z

 , (2.74)

where (α0, α1, · · · , αL
2
−1) are constrained by

L
2
−1∑

j=0
αj = π/4. The parametric form of orthonor-

mal QMF filter for L = 4 is shown here as an example.

H(α0, α1) = {cos(α0) cos(α1), cos(α1) sin(α0), (2.75)

− sin(α0) sin(α1), cos(α0) sin(α1)}.

We remark here that not all orthonormal QMF filters generate orthonormal wavelet bases

in L2(R) because of non-convergence. In [3], Lawton proposed a necessary and sufficient

condition under which the orthonormal filter determines orthonormal wavelet bases. We

outline a simple approach for orthonormal wavelet design with some specific criteria.

1. Set an optimal criterion of wavelet based on specific requirements from the application.
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Vanishing moment is a good example.

2. Generate the parameterization for the orthonormal QMF filter.

3. Optimize the parameters to determine the best filter.

4. Check if the optimized filter satisfies the Lawton condition.

2.4.2 Construction of OPTFR Multiwavelet

In section 2.4.1, we briefly introduce the approach to construct an orthogonal wavelet form

Quadratic Mirror Filter bank based on certain optimal criterion. In this section, we intro-

duce a procedure for the design of orthogonal multiwavelets with optimal time-frequency

resolution. A good time-frequency localization property of multiwavelet is very important

for the signal processing such as image compression

Setting the mathematical proof, we introduce the optimized multiwavelet design method

proposed in [12]. The parameterization of multiwavelet filterbank is given by the following.

One defines H1(ω) and H2(ω) as well as G1(ω) and G2(ω) as follows

 H1(ω)

G1(ω)

 = 1/2



1 0

cos θ0 ∓ sin θ0

0 ±1

sin θ0 ± cos θ0

 + 1/2



1 0

− cos θ0 ∓ sin θ0

0 ∓1

− sin θ0 ± cos θ0

 e
−jω (2.76)

where θ0 ∈ (−π, pi]. and

 H2(ω)

G2(ω)

 = 1/4



1 −1

−√2 cos θ0
√

2 cos θ0

±1 ∓1

−√2 sin θ0
√

2 sin θ0

 + 1/2



1 0

0 ∓√2 sin θ0

∓1 0

0 ±√2 cos θ0

 e
−jw
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+1/2



1 1√
2 cos θ0

√
2 sin θ0

±1 ±1√
2 sin θ0

√
2 sin θ0

 e
−j2ω. (2.77)

where θ0 ∈ (−π, pi]. Following this, we parameterize the orthogonal FIR multifilter banks

as shown below. The whole design method starts from this parameterization.

 H2N (ω)

G2N (ω)

 = VN−1(z
2) · · ·V1(z

2)

 H2(ω)

G2(ω)

 , (2.78)

and  H2N+1(ω)

G2N+1(ω)

 = VN(z2) · · ·V1(z
2)

 H1(ω)

G1(ω)

 (2.79)

where z = ejω, VK(z) = I4 + (Z−1 − 1)Ak and

Ak = 1/2



1 cos θk 0 ∓ sin θk

cos θk 1 sin θk 0

0 sin θk 1 ± cos θk

∓ sin θk 0 ± cos θk 1

 . (2.80)

with θk ∈ (0, π]

An orthonormal multiwavelet Ψ is said to be balanced if its corresponding scaling function

Φ satisfies Φ̂(0) = (1, 1)t/
√

2. Experiments have shown that a balanced multiwavelet is

essential for effective signal processing. As mentioned in the previous section, before DMWT

is applied to the input signal, it must be partitioned into two data streams by prefiltering.

If Ψ is not balanced, the simple prefiltering techniques such as subsampling may lead to

mixing of low-pass components with high-pass components [15]. This mixing may cause

strong oscillations in the reconstructed signal after signal processing. Suppose {HN , GN}
is a multiwavelet filterbank given by equations (2.78) or (2.79). ΦN = {φN,1, φN,2} and

ΨN = {ψN,1, ψN,2} are corresponding scaling functions and wavelets which are supported in

the interval [0, N ] . The balanced mutliwavelet is constructed with the following procedure.
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Let

Φb
N = R0ΦN (2.81)

and

Ψb
N = R0ΨN (2.82)

where R0 =
√

2
2

 1 −1

1 1

 be the balanced scaling function and the balanced wavelet. The

multiwavelet filter bank corresponding to Φb
N , Ψb

N is

Hb
N(ω) = R0HN(ω)RT

0 (2.83)

and

Gb
N(ω) = R0GN(ω)RT

0 . (2.84)

Let us recall the window measure described earlier. The time-width of a window function w

is defined by

�w :=
(∫

R
(t− t∗)2|w(t)|2dt

)1/2

(2.85)

where t∗ is the center of the window in the time domain. The spectral width of w is denoted

by�ŵ. It is well known from the uncertainty principle that�w�ŵ ≥ 1
2
. This time-bandwidth

product is called the resolution cell of w. If the resolution cell of a function is closer to the

lower bound (i.e. 1
2
), the resulting resolution (image resolution in this case) will be higher.

If one considers the wavelet playing the role of a window function (as given in the WFT),

the better wavelets are those whose resulting cells have the smallest area. The OPTFR

multiwavelet pairs are constructed by minimizing the sum

SbN = �φb
N,1
�
φ̂bN,1

+�ψb
N,1
�
ψ̂bN,1

(2.86)

and

ŜbN = �
φ̃b
N,1

�̂̃
φb
N,1

+�
ψ̃b
N,1

�̂̃
ψbN,1

(2.87)

under certain constraints. Using this multiwavelet design process, an example of OPTFR



2.5. APPENDICES 37

multiwavelet is generated here for reference. Let us denote J :=

 0 −1

1 0

 , Hb
N(ω) =

R0HN(ω)RT
0 , G

b
N(ω) = R0GN(ω)RT

0 , For Φb
3 and Ψb

3,we have

H0 =

 .00790 .006236

.00789 −0.6236

 ,
H1 =

 .4920 .0636

−4.9210 .0063109

 .
with Hj = S0H3−j , j = 2, 3, Gk = (−1)k+1Hk, 0 ≤ k ≤ 3.

For Φ̃b
3 and Ψ̃b

3, we have

H0 =

 .00840 .00647

.0083 −0.642

 ,
H1 =

 .4915 .0636

−4.916 .0068


with Hj = S0H3−j, j = 2, 3, Gk = (−1)k+1HkJ, 0 ≤ k ≤ 3. This multiwavelet has been

used for image compression with very good results as mentioned in the introduction of this

section [12].

2.5 Appendices

2.5.1 Decomposition and Reconstruction Sequences for Orthgonal Basis

In this section, wavelet decomposition filter banks is denoted by (ak, bk and wavelet recon-

struction filter bank is denoted by (pk, qk. The relations between the decomposition sequences

{ak} , {bk} with the reconstruction sequences {pk} , {qk} are the simplest for an orthonormal

basis. For perfect reconstruction of the signal, we may use the following relations:

qk = (−1)kp1−k (2.88)

ak = −pk
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bk = −qk.

Once the pk sequence has been found through the construction of the two-scale relation of

the scaling function, the other sequences are determined.

2.5.2 Decomposition and Reconstruction Sequences for Semi-orthogonal Basis

The sequences for the two-scale relations in the mth order spline space are

pmk =


1

2m−1

 m

�

 , 0 ≤ k ≤ m

0, otherwise,

(2.89)

qmk =
(−1)k

2m−1

m∑
�=0

 m

l

N2m(k + 1− �), k = 0, ..., 3m− 2. (2.90)

The two-scale relations for the dual spline and dual wavelets are slightly more complicated.

Since the B-spline functions of orderm ≥ 2 are not orthogonal basis, the sequences {ak} , {bk}
come from the dual spline and dual wavelets are not finite, They are both infinite sequences

with exponential decay.

ak = 2−m+1
m∑
�=0

 m

l

 k−�+m−1∑
2h=k−�−m+1

N2m(m+ k − 2h− �)gh; (2.91)

bk = (−1)k+12−m+1
k−m∑

2h=k−2m

 m

k − 2h−m

 gh,
where the z-transform of {gh} is the reciprocal of the z-transform of the Euler-Frobenius-

Laurent Polynomial Eφ(z), namely

G(z) =
∑
h

ghz
h :=

1

Eφ(z)
(2.92)

=

 m−1∑
h=−m+1

N2m(m+ h)zh

−1

.
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2.5.3 Decomposition and Reconstruction Sequences for Biorthogonal Basis

In the case of biorthogonal wavelets, it is not easy to express the sequences explicitly in

terms of the lowpass filter sequence {ak}. {ak} is double-shift biorthogonal to the lowpass

reconstruction sequence {pk}.
2
∑
k

akpk+2n = δn. (2.93)

Similarly, the highpass decomposition sequence {bk} is double-shift birothogonal to the hiph-

pass reconstruction sequence {qk}.

