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Abstract—As a promising machine learning tool to handle
the accurate pattern recognition from complex raw data, deep
learning (DL) is becoming a powerful method to add intelligence
to wireless networks with large-scale topology and complex radio
conditions. DL uses many neural network layers to achieve a
brain-like acute feature extraction from high-dimensional raw
data. It can be used to find the network dynamics (such
as hotspots, interference distribution, congestion points, traffic
bottlenecks, spectrum availability, etc.) based on the analysis of
a large amount of network parameters (such as delay, loss rate,
link SNR, etc.). Therefore, DL can analyze extremely complex
wireless networks with many nodes and dynamic link quality.
This article performs a comprehensive survey of the applications
of DL algorithms for different network layers, including physical
layer modulation/coding, data link layer access control/resource
allocation, and routing layer path search and traffic balancing.
The use of DL to enhance other network functions, such as
network security, sensing data compression, etc., is also discussed.
Moreover, the challenging unsolved research issues in this field
are discussed in detail, which represent the future research trends
of DL-based wireless networks. This article can help the readers
to deeply understand the state-of-the-art of the DL-based wireless
network designs, and select interesting unsolved issues to pursue
in their research.

Index Terms—Wireless Networks, Deep Learning (DL), Deep
Reinforcement Learning (DRL), Protocol Layers, Performance
Optimization.

I. INTRODUCTION

HUMAN brains possess powerful data processing capa-
bilities. Every day we confront numerous data from

the external world. Under a complex environment, a large
number of object features are first collected by our sense
organs. Then the brain extracts the abstract characteristics
from those feature data and finally makes a decision. In many
fields computers have already shown comparable or even more
powerful capabilities compared to human beings, such as
the game playing, auto control, voice and image recognition,
etc. The approach for the computer to achieve these abilities
is very similar to what human brain does, which has been
developed as an eye-catching technology, i.e., Deep Learning
(DL) [1]. In the DL process, first, computers need to learn
from experiences and build up certain training model. This
training process allows computers to determine appropriate
weight values between neural nodes, which are able to extract
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the features from the input data. Once the neural network has
been trained, an appropriate decision is able to be made to
achieve high reward. This idea has shown great success in
many real-world control scenarios, such as voice recognition
[2], [3], image recognition [4], [5], [6], [7], semantic analysis
[8], [9], language interpretation [10], [11], game control [12],
drug discovery [13], and biomedical sciences [14], [15], [16],
etc.

DL is a subclass of machine learning which uses
cascaded layers to extract features from the input data
and eventually forms a decision. The application of DL
should consider four aspects: (1) How to represent the state
of the environment in suitable numerical formats, which will
be taken as the input layer of the DL network; (2) How to
represent/interpret the recognition results, i.e., the physical
meaning of the output layer of the DL network; (3) How
to compute/update the reward value, and what is the proper
reward function that can guide the iterative weight updating
in each neural layer; (4) The structure of the DL system,
including how many hidden layers, the structure of each layer,
and the connections between layers.

Currently, many DL systems are tied with Reinforce-
ment Learning (RL) models [17], which comprises three
parts: 1) an environment which can be described by some
features, 2) an agent which takes actions to change the
environment, and 3) an interpreter which announces the
current state and the action the agent takes. Meanwhile,
the interpreter announces the reward after the action takes
effect in the environment, as shown in Fig. 1. The goal of
the RL is to train the agent in such a way that for a given
environment state, it chooses the optimal action that yields
the highest reward. Therefore, one of the main differences
between DL and RL is that the former usually learns from
examples (e.g., training data) to create a model to classify
data, however, the latter trains the model by maximizing
the reward associated with different actions.

DL has already shown astonishing capabilities in dealing
with many real-world scenarios, such as the success of Alpha
Go, the face recognition on mobile phones, etc. Researchers
in computer network areas also cast strong interests in DL
applications. By using DL model the complex network envi-
ronment can be represented, abstract features can be obtained,
and a better decision can be achieved finally for the computer
network nodes to achieve improved network quality-of-service
(QoS) and quality-of-experience (QoE).

Wireless networks yield complex features, such as com-
munication signal characteristics, channel quality, queue-
ing state of each node, path congestion situation, etc.
On the other hand, there are many network control



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JANUARY 2018 2

Fig. 1: Schematic Diagram of Reinforcement Learning

targets having significant impacts on the communication
performances, such as resource allocation, queue manage-
ment, congestion control, etc. To handle the complicated
situations, machine learning technique has been extensively
explored [18]. Chen et al. presented a comprehensive
summary towards the ML applications in wireless net-
works, including wireless communications and networking
using Unmanned Aerial Vehicles (UAVs), wireless virtual
reality, mobile edge caching and computing, spectrum
management and co-existence of multiple radio access,
Internet of Things, etc [19]. The applications of ML in
these areas present astonishing improvement compared to
traditional methods.

On the other hand, since modern wireless networks
are becoming more and more complex, more desires are
brought to the learning system, such as higher comput-
ing capacity, bigger datasets, faster and more intelligent
learning algorithms, more flexible input mechanism [19],
etc. To meet these urges, deep learning applications in
wireless networks has drawn lots of interests. DL equips
the wireless network with a ’human brain’: it accepts a
large number of network performance parameters, such
as link signal-to-noise ratios (SNRs), channel holding time,
link access success/collision rates, routing delay, packet loss
rate, bit error rate, etc., and performs deep analysis on the
intrinsic patterns (such as congestion degree, interference
alignment effect, hotspot distributions, etc.). Such patterns
can be used to perform the protocol controls in different
protocol layers. For example, the routing layer may start
to look for a new alternate path; the transport layer can
shrink the congestion window size, and so on. Compared
to ML, DL tends to provide improved performances to
abstract in-depth patterns from the input knowledge and
to make more accurate decisions.

The success of applying DL for wireless networking is due
to the following three similarities between DL and human
brain:

(1) Tolerance of incomplete or even erroneous input raw
data: The human brain can tolerate distorted samples. For
example, we can still recognize the image shape of ’1’ even
some sections of ’1’ are missing, and we can recognize people
from an obscure face image even when some pixels are
missing. Likewise, DL uses deep neural network to tolerate
missing or distorted input data. This capability is important

to wireless networks since it is not possible to accurately
collect all the radio links’ states due to the channel fading,
node mobility, and control channel failure.

(2) Capability of handling large amount of input informa-
tion: Human brain can simultaneously absorb multiple types
of complex information and makes a good judgement. For
example, we can use sound, image, and smell to detect the
coming of a dog. Likewise, DL can simultaneously accept
a huge amount of performance data from multiple protocol
layers (such as 1000 nodes’ queueing status data and link inter-
ference matrix), and then determines the concrete congestion
place in a large network. DL will play a critical role in big
data wireless transmissions due to its capability of analyzing
the performance parameters of huge traffic flows.

(3) Capability of making control decisions: Our brains learn
things and guide our behaviors. Passive learning may not be
the final goal of network analysis. Using the learning results
to guide the proper network control is the ultimate goal.
With the Markov decision model, DL is able to evolve into
deep reinforcement learning (DRL) model, which can use the
updates of system states, reward function, and policy seeking,
to make a suitable network control based on the maximum
reward calculation. Thus we can use DRL to achieve large-
scale wireless network control.

In this article, a comprehensive survey towards the applica-
tions of DL in wireless networks is presented. Fig. 2 shows
the taxonomy we have used when reviewing various uses of
DL for each network aspect. Our contributions in this review
consist of 3 important aspects:

(1) DL applications in different layers: We will systemati-
cally analyze the benefits of adopting DL/DRL for the network
feature extraction in different layers. As shown in Fig.2, in
physical layer, DL can be used for interference alignment. It
can also be used to classify the modulation modes, design
efficient error correction codes, etc. In the data link layer, DL
can be used for resource (such as channels) allocation, link
quality evaluation, and so on. In network (routing) layer, it can
help to seek an optimal routing path. In higher layers (such
as application layer), it is used to enhance data compression
and multi-session scheduling. We will provide the core design
ideas for each DL application, and compare different solutions.

(2) DL advantages in security and other network functions:
Besides the above protocol stack, we will also discuss the ad-
vantages of using DL in other network functions. One critical
area is security and privacy protection. Today the intrusion
detection becomes more challenging due to the network scale
increase and huge amount of traffic passing through the attack
detector/filters. DL is an ideal tool to perform large-scale
network profile analysis to detect the potential intrusion events.
We will explain how DL can be used to classify the packets
into benign/malicious types, and how it can be integrated
with other machine learning schemes such as unsupervised
clustering, to achieve a better anomaly detection effect.

(3) Future trends: Since this field is still far from maturity
and many issues are not solved yet, we will introduce 10
challenging problems on the use of DL to enhance some of the
popular wireless networks, such as cognitive radio networks
(CRNs), software-defined networks (SDNs), dew/fog comput-
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Fig. 2: Taxonomy of Deep Learning Applications in Wireless Networks

ing, etc. We will provide the context, motivation, problem
statement, and concrete unsolved issues for each of those 10
problems. They are helpful to the readers who are seeking for
new research directions.

Roadmap: The rest of this paper is organized as follows:
In section II, to prepare for the discussions of DL appli-
cations for wireless network functions, we first explain the
fundamental math models of DL, including its relations with
general machine learning and graph-based learning framework.
Then we move to the discussions of DL-based physical layer
enhancements in terms of signal interference and modulation
classification in section III. Section IV discusses the impor-
tance of DL in data link layer design. Some typical MAC
design examples are explained with DL-based enhancements.
In Section V the DL-based routing layer operations such
as path establishment and optimization are described. The
utilizations of DL for security and other network functions
are discussed in Section VI. Section VII summarizes some
DL implementation platforms that have been extensively
used in wireless network research. Ten challenging research
issues to be solved next are stated in Section VIII, followed
by the concluding marks in Section IX.

II. FUNDAMENTALS OF DEEP LEARNING
DL originated from Machine Learning (ML). In this section,

we first analyze the differences and relationship between
those two techniques. Then, a brief introduction towards DL
principles is presented.

A. From Machine Learning to Deep Learning

Both ML and DL solve real-world problems with neural
networks. A typical ML system is composed of three parts:
1) Input layer, which takes pre-processed data as the system

input. The features of the real-world data (e.g., pixel values,
shape, texture, etc.) need to be pre-processed and identified
by humans so that the ML system can deal with them. 2)
Feature extraction and processing layer, in which a single
layer of data processing is used to extract the data patterns.
Currently, Support Vector Machines (SVM), Principal Compo-
nent Analysis (PCA), Hidden Markov Model (HMM), etc., are
extensively used for feature extraction. 3) Output layer, which
spills out the results of classification, regression, clustering,
density estimation, or dimensionality reduction, depending on
the task of the ML model. The schematic structure of ML is
shown in Fig. 3 (a).

The original data input into the learning system could be
quite diverse, varying from natural information such as image,
audio and video, to various quantitative event descriptions.
Although the input of the learning system may be different,
the core data learning module requires that the input data has a
uniformed form, based on which the input events are classified.
Therefore, to enable the learning process to "recognize" the
input data, the original natural data needs to be pre-processed,
i.e., the raw data needs to be transformed into a suitable
representation or feature vector, which can be accepted by
the ML classification system. This pre-processing needs to
be sophisticatedly designed in such a way that the features
of the original natural data related with classification are
well preserved. And the classification accuracy is significantly
affected by the data pre-processing schemes.

Machine learning systems usually have only one hidden
layer between the input and output layers. This type of
learning system is also referred to as shallow learning
network, which provides arbitrary function approximator
with enough hidden units in one hidden layer and learns
more-or-less independent features from the input layer.
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For example, Chen et al. proposed a radio map learning
system based on the shallow learning network, which
uses machine learning method to exploit the segmentation
models and signal strength models of the UAV-assisted
wireless networks and reconstructs a finely structured
radio map to improve the service coverage [20].

On the contrary, most deep learning systems have more
than one hidden layers between the input and output
layers, where the input of an upper layer is the output of its
lower layer, such as the learning networks proposed in [21],
[22], [23], [24]. DL technique avoids the sophisticated input
data pre-processing by employing multiple hidden layers
between the input and the output layers, as shown in Fig.
3 (b). The natural data is input into the learning system
in their raw form. The DL system then automatically
extracts appropriate representations for classification or
detection purpose. Starting with the natural data, each
layer extracts different features from the input data,
gradually amplifying features that are more relevant to
decision making and suppressing irrelevant features. Each
layer is connected to neighboring layers with different
weights attached to the connection. To determine the
values of the weights, a large number of samples are
sent to the system for training purpose, which could be
either supervised learning or unsupervised learning. In
the supervised learning, a gradient vector is computed for
each weight, indicating the amount of error change with
the variation of that weight. According to the gradient
vector, the weight is adjusted to decrease the error.

B. Deep Learning Framework

Human beings spontaneously interact with the environment
by using a combination of reinforcement learning and hi-
erarchical sensory processing system, to accomplish many
tasks such as object recognition [25], conditioning and choice-
making [26], etc. Inspired by animal behavior, deep reinforce-
ment learning was proposed and has drawn much attention
in computer intelligence. A DL model includes two crucial
elements: forward feature abstraction and backward error
feedback. The training process usually needs both elements,
while the verification process solely implements the former.

