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Abstract—Recently, a remote-sensing platform based on wireless
interconnection of tiny ECG sensors called Telecardiology Sensor
Networks (TSN) provided a promising approach to perform low-
cost real-time cardiac patient monitoring at any time in community
areas (such as elder nursing homes or hospitals). The contribution
of this research is the design of a practical TSN hardware/software
platform for a typical U.S. healthcare community scenario (such
as large nursing homes with many elder patients) to perform real-
time healthcare data collections. On the other hand, due to the
radio broadcasting nature of MANET, a TSN has the risk of losing
the privacy of patients’ data. Medical privacy has been highly em-
phasized by U.S. Department of Health and Human Services. This
research also designs a medical security scheme with low commu-
nication overhead to achieve confidential electrocardiogram data
transmission in wireless medium.

Index Terms—Cardiac monitoring, medical privacy, telecardi-
ology, wireless sensor networks.

I. INTRODUCTION

OVER 20 million people worldwide have abnormal elec-
trocardiogram (ECG) signals, i.e., arrhythmias, each year

[1]. Most of the cardiac patients are elders. The worldwide
population of those over 65 years of age is predicted to reach
761 million by 2025, more than double than what it was
in 1990 [2]. If the proportion of elders with arrhythmias re-
mains constant, and they increasingly move to nursing homes,
it is a necessary tendency to reduce the medical labor cost
by deploying self-organized wireless cardiac-monitoring hard-
ware/software systems in an area with a radius of hundreds
of feet. Such medical information networks could allow the
doctors to immediately capture the arrhythmia events of any pa-
tient without leaving their offices. An added benefit is the free-
dom of movement for patients due to the wireless networking
technologies.

Some cardiac remote-sensing systems have been built in
academia and industries. Among commercial telemetry sys-
tems, CardioNet is the first provider of mobile cardiac outpatient
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telemetry (MCOT) service in USA for continuous monitoring
of patient’s ECG and heartbeat at home, at work, or while
traveling1. A wearable wireless biomedical sensor system has
been developed in [3]. A wireless and wearable ECG monitor-
ing system has been proposed in [4]. It continuously measures
and transmits the sampled ECG signals to the patient’s personal
digital assistant (PDA) using a built-in radio-frequency (RF)
radio transmitter. The PDA automatically connects to a cellu-
lar network to transmit data to the health provider. A real-time
patient-monitoring system that integrates vital signs sensors, lo-
cation sensors, ad hoc networking, electronic patient records,
and Web-portal technology was designed and developed in [5].
Most of those cardiac remote-sensing systems are based on cel-
lular networks that can achieve long-distance ECG transmission
but need to use expensive cellular network infrastructure (such
as large base stations and complex cell management/bandwidth
allocation systems).

It has been shown that remote sensing through the wireless
interconnection of ECG sensors is a promising approach to
perform “automatic” heart beat anomaly detection [6]. Code-
Blue [7] is a typical example. Today, many ECG machines, both
standard and continuous ones, are marketed as “portable,” but
this does not always indicate that they are small and unobtru-
sive. In contrast, most such appliances receive power from an
electrical outlet and are sufficiently heavy such that they must
be mounted on a cart and wheeled from one location to the
next. Low-power Telecardiology Sensor Networks (TSNs) con-
sisting of large-scale low-cost micro-ECG sensors attached to
the patients’ bodies, if deployed in nursing homes, will have
the potential to significantly improve the ECG portability and
timeliness. The tiny ECG sensors (weight <0.5 lbs; size is com-
parable to a few coins) are particularly advantageous because
of their low cost, radio communication capability, rapid deploy-
ment, and ease of integration with existing hospital computer
systems. In the next decade, we could even use microelectrome-
chanical system (MEMS) technology to make an ECG sensor
smaller than a coin [8].

In a typical TSN, each patient’s ECG signal could be au-
tomatically collected and processed (such as analog-to-digital
conversion) by a small ECG sensor, and then be wirelessly sent
to an ECG server for analysis (such as using data classification
to find out arrhythmia). If an ECG sensor reports any abnor-
mal heart-beat signals, an emergency communication channel

1[Online]. Available: http://www.cardionet.com/
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established between the physician’s office and the patient’s wire-
less device such as a beeper or cellular phone will be used to
send out alerts to provide the patient some medical suggestions
such as taking drugs or performing other further processing. In
a more advanced TSN, a patient’s ECG sensor can even use a
neighbor sensor to relay its data if his/her distance is too far
away from the ECG server. This communication mode is called
“multihop” wireless transmission. Multihop TSN not only ex-
tends the communication distance but also saves the energy
consumption of an ECG sensor, since direct sensor–server long-
distance wireless communication is avoided through hop-to-hop
relay.