2
∑
k

bkqk+2n = δn (2.94)

The biorthogonality between the lowpass and the highpass is also important.

2
∑
k

akqk+2n = 0 (2.95)

and

2
∑
k

bkpk+2n = 0. (2.96)

Many biorthogonal filter banks have already been designed for processing. For more details

of biorthogoanl wavelets, readers are referred to standard texts listed in the references.

2.5.4 Graphing the Approximation Functions

(A) Spectral method

Let us rewrite the two-scale relations for the approximation function

φ(t) =
∑
k

pkφ(2t− k).
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It can be expressed in the spectral domain as

φ̂(ω) =
1

2

∑
k

pkφ̂(
ω

2
)e−j

ω
2 hh (2.97)

= P
(
e−j

ω
2

)
φ̂(
ω

2
)

= P
(
e−j

ω
2

)
P
(
e−j

ω
22

)
φ̂(
ω

22
)

·
·

= ΠN
k=1P

(
e−j

ω

2k

)
φ̂(

ω

2N
)

= Π∞
k=1P

(
e−j

ω

2k

)
. (2.98)

The approximation function φ(t) can be obtained by finding the IFFT of the infinite product

given by (2.98). The inifinte product must be truncated so that φ(t) may be computed with

a finite amount of time

(B) Iterative method

We modify the two-scale equation to fit into an iterative scheme. Consider the expression

φn+1(t) =
∑
k

pkφn(2t− k), n = 0, 1, 2, .... (2.99)

The index n indicates the number of iterative loops. Initially, the user may use a delta

sequence δ(n), or a rectangular pulse. The iteration converges quickly if the regularity of

the function is high. In some designs and under certain conditions, the algorithm may not

converge due to their low regularity. The final graph may be visualized by using the usual

1-D graphic display. One may consider using the Daubechies filter sequences and the spline

sequence to graph the wavelet for experiment to study their properties

The reader may want to use the iterative method to compute the data value for the

Daubechies orthonormal approximation function and the compactly supported cubic spline

function. The {pk} sequence for these two approximation functions are:

1. Daubechies approximation function (coefficient),→ {pk} = {0.48296, 0.83652, 0.22414,−0.12941}
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2. Cubic Spline scaling function

,→ {pk} = {0.125, 0.5, 0.75, 0.5, 0.125}.

(C) Graphing the wavelets

The associated wavelet may be generated by a linear combination of approximation functions

based on the 2nd two-scale relation for the wavelets

ψ(t) =
∑
k

qkφ(2t− k). (2.100)

The relation between {pk} and {qk} depends on the wavelet type and the approximation

function. One may use (2.103) here to generate the graph of different wavelets

(D) Examples

We compute the corresponding wavelets of the scaling function D4 and N4. The correspond-

ing {qk}sequences are:

1. Cubic Spline scaling function (N4),

→ {qk} = 1
8!
{1, 124, 1677, 7904, 18482, 24264, 18482, 7904, 1677, 124, 1 }.

Coefficients of the Daubechies (9− 7) are given in the following table
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Table 2.1: Percentage heroin measurements in nine illicit heroin preparations.

Sample % Heroin
1 2.2 2.3 2.2 2.3
2 8.4 8.7 2.2 2.3
3 7.6 7.5 2.2 2.3
4 11.9 12.6 2.2 2.3
5 4.3 4.2 2.2 2.3
6 1.1 1.0 2.2 2.3
7 14.4 14.8 2.2 2.3
8 21.9 21.1 2.2 2.3
9 8.8 8.4 2.2 2.3

Table 2.2: Daubechies biorthogonal 9-7 wavelet filterbank
k ak bk pk qk
-5
-4 0.0267
-3 -0.0169 -0.09127 -0.0535
-2 -0.0782 -0.0456 -0.0575 -0.0337
-1 0.2669 0.0288 0.5913 0.1564
0 0.6029 0.2956 1.1151 0.5337
1 0.26687 -0.5575 0.5913 -1.2059
2 -0.07822 0.2956 -0.0575 0.5337
3 -0.0169 0.0288 -0.0913 0.1564
4 0.0267 -0.0456 -0.0337
5 -0.0535

Typical Man-Made
Devices

102010181016101410121010108106104102

10210010-210-410-610-810-1010-1210-1410-16

Diameter of Proton

Figure 2.1: Daubechies D2 Wavelet
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Figure 2.2: GHM approximation function 1

Figure 2.3: GHM approximation function 2

Figure 2.4: GHM wavelet function 1

Figure 2.5: GHM wavelet function 2

Figure 2.6: 1-D DMWT

Figure 2.7: 2-D DMWT

Figure 2.8: A SAR image

Figure 2.9: Multiwavelet decomposition of the SAR image shown in Figure 2.8.



Chapter 3

Wavelet Algorithms and Associated

Techniques

We introduced the CWT in the last chapter. It provides a time-scale map of the signal

that display the time and scale (frequency) information contained in the signal simultane-

ously. The frequency content of any event in the time domain can be easily seen in the map.

The CWT and the Short-Time Fourier Transform (STFT) are similar in nature since their

coefficients are computed from an integral. Computation-wise, they are both quite cumber-

some and are not efficient by any measure. The conventional technique for computing the

CWT involves convolution or FFT. Obviously, the CWT cannot be carried out in real-time.

Compared with CWT, DWT is much more computationally efficent. These are some of the

hindrances for further development of CWT. However, it is still a powerful analytical tool.

For applications where rich information is desired, the data set is small and the computation

time is not an issue, CWT is still preferred over the DWT.

45
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3.1 Discrete Wavelet Transform and Filter Bank Algorithm Based

on MRA

The Multiresolution Analysis (MRA) introduced in Chapter 2 forms the theoretical basis for

the development of discrete wavelet algorithms. The two-scale relation and the decomposi-

tion relation are the foundations for the discrete-time computation for the wavelet transform.

By eliminating the redundancy in the CWT, the DWT and IDWT (Inverse DWT) algorithms

are very efficient and particularly suitable for real-time computation and hardware imple-

mentation. In DSP system representation, the DWT and IDWT algorithms are equivalent

to the filter-bank algorithm in multirate signal processing.

3.1.1 Decimation and Interpolation

In multirate signal processing, a signal can be represented by more than one sampling rate.

The basic techniques to archive sampling rate change are the decimation and interpolation.

An M-point decimation is to select samples that are integer multiples of M from the given

signal.

y(n) = x(nM) for n ∈ Z (3.1)

The frequency spectrum of the decimated signals is given by

ŷ(ejω) = 1/M
M−1∑
k=0

x̂(ej[(ω−2πk)/M ]). (3.2)

The diagram of decimation operation is shown in Figure 3.1, where {x(n)} is the input

discrete signal and {y(n)} is the decimated output

For M = 2, the decimation operation is archived by taking every other data point (the

even indexed sample).

{y(n)} = {x(2n)}. (3.3)
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The spectral domain relation of a decimator (M=2) can be obtained

ŷ(ejω) = 1/2[x̂(ej(ω/2)) + x̂(−ej(ω/2)) ]. (3.4)

In terms of a matrix operator, the equation 3.3 can be rewritten as



·
·

y(−2)

y(−1)

y(0)

y(1)

y(2)

y(3)

·
·



=



·
·

x(−4)

x(−2)

x(0)

x(2)

x(4)

x(6)

·
·



=



1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0





·
·

x(−2)

x(−1)

x(0)

x(1)

x(2)

x(3)

·
·



(3.5)

or in a compact format

[y] = [D↓2][x] . (3.6)

Interpolation is the inverse operation of decimation. It inserts additional zeros between data

to increase the sampling rate. The definition of interpolation by M in the time-domain is

given by

y(n) =

 x(n/M) if n = kM k ∈ Z
0 otherwise.

(3.7)

The diagram of interpolation is shown in Figure 3.2. It can also be represented by the

discrete-time convolution

y(n) =
∑
k

x(k)δ(n− kM). (3.8)

The spectrum of the output is

ŷ(ejω) =
∑
n

∑
k

x(k)δ(n− kM)e−jnω (3.9)
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=
∑
k

x(k)e−jkMω

= x̂(e−jMω).

From Equation (3.9), the spectrum of the interpolation output is shrunk by a factor of M

on the ω−axis. Unlike the decimator, there is no problem of aliasing in the interpolation.