Forward feature abstraction: Assume there are N layers in
the DL network, as shown in Fig. 4. For the j-th node in layer
i, denoted as ni j , the output is obtained through two steps.
First, node ni j computes a weighted sum of all its inputs,
denoted as zi j . Then zi j is sent to a non-linear function f () to
obtain the output yi j of node ni j .

zi j =
Li−1∑
k=1

wi
k j, yi j = f (zi j), (1)

where wi
k j

is the weight from node ni−1,k to node ni j and Li−1
is the number of nodes for layer i − 1. For the choice of the
non-linear function f (), the rectified linear unit (ReLU) f (z) =
max(0, z), the hyperbolic tangent function f (z) = [exp(z) −
exp(−z)]/[exp(z) + exp(−z)], and the logistic function f (z) =
1/[1 + exp(−z)] are the popular options [7].

(a)

(b)

Fig. 3: Schematics of Machine Learning and Deep Learning
(a) Machine Learning; (b) Deep Learning

Backward error feedback: The initial weights are random
values or empirical values. To improve the accuracy of the final
output of the learning system, these weight values are adjusted
by backward error feedback technique, i.e., the classification
accuracy is feedbacked, according to which the connection
weights are modified. For a node of the deepest layer, say,
node nN j , the error derivative is yN j − tN j , where yN j and tN j

are the generated output and the correct output, respectively.
Then the error derivative of lower layer connection is

∂E
∂zN j

=
∂E
∂yN j

∂yN j

∂zN j
, (2)

where ∂E/∂yN j = yN j − tN j and j = 1, 2, · · · , LN .
For the j-th node of layer i (i = 1, 2, · · · , N − 1), first a

weighted sum of the error derivatives of all the inputs (from
deeper layer) to the node is computed, denoted as ∂E/∂yi j .
Then the error derivative of the lower layer connection is

∂E
∂zi j

=
∂E
∂yi j

∂yi j

∂zi j
, (3)

where ∂E
∂yi j
=

∑Li+1
k=1 wi+1

jk
∂E

∂zi+1,k
, i = 1, 2, · · · , N − 1, and j =

1, 2, · · · , Li .
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(a)

(b)

Fig. 4: Deep Learning Operations
(a) Forward feature abstraction (b) Backward error feedback

In practice, stochastic gradient descent (SGD) is extensively
used [7], since SGD finds a good set of weights with relatively
fast speed. The training process of SGD is composed of many
rounds, each of which is trained by a small set of samples,
and the final gradient is the average of each round.

In circumstances that some useful environment features
can be handcrafted, or the environment’s state space is
low-dimensional and can be fully observed, the perfor-
mances of reinforcement learning is limited. Furthermore,
reinforcement learning tends to be unstable or even di-
verge when a nonlinear function approximator is used to
represent the reward. To solve these problems, deep Q-
network (DQN) was proposed, which employs two novel
strategies to overcome the instability problem of deep
learning, i.e., experienced replay and iterative update [27],

[28]. In DQN, the agent interacts with the environment
through a sequence of actions, with the goal of maximizing
the cumulative reward. Assuming the environment’s state
is s at moment t and the agent takes action a according to
policy π, then, the environment transfers to the next state
at moment t + 1 according to environment’s transferring
probability P. Meanwhile, a reward rt is given at moment
t. The goal of the agent is to maximize the cumulative
reward Qt , i.e. [28],

max
π

Qt = max
π

E
(
rt + γrt+1 + γ

2rt+2 + · · · |st = s, at = a, π
)
,

(4)
where γ is a future reward discount, since the current action
at impacts not only on the current reward, but also on the
future reward with a diminuendo strength. In [27], the reward
is represented as Qt (s, a, θi), where θi is the weight of the
Q-network at iteration i. To replay the experience, for each
moment t, the agent’s experience, et = (st, at, rt, st+1), is stored
in the experience pool U(D). Each time when the agent needs
to adopt an action during the learning process, a sample of the
stored experience is randomly chosen by the agent. Thus,

Li(θi) = E(s,a,r,s′)∈U(D)

((
r + γmax

a′
Q(s′, a′, θ−i ) −Q(s, a, θi)

)2
)
,

(5)
where θ−i is the weight of the Q-network used to compute the
target at iteration i, which is only updated with the weight θi
every c steps and is fixed between individual updates (c is a
constant). The parameterization of reward Q for each action is
achieved by a neural network, where each possible action is
provided a separate output unit. Therefore, for each possible
action, only the state representation serves as the input to the
network, yielding the predicted Q value for a specific action.

A classical application of DQN is video game (Atari 2600)
[27], as shown if Fig. 5. For instant t, the state is the screenshot
of the game, denoted as xt . (Note that the internal state of the
game is not accessible by the observer. Instead, only the screen
can be observed.) The action is the operation that the Atari
emulator takes, denoted as at , and the reward is the game score
gained due to the action, denoted as rt . To learn the strategy
with fully observation, the state input to the DQN at instant t is
a finite Markov Decision Process (MDP), indicating both the
current observation and the previous observations and actions,
as shown in Table I. Assuming the game terminates at instant
T , the future discounted reward at instant t is Rt =

∑T
i=t riγi−t .

Apparently, the goal of the agent at instant t is to take an action
that maximizes the future rewards with the current observation
representation and policy π, i.e., max

π
E(Rt |st = s, at = a, π),

which can be represented as the following equation,

Q∗(s, a) = Es′

(
r + γmax

a′
Q∗(s′, a′)|s, a

)
, (6)

where s′ is the observation of the next instance and a′

is the action taken at the current instance. In practice, an
approximator is used to estimate the action reward, i.e., using
Q(s, a, θ−i ) to replace Q∗(s, a), where θ−i is the weights of
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the neural network in an iteration before i. (For instance,
θ−i = θi−1.) Therefore, an approximate estimated reward value
is

y = r + γmax
a′

Q(s′, a′, θ−i ), (7)

For each round of the Q-network training, say round i, the
training is implemented by adjusting the weights with the aim
of reducing the mean square error of (7).

C. Deep Learning for Graph-Structured Data

In many practical applications the data often has the struc-
tured features, i.e., nodes are connected with each other
spatially or temporally, or both. For instance, when predicting
the behavior of a person in the kitchen, the interactions
between the person and the appliances are connected spatially
or temporally. Under such a circumstance, considering the
spatio-temporal relations among nodes in the DL framework,
we can use the graph-based structure to achieve the promising
performance [29].

Currently, the graph-structed data is usually generalized
as Convolutional Neural Networks (CNNs). A CNN is a
sequence of layers, each of them transforms one volume
of activations to another through a differentiable function.
Usually there are three main types of layers in a CNN
architecture, i.e., convolutional layer, pooling layer and
fully connected layer. The main difference between the
graph-oriented CNN and regular CNN is that the former
builds graphs for each neural node of the learning system,
which is achieved by selecting neighbors and determining
the connection weights with the neighbors for each real-
world node, as shown in Fig. 6 (a) and (b). To represent
graphs in DL models, the input data is denoted as vertices
and edges, i.e., G = (V, E, A), where V represents the set
of vertices, E represents the set of edges, and A is the
weighted adjacency matrix. Then the graph is input into
the learning system monolithically.

The graph DL can be conducted in either spectral domain
or spatial domain [30]. The spatial approach generalizes CNN
using the graph’s spatial structure, capturing the essence of
the convolution as an inner product of the parameters with
spatially close neighbors, as shown in Fig. 6 (b). Bruna et al.
[31] uses multi-scale clustering to define the network archi-
tecture, in which the convolutions are defined for each cluster.
However, the spatial approaches tend to have difficulties in
finding a shift-invariance convolution for non-grid data. To
overcome this problem, Hechtlinger et al. [32] proposed a
spatial CNN, which uses the relative distance between nodes.
Assume G = (V, E) is a graph, where V = (X1, X2, · · · , XN ) is
a set of N features (vertices) and E is a set of edges. To
select the neighbors for a node, a graph transition matrix,
P, is used, of which element pi j denotes the probability of
moving from node Xi to node X j . Meanwhile, the expected
number of visits, Qk , is calculated as Qk =

∑k
i=0 pki j , where

pki j ∈ Pk is the probability of moving from node Xi to node
X j . The convolution for the node is conducted upon the top
α neighbors with the highest expected visit numbers (α is a

constant). Therefore, the weights are decided according to the
distance indicated by the transition matrix.

The graph-oriented CNN can also perform on spectral do-
main graph, i.e., the input graph is first transmitted from graph
domain to spectral domain, then the spectral domain graph is
sent to CNN for training and testing purpose, as shown in Fig.
6 (c). For instance, in [31] and [33], the spectral decomposition
of the graph Laplacian is first used to derive the eigenvectors of
the spatial domain graph, then the convolution is implemented
upon the spectral graphs. Furthermore, in [34] and [35], a
ChebNet is proposed, which uses Chebyshev polynomials
of the Laplacian to learn the filter structures for the graph
data. Lee et al. [36] proposed a DL scheme performed in
spectral domain, which incorporates transfer learning to allow
training data and testing data to be drawn from different
feature spaces and distributions. Transfer learning stores
knowledge gained from solving one set of problems and
applies it to a different but related problem set. By using
transfer learning in deep learning networks, the intrinsic
information learned by the DL network is transferred from
the source domain to the target domain, thereby building
a model for a new but related task in the target domain
without using new data [37]. In Lee’s scheme, a graph
is first generated by the co-occurrence graph estimation
(CoGE) [29] or supervised graph estimation (SGE) [33].
Then, the intrinsic geometric characteristics of the graph
is extracted via Laplacian matrix, where three Laplacian
operators are used for comparison purpose. Following that,
the convolutional networks are applied to the graph, for
which the weights of the DL model are determined through
the training process. To learn various data features, the
convolution operation is re-defined with spectral informa-
tion from spatial domain. This operation allows the DL
model to transfer the data-driven structural features from
the original domain to an appropriate spectral domain,
thereby the intrinsic geometric information of the spatial
graphs is effectively extracted.

III. DEEP LEARNING FOR PHYSICAL LAYER DESIGN

DL plays important roles in the Physical Layer (PL) of
wireless networks. For instance, DL can help to determine
the most suitable modulation/encoding schemes according to
the comprehensive analysis of the complex radio conditions,
including spectrum availability, interference distribution, node
mobility, application types, etc. In the following discussions,
we will provide some typical DL applications for PL function
control.

A. DL for Interference Alignment

Interference Alignment (IA) has attracted extensive interests
nowadays, for its improved channel utilization by allow-
ing multiple transmitter-receiver pairs communicating via the
same radio resources. In Multi-Input Multi-Output (MIMO)
networks, IA uses linear precoding technique to align trans-
mission signals in such a way that the interference signal
lies in a reduced dimensional subspace at each receiver [38],
[39]. This coordination between the transmitter and receiver
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Fig. 5: Schematic of Deep Q-Learning for Video Game

(a)

(b)

(c)

Fig. 6: Convolutional Neural Networks
(a) Grid Structure CNN; (b) Graph Structure CNN in Spatial
Domain; (c) Graph Structure CNN in Spectral Domain

breaks the throughput limitation imposed by MIMO antennas’
interference problem.

He et al. [40] proposed to use deep Q-learning to obtain
the optimal IA user selection policy in the cache-enabled
opportunistic IA networks, as shown in Fig. 7. In this scheme,
a central scheduler collects the channel condition and the
cache status of each user, and allocates channel resources to
each user. All the users are connected to the central scheduler
via a backhaul network with a total capacity of Ctotal. The
channel is time-varying characterized by finite-state Markov
model. Each transmitter is equipped with a cache, which
stores an amount of frequently requested information. This
in-network caching design efficiently reduces the transmission
of duplicate contents. Assume that there are L candidates
wanting to join the IA network, an action is determined in
each time slot, indicating which candidates are chosen to
be allocated communication resources based on their current
Signal-to-Noise Ratios (SNRs). The system state at time slot t
is defined as x(t) = {γ1(t), c1(t), γ2(t), c2(t), · · · , γL(t), cL(t)},
where γi(t) and ci(t) denote the channel state and the cache
state of candidate i, respectively (i = 1, 2, · · · , L). System
action is represented as a(t) = {a1(t), a2(t), · · · , aL(t)}, where
ai(t) = 0 indicates that candidate i is not selected to be
allocated communication resources, and ai(t) = 1 indicates
being selected. The reward function is defined as to maximize
the throughput of the IA network. If the requested content is in
the local cache, the candidate is provided the maximum data
rate by the IA. However, if the content is not in candidate’s
cache, certain amount of bandwidth needs to be used for
content transmission.

Note that in this scheme, a central scheduler is needed,
which collects channel state information as the input of the
deep Q network and implements the resource allocation
computation. This structure arouses vulnerability of the
entire system. Furthermore, the employment of the central
scheduler is intractable.

B. DL for Jamming Resistance
In cognitive radio networks, when the secondary users (SUs)

tries to join the network, they need to 1) avoid interfering with
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Fig. 7: Cache-Enabled Opportunistic IA Networks

Fig. 8: DQN-based Anti-Jamming System

the primary users (PUs) and 2) counteract jammers. Spread
spectrum is one of the most popular anti-jamming techniques.
However, smart and cooperative jammers can still block some
channels and eavesdrop the control channel.