Although the proposed TSN runs in a nursing home that is
different from a long-distance remote ECG monitoring scenario,
the hop-to-hop wireless data relay nature (among patients’ sen-
sors) has the potential to be applied to a remote monitoring
case.

Our main contributions in this research include the following
three aspects.

1) Low-Cost, Low-Power TSN Hardware Design (see
Section II): Our TSN hardware mainly includes tiny ECG
sensors and RF communication boards. The manufactur-
ing cost for all the components (such as resistors, am-
plifiers, etc.) is less than $80 each. If produced in large
amount (>1000), the cost will be less than $50. We are in
the process of using very large-scale integration (VLSI)
to redesign those units, which can largely decrease the
entire cost (below $10 each). Because of our low-power
design (through voltage scaling, low duty cycle, less RF
collisions, and sleep control), the two AA batteries could
provide the entire ECG sensor board 13 months of life-
time. Compared to the current commercial ECG measure-
ment devices, our design is much lighter (<0.5 pounds),
much cheaper (<$80), more portable, and more power-
efficient (no ac power outlet is needed). Moreover, our
TSN includes a new RF board design, which saves more
manufacturing cost than the current sensor networks such
as CodeBlue [7].

2) Integrated RF Communication/ECG Signal Processing
Software Design: Our TSN has more advanced ECG trans-
mission/processing software than current sensor networks
such as CodeBlue [7]. For instance, our TSN software can
classify different types of heart beats at greater speed and
higher accuracy. We have also built an ECG sensor control
software.

3) Less-Complex End-to-End TSN Security Scheme (see
Section IV): Many hospitals hesitate to use advanced
remote-sensing systems, because they are not sure of
the privacy-preserving capability of such systems. We
have, thus, designed a cluster-based end-to-end TSN
security scheme in our TSN software modules in or-
der to keep confidentiality during the patient–doctor
ECG transmission. Our security algorithm considers the
low-cost low-memory characteristics of tiny ECG sen-
sor boards. We, thus, designed a low-communication-
overhead low-complex encryption and decryption
scheme.

Fig. 1. Mobile platform appearance (includes ECG sensor + RF Mote) [7].

Fig. 2. TSN mobile platform: Logic architecture.

II. TSN HARDWARE PLATFORM

Our TSN consists of large amount of wireless ECG commu-
nication units. Each unit is called a “mobile platform.” These
mobile platforms are essentially the wearable ECG devices that
would be distributed among cardiac patients in order to offer
continuous monitoring of the patients’ vital signs. As shown in
Fig. 1, each platform is composed of a customized ECG sensor
board providing connections to a three-lead ECG monitoring
system, which is housed on a wireless communication board
(also called RF motes). CodeBlue [7] conducted pioneering
ECG sensing research through this architecture. While the ECG
sensor board gathers useful patient ECG data, the RF mote pro-
vides limited local signal-processing capabilities (such as ECG
noise filtering) and, more importantly, wireless communication
for transmitting the ECG signals back to the server for feature
extraction. Fig. 2 shows the logic of the architectural compo-
nents of the TSN mobile platform.

Our original RF mote (see Fig. 1) was based on TelosB motes
from Crossbow, Inc.2 The TelosB mote is also referred to as the
Tmote Sky. It is an ultralow power wireless module intended for
sensor networks applications. Regarded as the next-generation
mote platform, it offers the on-chip RAM of 10 kB and also
provides IEEE 802.15.4 Chipcon radio3 with an integrated on-
board antenna providing up to 125 m of range. Constructed
around a TI MSP430 microcontroller4, the TelosB worked for
this project for its onboard analog-to-digital converter (ADC)
peripherals with expansion bays, which connects the customized
sensor board.