For M = 2, we have

y(n) =

 x(n/2) for n = 2l l ∈ Z
0 for n = 2l + 1 l ∈ Z

(3.10)

The matrix representation of this interpolator is



·
·

y(−2)

y(−1)

y(0)

y(1)

y(2)

y(3)

y(4)

·



=



·
·

x(−1)

0

x(0)

0

x(1)

0

x(2)

·



=



· · 1 0

· · 0 0

· · 0 1 0

· · 0 0 0 0

· · 0 0 1 0

· · 0 0 0 0 0

· · 0 0 0 0 0 1 0

· ·
· ·





·
·

x(−2)

x(−1)

x(0)

x(1)

x(2)

x(3)

·
·



(3.11)

or

[y] = [I↑2][x]. (3.12)

The interpolator and the decimator are important elements in filter bank (and DWT) algo-

rithms. They are used in conjunction with digital filters for decomposition and recovery of

signals. The basic operations in a two-channel perfect reconstruction filter bank consist of

convolution; followed by decimation by 2 and the interpolation by 2; followed by convolution

(see figure 3.3 and 3.4).

These basic operations will be used repeatedly to build pyramid algorithms and tree
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algorithms for wavelets and wavelet packets as well as in two- and three-dimensional signal

processing.

Mathematically, the convolution followed by decimation can be represented by

{y(n)} = {h(n) ∗ x(n)}↓2 (3.13)

= {u(n) =
∑
k

x(k)h(n− k)}↓2
= {u(2n)}
= {∑

k

x(k)h(2n− k)}.

This is the decomposition relation given in Chapter 2. Similarly, interpolation followed by

convolution can be written as

{y(n)} = {h(n) ∗ [x(n)]↑2} (3.14)

= {h(n) ∗ u(n) where u(n) = x(n/2)}
= {∑

k

u(k)h(n− k)}

= { ∑
k∈even

x(k/2)h(n− k)}

= {∑
k

x(k)h(n− 2k)}.

When these two operations are connected in tandem, it constitutes the basic decomposition

and recovery of a signal. Depending on the nature of the filters, we have a processing and

recovery scheme for the signal within the bandwidth of the filters. The interpolation followed

by convolution is the essential part of the wavelet synthesis algorithm. The decomposition

provides a very useful tool for image denoising and compression. The algorithm is based

on the decomposition relation in MRA discussed in Chapter 2. Let’s emphasize several of

these relations here for easy reference. Given xs+1(t) ∈ Vs+1, xs(t) ∈ Vs and ys ∈Ws, we can

represent all of these functions by their basis:

xs+1(t) =
∑
k

ak,s+1φk,s+1(t) (3.15)

xs(t) =
∑
k

ak,sφk,s(t)
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ys(t) =
∑
k

wk,sψk,s(t),

where {ak,s} is the set of approximation coefficient at resolution s and {wk,s} is the wavelet

coefficient set at resolution s. From the MRA,

Vs+1 = Vs ⊕Ws, (3.16)

there exists xs(t) ∈ Vs and ys(t) ∈Ws such that

xs+1(t) = xs(t) + ys(t)∑
k

ak,s+1φk,s+1(t) =
∑
k

ak,sφk,s(t) +
∑
k

wk,sψk,s(t). (3.17)

By substitution of the decomposition relation,

φ(2s+1 − l) =
∑
k

h0[2k − l]φ(2st− k) + h1[2k − l]ψ(2st− k) (3.18)

into Equation 3.17, we obtain the following wavelet decomposition algorithm

ak,s =
∑
l

h0[2k − l]al,s+1 (3.19)

wk,s =
∑
l

h1[2k − l]al,s+1.

where (h0(k), h1(k)) is wavelet decomposition filter bank. These two equations correspond

to decimation by 2 after convolution. Let as = {ak,s} ws = {wk,s} h0 = {h0[k]} and

h1 = {h1[k]}, the DWT is shown in Figure 3.5. We can also easily derive the wavelet

synthesis transform (IDWT)

al,s+1 =
∑
k

{g0[l − 2k]ak,s + g1[l − 2k]wk,s}, (3.20)

where (g0(k), g1(k)) is wavelet reconstruction filter bank. Equation 3.20 corresponds to inter-

polation followed by convolution. An L−level wavelet decomposition is archived by applying

DWT to the approximation coefficients L times. Figure 3.6 shows the implementation of an

L− level wavelet decomposition algorithm. Similarly, an L− level wavelet synthesis can be
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archived by applying IDWT L times to reconstruct the L− level approximation coefficients.

3.1.2 2-D Wavelet Algorithm

When the input signal is two-dimensional (2-D) such as an image, it is necessary to repre-

sent the signal components by two-dimensional wavelets and two-dimensional approximation

functions. For any approximation function φ and its corresponding wavelet ψ, there are three

different 2-D wavelets and one 2-D approximation function constructed by using the tensor

product approach. We express the 2-D wavelets in the following manner:

Ψ
[1]
i,j(x, y) = φ(x− i)ψ(y − j), (3.21)

Ψ
[2]
i,j(x, y) = ψ(x− i)φ(y − j), (3.22)

Ψ
[3]
i,j(x, y) = ψ(x− i)ψ(y − j), (3.23)

and the 2-D scaling function as

Φi,j(x, y) = φ(x− i)φ(y − j). (3.24)

Here the coordinates are x and y while i, j are integer translation in x− and y− direction

respectively. In the spectral domain, each of the wavelets and the approximation function

occupies a different portion of the 2-D spectral plane. The spectral distribution of each of

these four 2-D functions is shown in figure 3.7.

When we analyze a 2-D signal, the decomposition algorithm is applied to the x− and

y− direction to generate four components from the input signal. With respect to the spec-

tral domain, the components are called low-high (LH), high-low (HL) and high-high (HH)

corresponding to the wavelets Ψ
[M ]
i,j (x, y),M = 1, 2, 3 respectively. The component that cor-

responds to the approximation function is called the low-low (LL). The terms low- and high-

refer to the processing filter; whether it is a low-pass or a high-pass filter. The diagram of

2-D 3− level wavelet decomposition is shown in Figure 3.8.

Let us consider a 2-D signal as a rectangular matrix of the signal value. In the case
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where the 2-D signal is an image, the signal values are called the pixel values associated

with the intensity of the optical reflection. Consider the input signal cj(m,n) being a N ×N
square matrix. We process the signal along the x direction first. That means we decompose

the signal row-wise for every row using the 1-D decomposition algorithm. Because of the

downsample operation, the resultant two matrices are rectangular of size N × N
2
. These

matrices are transposed and they are processed row-wise again to obtain four N
2
× N

2
square

matrices, namely, aj−1(m,n), wj−1
1 (m,n), wj−1

2 (m,n) and wj−1
3 (m,n). The subscripts of the

w matrices corresponding to the three different wavelets. This procedure can be repeated for

an arbitrary number of times and the total number of coefficients after the decomposition

always equals to the initial input coefficient N2. An example of the decomposition is shown

in figure 3.9.

If the coefficients are not processed, the original data can be recovered exactly through the

reconstruction algorithm. The procedure is simply the reverse of the decomposition except

the sequences are {g0(k), g1(k)} instead of {h0k, h1(k)}. One should remember upsample

before convolution with the processing sequences.

3.2 Lifting Scheme for Discrete Wavelet Transform

Before the wavelet packet algorithms are discussed, we want to present a fast and simple

lifting algorithm to compute the DWT coefficients. The two basic operations in the de-

composition and reconstruction algorithms are (1) filtering followed by downsample, and (2)

upsample followed by filtering. Both operations are easy to be understood but inefficient

in implementation because they take up extra memory for the filters and the intermediate

outputs. Recently, Swelden and Daubechies derived a new algorithm called the “lifting al-

gorithm” that is much more efficient with high computational accuracy [10]. The lifting

coefficients are wavelet-specific just like different filter coefficients correspond to different

wavelets

The lifting scheme of the wavelet transform is shown in Figure 3.10.
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First, the signal is subsampled into even and odd data streams. These two data streams

can be considered as the approximation signal and the detail signal. A general wavelet-lifting

scheme is composed of a sequence of the two basic steps: prediction step and update step.

Both steps appear in the lifting sequence alternatively. For the inverse DWT, the procedure

is inverted. The two basic steps are applied to the approximation coefficients before they

are jointed back together as as one output data stream. It has been shown that the lifting

scheme may save up to 60 percent for some wavelet filter banks. The lifting scheme diagram

for inverse DWT is shown in Figure 3.11.

The development of the lifting scheme is based on a number of mathematical theories.

These theories are discussed one at a time for easy of understanding by the reader.