Han et al. [41] proposed a deep Q-learning based, two-
dimensional anti-jamming scheme executed by the SUs. It
utilizes both frequency hopping and SU’s mobility to confront
smart jammers, as shown in Fig. 8. In this scheme, the action
executed by the SU is represented as at ∈ {0, 1, · · · , N}, where
at = 1, 2, · · · , N indicates which frequency channel the SU is
going to access (frequency hopping) , and at = 0 indicates that
the SU will leave the area and find another Access Point (AP)
due to heavy jamming (mobility). However, it is not clearly
addressed how does the SU move. An efficient moving
strategy of SU is crucial to find an optimal access point
and to avoid duplicated request. The scheme is summarized
in Table I, where N is the number of frequency channels, W
is memory length, r is the utility of the SU. Considering the
huge number of frequency channels and the time constraint of
the decision making process, a convolutional neural network
adopted in [27] was used to estimate the reward for each
action, which consists of two convolutional layers and two
fully connected layers (see Fig. 5).

C. DL for Modulation Classification

Modulation classification identifies the modulation type for
the received signals. To improve the accuracy of the clas-
sification for complex modulation signals, Peng et al. [42]
proposed a CNN-based DL scheme. Since different modu-
lation methods may have particular constellation diagrams,
this scheme uses AlexNet to classify constellation diagrams,
thereby pinpointing the modulation method. AlexNet is a
CNN based deep learning model that comprises thousands of
neurons and millions of connections, and it can classify 1.2
million images into 1000 classes [43], [44]. Simulation shows
that this scheme can accurately differentiate QPSK, 8PSK,
16QAM and 64QAM signals and has comparable accuracy
compared to the traditional modulation classification schemes
such as cumulant based scheme and Support Vector Machine
(SVM) based scheme. The DL-based modulation classifica-
tion is a promising topic. However, merely considering the
graphic pattern of the constellation diagram may limits
the classification effect. The classification performance
could be improved if the image classification is aimed by
modulation parameters analysis.

D. DL for Physical Coding

In addition, deep learning is also used in error correcting
codes. In [45] and [46], the belief propagation (BP) decoding
algorithm of the low-density parity-check (LDPC) codes is
improved by DL. Tanner graph is extensively used in the
BP decoding process. However, it is a challenging task to
build an efficient parity check matrix, which can be expressed
by the edges of the Tanner graph. Nachmani et al. [46]
assigned weight to each edge of the Tanner graph, then these
weights are trained using stochastic gradient descent. Using
this Tanner graph trained by the DL, the Bit Error Rate (BER)
is significantly decreased. In [47] and [48], the performance
of polar codes is improved by using a decoding algorithm
trained by DL. These works represent a promising application
of DL, i.e., to learn a structure-based decoding network.
In addition, DL networks are also used in signal detection
scenarios, such as multiple input multiple output (MIMO)
signal detection [49], [50] and chemical signal detection [51].
Using the detection models optimized by DL, the transmission
signals are more accurately deduced and the BER is decreased
as a consequence.

O’Shea et al. [52] proposed a novel idea which treats the
physical layer as an end-to-end autoencoder. The autoencoder
includes the functions of modulation, error correcting coding,
signal classification, etc. Then the autoencoder is trained as a
CNN. This approach is tested in a single end-to-end communi-
cation system, multiple-transmitter/receiver system and radio
transformer networks. Compared to the traditional modulation
methods (e.g., BPSK and QAM) and error correcting code
(e.g., Hamming code), the autoencoder decreases the block
error rate (BLER) by 1-5 times in multiple-transmitter/receiver
systems, and decreases the BLER by 1-7 times in Rayleigh
fading communication scenarios (with radio transformer net-
works). A comparison on the DL applications in error correct-
ing codes and signal detection is present in Table II.
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TABLE I: Parameters of Deep Learning Scheme for Anti-Jamming

Item Content Characteristics

State
Representation

st =
[(λt−W−1, SINRt−W−1, at−W ), (λt−W , SINRt−W , at−W+1), · · · ,

(λt−2, SINRt−2, at−1), (λt−1, SINRt−1)]

λ indicates the presence of PU (1 if the PU is present).
SINR indicates the signal-to-interference-plus-noise ratio.

Action at ∈ {0, 1, · · · , N } Determine which channel to stay. SU leaves the AP if at =
0.

Optimal
Reward

Q ∗ (s, a) ≈ Es′

(
r + γmax

a′
Q(s′, a′, θ−i )

)
Using previous network weights as approximation

Loss function L(θ) = Es,a,r,s′

((
r + γmax

a′
Q(s′, a′, θ−i ) −Q(s, a, θi )

)2
)

TABLE II: Comparison of Deep Learning Applications in Error Correcting Codes and Signal Detection

Scheme Application Scenario Algorithm Performance

Nachmani’s
scheme [46]

Decoding for
low-density parity-check

(LDPC) codes

BP-RNN decoder Decreased the BER by 0.2dB and 0.6dB compared to BP feed-forward
decoding for a (63,45) BCH code with regular parity check matrix and cycle
reduced parity check matrix, respectively.

Gruber’s
scheme [47]

Decoding for polar
codes and random codes

Neural network decoding The BER yielded by a large NN (larger than 512-256-128) is lower than the
maximum a posteriori (MAP) for both polar code and random code.

Cammerer’s
scheme [48]

Decoding for polar codes Neural network decoding The BER is similar to successive cancellation (SC) decoding and conventional
belief propagation (BP) decoding but the latency is much lower.

Samuel’s
scheme [49]

Signal detection in
MIMO system

CNN Decreased BER by 1-16 times in fixed channel and by 0.5-7.5 times in varying
channel conditions compared to traditional methods.

Jeon’s scheme
[50]

Signal detection in
MIMO system

Minimum-mean-distance/
minimum-center-distance

detections

Decreased BER by 6-30 times with one-bit ADC compared to traditional
methods.

Farsad’s
scheme [51]

Signal detection CNN, LSTM3 and
CNN-LSTM3

Decreased BER by 4-100 times with different symbol intervals compared to
non-DL system.

O’Shea’s
scheme [52]

autoencoder CNN Decreased block error rate (BLER) by 1-5 times in multiple-
transmitter/receiver systems and by 1-7 times in Rayleigh fading systems,
compared to traditional methods.

E. A Brief Discussion on DL Application in Physical Layer

In wireless networks, interference alignment and jam-
ming resistance are two of the trickiest problems, con-
sidering the large number of nodes, the nodes’ mobility,
the variation of channel conditions, the complex frequency
usage, etc. DL is an ideal tool to deal with the complicated
problems, since it abstracts the intrinsic patterns from
hybrid and vast physical layer parameters. In addition,
modulation and error correction coding are basic functions
of the physical layer, which tend to demand huge computa-
tions in modern networks, such as Orthogonal frequency-
division multiplexing (OFDM) modulation, Trellis coded
modulation (TCM), Turbo codes, LDPC codes, etc. The
performances of these operations could be significantly
improved by DL technique. However, most physical layer
problems have strict limitation towards reaction time,
therefore, the employment of the DL server and the
computational complexity control are crucial issues of the
DL applications in physical layer.

IV. DL FOR DATA LINK LAYER

A. DL for Spectrum Allocation

LTE-U allows Small Base Station (SBS) to access the
unlicensed spectrum, thereby providing an efficient solution
in radio spectrum utilization. To efficiently and proactively
allocate the unlicensed spectrum, Challita et. al [53] proposed
a resource allocation scheme for LTE in unlicensed spectrum
(LTE-U) by using Reinforcement Learning and Long Short-
Term Memory (RL-LSTM). In this scheme, the time domain
is divided into multiple time windows, denoted as T . Each
window is further divided into multiple time epochs, denoted
as t. Assume there are J SBSs and M − J WiFi stations.
Each node has a LSTM encoder unit, which learns a vector
representing the historical traffic loads of the SBS or the
WiFi station [54], as shown in Fig. 9. All LSTMs comprise
a traffic encoder. Following that, a Multi-Layer Perceptron
(MLP) abstracts all the historical traffic load vectors as a
single vector, which indicates the traffic values of all SBSs and
WiFi stations on all the unlicensed channels. Finally, an action
decoder interprets the abstract vector into multiple predicted
action sequences for the SBSs. For a SBS j, the goal is to
maximize the total throughput, u j , during its allocated airtime
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Fig. 9: RL-LSTM based Scheme for Spectrum Allocation

with the selected channel C and the time window T , i.e.,

u j(aj, a−j) =
T∑
t=1

C∑
c=1

αj,c,tγj,c,t (8)

where aj denotes the action vector of SBS j, a−j denotes the
action vector of all other SBSs except j, αj,c,t is the achievable
airtime fraction of SBS j on channel c in time epoch t, and
γj,c,t is a channel-related parameter. To achieve the optimiza-
tion goal, the RL algorithm is used to train the weights of the
traffic encoder and the action decoder, for which the reward
is defined as the approximation of the SBS’s throughput,
û j(aj, a−j). By maximizing the expected reward û j(aj, a−j)
according to the gradient with respect to the policy parameters,
the weights of the RL neural network can be trained [55], [56].
The simulations were run upon the dataset provided by [57].
Compared to the traditional reactive allocation approaches, this
scheme increases the average airtime allocated for LTE-U by
around 18%.

Cloud Radio Access Network (RAN) is proposed for future
cellular networks, e.g., 5G, which is a centralized, cloud-
computing-based radio access network. In a cloud RAN,
there are a central Base Band Unit (BBU) pool in the cloud
and many distributed Remote Radio Heads (RRHs) near the
users. The RRHs only maintain basic transmission functions,
compressing and forwarding users’ radio signals to the BBUs
via fronthaul links. The resource allocation problem, i.e., how
to minimize power consumption of the RRHs while satisfying
users’ demands, has become one of the main tasks in cloud
RANs. To tackle this problem, Xu et al. [58] proposed a
DL-based scheme for power-efficient resource allocation in
RANs. In the scheme, the decisions are made via two steps:
first, using a deep Q-learning algorithm to determine which
RRHs should be turned on or switched into sleep status;
second, using convex optimization algorithm to calculate the
beamforming weights from the RRH to the user for all the
active RRHs. The parameters of the first step, i.e., Q-learning
operation, are shown in Table III. The state representation
of time slot t is st = (m1,m2, · · · ,mR, d1, d2, · · · , dU ), where
mi ∈ {0, 1} denotes whether the i-th RRH is active or sleep,
R is the total number of RRHs, dj ∈ [dmin, dmax] represents
the demand of the j-th active RRH. In each time slot, the
DRL agent determines which RRH is active. The immediate
reward is defined as the gap between the maximum possible
power consumption Pmax and the actual power consumption,
i.e., Pmax − P(A, S,G), where the actual power consumption

P(A, S,G) comprises actual power consumption and transition
power amount (due to sleep/active switch), i.e.,

P(A, S,G) =
∑
r ∈A

∑
u∈U

1
ηl
|wr,u |2 +

∑
r ∈A

Pr,active+∑
r ∈S

Pr,sleep +
∑
r ∈G

Pr,transition,
(9)

where wr,u is the beamforming weight from RRH r to user
u, ηl is the drain efficiency constant of the power amplifier,
A, S and G represent the sets of active, sleep and transition
RRHs, respectively, U is the user set, and Pr,active, Pr,sleep

and Pr,transition are RRH’s power consumptions in active,
sleep and transition modes, respectively.

For the active RRHs selected by the first step, the DRL
agent computes the optimal beamforming weights by solving
the following optimization problem:

minimize
∑
r ∈A

∑
u∈U

1
ηl
|wr,u |2

subject to SINRu ≥ γu, u ∈ U∑
u∈U

1
ηl
|wr,u |2 ≤ Pr, r ∈ A (10)

where Ru is user u’s demanded data rate, Pr is RRH r’s max-
imum allowable transmit power, and γu = Γm(2Ru/B−1) (B is
the channel bandwidth, and Γm is the SNR gap depending on
modulation). Compared to the single BS association approach,
this scheme is shown to satisfy the users’ demands better
when the amount of demand is high. And compared to the
full coordinated association approach, this scheme consumes
less power.

Sun et al. [59] proposed a DL-based wireless resource
allocation scheme. This scheme puts the resources into a
"black box" and trains a DNN in such a way that the power
allocation for each transmitter is optimized and the system
throughput is maximized. The input layer of the DNN is fully
connected, the multiple hidden layers use the Rectified Linear
Unite (ReLU), max(x, 0) , as the activation function, and the
output layer uses min(max(x, 0), Pmax) to intake the resource
constraints, where x is the input of a neural node and Pmax is
the power budget of each transmitter. The proposed DL-based
power allocation scheme is tested in Gaussian interference
channel (IC) and multi-cell interfering multiple-access channel
(IMAC), respectively, and it is shown that compared to random
power allocation and maximum power allocation, the DL-
based scheme provides much higher throughput, and compared
to WMMSE [60], the throughput of the DL-based scheme is
close to WMMSE while the computation time is much shorter.

