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Multiple Human Tracking and Identification With
Wireless Distributed Pyroelectric Sensor Systems
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Abstract—This paper presents a wireless distributed pyroelec-
tric sensor system for tracking and identifying multiple humans
based on their body heat radiation. This study aims to make py-
roelectric sensors a low-cost alternative to infrared video sensors
in thermal gait biometric applications. In this system, the sensor
field of view (FOV) is specifically modulated with Fresnel lens ar-
rays for functionality of tracking or identification, and the sensor
deployment is chosen to facilitate the process of data-object-associ-
ation. An Expectation-Maximization-Bayesian tracking scheme is
proposed and implemented among slave, master, and host modules
of a prototype system. Information fusion schemes are developed
to improve the system identification performance for both individ-
uals and multiple subjects. The fusion of thermal gait biometric
information measured by multiple nodes is tested at four levels:
sample, feature, score, and decision. Experimentally, the proto-
type system is able to simultaneously track two individuals in both
follow-up and crossover scenarios with average tracking errors less
than 0.5 m. The experimental results also demonstrate system’s po-
tential to be a reliable biometric system for the verification/identifi-
cation of a small group of human subjects. The developed wireless
distributed infrared sensor system can run as a standalone pris-
oner/patient monitoring system under any illumination conditions,
as well as a complement for conventional video and audio human
tracking and identification systems.

Index Terms—Multiple human tracking, walker identification,
pyroelectric sensor, wireless sensor network.

I. INTRODUCTION

M ANY intelligent environments and secure systems
demand collectable, stable and reliable behavioral

biometrics to identify individuals and track their actions based
on their behavioral attributes. The behavioral biometrics (e.g.,
gait and habitual trajectory) are advantageous in their capability
of recognition at a distance under changing environmental
conditions, despite subjects’ varying physical appearances.
However, establishing identity and tracking actions from dis-
tances or in crowded scenes through behavioral biometrics are
complex problems due to the intrinsic challenges associated
with sensing modalities and feature selections. Focal plane
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centralized video systems have demonstrated many cases of
tracking and identification by post signal processing but at high
computational cost and large data throughput. Applications of
video systems are usually limited by illumination and power
supply conditions, and infrared (multispectral) video systems
are expensive.

Continuing advances in sensors and sensing methodologies,
wireless transceivers, distributed processing and learning, and
embedded networking have allowed distributed alternatives in
human tracking and identification. Human behavioral infor-
mation can be measured by passive (e.g., photonic, thermal
and pressure) or active sensors (e.g., ultrasound and laser).
Structural innovation and adaptation in sensors, processing
architectures, networks and algorithms jointly enable the devel-
opment of distributed sensor networks (DSNs) that can mediate
human-machine interactions. In a typical DSN, small, low-cost,
spatially dispersed sensor nodes, with certain computation and
communication capabilities, collaborate with each other to
achieve complicated tasks [1]–[3].

For most DSN applications, passive sensors are preferred to
active ones because of their low costs, low power consumption,
and low detectability. The low-cost pyroelectric LiTaO pas-
sive infrared (PIR) motion detector [4]–[7] is selected for this
research. Its performance is independent of illumination condi-
tions and robust to background colors [8]. Its sensitivity to an-
gular velocities ranges from 0.1 to 3 radian/s [9], covering most
human walking speeds at a distance of 2–10 m.

The advantages of using wireless distributed pyroelectric
sensor networks for multiple human tracking and identification
include:

1) reductions in the number of measurements and sampling
frequency for human motion state estimation;

2) reductions in hardware cost, power consumption, privacy
infringement, computational complexity, communication
overhead, and networking data throughput;

3) reductions in the time of system deployment and limita-
tions upon applications or application locations (e.g., long
range or crowded scene).

The major goal of our work is to develop a wireless dis-
tributed pyroelectric sensor system, which can track multiple
humans in a confined area, while maintaining their identities, as
illustrated in Fig. 1. The prototype system consists of three types
of modules: slave, master, and host. The slave and master mod-
ules are based on TI RF micro-controller MP430149-RF6901.
The host module is based on a PC. Each slave module contains
eight pyroelectric sensors whose field of view (FOV) is modu-
lated by using Fresnel lens arrays and coded masks. The slave
module is able to collect the sensor response signals, convert
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Fig. 1. Setup of the distributed wireless pyroelectric sensor system.

them into event indexes, which are sent to the master module
via a wireless channel after the data compression. The master
module collects event indexes, rejects false alarms, and pro-
vides the host with the processed data, which can be interpreted
as local bearing measurements, gait features, and the number
of objects. Based on these kinds of information, the host can
estimate motion trajectory and identity of the subjects under
examination.

