
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 2, FEBRUARY 2016 837

Dual-Resolution Friend Locator System With Privacy
Enhancement Through Polygon Decomposition

Bin Zan, Student Member, IEEE, Fei Hu, Member, IEEE, Ke Bao, and Qi Hao, Member, IEEE

Abstract—Online social networks have become increasingly
popular. One of the interesting applications is the friend locator,
in which the application server informs a user through a mobile
device if some of his/her listed friends are close enough in terms of
geographical locations. However, in such services, it is challenging
to protect the privacy of the individual users. Previous solutions
for the friend locator do not guarantee a high level of privacy
and do not maintain efficiency. In this paper, we propose a dual-
resolution system structure to guarantee both strong privacy and
efficiency. Additionally, we use the polygon decomposition method
to achieve both accuracy and flexibility. To be more specific, in the
coarse resolution level, each regular mobile user uploads his/her
encrypted coarse location information to a central server periodi-
cally for comparisons. If a regular mobile user is found to be in the
same grid block as an active mobile user, then the friend locator
procedure with a higher resolution level will be conducted. Finally,
through numerical analysis and simulations, we show that the
proposed system design and algorithm can achieve high privacy,
efficiency, accuracy, and flexibility.

Index Terms—Friend locator, location privacy, polygon decom-
position, social networks.

I. INTRODUCTION

A friend locator is a location-aware social network appli-
cation. In such an application, users with a Global Posi-

tioning System (GPS)-enabled mobile device will periodically
update their current locations to a central server. By comparing
a user’s location information with his/her friends’ one, the
server can determine if any of his/her friends is close by and
then inform this user. The user has to trust the central server
and discloses his/her own location information to the server
periodically. However, this is somehow in contradiction with a
user’s location privacy requirement. A user’s location informa-
tion is often associated with critical personal information. For
example, frequent visits to a dental office by a user may indicate

Manuscript received March 17, 2014; revised September 23, 2014 and
December 2, 2014; accepted January 31, 2015. Date of publication February 5,
2015; date of current version February 9, 2016. The review of this paper was
coordinated by Prof. C. Zhang. (Corresponding author: Qi Hao.)

B. Zan is with the Wireless Information Network Laboratory, Rutgers Uni-
versity, North Brunswick, NJ 08902 USA (e-mail: zanb@winlab.rutgers.edu;
gruteser@winlab.rutgers.edu).

F. Hu and K. Bao are with the Department of Electrical and Computer
Engineering, The University of Alabama, Tuscaloosa, AL 35487 USA (e-mail:
fei@eng.ua.edu; kbao@crimson.ua.edu).

Q. Hao is with the Department of Electrical Engineering, South Univer-
sity of Science and Technology of China, Shenzhen 518055, China (e-mail:
hao.q@sustc.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2015.2400464

his/her dental health issues, or if a medical insurance company
knows how often a user visits fast food restaurants, they may
raise rates accordingly.

Prior works on preserving privacy of general location-based
services (LBS) do not fit the friend locator application very
well. For example, the k-anonymity method [7], [4], [14],
which protects a user’s location information by mixing it with
k − 1 other users’ location information, is well suited for
location-based queries, such as point-of-interest (POI) queries.
However, it does not work in a friend locator, which requires
user identities. Location obfuscation would result in incorrect
judgement on whether two users are adjacent. Some specific
algorithms also have been developed for friend locator privacy
preservation [10], [11], [17], [20]. However, S̆iks̆nys et al. [11],
[17] achieved privacy by sacrificing the accuracy of the results.
To the best of our knowledge, none of the previous solutions can
handle areas of interest with irregular shapes, as in our proposed
algorithm.