To maximize the channel utility for multi-user wireless
networks with less computation and limited observations,
Naparstek et al. [61] proposed a deep multi-user reinforcement
learning approach. Assume that there are N users randomly
accessing K orthogonal channels. At each time slot, a user
accesses a channel with a certain probability. If there is no
interference during the channel access and the message is
successfully received, a positive ACK will be received by the
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TABLE III: Parameters of Deep Q-Learning Scheme for Resource Allocation

Item Content Characteristics

State Representation st = (m1,m2, · · · ,mR, d1, d2, · · · , dU )
Action Pick one RRH and set it active

Immediate Reward Pmax − P(A, S,G) Using previous network weights as approximation

Fig. 10: Multi-User DQN for Spectrum Access Optimization

source node. To optimize the channel utility, the action of
user n at time slot t is defined as a vector of size K + 1, i.e.,
an(t) = (0, 0, · · · , 0, 1, 0, · · · , 0), where the single 1 indicates
the channel chosen by the user. (If the first element is 1,
it indicates that no channel is chosen.) Meanwhile, define
a−n(t) = {ai(t)}|i,n as the action of any other user except
user n. The ACK message serves as the observation, i.e.,
on(t) = 1 indicates a successful delivery and on(t) = 0
indicates a failed delivery. For user n, the history is defined
as Hn(t) = (an(1), · · · , an(t), on(1), · · · , on(t)), and the policy
σn(t) is the set of weights when mapping from history Hn(t−1)
to action an(t). The accumulated discounted reward of user n
is Rn =

∑T
t=1 γt−1rn(t), where rn(t) is the reward of user n at

time slot t, which depends on both an(t − 1) and a−n(t − 1), γ
is the discount factor, and T is time duration. For an arbitrary
user, say user n, the goal of training is to find a policy that
maximizes the expected accumulated reward for the user, i.e.,
max
σn

E[Rn |σn].
The architecture of the multi-user DQN for spectrum ac-

cess optimization of user n is shown in Fig. 10. The input
is composed of user n’s action an(t − 1), the capacity of
each channel, and the observation of user n, on(t − 1). An
LSTM is adopted to maintain internal states and to aggregate
observations, since the network state is partially observed and
depends on multiple users. Since some states are independent
of the users’ action, a duel DQN is adopted to achieve accurate
estimation. The V-value DQN estimates the average Q-value of
the state V(sn(t)). The A-value DQN estimates the advantage
of each action A(an(t)). Then the final Q-value of the action
an(t) is composed of V(sn(t)) and A(an(t)). The output of the
system is a vector with size K + 1, each element of which
indicates the estimated Q-value for the transmitted message
in the corresponding channel, including no transmission (in-
dicated by the first element of the output). It was shown that
this scheme almost doubled the average channel utilization
compared to traditional slotted-Aloha scheme [62].

Most DL-based spectrum allocation schemes first es-
timate channel conditions. Based on the channel-related
parameters the rewards of an action (e.g. throughput,
power consumption, etc.) are determined by the deep
learning system. For example, in (11), the channel-related

parameters are used to calculate the throughput of the
small base station, and in Xu’s scheme [58], the channel-
related parameters are used to calculate the achievable
data rate for users. However, the real channels might
be so complicated that the channel estimations are not
accurate, which may cause bias to the DL training,
thereby resulting in deteriorate decisions of the spectrum
allocation. Therefore, an accurate estimation towards the
channel condition is a crucial and challenging question in
the DL-based spectrum allocation models.

B. DL for Traffic Prediction

Most exiting schemes that optimize resource allocation
assume some given factors, such as traffic load, spectrum
usage, etc. However, Wang et al. [63] pointed out that these
factors could vary significantly both temporally and spatially.
Therefore, simply assuming constant values for these pa-
rameters may deteriorate the effect of resource allocation.
To solve this problem, a spatiotemporal modeling scheme
based on hybrid DL was proposed in [63] to predict the
traffic in cellular networks. In this scheme, an auto encoder
model, which consists of a Global Stacked Auto Encoder
(GSAE) and multiple Local Stacked Auto Encoders (LSAEs),
is used for spatial modeling. Meanwhile, the long short-term
memory units (LSTMs) are adopted for temporal modeling,
as shown in Fig. 11. When predicting the traffic of a cell,
the historical data of both the cell itself (red hexagon) and
its neighboring cells (green hexagons) are collected. Each cell
has its LSAE for representation encoding. Meanwhile, a GSAE
takes all the cell data and produces a global representation. The
local representation is combined with global representation to
produce spatial modeling and prediction. The output of spatial
modeling is then sent to LSTM for temporal modeling and
prediction. Using this spatiotemporal modeling scheme, the
traffic of a large LTE network with 2,844 base stations (BSs)
and a coverage of 6,500 km2 is precisely predicted, and the
parameters of Mean Square Error (MSE), Mean Absolute Error
(MAE) and Log Loss are measured to evaluate the prediction
performance. It was shown that such a scheme had a significant
improvement compared to Auto Regression Integrated Moving
Average (ARIMA) [64] and Support Vector Regression (SVR)
[65], [66], which are two most widely used methods for time
series analysis.

To predict the traffic for a cell, the traffics of both
the cell itself and its neighbors are input into the LSAE
and GSAE. The size of the neighboring region should be
carefully balanced between the prediction accuracy and the
computation. In the simulations in [63], a 11×11 square is
used as a neighboring region, i.e., for each cell, the traffics
of its 120 neighboring cells are considered. Another tricky
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Fig. 11: Spatiotemporal Hybrid Modeling System for Traffic
Prediction

issue of traffic prediction is the temporal correlation, which
may have periodicity in the range of day, week, month,
and year.

C. DL for Link Evaluation

Due to the huge size and complex structure of modern
networks (such as multi-layer structure, heterogeneous char-
acteristics, hybrid network resources, etc.), the scale of net-
work optimization problem tends to be enormous. Therefore,
reducing the computational complexity is a critical problem.
For the link evaluation based optimization problem, Liu et al.
[67] proposed to reduce the problem size instead of to reduce
the algorithm complexity. In their scheme, one possible status
of all virtual links is defined as a network pattern (denoted
as set A), and the goal is to minimize the overall power
consumption by scheduling all the patterns appropriately.
This optimization goal can be achieved by solving a Linear
Programming (LP) problem, for which the objective function
is min E =

∑
a∈A Pata. Here Pa is the power consumption of

pattern a, and ta is the active time. However, the problem scale
is huge due to the large number of virtual links. To reduce the
problem size, the authors suggest that many virtual links of
the network would not be scheduled, or merely carry a small
amount of traffic. If these links are excluded from the LP prob-
lem, the computation will be magnificently decreased without
much degradation of the optimization objective. Therefore, a
Deep Belief Network (DBN) [68] is first used before the LP
model, which evaluates the link quality. The input of the DBN
is flow information, which is represented by a flow demand
vector X = (x1, x2, · · · , xN ), where N is the total number of
network nodes. For a flow with a demand of dc and travelling
from the source node ns to the destination node nd , the element
of X is xi = dc if i = ns , xi = −dc if i = nd , otherwise
xi = 0 (i = 1, 2, · · · , N). The output of the DBN is the
evaluation values of all links, Y = (y1, y2, · · · , yM ), where M
is the number of links in the entire network. Each element of
Y , denoted as yi , indicates the probability of the input flow
belonging to link i (i = 1, 2, · · · , M). Apparently, the higher
the value of yi is, the more likely that link i will be used by

the flow. Based on the evaluation results, the links that are not
likely to be scheduled for a flow will be excluded from the
link optimization process. This approach efficiently reduces
the problem size of link optimization. Simulation results show
that the scheme reduces the computation cost by at least 50%
without decreasing the optimization performance.

D. A Brief Discussion on DL Application in Data Link Layer
The applications of DL in data link layer are mostly

focusing on resource allocation, traffic prediction, and link
evaluation problems, which yield promising performance im-
provement, as shown in Table IV. Considering the large
size of modern network, DL system usually needs to
read tremendous DLL parameters to make a decision.
Therefore, how to limit computation and data size are
huge challenges for the deep learning applications in DLL.
Meanwhile, accurate estimations towards the channel con-
ditions are crucial for the deep learning system to make
accurate DLL decisions, which is challenging due to the
fast channel variations and the time limit of the decision-
making process.

V. ROUTING LAYER

Modern routing protocols developed for wireless networks
are basically categorized into four types: routing-table-based
proactive protocols, on-demand reactive protocols, geographi-
cal protocols, and ML/DL-based routing protocols. DL-based
routing protocols have been extensively studied in the past
several years due to its superior performance for complex
networks.

A. Lifetime-Aware Routing based on RL
Underwater sensor network usually confronts two big chal-

lenges, i.e., a large propagation delay due to the use of acoustic
channels and the stringent power usage due to the high power
consumption and inconvenience of battery charging. To deal
with these challenges, a balanced routing protocol that dis-
tributes traffic evenly among all sensors was suggested in [69],
which proposed an adaptive, energy-efficient, and lifetime-
aware routing scheme, called QELAR, based on Q-learning
algorithm. For the Q-learning model [S, A, Pa(s, s′), Ra(s, s′)],
where S, A, P and R are the set of states, actions, state
transition probabilities and rewards, the value of taking action
a in state s under a policy π, Qπ(s, a), is defined as

Qπ(s, a) = Eπ{Rt |st = s, at = a}

= Eπ{
∞∑
k=0

γkrt+k |st = s, at = a}. (11)

The optimal value of state s is defined as V∗(s) =
max
a

Q∗(s, a). To consider the nodes’ energy condition, the
scheme assumes that the residual energy of a node is Eres(s),
the initial energy of a node is Einit (s), and the average residual
energy in the group including the node is E(s). If a packet is
successfully transferred from node s to node s′, the reward is

Ra′(s, s′) = −g − α1[c(s) + c(s′)] + α2[d(s) + c(s′)], (12)
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TABLE IV: Comparison of Deep Learning Applications in Data Link Layer

Scheme Application Scenario Algorithm Goal Performance

Challita’s
scheme [53]

unlicensed spectrum
allocation in LTE-U

RL-LSTM maximize airtime
allocated for LTE-U

Increased average airtime by about 18% com-
pared to reactive approach

Xu’s scheme
[58]

Cloud Radio Access
Network

Deep Q-learning Minimize power
consumption

Decreased power consumption by 0-20% com-
pared to single BS association and full coordi-
nated association

Sun’s scheme
[59]

Gaussian IC and
Multi-cell IMAC

DNN Optimize power allocation
to increase throughput

Compared to WMMSE, the throughput is simi-
lar while the computation time is much shorter

Naparstek’s
scheme [61]

Multi-user wireless
network

Deep Q-Network with
LSTM

Maximize total channel
utility

Doubled average channel utilization compared
to slotted-Aloha protocol

Wang’s
scheme [63]

LTE network Hybrid deep learning
(auto-encoder & LSTM)

Traffic prediction Decreased prediction errors by 18%-40% com-
pared to ARIMA and SVR

Liu’s scheme
[67]

Generic wireless
network

Deep belief net Link evaluation Decreased computation cost by 50% by elimi-
nating unused links from LP

where c(s) = 1 − Eres(s)/Einit(s) and d(s) = 2
π arctan(Eres(s) −

E(s)) are residual energy-related rewards, α1 and α2 are their
weights, and g is a punishment coefficient due to power
consumption when a node attempts to forward a packet. On
the other hand, if the packet forwarding from node s to node
s′ fails, the reward is

Ra′(s, s) = −g − β1c(s) + β2d(s), (13)

where β1 and β2 are weights. Then the overall reward rt in
(14) is

rt = Pa′(s, s′)Ra′(s, s′) + Pa′(s, s)Ra′(s, s). (14)

where Pa′(s, s′) is the transition probability from node s to
node s′ with action a′ and Pa′(s, s) is the transition probability
from node s to node s with action a′ (failed data forwarding).
For instance, in the network as shown in Fig. 12, node s1
wants to send packets to node s4. Initially, all the Q values
and V values are set as 0s, and let γ = 0.5 and g = 1. If the
nodes’ residual energy is not considered, α1 = α2 = 0. For
node s1, since its immediate neighbors are nodes s2 and s3, it
calculates the following Q values:

Q(s1, a2) = rt + γ(Pa2
s1s2V(s2) + Pa2

s1s1V(s1)
= −1 + 0.5V(s2) = −1

Q(s1, a3) = rt + γ(Pa3
s1s3V(s3) + Pa3

s1s1V(s1)
= −1 + 0.5V(s3) = −1

(15)

Thus, node s1 updates its V values as V(s1) = max
a

Q(s1, a) =
−1 by choosing either node s2 or node s3, since Q(s1, a2) =
Q(s1, a3). Node s2 then forwards the packets to node s4 and
updates its V value through the same procedure. The path of
the first packet and all the V values of each node (after the
packet has been delivered) are shown in Fig. 12 (a).