However, we found out a few problems when using TelosB:
First, the unit price of TelosB is high in terms of large-scale

2[Online]. Available: http://www.xbow.com
3[Online]. Available: http://www.chipcon.com
4[Online]. Available: http://www.ti.com
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Fig. 3. RF board built by us.

TSN deployment. Currently, the TelosB RF mote is around
$150 each2 , and there is no discount for educational pur-
poses. Because we needed to use the TSN platform (with at
least 30 motes in each TSN network) to train a large num-
ber of computer engineering/science students, we decided to
build our own RF boards. Second, its power lifetime is around
3–6 months depending on how often the ECG signal is
transmitted back to the server, which is somewhat short for med-
ical applications. Ideally, we wish that the cardiac patient could
carry such a low-cost ECG sensor for at least one year without
worrying about power exhaustion. Third, its radio components
cannot be enhanced; we cannot use a better radio transceiver to
reach a longer distance.

Due to the above reasons, we have used Ember CPU-RF
chips5 to build our own RF motes. As shown in Fig. 3, it is also
driven by AA battery. The RF mote is a little larger than two
AA batteries. The cost for electronic parts is $11.06 per board.
The estimated quote of printed circuit board (PCB) fabrication
(mass production) is $1.93 per board. The estimated cost for
board assembly is $5.00 per board. This gives a total cost of only
$17.99 per mote (mass production). The heart of the RF board is
the micro central unit (MCU)/ZigBee6 transceiver unit. Multiple
options and configurations were considered before selecting the
final option. The two options that resulted from it were using a
separate MCU and transceiver or using a system-on-chip (SoC)
that incorporates the two devices together. The SoC option was
chosen, as it would be cheaper to implement, would decrease
programming complexity, and create an easier PCB layout, as
there will be fewer parts to the layout.

Our ECG sensor board design is assisted by the Harvard
University CodeBlue team [7]. The ECG lead extensions from
the sensor board are pin-compatible and color coded to standard
three-lead ECG monitoring systems. While there are different
flavors of physiological chest leads, this system was designed
to match any three-lead ECG snap set lead wires. The snap set
may be used to collect data by attaching to it the appropriate
jellied ECG conductive adhesive electrodes, if real people were
to be used for testing purposes.

5[Online]. Available: http://www.ember.com
6[Online]. Available: http:// www.zigbee.org

Fig. 4. Mobile platform patient simulation.

An alternative would be ECG signal simulators. The testing
simulator chosen for this project is Model 430B, 12-lead ECG
simulator that can provide a complete PQRST waveform at six
preset rates (60, 75, 100, 120, 150, and 200 BPM) as well as
six preset amplitudes (0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 mV). It
is also capable of generating square waves using its five ECG
snaps plus ten banana jacks. This would provide a good testing
interface even if this project is adapted into a 12-lead monitoring
system in future. Fig. 4 shows the connection between 430B
ECG simulator and our designed RF communication boards.

III. TSN SOFTWARE ARCHITECTURE

After the explanation of our TSN hardware devices, we will
describe our TSN software architecture that includes two major
modules: 1) TSN wireless communication control software that
collects ECG data, and then transmits data through a patient-
to-patient relay mode, until finally reaching the medical server
that has ECG display software, medical database management,
and ECG feature extraction functions and 2) ECG Feature Ex-
traction/Classification software, which can classify heart beats
with high accuracy.

A. ECG Sensor Mote Wireless Communication Software

All of our TSN RF mote control software runs in a special
operating system called TinyOS7. Developed primarily by the
University of California, Berkeley, in cooperation with Intel
Research, TinyOS is an open-source embedded operating sys-
tem designed for wireless sensor networks. Written in NesC
programming language7 , TinyOS offers a component-based ar-
chitecture and is able to operate within the severe memory con-
straints posted by sensor networks. The copy of TinyOS used
in this research is Version 1.1.15, released in December 2005.
NesC is a programming language designed for applications tar-
geting the TinyOS platform. It is an extension to the C program-
ming language that is component based as the TinyOS operating
system. The most important feature of this programming lan-
guage is that it produces fairly small-sized code to be able to
load on to sensor network nodes.

7[Online]. Available: http://www.tinyos.net
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Fig. 5. Cardiac monitoring software for a simple case with three patients.

Fig. 6. Energy consumption of TSN.