3.2.1 Laurent polynomial

A FIR filter h(k) = (hM , hM+1 · · · , hN−1, hN), M < N is characterized by its Z−transform

H(z) =
N∑
M
h(k)z−k. The degree of a Laurent polynomial (LP) is defined by |H(z)| = N−M.,

where |H(z)| is used to represent the degree of a polynomial H(z). In other words, the

degree of a polynomial is determined by the length of the corresponding filter. An algebraic

polynomial of one term zK is a Laurent polynomial of degree “0”. This example clarifies the

new definition well. The degree 0 in LP is assigned to −∞. The LP division is similar to the

division in algebraic polynomials

Let H(z) and G(z) be two LPs. Assuming G(z) �= 0 and |H(z)| ≥ |G(z)|, there exists

two Laurent polynomial Q(z) and R(z) such that

H(z) = G(z)Q(z) +R(z). (3.25)

where |Q(z)| = |H(z)| − |G(z)| is the Quotient and R(z) with |R(z)| < |G(z)| is the Re-

mainder. Like the notations for algebraic polynomial division, Q(z) = H(z)/G(z) represents

Quotient and R(z) = H(z)%G(z) represents Remainder

A LP is said to be invertible if and only if it is a monomial. Unlike the regular polynomial
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division, LP division does not hold the property of Uniqueness. This property is important

for the development of the lifting scheme

The non-uniqueness of LP division is demonstrated by the following example [10]. Let

H(z) = z−1+6+z be divided by G(z) = 4+4z. Using 3.25, we have R(z) = H(z)−G(z)Q(z)

and |Q(z)| = 1.It is easy to check the following two sets of (Q(z), R(z)) satisfying 3.25.

Q(z) = 1/4(z−1 + 5), R(z) = (z−1 + 6 + z)− (4 + 4z)(1/4z−1 + 5/4) = −4z (3.26)

Q(z) = 1/4(z−1 + 1/4), R(z) = (z−1 + 6 + z)− (4 + 4z)(1/4z−1 + 1/4) = 4. (3.27)

The property of non-uniqueness for LP division is important for wavelet lifting scheme.

3.2.2 Modulation Matrix and Polyphase Matrix

In perfect reconstruction filter bank literature, the modulation matrix M(z) includes the

decomposition filters and the reconstruction filters. It is defined by

M(z) =

 H(z) H(−z)
G(z) G(−z)

 . (3.28)

The dual of the modulation matrix M̃ satisfies the relation

M̃(z−1)tM(z) = 2I (3.29)

where I is a 2× 2 identity matrix

Polyphase representation of wavelet transform: subsampele the input data based on even

and odd indices followed by the dual polyphase matrix filtering. For IDWT, apply the

polyphase matrix to the two data streams followed by up sampling before putting the streams

together. Now, let us divide the filterH(z) into the even indexed part and the odd indexed

part.

H(z) = He(z
2) + z−1Ho(z

2), (3.30)
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where He(z) =
∑
k
h2kz

−k and Ho(z) =
∑
k
h2k+1z

−k. The polyphase representation of the

filter bank is given by

P (z) =

 He(z) Ge(z)

Ho(z) Go(z)

 (3.31)

so that

P (z2)t = 1/2M(z)

 1 z

1 −z

 . (3.32)

The dual of the polyphase matrix P̃ (z) may be constructed to satisfy P (Z)P̃ (z−1)t = I.

In the theory of filter bank design, perfect reconstruction of a signal requires the elements

of the polyphase matrix P (Z) to satisfy H̃e(z) = Go(z
−1), H̃o(z) = −Ge(z

−1), G̃e(z) =

−H0(z
−1), and G̃o(z) = He(z

−1). These conditions are satisfied by G̃(z) = z−1H(−z−1) and

H̃(z) = −z−1G(−z−1). The concept of Complementary is important to the lifting algorithm.

Two filters (H,G) are said to be Complementary if their polyphase matrix P (z) has unity

determinant.

3.2.3 The Euclidean algorithm

The Euclidean algorithm is used to determine the Greatest Common Divisor (GCD) of

two LP polynomials [10]. Consider two different LPs u(z) and v(z) with v(z) �= 0 and

|u(z)| ≥ |v(z)|. The quotient polynomial q(z)will be of degree ≥ 0. To determine the GCD,

we initialize the algorithm by writing u0(z) = u(z) and v0(z) = v(z). Assuming that (

vi(z) �= 0), we construct a loop to compute the GCD of u(z) and v(z).

{

i = i+ 1

ui(z) = vi−1(z)

vi(z) = ui−1(z)%vi−1(z)

}
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n = i;

GCD[(u(z), v(z)] = un(z)

Suppose |vi+1(z)| < |vi(z)|, there exists an m such that |vm(z)| = 0. The process stops for

n = m+1. The number of steps thus is limited by n ≤ |v(z)|+1. Let qi+1(z) = ui(z)%vi(z).

 un(z)

0

 =
n∏
i=1

 0 1

1 −qi(z)


 u(z)

v(z)

 , (3.33)

We obtains  u(z)

v(z)

 =
n∏
i=1

 qi(z) 1

1 0


 un(z)

0

 (3.34)

and un(z) is the common factor of u(z) and v(z). If un(z) is a monomial, then u(z) and v(z)

are relatively prime. This is a characteristic of LP

Let us use the previous example as an illustration. Let u(z) = z−1+6+z and v(z) = 4+4z.

u0(z) = z−1 + 6 + z

v0(z) = 4 + 4z

u1(z) = 4 + 4z

v1(z) = 4

q1(z) = 1/4z−1 + 1/4

u2(z) = 4

v2(z) = 0
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q2(z) = 1 + z.

We may expressed these factors succinctly as in the following.

 z−1 + 6 + z

4 + 4z

 =

 1/4z−1 + 1/4 1

1 0


 1 + z 1

1 0


 4

0

 . (3.35)

The number of steps is n = 2 = |v(z)|+ 1.

3.2.4 Lifting Algorithm

We will show through factorization of a pair of complementary filters (h, g) into the lifting

procedure [10]. Since (h, g) is complementary, det(P (z)) = 1. Moreover, he(z) and ho(z) are

relative prime. Using Euclidean algorithm, we get the GCD of Laurent polynomials he(z)

and ho(z) whose degree is 1. A constant K is used as their GCD.

 he(z)

ho(z)

 =
n∏
i=1

 qi(z) 1

1 0


 K

0

 (3.36)

Note that in case |ho(z)| > |he(z)|, the first quotient q1(z) is zero. If n is odd,

{ hn = h(z)z

gn(z) = −z−1g(z)

The determinant of the new (hn, gn) is still unity. In other words, (hn, gn) keeps Comple-

mentary. Given a filter h, a complementary go can be constructed by letting

P o(z) =

 he(z) g0
e(z)

h0(z) g0
o(z)

 =
n∏
i=1

 qi(z) 1

1 0


 K 0

0 1/K

 (3.37)

From
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 qi(z) 1

1 0

 =

 1 qi(z)

0 1


 0 1

1 0

 =

 0 1

1 0


 1 0

qi(z) 1

 , (3.38)

we have

P 0(z) =
n/2∏
i=1

 1 q2i−1(z)

0 1


 1 0

q2i(z) 1


 K 0

0 1/K

 . (3.39)

The original polyphase matrix is obtained by

P (z) = P 0(z)

 1 s(z)

0 1

 . (3.40)

For a complementary filter pair (h, g), there always exists a Laurent polynomial si(z) and

ti(z) for 1 ≤ i ≤ m and a non-zero constant K so that

P (z) =
m∏
i=1

 1 si(z)

0 1


 1 0

ti(z) 1


 K 0

0 1/K

 . [] (3.41)

The dual polyphase matrix is given by

P̃ (z) =
m∏
i=1

 1 0

−si(z) 1


 1 −ti(z)

0 1


 1/K 0

0 K

 . (3.42)

Haar basis is used as an example here. h(z) = 1 + z−1, g(z) = −1/2 + 1/2z−1, h̃(z) =

1/2 + 1/2z−1 and g̃(z) = −1 + z−1. After Euclidean algorithm, we have

P (z) =

 1 −1/2

1 1/2

 =

 1 0

1 1


 1 −1/2

0 1

 (3.43)

P (z)−1 = P̃ (1/z) =

 1 1/2

0 1


 1 0

−1 1

 . (3.44)

The DWT lifting algorithm is described here [10].

s
(0)
l = x2l
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d
(0)
l = x2l+1

dl = d
(0)
l − s(0)

l

sl = s
(0)
l + 1/2d

(0)
l

The IDWT lifting scheme is similarly computed.

s
(0)
l = sl − 1/2dl

d
(0)
l = dl + s

(0)
l · · ·

x2l+1 = d
(0)
l

x2l = s
(0)
l .

3.3 Wavelet Packets-Symmetrical Tree Algorithm

The wavelet packet basis is a natural generalization of the wavelet basis. The wavelet packet

subdivides both the approximation subband and the wavelet subband into finer frequency

bands. This is a refinement process in the frequency domain and the WPT is a symmetric

tree algorithm. The development of the wavelet packets is based on a mathematical theorem

(the splitting trick) proved by I. Daubechies in [7]. The theorem is restated here.