The challenges for tracking and identifying multiple humans
with distributed pyroelectric sensors include:

1) high variability of human motions and their thermal
biometrics;

2) decreased sensitivity of a pyroelectric sensor when its lens
apertures are reduced for modulation;

3) errors in geometric optics modeling and system alignment;
4) limits imposed by sensor number, local computation capa-

bilities, and communication bandwidth.
In this paper, we present a framework for tracking and

identifying multiple humans using wireless distributed py-
roelectric sensors. It extends our previous studies on single
human tracking [10] and recognition [11]. The multiple human
tracking component includes four parts: detection, localiza-
tion/data-object association, filtering, and prediction. The
multiple human identification component involves: feature
selection and modeling, feature-to-object association, and data
and decision fusion. The novelty of this work includes: 1) de-
veloping pyroelectric sensor nodes suitable for multiple human
tracking and identification; 2) utilizing the sensor deployment
geometry to facilitate data-to-object association; 3) developing
an expectation-maximization (EM) scheme to determine the
number of objects under examination; and (4) performing
information fusion at different levels for recognition accuracy
improvement.

The rest of this paper is organized as follows. Section II re-
views the related work. Section III describes the sensor modules
and sensor deployment. Section IV presents a mathematical de-
scription of the problems and proposed approaches. Section V
describes the system implementation. Section VI shows exper-
imental results, and discusses the strength and weakness of the
sensor system as well as its potentials. Section VII concludes
the paper.

II. RELATED WORK

Multiple human tracking and identification are indeed two
aspects of one problem. The tracking process provides object
locations, helping decouple the signals for multiple object iden-
tification. On the other hand, object identification facilitates
the procedure of data-to-object association in multiple object
tracking and reduces the ambiguity and mutual interference
among trackers.

Human tracking with multiple sensors is an intrinsic multi-
sensor data fusion problem, which needs to combine readings
from different sensor nodes, remove inconsistencies, and pull
all the information together into one coherent structure. Multiple
human tracking is desirable yet challenging for many applica-
tions [12]–[14]. The dynamics of multiple targets can be mod-
eled as coupled hidden Markov chains; it tends to be ambiguous
and confusing to perceive and interpret the sensory data gener-
ated by multiple targets as some targets are often occluded by
others in the FOV of sensors. From the perspective of trackers,
the tracking errors of one target may propagate into those of
others. Object identification can help reduce such a mutual inter-
ference in tracking [1], [15]. Besides, the varying number of tar-
gets within object space gives rise to the issue of target number
determination and tracker maintenance [16].

Most trackers consist of four components: namely object
representation, localization, data-object-association, and mo-
tion filtering [17]. The way to implement all these parts in
tracking is application dependent and various approaches differ
in robustness and efficiency. For real-time applications, the
system resource for tracking is limited and the computational
complexity of a tracker should be minimized. In video based
applications, where the nonrigid aspect of objects is of more
interest, object feature extraction and representation play im-
portant roles and consume most of the computation resources
[17], [18]. For acoustic sensor tracking systems, by contrast, ob-
jects are assumed to be rigid and signal-to-noise ratios (SNRs)
are low in the noisy and clutter filled environments. Numerous
data-object-association and motion filtering techniques have
been proposed and developed [19]–[25].

Compared to other biometric modalities (e.g., fingerprints,
face, and iris), gait allows noncooperative individuals to be iden-
tified at a distance under changing conditions. Despite having
many limitations, from clothing changes to viewpoint differ-
ences to gait variations under different physical and emotional
conditions, the discrimination power of gait can still serve as
a unique and useful component in multimodal human-machine
interfaces and biometric systems [26], [27].

The techniques for gait recognition in conventional video sys-
tems fall into two categories: holistic and model-based [27],
[28]. These two methods differ in their ways of dealing with the
silhouette extracted from images and forming the feature vector
accordingly [29], [30]. Besides, Fourier analysis and dimen-
sionality reduction have been used to increase the efficiency of
feature representations. Multiperspective (or multicycle) mea-
surements have also been used to increase the robustness of the
feature representation against operational conditions [31], [32].
Usually, the gait features are normalized into one gait cycle,
and matched using explicit distance metrics, or using a hidden
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Markov model (HMM) that takes into account the sequential
coherence of patterns. However, most video-based approaches
to walker recognition involve intensive computations, such as
edge map extraction and silhouette interpretation. Besides, the
main challenge for multiple walker identification is the same as
that for tracking, that is, how to associate measurements with
the corresponding subjects.