In our medical server that receives all patients’ ECG data,
we can monitor the entire TSN network topology. As shown
in Fig. 5, each patient’s ECG data can be collected remotely.
If two patients are close enough, a radio link will be shown
between them to indicate the possibility of transmitting ECG
data between them (in Fig. 5, ECG RF motes in Patient ID = 1
and ID = 3 can talk with each other).

An important feature of our TSN software is that we are
able to control the ECG sensors’ performance parameters (such
as ECG detection threshold) through the command transmission
from the server to any ECG sensor. We can set up the ECG server
(i.e., the TSN workstation) control parameters to change the
sensors’ detection frequency (i.e., how many ECG values should
be collected in each second). As we know, a higher detection
frequency can bring higher ECG signal quality. However, it also
causes the higher power consumption in each sensor and more
memory storage overhead in each RF board. A good balance
is needed. Here, we collect ECG values every 0.01 s, which is
good enough to capture each change of heart beats.

The software used to govern the sensor network communica-
tion and displaying the received patient data on the workstation
is based on a program called VitalDust Plus [7]. This software
is essentially a stripped-down version of the CodeBlue [7] soft-
ware that provides a simple demonstration of its wireless pulse
oximeter and wireless eck devices. The software has two parts,
the TinyOS software for the mobile platforms to sample and
transmit vital sign data over the radio, and a Java GUI applica-
tion to display the vital signs in a graphical form.

Fig. 7. Reception ratio for different sending rates.

Fig. 8. Reception ratio for different number of MSS.

B. TSN Wireless Communication Performance Evaluation

1) On the Energy Consumption of TSN Operations: A major
concern in TSN networking design is energy consump-
tion. Our experiments have shown that most of the sensor
battery is consumed in radio communications instead of
in local data processing (such as ECG compression) or
sensing (see Fig. 6). Therefore, any TSN networking pro-
tocols (such as finding optimal route) should be of low
complexity to save energy consumption.

2) Effect of Increasing the Data Sending Rate in Each Sensor:
For a better observation of a patient’s health condition, a
sensor can send out data at high reporting frequency, and
then use a high data rate to send out the large amount of
sensed data wirelessly. Fig. 7 shows the packet reception
ratio (the number of “received” packets divided by the
number of “transmitted” packets) for different sending
rates (number of network packets per second). We can see
that the TSN performance drops sharply if the sending rate
is higher than 25 packets/s. Thus, it is important to use a
reasonable reporting frequency in each sensor.

3) Effect of Increasing the Number of Sensors: We have in-
vestigated the TSN performance by increasing the number
of sensors (it also means more patients, since each patient
carries one sensor). Our TSN system can maintain good
performance (reception ratio >80%) even with a large
number of multispectral scanners (MSS; see Fig. 8). It
indicates that our TSN will be suitable to a large nursing
home.

4) The Effect of Increasing the Patients’ Mobility Speed:
We have tested the TSN delay performance under users’
mobility behaviors. Currently, our system cannot achieve
real-time data collection (delay >10 s) if the users move
quickly (such as at 30 mi/h) (see Fig. 9).
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Fig. 9. End-to-end delay for users’ mobility speeds.

C. ECG Feature-Extraction Software

Feature extraction is a commonly used term in image pro-
cessing and pattern recognition. It is a form of dimensionality
reduction that locates points of interest from a multidimensional
space. In the scope of this research, feature extraction is con-
ducted by applying wavelet analysis techniques to patient data,
thus, providing ECG characteristic point-detection capabilities.
To improve the ECG classification accuracy in terms of identify-
ing different types of abnormal heart beats, we have investigated
the theory of support vector machine (SVM), which has been
proven to be able to minimize the probability of misclassifying
yet-to-be-seen patterns [9], [10].