If f(x− k) |k∈Z forms an orthonormal basis and

F1(x) =
∑
k

pkf(x− k)

F2(x) =
∑
k

qkf(x− k), (3.45)

then {F1(x−2k), F2(x−2k); k ∈ Z} is an orthonormal basis for E = span{f(x−n);n ∈ Z}.
By a generalization of the two scale relation in the wavelet, we generate the wavelet packet
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subspace associated with the following wavelet packet generation.

µ2�(t) =
∑
k

g0(k)µ�(2t− k)

µ2�+1(t) =
∑
k

g1(k)µ�(2t− k). (3.46)

For � = 0, we have µ0 and µ1 being the approximation function and the wavelet respectively.

For � = 1, we see the wavelet packets µ2 and µ3 are generated from the wavelet µ1. More

wavelet packets are generated for a large integer l

This process is repeated so that many wavelet packets can be generated from the two-scale

relations. Some Haar wavelet packets are shown in Figure 3.12 and 3.13.

More available basis functions allow a given signal to be represented by a selected set

of bases from different levels of resolution. One may choose the “best” bases set via an

optimization criterion. The best-bases and best-level are two well-known algorithms for the

wavelet packet representation of a given signal.

3.3.1 Wavelet packet algorithms

The wavelet packet algorithm extends the wavelet algorithm to all subbands. In other words,

the two-channel decomposition algorithm is applied to the approximation coefficients as well

as the wavelet coefficients. Consequently, for every decomposition process, the number of

subband is double that of the previous resolution (2n, n is the level of decomposition.)

Suppose the input discrete signal x(n) has been mapped into the approximation space Vn.

That is, x (n) ←→ aj,k. Using the decomposition sequences h0(n) and h1(n), we obtain the

approximation function series coefficients aj−1,k and the wavelet series coefficients wj−1,k.

The coefficient sequences aj−1,k and wj−1,k are decomposed through h0(n) and h1(n) into

four sequences

aj−2,k

wj−2,k
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uj−2,k

vj−2,k (3.47)

in which the last two sequences uj−2,k and vj−2,k are wavelet packet series coefficients.

This process may be repeated to generate eight coefficient sequences corresponding to eight

wavelet packet components of the original signal x(n). The decomposition and reconstruction

block diagrams are given in Figure 3.14 and 3.15.

An example of a one-dimensional signal decomposition is shown in figure 3.16. A two-

dimensional extension of the wavelet packete algorithms is very straightforward. The two-

dimensional wavelet algorithm is applied to any band (low-low, low-high, high-low, high-high)

at any level. The total number of sub-image is 4n.

3.4 Markov Random Field

Markov Random Field (MRF) has been recognized as a powerful technique for image seg-

mentation and noise removal [4][9]. One of its most useful functions is to retrieve the original

(undistorted) signal from noisy data. The Maximum a posterior (MAP) estimation tech-

nique is used to achieve segmentation in the image plane. The MRF is particularly useful

for speckle noise in SAR images. Take the images in Figure (3.17) for example, the goal

of applying the MRF to the observed noisy image is to obtain a resultant image with the

maximum probability of being the original image.

Let the observed signal be a one-dimensional vector Y = {yi}, i = 1, 2, · · · ,W × H , W

and H are the width and height of an image if the signal is in two dimensions. The MRF

segments the signal to produce an output X = {xi}, i = 1, 2, · · · ,W ×H , The output signal

consists of K different labels. The notation xi = k means the pixel at i belongs to label k

(or the kth class) in the resultant image X. The label index k ∈ 1, 2, · · · ,K and K is the

total number of distinct labels in the segmented image. Two additional symbols used in

this discussion are (1) X|xi denotes all labels of image X except the single pixel xi and (2)

XNi denotes the neighborhood pixels around pixel xi. Two constraints are placed on the
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probability of the pixels in the resultant image. That forms the important features of the

MRF.

P (X) > 0, (positivity) (3.48)

P (xi|X|xi) = P (xi|XNi) (Markovianity). (3.49)

The positivity guarantees that all probability is greater than zero and the Markovianity

shows that the probability associated with a given pixel depends only on its neighborhood

pixels.

Neighborhood System and Clique

The neighborhood system and cliques are often used in MRF. We use Figure 3.18 to de-

scribe the first order neighborhood system, second order neighborhood system and fifth

order neighborhood system for a particular pixel xi located at the center. Figure3.18(c) is a

representation of a fifth order neighborhood system. In this figure, the numbers n = 1, 2, · · ·
in each neighborhood system indicate the outermost neighboring pixels of the nth order

neighborhood system.

A clique is a subset of pixels within a neighborhood system. They are grouped together

to be called single-pixel clique, two-pixel cliques and so on according to their sizes. (see

Figure3.18) They are denoted by symbols C1, C2, C3, and defined mathematically as

C1 = {xi|xi ∈ X}, (3.50)

C2 = {{xi, xi′}|xi′ ∈ XNi, xi ∈ Xare neighbors to each other} (3.51)

C3 = {{xi, xi′ , xi′′}|xi′ , xi′′ ∈ XNi, xi ∈ Xare neighbors to each other}. (3.52)

where X is the set of all pixels in the image, xi is the ith center pixel of a given neigh-

borhood system Ni, xi′ , xi′′ are pixels within that neighborhood system, and XNi is

the set of all pixels in the neighborhood system. Figure 3.19 gives the picture of single-pixel

cliques (a), double-pixel cliques (b), triple-pixel cliques (c) and quad-pixel cliques (d) for
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a second-order neighborhood system. The second-order neighborhood system is adequate

in most cases. The processing efficiency may be further increased if one includes only the

single-pixel cliques and double-pixel cliques, as shown in Figure 3.20 from a second-order

neighborhood system for computation. The clique α is single-pixel clique, β1 and β2 are

horizontal and vertical cliques, while β3 and β4 are diagonal cliques. We remark that the

pixels in a clique are ordered. Clique {xi, xi′} is not the same as clique {xi′ , xi}.

Basic Concepts

The Hammersley-Clifford theorem states that the probability of X has a Gibbs distribution

given by [1][2].

P (X) = Z−1e−
1
T
U(X) (3.53)

Z =
∑
x∈X

e−
1
T
U(X) (3.54)

U(X) =
∑
c∈C

Vc(X), (3.55)

where Z is a normalization constant to make P (X) less than unity. T is called the temperature

which is set to unity, and U(X) is equal to the sum of all clique potentials Vc(X), c ∈ C for

all possible cliques C.

U(X) =
∑

{i}∈X
V1(xi) +

∑
{i,i′}∈C2

V2(xi, xi′) +
∑

{i,i′,i′′}∈C3

V3(xi, xi′ , xi′′) + · · · . (3.56)

The potential function Vc(X), c ∈ C depends on the clique configuration. The potential

function for two-pixel cliques is defined as:

V2(xi, xi′) =

 −βi′ if xi = xi′ and i, i′ ∈ C2

βi′ if xi �= xi′ and i, i′ ∈ C2

(3.57)

where βi′ > 0 is a constant associated with pixel xi′ . The potential function of single-pixel

clique is defined as:

V1(xi) = αk if xi = k and pixel i ∈ X (3.58)
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where αk is a constant associated with label k. The constant is different for a different label

k in a heterogeneous system.

Principles of Operation

The Bayes’ theorem on the conditional probability states that

P (X|Y ) ∝ P (Y |X)P (X) (3.59)

where P (X) is the a priori probability of the image X, and P (Y |X) is the conditional

probability of the observed image Y given the image X. The principal goal is to maximize

the a posteriori probability mass function for X which, according to equation 3.53, can be

expressed as:

P (X|Y ) = Z−1e−U(X|Y ). (3.60)

The corresponding energy function in equation 3.60 is obtained:

U(X|Y ) = U(X) + U(Y |X), (3.61)

where U(X) can be computed via equation 3.56. Maximization of P (X/Y ) is the same as

minimization of U(X/Y ). Assuming additive Gaussian noise so that the observed image Y is

the sum of the original imageX and an independent Gaussian noise {ei, 0 < i < W ×H, ei ∼ N(xi, δ

From equation 3.56, minimization U(X) is the same as minimizing of V2(xi, xi′). The

energy function is increased when two pixels in the same clique belong to different labels.

To reduce the energy toward a minimum, one should incline to set the same label on pixels

along a given direction. If the pixels in a label do not have directional characteristics, the

β ′
is are set to be the same in the second order neighborhood system to minimize the energy

function.

In order to achieve the MAP estimation for MRF, several iterative algorithms have been

proposed. In [3], Geman proposed the Simulated Annealing (SA) algorithm to find the MAP

estimation of the true image by minimizing the energy function U(X|Y ). The computational
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cost is high since the algorithm optimizes the probability for every point in the image. The

Iterated Conditional Modes (ICM) is more computationally feasible. Besides the SA and

ICM, there are also the Maximum of Posterior Marginals (MPM), the Dynamic programming

methods (DPM) and the Hierarchical Algorithm. Only the first two algorithms are outlined

briefly here.