From a thermal perspective, each person acts as a distributed
infrared (IR) source. By properly sampling the IR field, the
idiosyncrasies in how an individual carries himself/herself and
the habits of how he/she moves can generate a statistically
unique signature in the signal space. In our previous study on
PIR pyroelectric motion detectors, we succeeded in tracking
single human object [33], [34], [10], and demonstrating the
discriminability among individuals walking along the same
path [35], [36], or randomly inside a room [11], by using the
multiplex sensing techniques [37] and the concept of geometric
sensors [38], [39]. In this study, each pyroelectric sensor works
as a binary sensor and only generates logic signals of “1” or “0”,
indicating a presence, or an absence, of human motion within
its FOV. Under the notion of geometric sensors, the FOVs of
sensor arrays are modulated in specific ways so that the object
space can be segmented into many cells, each characterized
by a unique signal pattern of sensors. When a human walks
through the FOV modulated object space, the sensor arrays will
generate a multidimensional binary signal sequence. Those
signal sequences can be utilized to locate and identify human
objects [10], [11].

The advantages of the wireless distributed sensor system in-
clude the convenient deployment of multiple sensor nodes for
collecting measurements from multiple perspectives. By using
multiple sensor nodes, the human motion feature can be accu-
rately captured and utilized for the higher-security applications
where walker verification or open-set identification is required.
A typical unimodal biometric system consists of three modules:
feature extraction, matching, and decision [40]. Feature extrac-
tion is used to describe the most important information of the
sensory data (samples). Matching modules compare features
with templates in the database and output a score to the decision
module. Therefore, the information fusion of multiple pyroelec-
tric sensor nodes for thermal gait biometrics can happen at four
different levels: sample, feature, score, and decision (see [40]).

III. SENSOR MODULES AND DEPLOYMENT

We have presented a pyroelectric sensor system model and
the technique of FOV modulation with Fresnel lens arrays [10].
In this work, we fabricated two types of two-column radial
sensor modules for multiple human tracking and identification,
respectively, shown in Fig. 2. Both types of sensor modules
have eight pyroelectric detectors with the Fresnel lens arrays
arranged in two columns. Such a FOV design can facilitate the
process of data-object-association: when sensors of one node
associated with two different detection areas fire, it can be
concluded that there are at least two objects moving.

For the type I sensor module, shown in Fig. 2(a), the FOV
of each sensor spans 24 , by using three Fresnel lenses, with
a 16 shift in the FOV between each of the four sensors. Two
separate detection areas of 72 are formed by the two columns.

Fig. 2. (a) Type I two-column sensor module for multiple walker tracking.
(b) Type II two-column sensor module for multiple walker identification.

Fig. 3. (a) Detection pattern of a two-column sensor module. (b) FOVs of four
two-column sensor nodes. Each FOV contains two separate fan-shaped regions.
Four local detection areas are formed by the overlap of these regions. They can
be utilized for event validation to reduce false alarms.

The detection pattern of a two-column sensor module is illus-
trated in Fig. 3(a). Each detection area comprises seven detec-
tion regions with different sensor visibility patterns. The average
angular resolution of the sensor module is 10 . For the type II
sensor module, shown in Fig. 2(b), the FOV of each sensor is
modulated by using pseudo-random coded masks. Those coded
masks and Fresnel lens arrays work together as a set of spatial
filters, helping capture various human motion attributes. There
are four sensors in each column, with different FOV modulation
schemes. Similarly, two separate detection areas are formed by
the two-column structure.

When four sensor nodes (containing either type I or type II
sensing module) are deployed in a 9 m 9 m room, we have a
global FOV distribution shown in Fig. 3(b). It can be seen that
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Fig. 4. Typical validation gates and validation matrices.

four local detection areas are formed through such a deploy-
ment, marked as areas I, II, III, and IV. In each local area, if only
one object moves, those associated sensor modules can provide
a high angular resolution. The detection range of each sensor can
be reduced to its local areas by increasing the value of the firing
threshold set in the embedded signal processor. Given such a
sensor deployment, a number of human objects can be tracked or
identified when they move inside different local detection areas.
The whole data-object-association scheme has two steps: identi-
fying the local area of an object and identifying the sensory data
associated with the object. More details can be found in [41].