In this paper, we aim to develop a new privacy-preserving
system design and algorithm to achieve high privacy, accuracy,
efficiency, and flexibility. To achieve this goal, we develop a
dual-resolution system structure in which the coarse resolution
corresponds to a relatively low accuracy result, and the fine-
resolution level corresponds to a high accuracy result. The
coarse level requires a small on-the-fly overhead, and the fine
level requires a little more overhead. When combining these
two levels, the total overhead can be reduced since fewer
users from the coarse resolution level will be selected into the
finer level for the succeeding procedure. Privacy protection is
provided through differential permutation encryption method
and the entropy-based multilevel grid in the coarse resolution
level process. In the fine resolution level, an active user who
is looking for nearby friends live provides more detailed infor-
mation about his/her interested area to the selected friends. The
interested area is described as a combination of multiple convex
polygons. A friend is determined to be nearby if he/she is inside
the interested area. By using convex polygon decomposition
method on the interested area, we could exploit the property
of linear operations to achieve strong privacy preservation in
the high resolution level.

This paper is organized as follows. Section II describes the
system model and problem statement. Section III provides the
details of the proposed dual-resolution algorithm. Section IV
evaluates the schemes through numerical analysis and simula-
tions. Section V presents some options to enhance our scheme.
Section VI has the security strength discussions. Section VII
discusses related work. Section VIII concludes this paper.

0018-9545 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

838 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 2, FEBRUARY 2016

Fig. 1. System model.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

As shown in Fig. 1, the friend locator service has three
parties: a central server, regular users, and active users (user
with question mark on head). The users carrying mobile devices
are called regular users. Each user periodically updates his/her
location information to the server that stores the location infor-
mation in its database. The active users are the users who are
currently interested in finding their nearby friends. When a user
wants to become an active user, he/she sends the server an active
flag and the latest updated location information. The server will
either help determine the nearby friends or start a procedure to
help identify if they are nearby.

B. Problem Statement

The biggest challenge is to keep an individual user’s exact
location information unknown from others (including the cen-
tral server and the other users) without affecting the execution
of friend locator applications. Privacy is a general requirement
for our daily lives. Sensitive location information can disclose
many secrets of a particular user. For example, a female user’s
visits to a maternity clinic over several months may indicate
pregnancy. Thus, our goal is to keep the exact location unknown
from the central server. Otherwise, once an adversary com-
promises the central server, it can derive private information
from the location data of a particular user. However, for friend
locator applications, the server has to collect user’s location
information to identify if two users are close to each other.

To summarize, we target the following objectives.

1) Privacy: Any location information of a user should not be
directly known by the central server. The central server is
assumed untrustworthy. The privacy should be preserved
under passive attacks from the server.

2) Efficiency: The system should try its best to shift com-
putation load to the central server, i.e., minimize the
computation in each individual.

3) Accuracy: The system should find friends of a user based
on its requirement of accuracy. For example, if a user
wants to find all friends in the area of 5 mi2, we should
not include his/her friends 20 mi away.

4) Flexibility: The system should offer the active user flex-
ibility in choosing his/her interested area, which means

Fig. 2. Multilevel splitting. Numbers indicate the levels.

Fig. 3. Different users can choose their privacy preferences.

he/she might want to determine if a nearby user is in a
particular area of interest.

III. PRIVACY-PRESERVING ALGORITHM

Here we describe the proposed privacy-preserving algorithm
(PPA) in detail. The PPA algorithm includes two phases. In
phase one, the server roughly estimates if two users are close
to each other by comparing their location information in terms
of location bit sequences. In phase 2, after filtering all the
friends who are not in the same geographical block, the active
user further determines if a particular friend is inside his/her
interested area by providing him/her with a convex polygon
representation of the interested area.

A. Phase One: Multilevel Splitting

The entire map is viewed as different levels of blocks,
as shown in Fig. 2, and the location information of a
user is represented by a bit sequence. For example, A =
1100101010101001. We assume that each level occupies 4 bits
in the bit sequence. Then, this example means that A is in:
level 1 (block 12), level 2 (block 10), level 3 (block 10), and
level 4 (block 9). Every user defines the length of his/her
location bit sequence according to his/her privacy requirement.
The longer the bit sequence is, the more accurate the location
information is. This also indicates how often a user wants to be
checked by his/her friends. A short bit sequence results in more
chances to be checked by others. As an example, in Fig. 3, user
C only gives the first level information. Thus, for all other users
A, B, and D, if any of them wants to figure out if user C is

ZAN et al.: DUAL-RESOLUTION FRIEND LOCATOR SYSTEM 839

Fig. 4. Codebook of a user indicates the encrypted values the user will
generate for real location indexes.

nearby, he has to ask user C to offer more information. On the
other hand, the information given by user B is enough for users
A and D to determine whether they are not nearby, or vice versa.