For the second packet, node s1 calculates the Q values of
its neighbors as follows:

Q(s1, a2) = rt + γ(Pa2
s1s2V(s2) + Pa2

s1s1V(s1)
= −1 + 0.5(−1) = −1.5

Q(s1, a3) = rt + γ(Pa3
s1s3V(s3) + Pa3

s1s1V(s1)
= −1 + 0.5V(0) = −1

(16)

Therefore, node s1 updates its V values as V(s1) =
max
a

Q(s1, a) = −1, and chooses the node with a larger Q
value, which is s3, to forward the packet. In this way, the
previous packet forwarding conducted by node s2 acts as a
’penalty’ in (17), which causes node s1 to choose node s3
to forward the current packet. Node s3 then calculates the Q
values of its neighbors as Q(s3, a1) = −1.5, Q(s3, a2) = −1.5
and Q(s3, a5) = −1. Thus node s3 forwards the packet to node
s5 and updates its V values as V(s3) = −1. This procedure
is repeated for each packet. Finally, the V values of each
node converge to stable status, as shown in Fig. 12 (c).
To balance the tasks among nodes, the residual energy of
each node should be considered. Therefore, in (15) and (16),
α1, α2, β1, β2 ∈ (0, 1]. In this circumstance, the V value of each
node may converge as shown in Fig. 12(d), where the number
tagged to each node represents the residual energy. Compared
to the Vector-Based-Forwarding (VBF) scheme [70], which is
a popular routing protocol for Underwater Sensor Networks,
the lifetime of QELAR is 20% longer.

QELAR forms the routing topology based on the task
balance among nodes, which significantly increases the bat-
teries’ lifetime if the link conditions are perfect. However,
in real-life network, many factors may deteriorate link
quality, such as a large queue in node’s data sending buffer,
high mobility, weak signal strength, interference, etc. The
deteriorated link quality may decrease the end-to-end
transmission quality and increase packet retransmissions.
As a consequence, the batteries’ lifetime is shortened.
Therefore, considering other factors together with task
balance might be a good routing strategy, especially when
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(a) (b)

(c) (d)

Fig. 12: Reward Value Variation of QELAR Scheme
(a) first packet (without energy consideration) (b) second packet (without energy consideration) (c) converged V values (without
energy consideration) (d) converged V values (with energy consideration)

the size of the wireless network is large or the payload is
heavy.

B. DL for Routing Path Search

In many networks the conditions of routers vary from time
to time, including the saturated caches, overloaded routers,
malfunctional hardware, etc. All these factors may cause the
deterioration of the routers’ performance. In a network with
numerous routers, the data forwarding capability varies in each
local network region at each time slot. Since a communication
session may involve many hops from the source to the destina-
tion, the routing algorithms confront magnificent challenges in
terms of finding a global optimal path among many candidate
nodes in a highly dynamic network environment, and some
nodes may provide good local transmission performance while
deteriorate the global end-to-end routing performance.

Finding a global optimal path demands heavy computation
load. DL can be an efficient approach to relieve the path search
burden. Kato et al. [71] proposed an DL approach for the
traffic control in heterogeneous networks. First, the traditional
routing protocols such as Open Shortest Path First (OSPF) are
executed in the network for performance collection purpose.
Once enough parameters have been collected, a supervised
training process is implemented. In the training phase, each
node trains M models, where M is the number of potential
receivers in the entire network. The training procedure is
initialized by a greedy layer-wise training method and is fine-
tuned by a backpropagation algorithm [72]. Once the training
is finished, the optimal path can be found in the running phase.

To find the optimal path from a source to the destination,
the DL model needs to be run for k rounds by the source
node, where k is the number of hops from the source to the
destination. For each round, the history of the traffic patterns
of all the routers in the network serves as the input and only
one router is chosen as the output.

Fig. 13 shows an example. Assume there are 10 routers in
the entire network, the source node is n1 , and the destination
node is n10. The first step of the running phase is to find the
optimal router immediately next to the source. To do so, the
DL model DL1,10 is run by n1. The input of DL1,10 is vector
A = [α1, α2, · · · , α10], where αi is the traffic pattern of router i.
At the output side, one out of 10 routers is chosen, indicating
the first hop in the path chosen by the source, which is n3 in
the example. Following that, node n1 runs model DL3,10 to
find the second hop node. This operation is repeated until the
destination node is reached. Compared to OSPF, this scheme
decreases the routing overhead by about 70% and increases the
throughput by about 2%. Apparently, there is no need for
a central controller to implement the DL-based routing
algorithm, which increases the flexibility. However, the
source node has to train many DL models, which demands
huge computation power and storage for every node. Mao
et al. [73] integrated this method with programmable routers
and achieved good performances.

C. DL for Other Routing Performance Optimizations

Natural disasters and terrorist attacks may damage the
communication infrastructures. In these situations, the col-
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Fig. 13: A Deep Learning based Routing Protocol

laborations between infrastructure devices and wireless nodes
(e.g., ad-hoc nodes) are crucial to maintain effective com-
munications. The routing design in such a hybrid wireless
network is challenging. Lee [74] proposed a DL-based routing
scheme, which treats connectivity as the routing priority. In
their scheme, the degree of each node, which indicates the
connectivity of a node, is first evaluated using DL algorithm.
Following that, a virtual route is generated by Viterbi algo-
rithm [75] with the consideration of node degree. Then, an IP-
based routing procedure is implemented to establish the route
in the hybrid network. This scheme increased the reachability
compared to AODV, OLSR, and ZRP routing protocols. Note
that there is a demand of a Route Information Server
(RIS) in this scheme, which determines the node degree
using deep learning algorithm and particular hardware.

Stampa et al. [76] used deep reinforcement learning to
optimize the routing performance with the aim of reducing
transmission delay. The DRL network uses traffic matrix as
the state, a path from the source to the destination as the
action, and the mean of end-to-end delays as the reward.
Note that the scheme only considers the traffic matrix,
i.e., the bandwidth requests of the traffic flows, as the
state and doesn’t consider other network factors, such as
nodes’ queue size, link quality, etc. The routing results may
be further optimized if more conditions are considered. To
test the performance, they used the OMNeT++ discrete event
simulator [77], [78] to collect transmission delay with given
traffic and routing parameters [79]. Their experimental results
showed a significant improvement on transmission delay with
various traffic intensities, compared to the benchmark routing
scheme.

Valadarsky et al. [80] applied machine learning and DRL
respectively for network routing. In the DRL approach, the
environment of the network is described by the demand
matrix (DM), of which element di j indicates the traffic de-
mand between the source node i and the destination node j.
(i, j = 1, 2, · · · , N , and N is the number of nodes in the entire
network.) The reward of the DRL is the link utilization rate. In
each time slot, the agent chooses a routing scheme based on
the routing strategy and DMs. Then the DRL system learns a
mapping from DMs to the routing schemes in such a manner

that the discounted reward is maximized. Their simulations use
the open-source implementation of TRPO [81], [82], and it is
shown that learning from the historical routing schemes with
the consideration of the demand matrix and link utilization
provides an efficient approach for the agent to smartly choose
the optimal routing topology for future data forwarding.

Valadarsky’s scheme has some similarities with Stampa’s
scheme, but using different reward object. From their work
we see that how to choose reward function is a crucial
issue for the DL applications in routing layer. According
to the network characteristics and environmental features,
designers choose the most important attribute to optimize,
which could be throughput, end-to-end delay, link utiliza-
tion, flow completion time, etc.

D. A Brief Discussion on DL Application in Routing Layer
Centralized routing versus distributed routing is a tricky

choice for DL-based routing schemes. This is because that
the deep learning process demands tremendous parameters
as input to make a decision as well as huge computation
to train the neural network.

If a centralized routing strategy is adopted, three main
issues should be carefully addressed. First, large amount
of network environment data, such as nodes’ energy
condition, queue size, signal strength, etc., have to be sent
to the central controller. In this circumstance, transmission
load yielded by the environment data is huge, and too much
overhead decreases the good throughput of the network.
Second, routing topology needs to be built up within
limited time. However, the channel environment data may
be delayed when transmitted to the central controller,
thereby causing the delay of the routing formation. Third,
less flexibility, i.e., a central node running DL algorithm
is not always available. For instance, the routing method
proposed in [74] adopts a centralized DL strategy, which
trains the DL model in the base station and classifies
nodes’ connectivity level thereby. However, for some ad
hoc network, it is difficult to find a central server that
has huge computation power as well as an appropriate
geographic location.

On the other hand, if a distributed routing strategy
is used, each node (or each source node) has to train
several DL models. Therefore, huge computation power
and storage are needed for every node. For instance, the
distributed DL strategy has been adopted by QELAR [69]
and Kato’s scheme [71], where the source node triggers
the DL process and generates routing topology using the
trained models.

Therefore, for the DL-based routing design, a sophis-
ticated choice between the centralized and distributed
strategy is crucial, which should be made based on plenty
of considerations, such as the network structure and size,
routing algorithm, deep learning method, etc.

VI. DL FOR OTHER NETWORK FUNCTIONS
A. Vehicle Network Scheduling

Vehicular Ad-Hoc Network (VANET) provides a fully con-
nected network among vehicles and infrastructures, and is the
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foundation to establish an intelligent transportation system.
There are two types of communications in VANETs, i.e.,
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I),
where the infrastructures are usually composed of Road-
Side Units (RSUs). The prior communication in VANETs
is Driving-Safety-Related (DSR) services. However, in V2I
communications, there are many non-DSR services, such as
web browsing and online games. To guarantee QoS perfor-
mance, Atallah et al. [83] proposed a DRL-based scheduling
scheme among the RSUs, which targets to reduce the energy
consumption of the road-side units while providing a safe
driving environment. The DRL agent is deployed at the RSUs
and interacts with the VANET environment. Assuming that
there are M vehicles in a RSU’s coverage, at time slot i,
the action ai taken by the agent is either to receive DSR
messages from the vehicle, represented as ai = 0, or to send
non-DSR messages to a vehicle upon a download service
request, represented as ai = j, where j = 1, 2, · · · , M indicates
which vehicle is downloading non-DSR messages. If the
RSU chooses to transmit data to a vehicle, the reward is
measured by the number of transmitted bits, and the cost
is composed of two parts: 1) the power consumed by the
RSU, and 2) the waiting time of a DSR message potentially
occurred during this non-DSR communication period. On the
other hand, if the RSU chooses to receive DSR messages,
the induced cost is the power consumption of the message
receiving operations. The DRL-based scheme can 1) minimize
the delay of DSR messages, 2) maximize the service amount,
including both DSR and non-DSR messages, and 3) extend the
battery lifetime of RSUs. Their simulations showed that the
DQN-based approach achieves better performances compared
to Random Vehicle Selection (RVS) algorithm, Least Residual
Time (LRT) algorithm, and Greedy Power Conservation (GPC)
algorithm in terms of RSU battery lifetime, RSU busy time,
and incomplete requests ratio.

B. Sensor Data Reduction

Wireless sensor networks have strict constraints on the size
of data it transmits due to its limited network capacity. For
instance, the Implanted Medical Devices (IMDs) are usually
constrained by power consumption. Unfortunately, the network
tends to be overwhelmed by a large amount of sensor data. To
reduce the data size, Quantized Compressed Sensing (QCS)
technique is extensively used. Assuming that the original data
measured by sensors is X ∈ RN , then the compressed data is
obtained as Y = ΦX , where Y ∈ RM and Φ is the measurement
matrix with a size of M ×N (M < N). To retrieve the original
data from Y , the input X must be sparse and the measurement
matrix Φ must satisfy the Restricted Isometry Property (RIP),
which raises big challenges for computation. Sun et al. [84]
thus proposed a Binary-Weighed, Non-uniform Quantizer, and
Deep Neural Network (BW-NQ-DNN) for QCS. Instead of
using a randomly or deterministically generated measurement
matrix, BW-NQ-DNN learns a measurement matrix from the
previous experiences (i.e., training data). Furthermore, the
BW-NQ-DNN is used for the optimization of non-uniform
quantizer. The BW-NQ-DNN is composed of a compression

net, a quantization net, and a recovery net, as shown in Fig.
14.

The compression network is fully connected, i.e., it collects
the original N-dimensional data X and represents it with a M-
dimensional data Y , with each element of Y being connected
with all the elements of X . To reduce the hardware imple-
mentation complexity, the weights of the compression network
are constrained as wi j ∈ {−1,+1}. The quantization network
is composed of nonlinear compand and gradient cancelation.
Each element of Y , say yi , is nonlinearly companded as
φ(yi) =

∑K
j=−K ciΨ(yi/∆ − j), where ci is the coefficient of

the nonlinear compand function, Ψ is a basis function, and
∆ is a constant. All the components of Y are companded
by the same process. Without loss of generality, only the
process of y1 is shown in Fig. 14. To avoid the discontinuity
of the derivative of the quantized value φ, a straight-through
estimator [85] that considers saturation effect, denoted as ES,
is used upon the gradient ∂C/∂φ. Finally, the compressed and
quantized measurements can be recovered through a nonlinear
recovery network based on Multi-Layer Perceptron (MLP)
[86] architecture. Since the whole system aims at the opti-
mization of the Signal to Noise and Distortion Ratio (SNDR)
for the recovered messages, the cost function is chosen as the
Mean Squared Error (MSE) between the recovered message,
X̂ , and the original message, X . To update the parameters
of the compression, quantization and recovery networks, the
Stochastic Gradient Descent (SGD) algorithm [87] is used
in the backward propagation of each part. Compared to the
popular QCS schemes such as SDNCS [88], BPDQ [89] and
QVMP [90], the DL-based BW-NQ-DNN provides higher
SNDR and classification accuracy.