Our SVM algorithms are based on the biology signals data
mining principle in [11]. The basic procedure of SVM algorithm
is as follows [11], [12]. Considering the problem of separating
the set of training vectors belonging to two separate classes, we
have

S =
{
(x, y)

∣∣∣∣ {(x1 , y1), (x2 , y2) · · · , (xL , yL )},
x ∈ Rn, y ∈ (−1, 1)

}
. (1)

The above vectors are said to be optimally separated by the
hyperplane, if they are separated without error and the distance
between the closest vector to the hyperplane is maximal. We can
then transform the input data into a higher dimensional feature
space to enable linear classification. Specifically, we can define
an appropriate kernel function in the input space in place of the
dot product in the high-dimensional feature space. Next, we can
formulate the dual of the convex quadratic programming prob-
lem to obtain the unique global solution for the classifier. To
apply the above SVM theory, we need to extract some dominant
features from ECG data to serve as the SVM classification vec-
tors. Wavelets analysis is well known for its feature-extraction
efficiency. The wavelet transform of a function f is a convo-
lution product of the time series with the scaled and translated
kernel, and is given by

WS,x0 =
∫ +∞

−∞

1
s
•Ψ(x − x0

s
) • f(x)dx (2)

where S is a scale parameter and x0 is a space parameter.
To find out the “features” (i.e., the singularity points) of

the above wavelet function, we introduce the concept of “lo-
cal holder exponent (LHE)” [9], [11]. The LHE of a function
f(•) at the point x0 , denoted as h(x0), is defined as the largest
exponent such that there exists a polynomial Pn (x) of order
n satisfying the following condition for a in a neighborhood

of x0 :

|f(x)− Pn (x − x0)| ≤ C • |x − x0 |h . (3)

Based on the Log-Log plot of the wavelet “amplitude versus
scale a,” we can then extract the local LHE h(x0). In fact, it has
been shown that wavelets can remove polynomial trends that
could cause the previously used box-counting techniques to fail
to quantify the local scaling of the signal [11], [13].

Definition 1: Wavelet Transform Modulus Maxima (WTMM):
To reduce the regular wavelet analysis redundancy and calcu-
lation complexity, WTMM [11] proposes to change the “con-
tinuous” sum over space (2) to a “discrete” sum over the local
maxima of |Ws,x0 (f)|. Denote Z(s, q) as a partition function,
and Ω(s) as the set of all Maxima [9] at scale S, then WTMM
can efficiently use the following “space-scale” partitioning:

Z(s, q) =
∑
Ω(s)

|Ws,x0(f)|q and Z(s, q) ∝ sτ (q) (4)

where τ(q) represents a scaling range. We have the following
relationship between the singularity strength h(q), the spectrum
of singularities D[h(q)], and τ(q) (using the Legendre transfor-
mation theorem in [9])

h(q) =
dτ(q)
dq

D[h(q)] = q • h(q)− τ(q). (5)

The importance of WTMM lies in its maxima lines (MLs). For
any LHE h(x0), there is at least one ML that points toward x0 .
For any fractal signals, the number of MLs will diverge in the
limit s → 0+ [16].

Although WTMM provides efficient estimation for “global”
scaling of ECG time series, it has been shown that the “local”
scaling analysis could provide more relevant information on
feature extraction [14]. The idea of “local” scaling analysis can
be summarized as follows (for details, see [14]).

First, let us define a function G(s) as follows [through the
partition function Z(s, q); see (4)]

G(s) =
√

Z(s, 2)/Z(s, 0). (6)

Then, the mean LHE (denoted as h̄) is determined by

h̄ =
log[G(s)]− C

log(s)
(7)

where C is a constant depending on the ECG amplitude nor-
malization ratio.

Through the Struzik multiplicative cascade model [14], and
using s = 1 in the wavelet analysis, we can estimate the LHE
(denoted as ĥ(x0)) at singularity x0 as

ĥ(x0 , s) =
log (|Ws,x0 (f)|)− (h̄ − log(s) + C)

log(s)− log(sL )
(8)

where SL is the length of the entire wavelet ML tree.
Wrapper Algorithm for ECG Feature Reduction: Even though

the wavelet analysis and LHE can provide us a series of ECG
features, it is necessary to increase the accuracy of the induction
algorithms through the reduction of parameters. Here, we use
Wrapper approach in [9] to conduct a search in the wavelet
space. Our Wrapper algorithm [9] includes a “state” that is a
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Fig. 10. ECG data series feature extraction software components.

vector of LHE, an initial state (we set to empty), a heuristic
evaluation through five-fold cross validation (repeated multiple
times with a small penalty for every ECG feature), and a hill-
climbing search algorithm.