IV. PROBLEM FORMULATION AND PROPOSED APPROACHES

In this section, we present the multiple human tracking
problem in terms of object motion dynamics and a sensor
observation model. The process of data-to-object association
is performed by a Bayesian joint probabilistic data association
scheme with validation gates. The varying number of objects is
tackled by an EM scheme. The walker identification problem
can be formulated as three parts: data learning, hypothesis
testing, and data/decision fusion.

A. Multiple Human Tracking

The multiple human tracking includes three problems: object
number determination, measurement-to-object association, and
object tracking.

1) Bayesian Tracking: For objects under tracking, object
state is used to represent their spatial-temporal varying ra-
diation, for example, positions, and velocities. The dynamics
model of objects is Markov and can be represented by the con-
ditional density . The problem can be stated as, how
to determine the object state sequence
with maximum posterior probability from sensor response sig-
nals , given the observation model likelihood

and state dynamics priori

(1)

Note that is derived from the sensor and noise models.
It is known as the maximum a posteriori (MAP) Bayesian
tracking problem.

By using the pre-known FOV modulation scheme, the sensor
response signals can be digitized into event indexes and
then interpreted as angular displacements, with respect to the
th sensor of sensor node . To handle the possible oc-

clusion of multiple persons, local detection areas are designed
for event validation, as shown in Fig. 3. Here, an event is re-
ferred to as a detection of human motion. The event validation
is referred to as the verification of an event inside one local de-
tection area through checking signal responses of two neighbor
sensor nodes. When event indexes (binary logic signals) from
four sensor nodes are received, an area-to-object association is
made first according to the global sensor FOV geometry. After
such a measurement validation, only two measurements are as-
sociated with one object, denoted as

(2)

where is the event that measurement originates
from the th object.

The general sequential Bayesian tracking problem requires
that we recursively calculate some degree of belief in the state

with validated measurements . Its solution includes two
parts: prediction and filtering, given by

(3)

where can be viewed as a normalizing constant.
The probabilistic model of the state evolution is the

state model. The likelihood function is the measure-
ment likelihood.

2) Object Number Determination: A more challenging as-
pect of the multiple object tracking with multiple sensors is the
data-to-object association when the number of objects varies.
It becomes more intractable for motion sensor systems, which
only respond to target motions and generate no signal when
targets stand still. We used an EM scheme for object number
determination, to initialize new or delete obsolete trackers,
accordingly.

1) In each step, we estimate the probability distribution
over object number, , at time , given measure-
ments and previous data-to-object association probabil-
ities, , at time

(4)

where the free energy function is [42]

(5)
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2) In each step, we optimize the data-object association
weights, given the updated object number distribution

(6)

In other words, we maintain several tracking hypotheses, each
of them describing a different number of objects. Over a period,
we evaluate all the hypotheses and pick the one with the max-
imum likelihood for rendering. Compared to the probabilistic
multiple hypothesis tracking (PMHT) [43], the proposed EM
scheme allows a convenient plug-in of a priori on object number
and new knowledge on object identity. For example, we can as-
sume the change of object number is a slow process, so when the
current object number is , the possible object number within
a preset time window could only be and . In an-
other case, we can use object identification results to shape the
probability distribution over object number: if there is a new ob-
ject present, the object number should be more likely increased.

3) Measurement-to-Object Association: The key concepts of
measurement-to-object association for a fixed number of targets
are the joint event and the validation matrix [21]. The joint event
is denoted as

(7)

where is the event that the measurement originated from
object , , and is the index of the object to which
measurement is associated, and is the number of validated
measurements at time .

The validation matrix for a joint event is defined

(8)

with indicating if measurement lies in the validation gate
for object

(9)

The construction of each follows the rules [21]:
1) There can be only one origin for a measurement.
2) At most one measurement could have originated from an

object.
Those rules might lead to several feasible joint events and

validation matrices. To reduce the number of feasible joint
events, an individual validation gate can be assumed for each
tracker. Only those measurements falling inside the gates will
be counted. Fig. 4 illustrates a typical set of validation gates
and validation matrices, where and are estimated object
positions, , and are position measurements falling
insides validation gates, and is a position measurement
outside gates.

By using Bayes’ rule, the probability of one joint event con-
ditioned on all the measurements up to the present time is
obtained as [22]

(10)

where is the likelihood of the predicted mea-
surements for the joint event , derived from object dy-
namics and the sensor observation model, and is
the prior probability of the joint event, derived from the proba-
bility distributions of false measurements and of target detection
rates [21].