C. Hardware Resource Allocation
Operating system supports some application layer tasks for

the network communications. And hardware resource allo-
cation significantly impacts the communication performance.
Mao et al. [91] proposed to use reinforcement learning in
resource management. Assume there are D resources serving
M tasks, and task i lasts for ti seconds and is finished in
ci seconds (i = 1, 2, · · · , M). The slowdown value of task
i is defined as si = ci/ti , which can effectively serve as
an evaluation index for the resource allocation. The goal of
resource management is to minimize the average slowdown
value. In DL-based scheme, the reward at each timestep is
defined as

∑
i∈J −si , where J is the current task set. The

state of the DL system is the current resource allocation
plus the resource demands of all the tasks. The action space
is {0, 1, 2, · · · , M}, where at each timestep, action a = 0
indicates the agent does not schedule any task and a = i
(i = 1, 2, · · · , M ) indicates that the agent schedules task i
for a specific resource. Simulation shows that the DL-based
resource allocation outperforms the popular methods, such as
the Shortest Job First (SJF) scheme, Packer and Tetris in terms
of the average task slowdown value.

D. Network Security
Traffic inference and intrusion detection are crucial issues

for cyber security. The decision-making process of these prob-
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Fig. 14: BW-NQ-DNN Framework

lems requires an analysis of a large number of network features
and an abstraction towards the attack-related characteristics.
DL schemes have shown promising performances in these
tasks.

1) Traffic Identification: Flow inference aims to describe
the original flow features generated at the transmitter side ac-
cording to the received packets at the receiver side. It is crucial
for intrusion detection, traffic monitoring, queue management,
etc. An easy way to identify traffic is to classify them by
port numbers. However, many recent applications, such as P2P
traffic and video calls, may use port numbers that are initially
assigned to other traffic types. Therefore, more accurate ways
are required to identify traffic types. In the past several years,
traffic identification methods using statistical models [92], [93]
or machine learning [94], [95], [96] have been extensively
studied, for which the traffic features such as time interval
between packets, packet size, etc., are exploited to analyze
traffic types. Due to the complexity of the networks, the
patterns of the received flows may have nonlinear alterations,
which makes flow inference challenging.

In 2014, Gwon et al. [97] proposed a DL-based flow infer-
ence scheme, which classifies the received packet patterns and
infers the original properties (e.g., burst size and inter-burst
gaps). Note that although the flow inference is achieved by
exploiting MAC layer parameters, it analyzes the TCP/UDP/IP
flows. The inference system is composed of two independent
layers, each of which comprises a feature extractor (FE) and a
classifier (CL). For each layer, the sparse coding [98] is used
to extract features from time-series data, and the max pooling
[99] is used to reduce the number of features for the purpose
of computation reduction. The two-layer structure allows both
the local features (such as run and gap sizes) and the global
features (such as periodicity) to be extracted by the learning
system. Simulations show that the deep learning based flow
inference scheme has high true positive rate and low false
positive rate, compared to ARMAX-least squares [100], Naive
Bayes classifiers and Gaussian mixture models.

In 2015, Wang [101] proposed a DL-based traffic identifica-
tion scheme. In this scheme, the TCP flow is used for traffic
identification, since the bytes of different protocol payloads

represent different distributions. Therefore, the bytes of TCP
sessions are first normalized from integers (ranging from 0-
255) to decimals (ranging from 0-1). Then the normalized
data is sent to ANN as the input for traffic identification.
Simulation shows that this scheme can distinguish 25 most
popular protocols, such as SSL, HTTP-Connect, MySQL,
SMB, etc., most of which have a precision of higher than
95%.

Lotfollahi et al. [102] proposed a DL-based traffic clas-
sification method, namely, deep packet, which not only dis-
tinguishes traffic type (such as streaming, P2P, etc.) but also
classifies application types (such as Spotify, Bit Torrent, etc.).
The ’ISCX VPN-nonVPN traffic dataset’ [96] was adopted
in their experiments. Two DL methods, i.e., convolutional
NN and stacked autoencoder NN, are applied. The simulation
platform is built based on Keras library [103] and Tensorflow,
and the scheme is shown to achieve 97.0% precision for
traffic type classification and 95.4% accuracy for applica-
tion type classification, both outperforming the general ML-
based schemes [96], [104]. A comprehensive comparison upon
the traffic classification performances among four ANNs,
i.e., backpropagation-based multilayer perceptron (BB-MLP),
resilient-backpropagation-based multilayer perceptron (RBB-
MLP), recurrent neural network (RNN), and deep learning
stacked autoencoder (SAE), has been presented by Oliveira
et al. [105].

Discussion: To identify traffic accurately, two crucial is-
sues should be carefully considered. First, researchers need
to decide on which layer the DL algorithm is implemented.
Many traffic identification schemes are implemented upon
transport layer or IP layer, such as [101]. However, some
DL-based schemes analyze MAC layer or application layer
features to identify the traffic type. For instance, Gwon’s
scheme [97] uses the runs-and-gaps model upon MAC layer
as the input of the DL model and identifies the traffic
type thereby. Another example is Lotfollahi’s scheme
[102], which provides both traffic characterization and
application identification to meet various requirements.
The second issue is to determine what features are used
for DL analysis. The choice of data features used for
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DL models significantly impacts the accuracy of traffic
identification. For instance, [101] uses the scaled values of
the TCP flow data, especially the first 25 values of the
payload, as the input of the DL network. Although from
intuition and experience, these payload values indicate the
traffic type to a certain extent, more intrinsic features,
such as the correlation and distribution features of the
payload values, may further improve the identification
performances of the DL network.

2) Intrusion Detection: Network Intrusion Detection (NID)
protects networks from malicious attacks by detecting software
intrusions. Traditional NID schemes are mostly based on user
signatures. However, this method needs the administration
center to maintain a large number of user’s signatures. Cur-
rently, the anomaly-based detection is extensively studied,
which analyzes network activities and marks out abnormal data
access as an intrusion. Since the utter goal of NID is to classify
network traffics into many categories (i.e., normal traffic and
various abnormal traffic types) according to numerous traffic
features, it is an ideal choice to use DL approaches to detect
network intrusions by learning traffic features [106].

Niyaz et al. [107] proposed a flow-based, Self-taught Learn-
ing (STL) [108] approach to detect network intrusion. In their
scheme, the NSL-KDD dataset [109], [110], a benchmark
for network intrusion, is used for training and testing. The
network traffic provided by NSL-KDD dataset includes nor-
mal flows and various anomalous flows, including Denial-
of-Service (DoS) attack flow, Remote-to-Local (R2L) attack
flow, User-to- Root (U2R) attack flow, Probe attack flow, etc.
For each traffic, forty-one features are provided, including the
average packet number per flow, average time duration per
flow, protocol types (e.g., TCP, UDP), etc. The scheme in
[107] chooses 22 out of 41 features for the DL process, which
consists of two stages: 1) an Unsupervised Feature Learning
(UFL) process, which is based on sparse auto-encoder, and 2)
a supervised learning process with the goal of classification.
Auto-encoder is a feedforward non-recurrent neural network
with an input layer, an output layer and one or several hidden
layers, as shown in Fig. 15 (a). Specifically, the node number
of the input layer and the output layer is the same, which
is larger than the node number of the hidden layer(s). The
goal of the output layer is to reconstruct the input. Therefore,
the cost function is composed of an average of sum-of-
square errors upon all the inputs, a weight decay term to
avoid over-fitting, and a sparsity penalty term to maintain
a low activation values. Using the trained DL network, the
testing traffic is classified as two types, i.e., normal traffic and
anomalous traffic. Simulations showed that the STL scheme
achieves 88.39% accuracy for 2-class detection (normal and
anomaly), and 79.1% accuracy for 5-class detection (normal
and four different attack categories), which are higher than
the accuracies achieved by the Soft-Max Regression (SMR)
scheme.

To reduce the number of features the learning system uses,
Tang et al. [111] proposed a DL-based NID scheme for
software defined networking (SDN). The data used to train
the learning network is also chosen from NSL-KDD dataset.
However, only six features of each traffic flow are considered

in order to reduce the computation cost, i.e., flow’s duration,
protocol type (e.g., TCP, UDP), number of data bytes from
source to destination, number of data bytes from destination
to source, number of connections to the same host, and
number of connections to the same service. A deep neural
network with three hidden layers is adopted. Although there
are four malicious traffic types in the dataset, this scheme only
classifies the traffic as two types (normal and anomalous), and
it achieved an accuracy of 74.67%. Compared the schemes in
[107] and [111], it can be seen that the detection accuracy
depends on the traffic features the system used for training and
classification to a large extent, and one of the most challenging
topics is to select appropriate features to balance the detection
accuracy and computation cost.

Another type of DL network used for intrusion detection is
Deep Boltzmann Machine (DBM) [112], in which each node
is bidirectionally connected with the nodes of other layers,
as shown in Fig. 15 (b). To decrease the computation cost
of the gradient, the intra-layer links (the red dotted lines
in Fig. 15 (b)) are abandoned to use, yielding a Restricted
Boltzmann Machine (RBM) [113]. As a matter of fact, in
many real applications, the network detectors may not know
what features the anomalous traffic possesses. Thus, Fiore et
al. [114] proposed a Discriminative RBM (DRBM) based in-
trusion detection method, which is a semi-supervised learning
system, i.e., the system is trained only by normal traffic data.
The trained network is tested by real-world traffic collected
from a workstation for 24 hours and KDD CUP 1999 dataset,
respectively, both of which include normal and anomalous
traffic. Simulation results show that, when the learning system
is trained and tested with the real-world data, a high accuracy
(about 94%) is obtained. However, when the DBRM is trained
with KDD dataset and tested with real-world data, the accuracy
is as low as 84% around.

If we limit the node connections only between the layers,
the DBM is transformed to Deep Believe Network (DBN).
Alternatively, DBN can be formed by cascading a stack of
Restricted Boltzmann Machine in serial. Furthermore, one or
more additional layers can be added to perform classification
after a supervised learning process. Therefore, DBN is often
pre-trained by unlabeled data (unsupervised learning) and then
fine-tuned by labelled data (supervised learning), as shown in
Fig. 15 (c). Gao et al. [115] used a DBN to detect network
intrusion, for which the learning network is trained with
KDD CUP 1999 dataset via three stages. The first stage pre-
processes data, for which the features of the traffic are digitized
and normalized. The second stage pre-trains the DBN, i.e.,
the weights of a stack of RBMs were learned through an
unsupervised greedy contrastive divergence algorithm. Finally,
the weights of the entire DBN are fine-tuned through the
back-propagation of error derivatives by the labeled data. In
their simulations, 41 features of each KDD CUP 1999 traffic
flow are first mapped to 122 attributes, then several DBNs
with different structures are established. Each DBN in their
simulations has 122 input elements and 5 output elements (1
normal traffic and 4 different attack traffics). However, the
hidden layer structures are different, varying from as shallow
as 122-5 (no hidden layer) to as deep as 122-150-90-50-5
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(three hidden layers with 150, 90, 50 nodes respectively).
Apparently, the deeper the DBN becomes, the better detection
accuracy can be achieved. For the 122-150-90-50-5 DBN, the
accuracy reaches 93.49%, outperforming SVM (86.82%) and
NN (82.3%). Besides, Alom et al. [116] applied the similar
method to NSL-KDD dataset.

Using similar DBN structure as shown in Fig. 15 (c), Kang
et al. [117] proposed an intrusion detection scheme for In-
Vehicle Controller Area Network (CAN). Each CAN packet
includes 12 bits of arbitration field, 6 bits of control field, 0-8
bytes of data field, etc. Kang’s scheme utilizes the data field
as the learning object. The data field is composed of mode
information (such as controlling wheels) and value information
(such as the wheel angle) of the Electronics Control Unit
(ECU), and they yield different bit distributions. Since there
are different attack scenarios, the learning system first uses
the mode information to identify the attack scenarios, then
trains the learning network for each scenario. The DBN has
less than 64 input nodes (each node corresponds to a bit of
the data field but with reduced number of bits considering the
semantics redundancy), several hidden layers, and 2 output
nodes (indicating normal and anomalous scenarios). In the
testing phase, the attack scenario of each CAN packet is
first determined by matching the mode information, then the
corresponding trained model is used to determine whether
the packet is normal or anomalous. Experiments show that
the scheme achieves 97.8% accuracy, outperforming Support
Vector Machine (SVM) and Artificial Neural Network (ANN).