To validate our LHE/WTMM-based feature extraction and
classification, we have used the following ECG data sets: 1) 50
normal sinus rhythms (NSR) recorded from real ECG sensors
and 2) other Arrhythmia coming from PhysioNet [15], which
provides a set of databases that groups records of one or more
digitized ECG signals, as well as a set of their corresponding
beat and rhythm annotations. Especially, we have used: 1) Phy-
sioNet MIT-BIH noise stress test database that contains typical
noises in ambulatory ECG recordings and 2) PhysioNet MIT-
BIH Arrhythmia database, which is used to study the different
types of arrhythmias.

Regarding Arrhythmia, we have chosen the following five
types of rhythms: 1) normal rhythm; 2) paced rhythm; 3) atrial
fibrillation; 4) nodal (A-V junctional) rhythm; and 5) ventricular
fibrillation. For each of the five rhythms (i.e., normal (NSR),
paced, A-Fib, nodal, and V-Fib), we have used the following
procedure (see Fig. 10) to extract the WTMM LHEs that will
be used for the input vectors of SVM model.

Please note that Step 3a in Fig. 10 does not directly use the
“single-value” holder exponents, since we have used statistical
analysis based on large amount of MIT-BIH arrhythmia record
flows (each record flow has 10-s of ECG data series). Thus, we
have calculated the probability densities of different LHEs and
then fitted those densities into a Gaussian model. The LHEs
for the five rhythms were found to be in the range of (−0.5,
1.5). We then divided this range into ten subranges and took
the ten mid-points of those ten subranges in the probability
density function. We have used multiple runs of five-fold cross
validation in Step 4.

Our SVM-based classification results are shown in Fig. 11,
where we have also compared our classification performance
to two of the best ECG classification algorithms, i.e., Bayesian
Classifier [16] and Decision Tree [17]. Although the accuracy
for NSR is similar between ours and others, the accuracy to
identify arrhythmia is higher in our scheme. More importantly,

Fig. 11. Normal/Arrhythmia classification accuracy.

our algorithm can use WTMM/Wrapper to efficiently extract
multiple features from a “large-scale” ECG database within a
reasonable small calculation time.

Equation (9) shows the confuse matrix (for all Arrhythmia,
not including NSR), where the WTMM coefficients were com-
puted at scale [1:20] and the LHEs were estimated at scale 1.
Both the leads were used for classification purpose. We can see
that there are very few nondiagonal numbers present. The diag-
onal values represent the correct identification of the respective
rhythms. Another important observation is that all the arrhyth-
mia rhythms are very well separable. In the right-bottom (6× 6)
matrix, all the nondiagonal numbers are zero (or negligible).

Confuse Matrix

=




NSR Paced A–Fib Nodal V–Fib
NSR 67.3 0.89 0.13 1.12 0.89
Paced 0.77 19.35 0 0 0
A–Fib 1.31 0 9.98 0 0
Nodal 0.91 0 0 20.14 0
V–Fib 1.11 0 0 0 3.41


.

(9)

IV. PRIVACY-PRESERVING WIRELESS ECG TRANSMISSION

A. Security Requirements in MANET-Based Telecardiology
Networks

Medical security is important in healthcare organizations all
over the world. For instance, U.S. HHS issued patient privacy
protections as part of the Health Insurance Portability and Ac-
countability Act of 1996 (HIPAA) [18]. HIPAA included pro-
visions designed to encourage electronic transactions, and also
required new safeguards to protect the security and confiden-
tiality of health information. Most health insurers, pharmacies,
doctors, and other healthcare providers were required to comply
with these federal standards beginning April 14, 2003 [18]. To
protect the two important aspects of cardiac patient “privacy” in
TSN systems: 1) confidentiality, i.e., only the source/destination
can understand the medical data through cryptokeys and 2) in-
tegrity, i.e., no data falsifying during transmission, we need to
apply strong end-to-end security mechanisms to the cardiac data
packets that are transmitted between any two network entities
(such as between a patient’s sensor and a physician’s server).
On the other hand, in a practical community/hospital telecardi-
ology system that is based on sensor network architecture, we
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should consider the following two constraints when designing
privacy-preservation mechanisms.

1) Low-Energy/Low-Overhead Security Protocols: A major
concern in medical security protocols design is energy ef-
ficiency. Our experiments [19], [20] have shown that most
of the sensor battery is consumed in radio communica-
tions instead of in ECG signal processing or sensing (see
Fig. 6). Therefore, the security protocols should not use
too many message exchanges between patients’ sensors
and network. Moreover, the security schemes should be
of low complexity. Therefore, symmetric crypto could be a
better choice than traditional asymmetric crypto based on
public/private keys having high computational overhead.