3.4.1 Simulated Annealing algorithm

SA is based on the classical Metropolis method of simulating systems containing large num-

bers of particles. It guarantees to find a global optimum for any labelling problems. The

steps of SA are given as follows:

1. Initiate with a temperature T.

2. Initialize X by maximizing P (yi|xi) for each pixel i. This is the maximum-likelihood

estimation (MLE) of pixel label. One may use the K-mean clustering algorithm for this step.

3. Perturb X and compute Diff = U(X|Y )−U(X ′|Y ). If Diff > 0, then replace X by

X ′, otherwise replace X by X ′ with probability e
Diff
T .

4. Repeat step 3 Ninner times.

5. Replace T by f(T) where f(.) is a decreasing function.

6. Repeat step 3 to step 5 Nouter times.

f(.) is the cooling schedule initialized by temperature T, the inner iteration time Ninner.

The outer iteration time Nouter and the perturbation method in step 3 are defined by ex-

perienced users. In order to assure the algorithm moving toward a global maximum, the

temperature is changed very slowly. (step size may be as little as one percent). For the

perturbation from X into X’, a single pixel assigned with a random label.
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3.4.2 Iterated Conditional Mode

The ICM uses essentially the same approach as in SA. However, it makes use of the Marko-

vianity of the system so that only the pixels in the neighborhood system need to be con-

sidered. It computes the local energy function U(X|Y ). Given an observed image Y , the

algorithm sequentially updates each xi from xki to xk+1
i by maximizing the local P (xi|X|xi, Y )

instead of the global P (X|Y ). To be more specific, recall that XNi is defined as the set of

pixels in the neighborhood of xi, then

P (xi|X|xi, Y ) = Z−1 exp(−U(xi|X|xi, Y )) (3.62)

P (xi|X|xi, Y )∞P (yi|xi)P (xi|XNi) (3.63)

Hence, we have U(xi|X|xi, Y ) = U(yi|xi) + U(xi|XNi) where C in Equation 3.56 defines

maximal size of the clique for the given neighborhood system and only pixels within the

cliques of xi are considered for the computation of energy function.

The ICM is simple. It is described by these steps:

1. Use k-mean algorithm to initialize X for segmentation.

2. Update xi to a new value xi′ that minimizes U(xi|X|xi, Y ) for every pixel of the image.

3. Repeat step 2 Nouter times.

3.5 Artificial Neural Networks

The nonlinear properties of an Artificial Neural Network (ANN) are ideal for pattern recogni-

tion or texture classification. Successes in pattern analyses using ANN have been demonstrat-

ed in many disciplines. [?] [?] [?]. We introduce four types of neural classifiers: Multilayer

Perceptron (MLP), Support Vector Machine (SVM), Radial Basis Function (RBF) and Self

Organizing Map (SOM). For these four classifiers, we focus primarily on the first two. The

MLP is the most popular technique using features from the signal groups for training and
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testing. Standard back-propagation algorithm with bias and momentum is the method of

training. To overcome the problem of slow convergence, we use the genetic algorithm (GA)

for optimizing the feature selection to reduce the feature dimension. GA will be discussed

in greater detail in a later chapter. Instead of reducing the input feature dimension, an

SVM nonlinearly maps an input vector into a high-dimensional feature space in which opti-

mal hyperplanes for separating these mapped features are constructed. Intuitively, an SVM

converges very fast compared to traditional neural networks and potentially very useful for

pattern classification. An SVM with a RBF kernel is a very versatile tool, well suited for

both pattern recognition and regression applications. The RBF network and the SOM will

be discussed at the end of this section.

Multilayer Perceptron

In the 1960s, a complicated multilayer perceptron model was developped based on Single

Layer Perceptron (SLP). Theoretically, the MLP may be used to approximate a function to

arbitrary degree of accuracy. However, there was no training method available in complicated

applications. The back-propagation algorithm was introduced in 1980.

A perceptron, like a neuron cell, is the basic building block of an MLP neural network.

The most widely used neuron model is based on McCulloch and Pitt’s work [?]. Figure

3.21 shows a typical structure of a perceptron where the input vector x = (x1, x2, . . . , xn)

is weighted by the weight vector w = (w1, w2, . . . , wn). The weighted input are linearly

summed to produce the output by

y(x) = g(wTx + w0) (3.64)

where w0 is the bias and g(·) is the activation function. Several activation functions have

been proposed. The popular ones are:
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1. Threshold Function

g(u) =

 1 u > t

0 u ≤ t
(3.65)

2. Linear Function

g(u) = a · u+ b (3.66)

3. Sigmoidal Function

g(u) =
1

1 + e−αu
. (3.67)

A perceptron with a threshold activation function forms a linear separation model for two

class classification. The bias value w0 serves as a threshold for the classification. A multi-

class problem requires more perceptrons to form an SLP. The SLP concept is extended by

using one perceptron model ym(x) for each class Cm in a multi-class problem.

ym(x) = g(wT
mx + wm0). (3.68)

The decision boundary for separating class Cm from class Cj is given by ym(x) = yj(x)

which, for linear discriminants, corresponds to a hyperplane of the form

(xm − xj)
Tx + (wm0 − wj0) = 0. (3.69)

Minsky and Papert [?] have shown mathematically that the SLP cannot solve all problems.

However, one may approach problems with more SLP layers. This type of network is called

MLP. It has input, hidden layer and the output layers. There may be more than one hidden

layer and they contain many generalized perceptrons. A typical MLP network is shown in

Fig. 3.22. It is shown that the structure, the activation function and the weight combine to

form a nonlinear mapping between the inputs and outputs.

Based on the MLP shown in Fig. 3.22. the output hk of the kth hidden neuron is given

by

hk = ϕ

(
N∑
n=1

xnwnk

)
, (3.70)
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where ϕ(·) is the activation function of the hidden layer. For the same way, the lth output

neuron ol is computed by:

ol = φ

(
K∑
k=1

hkvkl

)
= φ

(
K∑
k=1

ϕ

(
N∑
n=1

xnwnk

)
vkl

)
, (3.71)

where φ(·) is the activation function of the output layer. Equation 3.70 and 3.71 give the

formulas for computing the network outputs. The learning procedure is to train the weights

via the back-propagation that brought the MLP into popularity. Since the BP algorithm

makes the MLP one of the most widely used networks, even sometimes being called a BP

network. The BP algorithm computes the output of the network from the input layer after an

initial assignment of weights and the second stage updates the weights based on the output

error. This procedure is repeated until the MLP reaches a stopping criterion. Various

search techniques are available for weight adjustment. The gradient search proves to be the

simplest way. The mathematical details are provided in [?] [?]. The algorithm is succinctly

summarized here.

1. Randomly initialize the weights with small values if no prior knowledge is available.

2. Set up an input vector.

3. Compute the network output.

4. Compute the output error.

5. Adjust the weights in the gradient direction to reduce the output error.

6. Repeat 2-5 until the error reaches a pre-determined small value.

One should maximize the advantages offered by MLP when it is chosen to solve a problem.

The advantages include: (1) The training sample distribution is not restricted. This increases

the adaptivity of the MLP. (2)The number of free parameters is increased with the number

of hidden units for complex mappings. (3) Bounded activation functions are well behaved.

One should avoid using the MLP if time of convergency is an issue or if under- or over-

fitting may occurs.
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Support Vector Machine

Support Vector Machine (SVM) takes a different approach than the MLP. Its ability for

effective classification has been well recognized. Unlike the MLP which reduces the input

dimension for increasing efficiency, an SVM maps nonlinearly an input vector into a high-

dimensional feature space that is hidden from the input and the output. The user constructs

an optimal hyperplane in the feature space that separates the mapped features into two class-

es to achieve classification. SVM was originally constructed for two-class problems. Multi-

class SVM will be discussed in Chapter 6. An SVM is different from a conventional neural

network in several ways. (1) Method of classification. An SVM minimizes the probability of

misclassifying a randomly drawn data point from an unknown probability distribution. (2)

Efficiency and effectiveness. An SVM uses support vectors to carry information of the most

important features. Researchers [[?],[?]] have shown that only three to five percent of the

data points are used in the support vectors. (3) SVMs depend on feature information not on

large number of data [?]. We use a simple two-class example to illustrate the SVM method.

Let us assume that we have some training sample sets {xi,yi}, i = 1, . . . , l. Each training

sample xi ∈ �d, d being the dimension of the input space. Each point xi belongings to a class

labelled by yi ∈ {−1,+1}. The goal of two-class classification is to define a hyperplane that

separates the positive from the negative samples. The point x which lies on the hyperplane

satisfies w · x + b = 0, where w is a vector normal to the hyperplane. In the linear case,

the algorithm looks for the separating hyperplane with the largest margin from the nearest

points on both sides. In other words, we wish to find W .

yi (xi ·w + b)− 1 ≥ 0 ∀i. (3.72)

If a hyperplane satisfying (3.72) is found, the set is linearly separable. Given a linearly

separable set S, the optimal separating hyperplane (OSH) is the one for which the distance

γ to the closest points of S is maximized.