Discussion: A comparison towards the DL-based intru-
sion detection is shown in Table V. Note that for the
output classification number, the number of 2 indicates
normal traffic and anomaly traffic, and the number of
n (n > 2) indicates a normal traffic and n − 1 different
anomaly traffic types. From the comparison we see that
there are several challenges in the topic. 1) How many
intrusion types the DL network detects. Apparently, the
more types the network detects, the lower accuracy will
be given. For instance, Niyaz’s scheme [107] achieves
88.39% accuracy with two-type detection (normal and
anomaly) and 79.1% accuracy with five-type detection
(normal and four anomaly types). Thus, designers need to
carefully balance the detection accuracy and the number
of detection types. 2) How to select the network features
as the input of the DL network. Many current DL-
based intrusion detection schemes use KDD dataset, which
provides 41 features for each traffic flow. Apparently, using
all the 41 features for DL analysis yields a huge burden
from the computation’s point of view. Therefore, many
NID schemes select a part of features to detect intrusion.
For instance, Niyaz’s scheme [107] uses 22 features while
Tang’s scheme [111] uses only 6 features. As a consequence,
Niyaz’s scheme achieves 88.39% accuracy with two-type
detection, while Tang’s scheme yields 74.67% accuracy.
3) What dataset is used for DL network training. As we
see from Table V, most current schemes use NSL-KDD
dataset, which is an improved version of KDD Cup 99
dataset (proposed in 1999). NSL-KDD dataset reduces
some redundant records of the KDD Cup 99 dataset,

which makes the sizes of training set and testing set
reasonable. The NSL-KDD dataset includes normal traffic
and four attacking categories, i.e., DoS, U2R, R2L, and
probing. However, with the accelerated development of
network attack techniques, new intrusion methods appear
with astonishing speed. The DL models trained by KDD
dataset may yield deteriorated performance in detecting
real-world data, as shown in [114].

VII. DL-BASED WIRELESS PLATFORM IMPLEMENTATION

There are abundant DL implementation methods, some of
which have been performed in wireless networks. In the
following, a summary of DL implementations is presented.
Those methods have been used in wireless testbeds.
• 1) Matlab Neural Network Toolbox. This toolbox includes

the most popular DL algorithms, such as ANN, CNN,
DBN, SAE, and convolutional autoencoders (CAE). The
input layer takes the original raw data. The hidden layers
perform convolution, pooling, or ReLU functions upon
the raw data. The convolution operation is composed of a
set of convolutional filters, which extract certain features
from the input data. The pooling operations perform the
following operations: nonlinear sampling upon the output
of the convolutional filters, reducing the dimensions of
the parameters, and controlling the complexity of the
deep learning network. The ReLUs map negative values
to zero and keep positive values, thereby improving the
training efficiency. By repeating these three functions
in the hidden layer and training the parameters of the
functions, specific features are extracted efficiently for the
classification purpose. Then, the output layer performs
classification upon the features. A softmax function is
typically adopted for classification.

• 2) TensorFlow [118]. It is an open-source software orig-
inally developed by Google Brain team. TensorFlow is
written in Python, C++, and CUDA, and it is supported
by Linux, macOS, Windows, and Android systems. It is a
symbolic math library composed of nodes and edges. The
nodes in the graph represent mathematical operations,
and the edges represent the connections (tensors) between
nodes. TensorFlow is a flexible, flow-based programming
model. Although it is originally developed for conducting
ML and deep neural network algorithms, TensorFlow is
capable of conducting many other flow-based implemen-
tations.

• 3) Caffe (Convolutional Architecture for Fast Feature
Embedding) [119]. It is an open-source software tool,
and was developed by Berkeley AI Research (BAIR)
and community contributors. Caffe is a DL framework
targeting image classification and segmentation. It has
the features of expressive architecture, extensible code,
high speed, and modularity. Caffe supports CNN, RCNN,
LSTM and has fully connected neural network structures.
There are a variety of functions to be chosen to build a
DL network using Caffe, including convolution, pooling,
inner products, ReLU, logistic unit, local response nor-
malization, element-wise operations, softmax, and hinge.
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(a) (b) (c)

Fig. 15: Deep Learning Networks Used by Intrusion Detection
(a) Deep Auto-encoder (b) Deep Boltzmann Machine (c) Deep Believe Network

TABLE V: Comparison of Deep Learning Applications in Intrusion Detection

Scheme Learning Model Dataset Input No. Output No. Accuracy

Niyaz’s scheme
[107]

Self-taught Learning composed of an auto-
encoder and a soft-max regression process

NSL-KDD 22 2 or 5 88.39% for 2-class and
79.1% for 5-class

Tang’s scheme
[111]

Deep neural network NSL-KDD 6 2 75.75%

Fiore’s Scheme
[114]

Discriminative Restricted Boltzmann Ma-
chine

KDD CUP 1999 and
real world traffic

28 2 94%

Gao’s scheme
[115]

Deep Believe Network KDD CUP 1999 40 5 93.49%

Kang’s scheme
[117]

Deep Believe Network In-Vehicle CAN
traffic

<64 2 97.8%

• 4) Theano (Keras) [120]. It an open-source Python li-
brary that allows users to symbolically define, optimize,
and evaluate mathematical expressions such as multi-
dimensional arrays. Users can use Theano to implement
and train NN models on fast concurrent graphics pro-
cessing unit (GPU) architectures. The network is built
by apply nodes and variable nodes, which represent
mathematical operations and tensors, respectively.

• 5) Keras [103]. It is an open-source neural network library
that can run upon TensorFlow, CNTK, Theano, etc. Keras
is originally developed by a Google engineer, Francois
Chollet. It provides neural network elements such as
layers, objectives, optimizers, activation functions, etc.,
and it supports convolutional networks, recurrent net-
works, and the combination of the two types. In 2017,
Google’s TensorFlow team decided to support Keras in
TensorFlow’s core library.

• 6) WILL [121]. It is an open-source neural network toolkit
created by Prevision Limited Company (Hong Kong). It
supports convolution, pooling layers, full-connection, and
some popular functions such as reLU, sigmoid, tanh and
softmax.

• 7) Customized models. Many DL-based networks use spe-
cial functions or neural network structures, and some sys-
tems run upon embedded systems. For those applications,
developers implemented the algorithms by customized
DL systems. The language used to develop these systems

varies from C, C++, Matlab, Python, to Java, depending
on the features of the learning system, the library used
by the learning process, and the communication patterns
with the other simulators (such as wireless network
simulators).

In addition, there are lots of other popular deep learning
software, such as MXNet [122], developed by Distributed Ma-
chine Learning Community, Torch [123], Microsoft Cognitive
Toolkit [124], developed by Microsoft Research, etc. However,
few of them can be found in network applications. Table VI
presents a comparison of deep learning software platforms
used in wireless networks.

VIII. FUTURE RESEARCH TRENDS

In order to help current researchers to identify unsolved
issues in this important field, in this section we will explain
10 challenging issues and point out the future research trends.
Although those 10 issues do not represent all the unsolved
research topics on DL-based wireless networking, they have
long-term dominant impacts on today’s popular wireless in-
frastructures, including cognitive radio networks, software-
defined networks, dew/cloud computing, big data networks,
etc.

A. (Challenge 1) DL for Transport Layer Optimizations
Congestion control is the main function of transport layer.

However, the existing congestion control methods are mostly
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TABLE VI: Comparison of Deep Learning Applications in Intrusion Detection

Simulation Platform Written in Platform Developer(s) Used by

Matlab Neural Network
Toolbox

C, C++, Java, Matlab Linux, macOS, Windows MathWorks [105]

Tensorflow Python, C++, CUDA Linux, macOS, Windows,
Android

Google Brain Team [45] [58] [59] [102]

Caffe C++ with Python and Mat-
lab bindings

Linux, macOS, Windows Berkeley Vision and
Learning Center

[42]

Theano Python Cross-platform The University of Montreal [47]

Keras Python Linux, macOS, Windows Francois Chollet (a Google
engineer)

[52] [102]

WILL C++ Windows Prevision Limited Company [71] [73]

Customized C, C++, Matlab, Python, or
Java

Linux, Window, or
embedded systems

/ [53] [60] [63] [69] [80]
[83] [84] [91] [97]

based on the end-to-end ACK or NACK feedback to indirectly
deduce the congestion occurrences. For example, TCP uses
ACK feedback to infer the congestion event. The most accurate
way is to directly analyze the queues in each node of the
routing path to pinpoint exactly which node’s queue has
overflow event, which indicates the congestion in that node.

Apparently, a single node’s queue cannot reflect the conges-
tion distribution in the entire path. It is important to perform
multi-queue co-modeling between different nodes to detect
the ’congestion propagation’. For example, one node may
have very light congestion (i.e., overflow occurs sparsely) in
an earlier stage; however, multiple sparse congestions could
be accumulated into a serious congestion later on another
node. Multi-queue co-modeling can help in finding such an
accumulation pattern.

Particularly, DL can be used to perform large-scale network
queueing analysis. Assume that each node reports their queue
status (such as size, input traffic rate, outgoing traffic rate,
etc.) to a central node via an out-of-band control channel, the
central node can then run DL to analyze the queues’ data
accumulation status. For instance, it can find out whether the
traffic gets accumulated in a particular node’s queue and may
cause overflow with a high probability. DL can also help to
find an optimal solution to relieve the congestion situation. For
example, it can find a node with relatively small queue size
during most of the time, and that node may accept a higher
incoming traffic rate; or, it may find another set of nodes near
the RED zone (i.e., a network area with congested queues), to
establish a back-up path to divert the congested traffic from
the main path.

Many interesting research issues can be investigated in the
above scenario. For example, how do we come up with a time-
evolving DL algorithm to detect the multi-queue evolution
pattern? How do we define the congestion threshold, i.e.,
what queue size is a good indication of RED zone? How do
we integrate the congestion control scheme with the back-
up routing path establishment protocol? If the congestion
occurs in multiple nodes which are not neighbors, how do we
control the traffic rates in the congested/non-congested nodes
to achieve a smooth flow in the entire path? etc.

B. (Challenge 2) Using DL to Facilitate Big Data Transmis-
sions

Today there are many big data applications such as large-
scale smart city monitoring, national healthcare management,
air pollution monitoring, etc. Wireless transmission of big
data is necessary in remote sensing and harsh environments
without the deployment of wires. For example, in a large
city, numerous mobile phones can send their data (such as
user trajectory, user behaviors, patient healthcare data, etc.)
to nearby wireless base stations (which can be Wi-Fi access
points, cellular network towers, 5G routers, etc.), and eventu-
ally reach the cloud servers.

The transmission of big data is a challenging task due to
the following 3 reasons: First, there are no standards/protocols
to specify the wireless network operations that can efficiently
deliver >100T bits of data per second. Second, existing routing
protocols cannot provide a ’thick’ data pipe to concurrently
deliver >1T packets each second. Third, the network status is
extremely difficult to monitor in real-time, due to the huge
traffic density in very short time (recall that big data has 4Vs
features, i.e., Volume, Velocity, Veracity, and Variety).

DL is a promising method to analyze big data transmission
dynamics in terms of routing delay analysis of big flows, traffic
balancing among nodes, and link access control. For example,
we can use DL to analyze the spatio-temporal patterns of huge
traffic in each hop, and find out the hot spots of the network
with the largest amount of big data traffic. By comparing hop-
to-hop big traffic delivery delays, we get to know the average
link quality/stability in each hop, and can then determine the
traffic allocation in different links to avoid possible traffic
bottleneck.

Again, many research issues need to be investigated. For
example, how does the DL help to build/maintain a thick
routing pipe that can deliver >1T packets per second? How
do we apply DL to predict the link failure in some hops?
What are the appropriate MAC parameters (such as backoff
window size, time slot length, RTS/CTS timing, etc.) to adapt
to the QoS requirements for the huge velocity/volume of big
traffic among a group of neighboring nodes? and so on.
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Fig. 16: BW-NQ-DNN Framework

Fig. 17: BW-NQ-DNN Framework

C. (Challenge 3) DL-based Network Swarming

There are many interesting wireless network swarming
applications. A typical example is UAV swarming, i.e., a
large number of UAVs establish various network topologies to
achieve different missions (such as environment monitoring,
enemy hunting, forest fire control, etc.), as shown in Fig.16.
Other application scenarios include swarming by undersea
vehicles to explore sea resources; collaborated war-fighting
robots, etc.

A challenging issue in swarming control is the node place-
ment based on both mission and communication requirements.
In the beginning of the network deployment, all nodes were
randomly distributed. Those nodes may have different density
distributions (some places have more densely distributed nodes
while other places may be sparse). Then the issue is: how do
we guide each node’s mobility trajectory to achieve two pur-
poses: (1) forming the desired swarming shape; (2) maintain-
ing good communication architecture? Note that some nodes
may have stronger communication capability than others, for
example, they may have more powerful directional antennas,
higher speed of radio links, faster CPU speed, etc. Those nodes
may be placed into the "bridging" positions in the formation
(such as the locations of A and B in Fig.17). Those bridging
places play critical roles in swarming shape maintenance as
well as communication connectivity enhancement. Once they
are broken, different swarming regions become isolated.

The entire swarming network may have different cluster
distributions, i.e., some clusters have more nodes (higher
density) the others. This makes node placement becoming
a difficult task. What types of nodes should be moved to

different clusters or between those clusters? DL could be
used here to describe the topology profile, such as node
communication/computation capacity, distance to the desired
swarming position (for each node), mobility speed, etc. Then
the bridging points can be weighted (i.e., determining their
importance levels) based on their locations between different
types of clusters. The nodes can be dispatched to those places
based on the topology profile.