2) Multihop Versus Single-Hop Security: We should use mul-
tihop wireless relay among patients instead of single-hop
communications (i.e., direct patient–doctor wireless for-
warding) due to the following reasons. First, by deploy-
ing a multihop data forwarding network, packets can be
routed around radio obstructions in a community. While in
a single-hop, i.e., long distance (>100 m), line-of-sight ra-
dio communications may not be possible. Second, packet
forwarding via multiple short links requires less energy
than a single long-link transmission for radio communica-
tions [21], [22]. The energy savings afforded by multihop
forwarding would help conserve sensor batteries.

B. Security Design for “One-Hop” ECG Data Transmission

Security in each individual hop is the prerequisite of the mul-
tihop TSN security. As the starting point of our security re-
search, we have implemented a low-energy low-overhead secu-
rity scheme for one-hop (e.g., patient-to-doctor) wireless com-
munications [22], [23].

Our one-hop security mechanism uses the following two se-
curity primitives.

1) Initialization Vectors (IVs): One implication of semantic
security is that encrypting the same plaintext two times
should give two different cyphertexts. The main purpose
of IVs is to add variation to the encryption process when
there is little variation in the set of messages.

2) Block Cipher Choice: Triple-DES [23] is too slow for
software implementation in embedded medical PDAs or
sensors. We found RC5 [23] and SkipJack8 to be most ap-
propriate for embedded microcontrollers. Although RC5
is slightly faster, it is patented. Also, for good perfor-
mance, RC5 requires the key schedule to be precomputed,
which uses 104 extra bytes of RAM per key. Because of
these drawbacks, we selected Skipjack.

It is difficult to directly measure energy consumption of se-
curity mechanisms from sensors. We have, thus, resorted to an
accurate simulator called Power Tossim [24], where hardware
peripherals (such as the radio, EEPROM, LEDs, and so forth) are
instrumented to obtain a trace of each device’s activity during the
simulation run. Through the obtained real-time traces of the cur-
rent drawn in our SkipJack-based symmetric crypto and RSA-
based symmetric crypto [23], we have computed the energy

8[Online]. Available: http://jya.com/skipjack-spec.htm

TABLE I
SECURITY ENERGY CONSUMPTION COMPARISONS

consumption of major components (such as CPU idle, CPU ac-
tive, radio, etc.) in sensors (see Table I). From Table I, we can see
that for the two most important components, i.e., CPU active and
radio transmission, our proposed security scheme shows signifi-
cant power-saving improvements over RSA security scheme (the
energy efficiency is improved by 92% and 154%, respectively).

C. Wireless Cardiac Data Transmission Security:
“Multipatient” Case

To get closer to the real telecardiology MANET scenario, we
have extended the above single-patient transmission security to
a multipatient case. It is challenging to securely deliver data
from an ECG sensor to an Internet Gateway through multihop
transmission, as it requires integration of the security scheme
with energy-efficient TSN routing protocols.

In our security scheme, we partition patients’ sensors into
a number of “clusters.” In each cluster, exactly one sensor is
chosen as the cluster head (CH). Thus, each sensor only needs
one-hop communication to send the ECG signals to its CH,
which searches for a neighboring CH for data relay to the Gate-
way. This cluster-based concept has also been used in many
hierarchical routing TSN protocols to save energy. To avoid the
battery overusing in a CH, the selection of CH could be rotated
periodically among the sensors belonging to the same cluster.

We have used the aforementioned SkipJack to achieve
Intra-cluster Security (i.e., inside each cluster). For secure
data transmission between clusters, an Inter-Cluster Session
Key (SK) is used (see Fig. 12). A new SK is periodi-
cally distributed to all CHs by the Gateway. All new SKs
are derived from a one-way hash function H(·). The Gate-
way first precomputes a long one-way sequence of keys:
{SKM , SKM −1 , . . . , SKn , SKn−1 , . . . , SK0} (size M  n),
where SKi = H(SKi+1). Initially, only SKn (instead of the
whole M -size key sequence) is distributed to each CH. Then, a
CH can utilize H(·) to figure out SKn−1 , . . . , SK0 . The n keys
{SKn, SKn−1 , . . . , SK1} are stored in a local key buffer. How-
ever, SK0 is not in the buffer because it is used for the current
data packet encryption/decryption. After the initial SKn deliv-
ery, the Gateway periodically sends SKn+1 , SKn+2 , . . . , SKM