The association probability that measurement belongs
to object at time may be obtained by summing over all fea-
sible events for which this condition is true

(11)

The states of each object can be updated with the measurements
weighted by those association probabilities.

After object number determination and measurement-to-ob-
ject association, the multiple object tracking becomes a set of
independent single-object tracking problems. We have summa-
rized the three Bayesian tracking strategies, Kalman, HMM,
and Gaussian particle filters, and compared their performances
and computation costs in [10]. The Kalman tracking scheme
based on a grid approximation [10] is chosen for this real-time
implementation.

B. Walker Recognition

The object recognition problem can be divided into two parts:
data learning and hypothesis testing. We here use the multidi-
mensional binary event sequence with a fixed length gener-
ated by the type II sensor node as initial gait feature data [11].
We use HMMs to represent the statistics of the feature data. For
a multinode sensor system, it involves data fusion and decision
fusion.

1) Statistical Feature Models: An HMM can be set up as
[44]:

1) : hidden state sequence;
2) : feature sequence;
3) : state transition

probability matrix;
4) : emission proba-

bility matrix;
5) : initial state distribution;
6) : model’s parameters.
For a given parameter vector , the likelihood of the hidden

state sequence and the observed data to associate with the
model is [44]

(12)

To estimate the membership of one sequence associated with
one model, we estimate the hidden state sequence first and use
that to calculate the association likelihood.

2) Data Learning: Given the conditional probability density
, the maximum likelihood (ML) estimation of the pa-

rameter vector from the training data and their labels ,
known or hidden, is

(13)
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For the supervised learning problem, the preset data label distri-
bution is known as , so that is “complete data” for
model training. For the unsupervised learning problem, in the
case of HMM, the data labels are hidden variables, and the
EM algorithm has been developed [44].

3) Hypothesis Testing: For a feature sequence, , we
will have hypotheses for registered subjects,

, to test. The hypothesis represents
“none-of-the-above”. The decision rule then is

(14)

where is the likelihood of associating with the th
hypothesis and is a selected acceptance/rejection threshold.
There are several special cases of this general statement. For
the verification problem, we choose ; for the closed-set
identification problem, we choose .

4) Data, Score and Decision Fusion: For sensor nodes,
each having sensors, the ensemble data of the sensor system
is denoted as , where is an

event sequence from the th node. The feature sequence
selection is to choose sequences containing more informa-
tion about the motion of subjects, denoted as . Therefore,
for the sample fusion scheme, , where is an
event sequence. For the feature fusion, we select the highest
frequency sequences as the feature sequence of each node, i.e.,

, where is an event sequence.
For the score fusion, the likelihood of a joint feature

vector associated with a joint hypoth-
esis set for the th registered subject is

. The decision rule then is the
same as described by (14).

For the decision fusion, we first obtain the binary decision
vector for the th registered subject, and then make
the final decision by majority voting. A random decision will be
made if there is a tie.

V. SYSTEM IMPLEMENTATION

Fig. 5 shows the tracking procedure for distributed sensors.
In [10], we presented methods for event detection and digiti-
zation from pyroelectric sensors and the interpretation of the
angular displacement measurements from the events. Through
our specific sensor deployment based on sensor FOV geometry,
four local detection areas are formed, as shown in Fig. 3. If an
object moves inside one of these areas, the sensors associated
with that area should fire, forming a valid event. For example,
for an object moving in area I, a valid event has the nonzero
four higher bits of the event reported by sensor node 1 and the
nonzero four lower bits by sensor node 2. If only one of these
two sensors reports a nonzero signal, the master will regard it as
invalid and clear those bits to zero. After the event validation,
the master will package all four event bytes into a single mes-
sage and send it to the host. The host will localize the objects
by interpreting this composite event through the EM steps de-
scribed in Section IV.

The complete system consists of slave nodes, a master node,
and a host computer. We use TRF6901 and MSP430149 as the

Fig. 5. EM-Bayesian multiple human tracking scheme for distributed pyro-
electric sensors.

Fig. 6. Computational load distribution among slave, master, and host.

computation and communication platform. The distribution of
computational load is shown in Fig. 6. Each slave node samples
the sensor response signals and converts them into event indexes
by band-pass filtering, threshold testing, and low-pass filtering.
After compressing each event index into a single byte, the slave
node broadcasts the data packet to the master node. The master
node synchronizes the communications of the nodes, removes
the false alarms, and frames a new composite event message.
The master sends the event message to the host, which computes
local angular displacements or digital features and updates the
dynamics states or identities of objects.