γ =
1

2

(
w · x+

‖ w ‖2 −
w · x−

‖ w ‖2
)
− 1 ≥ 0 ∀i. (3.73)
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The problem can be equivalently stated as:

Minimize 1
2
w ·w

Subject to yi(xi ·w + b− 1) ≥ 0 i = 1, . . . , l

. (3.74)

Lagrange multipliers are often used to find the solution. Let α = (α1, α2, . . . , αl) be the l pos-

itive Lagrange multipliers of the inequality constraints in (3.72). The problem is formulated

as finding the saddle point of the function

L(w, b, α) =
1

2
w ·w −

l∑
i=1

αi[yi(w · xi + b)− 1]. (3.75)

Making the gradient of L(w, b, α) with respect to w and b to vanish generates two equations:

∂L(w, b, α)

∂w
= 0 (3.76)

∂L(w, b, α)

∂b
= 0. (3.77)

After resubstitution we obtain two equivalent equations:

l∑
i=1

yiαixi = w (3.78)

l∑
i=1

yiαi = 0. (3.79)

Substitution of (3.78) and (3.79) into (3.75) yields

L(α) =
l∑
i=1

αi − 1

2

l∑
i=1

yiyjαiαj < xi · xj > . (3.80)
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The linear support vector training is reduced to

Maximize L(α) =
∑l
i=1 αi − 1

2

∑l
i=1 yiyjαiαj < xi · xj >

subject to
∑l
i=1 yiαi = 0, αi ≥ 0

(3.81)

.

The optimal solutions ᾱ, (w̄, b̄) must satisfy the following conditions: [?] [?]

ᾱi[yi(w̄ · xi + b̄)− 1] = 0, i = 1, . . . , l. (3.82)

Note that the ᾱi that may be nonzero in Equation (3.82) are those for which the constraints

Equation (3.72) are satisfied with the equality sign. All other ᾱi are zero. This means that

the vector w is a linear combination of a small percentage of the points x̄i. These are the

support vectors that lie on the hyperplane. The problem of classifying a new data point x is

now solved by examining the value of the hyperplane decision function

f(x) = sgn
(
w̄ · x + b̄

)
. (3.83)

This analysis may not produce a solution for non-separable data. The non-separable cases in

SVM allow training error repeated by
∑
i ξi where ξi are called slack variables. If 0 < ξi < 1,

the ith data point is correctly classified. Otherwise, it is given by ξi > 1. The problem may

be reformulated to ‖w‖2 /2 + C (
∑
i ξi)

k, where C is a user defined cost parameter. A large

value for C corresponds to assigning heavier penalty to classification errors. The generalized

OSH is the solution to the reformulation.

Minimize 1
2
w ·w + C

∑l
i=1 ξi

subject to yi(xi ·w + b) ≥ 1− ξi i = 1 . . . l

(3.84)
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Following the sane Lagrange multiplier method yield

L(w, b, ξ, α) =
1

2
‖w‖2 + C

l∑
i=1

ξi −
l∑
i=1

αi[yi(xi ·w + b)− 1 + ξi]−
l∑
i=1

µiξi, (3.85)

where µi are the Lagrange multipliers introduced to force the ξi to be positive. To generalize

this approach to a nonlinear decision function, a simple mapping is needed. We use an XOR

problem to illustrate the principle. Consider two points (1,1) and (-1,-1) that belong to

the positive class while (1,-1) and (-1,1) belong to the negative class. These points are not

linearly separable in �2. However, if a mapping

Φ(x) =


x2

1

x1x2

x2
2

 (3.86)

is used on these points, the two positive points are mapped to (1,1,1) and the two negative

points are mapped to (1,-1,1). These two classes are linear separable in �3. Hence, the

main idea of nonlinear support vector machine is to define a mapping to transform the given

samples to some higher dimensional space so that the problem becomes linear and separable.

The only appearance of the data in the formulation is in the scalar product xi · xj . The

training algorithm depends only on the data through Φ(xi) ·Φ(xj). If we choose a “kernel

function” K such that K(xi,xj) = Φ(xi) ·Φ(xj), we only need to use K in the training

algorithm. Some Kernels that have been used in the literature are shown in the following

Table 3.1.

Once a kernel K has been chosen, the objective is to maximize

L(α) =
l∑
i=1

αi − 1

2

l∑
i,j=1

αiαjyiyjK(xi,xj) (3.87)
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and the decision function becomes

f(x) = sgn

(
l∑
i=1

αiyiK(xi,x) + b

)
. (3.88)

A nonlinear SVM structure is shown in Fig. 3.24. The vectors x1,x2, . . .x� in the hidden

layer are the selcted support vectors. A more thorough analysis on extension to multi-class

procedure choosing the kernel function and training an SVM is found in [?] [?].

When we encounter a multi-class classification problem, we need to choose an appropriate

approach to extend SVM for multi-class problem. There are two ways to approach a multi-

class problem. The “one-versus-rest method” and the “one-versus-one method.” For a k

-class classification problem, we can construct k independent SVMs so that each one of

these k classes is trained to be separate from all the rest. When the system is tested for

classification, each sample is input into all the SVMs. the one SVM with the largest output

indicates the class where the input data belongs. This is the one-versus-rest method. The

one-versus-one method requires k(k − 1)/2 SVMs. The decision on a data under test is

based on the voting results from all these SVMs. The fundamentals of these two methods

are the same and according to a comparative study [?], We remark here that SVM that works

well for two-class problems may not work as well for multi-class problems. We may use an

output layer to linearly combine the SVMs and use weight factors to adjust the performance

of the entire system. However, even if we can compare the outputs with the target values

for a given input sample data, there is no way to make use the error to adjust the weights.

SVM does not have work as an MLP. Hence, we have a need to develop certain schemes to

adjust the training parameters of an SVM from the difference of the output compared to

the target value. The genetic algorithm optimization is one approach to solve this problem.

The natural choice for the fitness function is the classification accuracy.

Radial Basis Function

The Radial basis function neural network has been recognized as an effective feed forward

nonlinear neural networks for classification problems. Radial basis functions may also be
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used as kernel functions in the SVM network discussed in the last section. An RBF network

has three layers: the input layer, the hidden layer and the output layer. The input layer is

the same as in an MLP. The hidden layer consists of radial basis function neurons. Network

nodes in the output layer combine the weighted outputs from the RBF neurons. The output

of the network is given by

y = w0 +
k∑
i=1

wiφ(‖ x− ci ‖), (3.89)

where φ(·) is the radial basis function, wi, i = 1, 2, . . . , k are the output layer weights, w0 is

the bias, x is the input vector to the network, cis are the centers associated with the basis

functions and k is the total number of hidden neurons. A radial basis function is a nonlinear

function that is in the form of φ(x) = φ(‖ (x− c ‖) where the ‖·‖ is the norm of the vector.

The function is symmetric with respect to c, and “ c ” is called the center of the RBF.

Several typical RBFs include:

Gaussian function

φg(x) = e
−(x−c)2

ρ2 (3.90)

where ρ is the “radius” of the function.

Multiquadric

φM(x) =
[
(x− c)2 + ρ2

] 1
2 . (3.91)

Inverse multiquadric

φI(x) =
[
(x− c)2 + ρ2

]− 1
2 /ρ. (3.92)

When a data vector is input to an RBF network, each hidden neuron will output a value

depending on the relative location of the data with respect to the center of the neuron. The

output value is near zero if the input value is away from the center of the RBF neuron. On

the other hand, the output value is near 1 if the input value is close to the center. The

output is a linear weighted sum of the RBF outputs. By writing the algorithm in matrix
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formulation and using the Gaussian as the RBF, we get the following equations

Y = RtX (3.93)

where

Y = [y1, ..., ym]t

Z = [zt1, ..., z
t
m]

t

zj = [1, zj1, .., zjk]
t

zji = e

−‖xj−ci‖2
ρ2
i .

(3.94)

Figure 3.25 shows the structure of an RBF neural network.

The RBF network design is to select the basis function and the parameters associated

with the neurons in the hidden layer. One simple design is to use all the training samples as

hidden neurons’ centers. It means they represent all samples (including the testing samples

that had never been used before) very well. However, in most applications, this scheme

suffers from over-fitting. Other schemes include adaptively changing the number of hidden

layer neurons during the training process.

It has been shown by Park and Sandbery [?] [?] that radial basis function networks have

universal approximation capabilities. This property ensures that RBF networks have at

least the same theoretical capabilities as MLP networks with sigmoidal activation functions.

Since MLP and RBF are capable of universal approximation, the choice is generally based

on classification performance for a particular application.