(one key distribution in each period) to all CHs.
After receiving a new SK, the CH keeps applying H(·)

to it for some time, in order to find a key match in its
key buffer. For instance, assume that a CH receives a new
key SKj and its key buffer already holds n SKs as follows:
{SKi, SKi−1 , . . . , SKi−n+1}. If H(H(H . . . (H(SKj ))) /∈
{SKi, SKi−1 , . . . , SKi−n+1}, the authentication fails and the
SKj will be discarded. Otherwise, if the authentication is
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Fig. 12. Key-chain among CHs.

successful, the key buffer is shifted one position, and the SK
shifted out of the buffer is pushed into the “active key slot” to
be used as the current SK (Fig. 12). The empty position is filled
with a new key SK ′, derived from the received SKj through
H , which meets the following two conditions:

SK ′ = H(H(H(. . . H(SKj ))) and H(SK ′) = SKi.
(10)

D. Security Analysis

1) Gateway Attacks: Because the distribution of new SKs
is managed by the Gateway, it is possible for an attacker to
compromise the Gateway and, thus, attack any future SK disclo-
sures. Owing to the SK buffer, there is a delay between receiving
the new SK and actually using it. If the distribution interval is
∆′ (i.e., the rekeying period) and n is the buffer length, the
new SK will not be used until n ×∆′ later. As long as we can
detect the Gateway compromise within n ×∆′ time interval
and renew SKs, the cardiac data packets will maintain security
performance.

2) SK Attacks Among CHs: The attacker may modify the
transmitting SK, inject phony SK, or use wireless channel in-
terference to damage security packets. Our scheme can easily
defeat these attacks. Owing to the one-way characteristics of the
hash function keys, any false SKs cannot pass the authentication
test, i.e., after L times (L ≤ n) of using hash function, if we still
cannot satisfy the following formula, we will regard that it is a
false SK:

H(H(. . . (H(︸ ︷︷ ︸
L

SKFAKE) . . .))) = SKNOW . (11)

where SKFAKE is a false SK, and SKNOW is the currently used
SK.

3) Cardiac Packet Attacks (such as faking the ECG data):
Our scheme defeats it through SK rekeying every ∆′, and in-
clusion of Sensor_ID and per-packet IV (which will also be
updated from packet to packet) in the generation of key-streams
to counter the key-stream reuse problem.

4) Main-in-the-Middle Attacks: Our scheme can also defeat
main-in-the-middle attacks (where an attacker fools the CHs
as if he/she were a legal CH). Our strategy is to perform a
transmission of MAC in the rekeying procedure as

Gateway → CH : E (∆′|n|SK0 |MAC(∆′|n|SK0)) . (12)

V. CONCLUSION

The objective of this research was to take advantage of the
modern low-cost low-power sensor and wireless communica-
tion technology to create a TSN for ECG monitoring purposes.
Our TSN system has the potential to provide continuous vi-
tal sign monitoring capabilities without the exhaustion of any
manpower. In fact, it is intended to give support to the cur-
rent healthcare environments and free medical professionals for
more urgent functions. By automating the vital sign monitoring
process, the most updated information for all patients is made
available at all times. Based on wireless sensor network technol-
ogy, wearable mobile platforms are distributed to the patients of
concern. These mobile platforms are responsible for gathering
patient vital sign using a three-lead ECG monitoring system.
The gathered data are transmitted wirelessly over radio to the
receiving station connected to a workstation where the data are
processed. ECG feature-extraction/classification techniques are
applied to the patient data, and the characteristic points of in-
terests extracted. These data provide meaningful information
for the diagnosis of possible cardiovascular diseases. This is
especially useful for extended recordings of ECG signals where
human processing is not only time consuming for some tasks
such as analyzing nonlife threatening rhythms (for example, the
frequency and duration of A-Fib), but also error prone. In ad-
dition to these functionalities, the system is designed to also
provide security measurements against malicious attacks and
stealing of patient information.
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