Walker identification involves feature extraction, feature
modeling, and data testing. In [35], [36], and [11], we studied
analog and digital features generated by just one sensor node
to recognize walkers in two modalities: path-dependent and
path-independent. In this research, we implemented multiple
nodes for performance improvement and multiple walker iden-
tification. We chose the digital feature modeled by HMMs. The
digital feature is based on the multidimensional binary event
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Fig. 7. Sensor fusion schemes: (a) sample fusion; (b) feature fusion; (c) score fusion; and (d) decision fusion [40].

indexes generated by the type II sensor nodes. Each feature con-
sists of a fixed length of binary indexes. HMMs characterize the
statistics of those finite-state sequences during training. Their
model parameters are obtained by random initialization
and updated after the iterations of expectation-maximization
in light of the likelihood of how well the data fit models. By
using MATLAB Statistics Toolbox function hmmtrain, we
can estimate the transition and emission matrices, and ,
from an initial guess of their values. With another function
hmmdecode, we can compute the posterior state probabilities
of testing sequences generated by different human objects.

The fusion of multiple nodes can happen at four different
levels: sample, feature, score, and decision [40], as shown in
Fig. 7(a)–(d). Sample level fusion combines multiple sample
data sets into a single sample data set. Feature level fusion relies
on building a global statistical feature model. Score level fusion
combines scores from matching modules, and only one score
is outputted to the decision module. Score normalization is im-
portant since the likelihood scores from different sensor nodes
have different scales. Decision level fusion combines decision
from decision modules for different nodes using AND, OR, or
majority voting.

VI. RESULTS AND DISCUSSION

A. Multiple Human Tracking

The tracking system has been implemented in a 9 m 9 m
room. Two human objects were tracked following both the
same path and crossing paths. Fig. 8 displays snapshots of the
tracking of one, two, and three human objects, respectively,
with four type I sensor nodes. For two walkers following one by
another, the four sensor nodes generated four sets of 8-bit event
sequences shown in Fig. 9(a). Multiple object tracking involves
the process of data-object-association. At each iteration, the
association probabilities between measurements and objects
were calculated and measurements were assigned to objects
accordingly. The tracked trajectories of two human objects
following each other along a prescribed rectangular route are
illustrated in Fig. 10(a). It can be seen that both initial positions
are set as [0 0]. The tracking errors and their histograms are

Fig. 8. Snapshots of tracking one, two, and three objects. Four sensor nodes
detect the angular displacements of the target, illustrated as the shaded beams.
At each iteration, after the data-object-association, the target positions are esti-
mated by a grid approximation and by Kalman filtering.

given in Fig. 10(c). The standard deviations of the tracking
errors are 0.44 m and 0.45 m for the two objects, respectively.

A more challenging scenario for multiple object tracking is
the case when they walk along different paths with a cross-over.
There are indeed no effective solutions for the data associa-
tion problem in general cases without discrimination charac-
teristics available. For some specific cases, such as when ob-
jects do not change their velocities abruptly before and after
the cross, we can resolve the data-object-association problem
by using a priori on speeds and their predictions from Bayesian
rules. The four sensing nodes generated 8-bit event sequences,
as shown in Fig. 9(b). Fig. 10(b) displays the tracking results
when two objects walk along two different diagonals of the
room. By using the predicted speeds, the trackers can follow
the targets after the cross-over. The tracking errors and their
histogram are given in Fig. 10(d). The standard deviations of
the tracking errors are 0.38 m and 0.7 m for the two objects,
respectively.
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Fig. 9. 8-bit event sequences of four nodes for tracking (a) two objects walking
in way of one-follow-another and (b) two objects having crossing paths.