D. (Challenge 4) Pairing DL with Software-Defined Network
(SDN)

The software-defined network (SDN) becomes a promis-
ing networking scheme due to its greatly simplified rout-
ing/switching management via centralized control. It adopts
separate control panel (CP) and data panel (DP) manage-
ment. The CP consists of one or multiple controllers that
send the traffic forwarding control rules to the DP. The
flow table(s) in the DP accept those rules to perform data
forwarding functions. In the SDN the conventional vendor-
specific routers/switches have been replaced by the universal,
simple data forwarding devices (called switches) in the DP.
The DP does not run protocol-specific data link/physical layer
protocols. Instead, they just simply interpret the flow table
rules and use the rules to forward the packets to the next
switch in the DP.

From the above SDN features we can see that DL and SDN
could be "a match made in the heaven" due to two reasons:
(1) The CP has the global network monitoring function. This
is because that each switch/router in the DP can feedback its
data forwarding performance (such as queueing delay, link
rate, packet loss rate, etc.) to the CP in real-time. Thus the CP
is able to build the global network profile. (2) The CP has the
centralized control. DL can be executed in the CP controller(s)
to analyze the network profile and determine the rule changes
of the flow table in DP.

Some research issues exist in the above scenario: First, we
need to solve the network profile formation issue. What types
of parameters need to be collected from the DP? What types of
big data architecture is suitable to network profile description,
e.g., big tensor, big graph, or big time series? What purposes
should the DL be used for, e.g., routing decision, queue
control, or schedule control? How do multiple CP controllers
coordinate with each other to achieve a consistent view of the
entire network? and many other issues.

E. (Challenge 5) Distributed DL Implementation in Wireless
Nodes

Although DL is a powerful scheme to extract the network
dynamics/patterns, it may bring much burden if running in a
single network node. While by decreasing the DL algorithm
complexity, we can relieve the overhead of the running node.
Another efficient method is to distribute the DL computation
load to multiple nodes, i.e., using distributed DL implementa-
tion.

Some challenging issues need to be solved when using
distributed DL model. First, which parts of the DL algorithm
can be decomposed into distributed tasks? The gradient neural
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network layer weight updating/error propagation can be out-
sourced to a group of neighboring nodes based on the proper
allocation of ’neural cells’ to different nodes. Second, how do
different wireless nodes exchange the input parameters and
output data (i.e., calculation results) with each other via MAC
protocols? Note that such a MAC should minimize the channel
access collisions by using either well scheduled RTS/CTS
exchanges or TDMA-based transmissions. Third, which node
is responsible for the final DL output layer assembly? How
does this node ensure that the distributed algorithm converges
into a stable result?

F. (Challenge 6) DL-Based Cross-Layer Design

While the above sections have covered different individual
layers in terms of DL applications, cross-layer design may
be a more efficient approach to fully explore all the layers’
information for long-term network performance optimization.
As a matter of fact, each layer could provide many valuable
performance metrics (some listed in Table VII) which can
be used to achieve cross-layer global network performance
optimization. For example, the channel quality, antenna beam
orientation, node mobility, etc., can be used to determine the
traffic allocation in each beam of the antenna. The routing
layer hop-by-hop delay and packet loss rate can be used to
determine the transport layer congestion window size. The
MAC layer one-hop link access success/failure information
can be used to determine the routing path selection, and so
on.

The DL is a perfect tool to fuse the above various cross-
layer metrics and extract the intrinsic network patterns for
protocol optimization. By using big tensor concept, we can
carefully arrange the above metrics into multi-type tensor
records, and then apply tensor decomposition to extract the
essential patterns. Those patterns can tell us whether the
network will have significant packet loss in the near future, and
classify the network topology into hotspots and light traffic
areas. The patterns can also indicate the link interference
distribution across the whole network, and help us to avoid
the high interference areas.

Based on the DL pattern extraction results, different layers
should co-operate with each other to perform cross-layer
optimization. For example, if the DL indicates that a group
of nodes form a high-packet-loss ’dark hole’, the MAC layer
should use much stronger FEC to overcome the bit errors in
that area; the routing layer can re-establish a new path to
detour around such a hole; and the transport layer can use
much smaller congestion control window size.

G. (Challenge 7) DL-Based Application Layer Enhancement

So far, we have not discussed much on the DL-based
application layer (AL) enhancement since this survey focuses
on the core network protocol design issues. However, the
AL has significant impacts on other layers from mission
requirements viewpoint. For example, if our mission is to
deliver a HDTV flow to multicast users, the AL should specify
all the QoS and QoE (quality of experience) requirements
for the video stream. Then the lower layers can take those

QoS/QoE parameters as the performance goal and adjust their
corresponding protocol operations.

DL can be used to learn the network status based on the
collected network performance parameters (see Table VII).
Then DL outputs the suggested performance goal change in
AL. For example, if the network can only provide >100ms of
end-to-end delay, it will suggest the AL to use different video
coding methods to meet the network limits.

Additionally, DL can be directly used to improve AL
performance. For example, it can be used to analyze the
webpage display performance (refreshing rate, display speed,
image resolution, etc.). It can also be used to perform cyber
security analysis to detect spam emails and malicious web
sites.

The challenging issue here is to define a low-complexity
DL model based on the AL performance goal or application
profile data, and solve the DL problem to generate a series of
useful results that can be interpreted by the lower layers for
protocol operation control purpose. For example, if the AL has
a video streaming application, how do we define the AL model
to translate the QoS/QoE performance goals into the concrete
congestion control and routing parameters? How does the AL
classify different applications into various cross-layer protocol
design options? etc.

H. (Challenge 8) DL-based Dew-Fog-Cloud Computing Secu-
rity

We have summarized the application of DL algorithms for
network security such as intrusion detection. This is a critical
field and will continue to attract many research interests since
numerous new attacks keep coming up. Here we would like to
point out that DL will play an important role in the security
of a promising network infrastructure, called dew/fog/cloud
computing (DFC-C). This new network architecture has the
following two important features: (1) Collecting data via
dew computing units: The large amount of dew computing
devices (such as sensors, RFID chips, etc.) can be deployed
everywhere, and get connected via wireless networks (such
as Zigbee-based systems). The fog computing infrastructure
consists of a series of long-distance wireless relays such as
Wi-Max nodes or cell phone towers, to deliver the aggregated
dew computing data to any cloud server.

From security viewpoint, the above dew-fog-cloud archi-
tecture exposes many attack opportunities to the adversaries.
For example, one can ’pollute’ partial dew computing data by
falsifying the sensor data, or mislead the routing path selection
in the fog computing segments by claiming a better path, and
so on.

To handle the large-scale dew computing sources and
concurrent fog computing routing topology, DL is a natural
choice to parse all the wireless nodes/links parameters and
deduce the possible attack positions and types. For example,
we can use all the dew nodes’ sensor data as the samples,
and run DL-based data clustering test to find out a potential
data sample poisoning attack. The challenging issue here is
to clearly define a DL model with the proper input/output
layer interpretations based on a particular network security
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TABLE VII: Network Parameters Considered in Cross-Layer Design

Category Parameters

Channels Channel ID, channel bandwidth, channel holding time, handoff channel sequence, channel quality (fading level, Doppler
effect, SNR, etc.), channel switching time, etc.

Spectrum sharing modes Licensed band sharing, unlicensed band sharing, exclusive or cooperative sharing; interference temperature, sharing
bandwidth, sharing time, leased bandwidth, etc.

Application & Traffic QoS parameters (delay, jitter, throughput, etc.), QoE (MOS, PSNR, etc.).

Network architecture Network topology (cluster-based? Star? Mesh network?), network scale, node density, network connectivity, SDN-assisted?
Centralized or distributed? Cloud-supported? etc.

Transport layer Congestion level, queue size, sliding window size, end-to-end reliability level, congestion bottleneck location, TCP
connection duration, retransmission timeout setup, etc.

Routing layer Multi-path/single-path, multi-cast /uni-cast, # of hops, path throughput, path delay, average link quality, packet drop rate
(PDR), re-routing time, path stability, etc.

MAC layer Access collision rate, backoff time, link BER, robustness to hidden terminal problem, superframe length, access type
(TDMA-based on random access), error correction rate, etc.

PHY layer Wave features, SNR, modulation modes, coding methods, Shannon capacity, etc.

Directional antennas # of beams, beam steering/switch time, beam angle, beam gap, steered or fixed, single-direction or multi-beam, MIMO
control matrix, max radiation distance, etc.

Node property Mobility speed, mobility modes (random walk or regularized), transmission power, reception sensitivity, max queue length,
packet processing time, max hop distance, etc.

problem. Different security/privacy problems mean that the DL
should have different input/output/gradient parameter updating
structures. For example, the privacy preservation emphasizes
the protection of the sensitive data attributes (such as patients’
names), and various ID-hiding models can be used to define
the DL gradient weight updating process.

I. (Challenge 9) From DL to DRL: Applications for Cognitive
Radio Network Control

DL focuses on ’passive’ data learning to recognize the
intrinsic patterns hidden in the data. However, it does not have
concrete ’reactions’ for each of the extracted data patterns.
Deep reinforcement learning uses Markov decision models to
guide the choices of different ’actions’ based on the state
transition models. Therefore, in many practical applications
DRL plays more important roles than DL algorithms.

Here we emphasize the benefits of DRL for cognitive radio
network (CRN) control. The CRN is an important type of
wireless network due to its flexible spectrum access, i.e., the
nodes can grab any available (free) channel to send out data,
and can timely vacate the channel if the primary user (PU) is
coming back to use the channel again.

DRL can be used to control the following CRN opera-
tions: (1) Spectrum sensing: the DRL model can be used to
determine the channel scanning order. Some channels with
the higher chance of being idle should be scanned first.
Note that spectrum scanning is a time-consuming process if
thousands of channels need to be scanned and analyzed. By
first checking the free channels, we can save spectrum sensing
time. (2) Spectrum handoff: When the PU comes back, the
node should switch to other channels. The channel switching
timing and which channel to switch to, are two critical issues
to be solved. Should we wait for the PU’s coming event to
decide the channel switching operation, or can we predict the
timing of PU’s transmissions and search for backup channels

beforehand? Obviously, the latter has a better communication
quality and can avoid some packet loss events.

Proper DRL models need to be clearly defined based on
various CRN operation requirements. For example, the DRL
may need to be integrated with queuing models to determine
the spectrum handoff delay, i.e., how long a user can occupy
the existing channel based on the PU traffic analysis, and when
the user should start to look for a new channel, and so on.

J. (Challenge 10) Efficient DL/DRL Implementations in Prac-
tical Wireless Platforms

The above DL/DRL algorithms eventually need to be imple-
mented in practical wireless network products. However, the
pure theoretical understandings cannot be simply programmed
in the wireless devices due to the following challenges:

(1) Difficulty to collect network parameters for DL input
layers: All DL algorithms require the training and testing
phases. In each phase, the input layer of the deep neural
network consists of the data samples’ parameters. The more
complete the samples are (in terms of data attributes), the
more accurately the DL can recognize the network features.
Many network parameters come from MAC and routing layers,
which involve many relay nodes’ responses. However, those
nodes may not have fast feedback about their communication
status due to the unpredictable link delays and radio interfer-
ence. Therefore, the DL models should be designed to tolerate
certain parameter miss or data errors in the input layers.

(2) The resource limits of the wireless devices: Many wire-
less products have limited memory and CPU capabilities. They
do not allow complex algorithms to be programmed into their
existing protocols. Since DL has iterative execution nature, it
may elongate the system response time. The DL algorithms
should minimize the intermediate computation parameters to
save the memory space. The algorithms should be optimized
to reduce the execution time.
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(3) Incomplete training sample collections: DL requires
complete or nearly complete training samples to accurately
recognize the network patterns. However, the training samples
may be very limited due to the difficulty to collect so many
data points for each possible network status. This requires that
DL should have the capability of adding new samples after the
failure of recognizing a new pattern. The new added samples
can improve the accuracy of the DL models.

In addition, the network engineers/programmers should
carefully define the DL data formats since different network
parameters have very different data attributes and formatting
requirements. Some proper numerical representations and data
normalization methods should be defined clearly to aggregate
multiple network parameters into the same DL input layer.

IX. CONCLUSIONS

This paper has comprehensively reviewed the methodolo-
gies of applying DL schemes for wireless network perfor-
mance enhancement. In a nut shell, (1) DL/DRL is very useful
for intelligent wireless network management due to its human-
brain-like pattern recognition capability. With the hardware
performance improvement of today’s wireless products, its
adoption becomes easier. (2) It plays critical roles in multi-
ple protocol layers. We have summarized its applications in
physical, MAC and routing layers. It makes the network more
intelligently realize the change of the entire topology and link
conditions, and helps to generate more appropriate protocol pa-
rameter controls. (3) It can be integrated with today’s various
wireless networking schemes, including CRNs, SDNs, etc., to
achieve either centralized or distributed resource allocation and
traffic balancing functions. This article also lists ten important
research issues that need to be solved in the near future in
this field. They cover some promising wireless applications
such as network swarming, CRN spectrum handoff, SDN flow
table update, dew/fog computing security, etc. This paper will
help readers to understand the state-of-the-art of DL-enhanced
wireless networking protocols and find some interesting and
challenging research topics to pursue in this critical field.
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