Self-Organizing Maps

The Self-Organizing Map (SOM) was introduced by Kohonen as a technique for signal classi-

fication. The model is based on theories in neurobiology and the network function resembles

the working principles of a human brain. Although its structure is easy to use, it has not

been analyzed as well as that in MLP or RBF networks. SOM is a type of unsupervised
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network. It is useful in clustering analysis and signal compression. The SOM model has only

two layers, the input layer and the competitive layer. The dimension and arrangement of

the nodes in the input layer are the same as the input vectors. The competitive layer can be

one-dimensional or two-dimensional. The weight vectors connect the input layer to all the

competitive nodes. Figure 3.26 shows the basic structure of an SOM neural network.

The training process is quite simple. For every input vector, all the neuron outputs in

the competitive layer are computed. The one with the highest value is the winner. All the

weights connected to the winner and its neighbors are updated. The algorithm is summarized

as follows:

1. Choose random values for the initial weight vectors wj(0). The only restriction here

is that all the weights wj(0) j = 1, 2, . . . , N , are distinct with N being the number

of neurons in the competitive layer. Similar to the initialization process of MLP, it is

desirable to keep the magnitudes of the weights small.

2. Introduce a sample x into the network. Calculate the neuron values in the competitive

layer and get the winner with respect to the minimum Euclidean distance criterion.

3. Find the neurons that need to be updated. Typically, they are the neurons in the

neighborhood of the winner and the winner itself. For a two-dimensional competitive

layer, the neighborhood area may be a rectangular region or a hexagonal region. The

neighborhood area should contain only the nearest neighbors of the winning neuron at

the start of the convergence phase, and may eventually shrink to one or no neighboring

neurons.

4. Adjust the synaptic weight vectors of all neurons by using the update formula

wj(l + 1) = wj(l) + η(l)(x(l)−wj(l)) (3.95)

where η(l) is the learning-rate parameter. For good statistical accuracy, η(l) should

be maintained at a small value (0.01 or less) during the convergence which may take

thousands of iterations and a large amount of time.



78 CHAPTER 3. WAVELET ALGORITHMS AND ASSOCIATED TECHNIQUES

5. Return to step 2 until no noticeable changes in the feature map are observed.

After training, the network will cluster different classes of samples to different regions of

the competitive layer. If the winner of a testing sample is located in the area where the

training samples from the same class are clustered by the network, the network is well-

trained. Otherwise, it may be under-or-over trained. The SOM works extremely well for

some applications though they are not analyzed thoroughly in mathematics. However, for

some applications it may oscillate or not converge if the training parameters are not well

initialized and adjusted.

3.6 Anisotropic Diffusion

In the last two decades, a diffusion method has been used for image denoising and restoration.

The essential idea of this approach is quite simple: the observed image is embedded into

a family of derived images X(h, w, t) obtained by convoluting the original image with a

Gaussian Kernel G(h, w, t) of variance t :

X(h, w, t) = X0(h, w) ∗G(h, w, t). (3.96)

The large value of t, the scale-space parameter, corresponds to images at coarser resolution.

It has been proved that the diffusion equation is the solution of the heat conduction equation

(3.96).

X(h, w, t) = �X = (Xhh +Xww). (3.97)

With the ordinal image as the initial condition I(h, w, 0) = X0(h, w, t), the diffusion approach

does not treat edge pixels and intra-region pixels differently. It is an isotropic diffusion and

blurs the image very badly when the noise is removed. A good diffusion approach must

satisfy the following requirements [5]:

1. Causality : No spurious detail should be generated during diffusion.

2. Immediate Localization: During the diffusion process, the edge should be sharp, not
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blurred.

3. Piecewise Smoothing: During the diffusion process, the intraregion smoothing should

occur preferentially over interregional smoothing.

For example, in an image composed of trees and background, the leaf regions should be col-

lapsed into a treetop before being merged with the background. Perona and Malik proposed

their anisotropic diffusion equation approach by adding a conduction function or diffusion

function in Equation (3.98). The anisotropic diffusion is written as

∂X

∂t
= div(c(h, w, t)∇X ) = c(h, w, t)∆X, +∇c · ∇X (3.98)

where div() is the divergence operator, ∇ is the gradient and ∆ is the Laplacian operator,

with respect to the space variable. When c(h, w, t) = 1, Equation (3.98) reduces to the

isotropic heat diffusion equation (Equaiton 3.96). Supposing that the edges of the image are

known at iteration t, the smoothing within a region is expected to be strongly encouraged,

and the smoothing across the boundary is expected to be strictly restricted. This can be

achieved by setting c(h, w, t) 1 within a region and setting 0 at the edge. However, we do

not know the edge location in the image. Hence, anisotropic diffusion should locate the edge

and carry out the smoothing process. Since the image gradient operator ∇ is a very simple

edge estimation, the conduction function c(h, w, t) can be defined based on ∇X.:

c(h, w, t) = c(||∇X(h, w, t||). (3.99)

To satisfy the requirement of conduction function,

c(x) = 1 if x = 0,

c(x) → 0 if |x| → ∞.
(3.100)

Two conduction functions

c(x) = exp(−(
x

kx
)2) and (3.101)

c(x) =
1

1 + (x/kx)2
(3.102)
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have been proposed by Malik and Perona in [?]. Luis Alvarez proposed another nonlinear

parabolic differential equations for image denoising [6].

∂X

∂t
= c(|G ∗ ∇X |)|∇X |div( ∇X|∇X| ), X(h, w, 0) = X0(h, w), (3.103)

where X0(h, w) is the observation, and X(h, w, t) is the evolving image at time t. G is a

smoothing kernel (for instance, a Gaussian); G ∗ ∇X is therefore a local estimate of ∇X
for noise removal. C(x) is a conduction function. The term |∇X |div( ∇X

|∇X| ) represents a

degenerate diffusion term, which diffuses U in the direction orthogonal to its gradient |∇X |
and does not diffuse at all in the direction of |∇X |.
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Table 3.1: Kernel functions for different pattern classification
Kernel Function Type of Classifier
K(x, y) = exp(−‖x− y‖2/(2σ2)) Gaussian RBF
K(x, y) = (1 + x · y)d Polynomial of degree d
K(x, y) = tanh(x · y − θ) Multi Layer Perceptron

Table 3.2: Percentage heroin measurements in nine illicit heroin preparations.

Sample % Heroin
1 2.2 2.3 2.2 2.3
2 8.4 8.7 2.2 2.3
3 7.6 7.5 2.2 2.3
4 11.9 12.6 2.2 2.3
5 4.3 4.2 2.2 2.3
6 1.1 1.0 2.2 2.3
7 14.4 14.8 2.2 2.3
8 21.9 21.1 2.2 2.3
9 8.8 8.4 2.2 2.3

Figure 3.1: Decimation by M.

Figure 3.2: Interpolation by M.

Figure 3.3: Convolution followed by decimation

Figure 3.4: Interpolation followed by convolution

Figure 3.5: Two channel filtering and reconstruction

Figure 3.6: Two channel filtering and reconstruction

Figure 3.7: Regions on the 2-D spectral plane occupied by the 2-D scaling function and
wavelets

Figure 3.8: 2-D 3-level wavelet

Figure 3.9: 3-level 2-D wavelet decomposition of a SAR image

Figure 3.10: Forward DWT using lifting scheme

Figure 3.11: Inverse DWT using lifting scheme

Figure 3.12: Haar wavelet packet(1-4).
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Figure 3.13: Haar wavelet packet (5-8).

Figure 3.14: Wavelet packet decomposition

Figure 3.15: Wavelet packet reconstruction

Figure 3.16: Wavelet packet decomposition of a 1-d signal
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Figure 3.17: The MRF relationship between the observed noisy image and the original
unpolluted image

Figure 3.18: The neighborhood systems defined in Markov Random Field. (a) The first
order neighborhood system. (b) The second order neighborhood system. (c) The third order
neighborhood system.

Figure 3.19: The cliques for second order neighborhood systems. (a) single-pixel clique. (b)
double-pixel cliques. (c) triple-pixel cliques. (d) quad-pixel clique.

Figure 3.20: The single-pixel clique and double-pixel cliques for the second order neighbor-
hood system. (a) The second order neighborhood system. i is the center of this neighborhood
system, and the other pixels are labelled from 1 to 8. (b) The single-pixel clique, which is
the pixel xi itself. (c) The double-pixel cliques which consist of xi with another pixel xi′ .
Each of them have a weight βi′ = β1 ∼ β4 associated with it.

Figure 3.21: Generalized perceptron structure

Figure 3.22: Multiplayer perceptron structure

Figure 3.23: Hyperplane for linear case

Figure 3.24: Nonlinear support vector machine structure

Figure 3.25: Radial basis function neural network.

Figure 3.26: Self-Organizing Map Model
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