B. Single Walker Identification

For single human subject identification, we used four type
II sensor nodes. The human subjects randomly walk inside
the room one at a time. Fig. 11(a) illustrates event sequences
transmitted by four identification sensor nodes. However, as
this 16-bit event sequence has too many possible observations,

, to train an HMM model, we need to reduce the dimension
of the observation space by extracting the sequences containing
more information, that is, feature sequences. For a real-number
sequence, one can use principal component analysis (PCA) to
extract features. For the binary sequences, we choose those
sequences having higher frequency variations as features. Such
a feature extraction can be performed at two levels: sample
and feature. In the sample fusion scheme, eight most varying
binary sequences are selected out of all the sixteen binary
event sequences generated by four sensor nodes, as shown in
Fig. 11(b). In the feature fusion scheme, a feature sequence that
consists of the two most varying binary sequences is extracted
first for each node. Then the obtained four feature sequences
are put together to form an 8-bit feature sequence, as shown
in Fig. 11(c). Each subject generated two sets of data, one for
feature model training, another for real time testing. Each set
of testing data includes 20 feature sequences generated by one
subject. Fig. 12(a) shows the close-set identification results for
five walkers using one of four sensor nodes, respectively. Due
to the difference in walking habits of human subjects, those
four sensor nodes yield different identification performance.
The identification rates of some nodes are worse than 50%.

Fig. 10. (a) Tracking errors for: (a) two objects following parallel paths and
their histograms and (b) two trackers and their histograms. (c) Estimated par-
allel trajectories of two human objects walking in five rounds. The tracking re-
sults are represented by circles and crosses and the prescribed route by solid
lines. (d) Estimated crossing trajectories of two human objects walking in three
rounds.
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Fig. 11. A 16-bit binary event sequence and two 8-bit feature sequences gen-
erated by one random walk. (a) Original 16-bit event sequence from four sensor
nodes. (b) 8-bit feature sequence using sample fusion. (c) 8-bit feature sequence
using feature fusion.

Fig. 12(b) shows the close-set identification results for five
walkers using a pair of four sensor nodes respectively. Due to
the geometry of sensor node deployment and room, sensor node
combination 2&4 produces the best identification performance.
However, for some walkers, such a sensor node pair still can not
produce an identification rate of 100%. To improve the identi-
fication performance, we applied four sensor fusion schemes,
namely sample fusion, feature fusion, score fusion, and decision
fusion, to those sensor node pairs. The results are illustrated in
Fig. 12(c). It can be seen that the score fusion produces the best
result: the identification rates for five walkers are all 100%.

C. Multiple Walker Identification

The main challenge for multiple human subject recognition
is the same as that for multiple human subject tracking: how
to associate feature sequences with the corresponding subjects.
The signals generated by multiple subjects usually interfere and
overlap with each other, making it difficult to extract feature
sequences for each individual. Our developed approach is to
exploit geometric advantages of distributed sensors, which are
deployed in a way of forming several nonoverlapped subdetec-
tion-regions. The target in each of those subdetection-regions is
only detected by a subset of sensors in different sensor nodes, as
shown in Fig. 3. When multiple humans walk in different sub-
detection-regions, it is easy to extract the feature sequences for
each subject.

However, when two subjects switch their subdetection-re-
gions, the identification component of the sensor system alone
is unable to detect it and keeps processing the signals as if two
subjects are still in their original subdetection-regions. It needs
an integration of tracking and recognition components. In this
paper, we only study simplified cases assuming that each sub-
ject stays in their original subdetection-region over the course
of identification. Fig. 13 shows the identification results for two

Fig. 12. Single walker identification using: (a) different single sensor nodes,
respectively; (b) different pairs of sensor nodes, respectively; and (c) four sensor
fusion schemes: sample fusion, feature fusion, score fusion, decision fusion.
Multiple walker identification in terms of marginal and joint identification rates.

walkers. Here, we use the terms of marginal and joint identifi-
cation rates to describe the multiple human recognition perfor-
mance. The marginal identification rate refers to the identifica-
tion rate of each subject when there is a presence of multiple
subjects. The joint identification rate refers to the identification
rate of all the subjects at the same time. It can be seen, as pre-
dicted, that the identification performance for multiple walkers
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Fig. 13. Multiple walker identification in terms of marginal and joint identifi-
cation rates.

is worse than that for single walker. The highest marginal identi-
fication rate is 80% and the lowest rate is 55%. The highest joint
identification rate is 55% and the lowest rate is 33%. One reason
is that the signals generated by two walkers inevitably interfere
with one another. Another reason is that as the walking range is
reduced, the gait information becomes less in the extracted fea-
ture sequences.

D. Discussion

The explicit advantages of human tracking with DSNs
include better spatial coverage, robustness, survivability, and
modularity, compared to focal plane centralized video sys-
tems. The advantages of walker identification using pyrolectric
sensors include its low cost, low power consumption, indepen-
dence of illumination, and less privacy infringement. By using
multiple sensor nodes, the identification performance in real
time for a small group of walkers can be dramatically improved
to 100%. According to the reports on gait recognition from
video streams [28]–[30], a recognition rate exceeding 95%
for 28 subjects has been achieved, each recognition using at
least four image sequences. Their result was obtained based on
recorded databases instead of real-time tests.

The concept of distributing the computation to multiple low
complexity nodes reduces computational requirements of the
central processor and the size of data storage. The use of the
motion detectors helps maintain the low requirements on data
throughput, computational consumption, and communication
bandwidth. The characteristics of the pyroelectric sensor give
the system the capability to operate under any illumination con-
ditions and the capability to capture human thermal biometrics.
The global and local FOV modulation is the most crucial step
in developing pyroelectric sensor systems for multiple human
tracking and identification. It allows improvement in sensing
accuracy, tracking precision and signal discrimination power,
and facilitates the process of data-object-association.

The prototype system presented above only employs four
sensor nodes to demonstrate the advantages of distributed
sensors in tracking (with type I sensor modules) and identi-
fying (with type II sensor modules) multiple objects. It can be
extended to more sensor nodes, in order to achieve a higher

tracking resolution, larger object number and higher iden-
tification rate. A fully functional real-time multiple human
tracking and identification system demands short testing event
sequences for fast walker identification and the simultaneous
identification of multiple objects.

To achieve such a goal, we can 1) improve the sensing res-
olution by using lens arrays with more elements; 2) adjust the
focal length with respect to object space size (the size of the
room under examination); and 3) deploy more sensor nodes.
With a higher detection resolution, pyroelectric sensor arrays
can capture more distinguishable gait information from walkers.
When a room is small, the sensor focal length has to be re-
duced, such that each sensor can detect more motion of sub-
jects in a near-field, small volume object space. Deploying more
sensor nodes can help improve the identification performance
and yield more effective measurements of subdetection-regions
but will incur more complexity on wireless communication/net-
working, decision fusion, and impose higher requirements on
the hardware.

From a signal processing perspective, more advances should
be made in 1) distributed signal inference and data learning;
2) tracker initialization and maintenance; and 3) feature repre-
sentation and modeling. The distributed inference and learning
schemes [45], [46] can better utilize the distributed compu-
tational resources and achieve the peer-to-peer computation
mode. In the crowded scene, robust and intelligent approaches
are required to initialize trackers and evaluate their quality.
The proposed EM scheme allows a convenient incorporation
of prior knowledge into object number estimation but demands
closer algorithmic investigations. How to select the best gait
biometric feature representation for distributed pyroelectric
measurements is still an open question. The multiperspective,
multicycle aspects of the thermal gait measurements should be
better utilized in feature modeling.

The underlying mechanism and main motivation of de-
veloping distributed sensors in multiple target tracking and
identification through FOV modulation is the study of reference
structure tomography and compressive sensing [47], [48]. Both
results recommend choosing random measurement matrices
through sensor FOV modulation to achieve efficient informa-
tion acquisition. As a general FOV design procedure needs a
closer investigation, many measurement coding schemes have
already been applied in a variety of coded-aperture imaging
systems, from Hadamard codes to pseudorandom codes [49],
[50]. For a multinode pyroelectric sensor system, measurement
coding schemes can differ in nodes to maximize the extracted
information.

VII. CONCLUSION

In this paper, we present a wireless distributed pyroelectric
sensor system for multiple human tracking and identification
based on TI’s micro-controller and RF transceiver combination
of MSP430149 and TRF6901. The system consists of host,
master, and slave modules. The tracking scheme comprises
event detection, object localization, and motion filtering and
prediction. The prototype system can track two humans si-
multaneously in two typical scenarios. By employing multiple
sensor nodes and sensor fusion techniques, walker identification
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performance can be dramatically improved. We approached
the multiple walker recognition problem using the concept of
subdetection-regions formed by a specific global sensor FOV
geometry. The proposed sensor systems can work as a reliable
biometric system for a small group of human subjects. From the
achieved experimental results, we believe that the pyroelectric
sensor will become a mainstream human detection instrument;
besides its video and audio counterparts, this sensor offers one
more unique modality for all the applications of human-ma-
chine interfaces. It can run as a standalone inmate/patient
monitoring system under any illumination conditions, as well
as a complement for conventional video and audio human
tracking and identification systems. Our future work includes
sensor module improvement, FOV coding optimization, de-
ployment of a large number of sensor nodes, and integration of
multiple human tracking and identification.
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