A user periodically updates his/her location information to
the server. In addition to that, the bit sequence is encoded by
a secret key that permutes the block numbers at a particular
level. This key is only shared between this user and his/her
friends. To find if any friend is nearby, a user sends multiple
copies of his/her location information to the server. Each copy
is encoded with a special key agreed with a friend. The server
compares the pair of location bit sequences to identify if two
users are in the same block. This achieves similar functionality
as a homomorphic encryption [16] does.

Increase Efficiency Through Differential Permutation: To
improve the efficiency, we propose an enhanced scheme for the
comparison of two bit sequences. Recall in the original scheme
that, for every friend, a user has to provide a copy of his location
bit sequence with special encryption through the common key
agreed by that friend. If this user has a large number of friends,
it clearly creates a lot of overhead. To reduce the overhead,
we propose a differential method. The idea is to let each user
encrypt (permute) his/her bit sequence using his/her own secret
key, and let every pair of friends publish the distance of their
secret keys. After knowing the “distance,” the server could
transform the permuted location bit sequence of a user, and
make it comparable with another user’s sequence.

For example, the bit sequence, 1100101010101001
(12,10,10,9), of user A, as shown in Fig. 3, can be
encrypted by user A through codebook of A in Fig. 4, and
becomes 0100110011001110 (4,12,12,14). The bit sequence,
110010000011 (12,8,3), of user B, becomes 011010011101
(6,9,13). The encrypted value 0100110011001110 and
011010011101 received by the server cannot be compared
directly. However, after converting 0100110011001110 into
0110101110110101 according to the codebook difference table
in Fig. 4, the server can identify that the users A and B have
the same level 1 location; however, from level 2, they are at
different blocks. Without knowing the codebook of A or of B,
the server cannot figure out the real location index of user A or B.

Fig. 5. Population attack. Note that the icons shown in each group represent
the rough population size, which is not exactly means one user.

Entropy-Based Splitting: In most previous work, when a
map is divided into several blocks, the cutting is barely based
on geographical information. Although each user’s location bit
sequence is encrypted with a secret key unknown to the server,
if one links the users of the same block and does some statistical
analysis, it is still possible to find out the real block indexes and
weaken the strength of the privacy protection scheme. Consider
the following example.

Assume the adversary is the server itself, and there are four
blocks at certain level. The general population in each block
is (1, 10, 2, 2) millions. As shown in Fig. 5, after the server
links all users in the same blocks, it can form five groups (y1,
y2, y3, y4, and y5). Some groups may be able to be combined
again, and some may not. For example, because some users in
group y1 and y4 are definitely not in the same block, then these
two groups cannot be combined again. By finding the optimal
way to allocate each group into a block, some of the block
indexes can be disclosed with high probability. For example, it
is reasonable to consider groups y1 and y2 to represent block 2,
y5 to represent block 1, and y3 and y4 to represent either
block 3 or 4, respectively. Therefore, if a user is in y1, the
server has high confidence to believe the real index number
is 2. Generally, this attack can be formalized into a nonlinear
optimization problem. After linking all the pairs of users in the
same block, the server obtains y number of groups. Moreover,
it also has the population distribution of the m blocks. The goal
of the server is to tag all the groups with real block indexes
and achieve a distribution of the items in the bags close to the
known population distribution. This is similar to a fractional bin
packing problem, in which we have

∑
yixi number of items

and need to put into m bags, in which xi is the group size.
An extra condition is some of the items cannot be put into the
same bag.

We can write down the above problem as

Minimize
m∑
j=1

∥∥∥∥∥
n∑

i=1

yijxi − Cj

∥∥∥∥∥
2

(1)

Subject to

xi ≥ 0, yij ∈ {0, 1},
m∑
j=1

yij = 1

Euv = 0, u, v ∈ Bj

840 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 2, FEBRUARY 2016

where xi is the group size, and yij is a binary variable; yij = 1
if the group i is assigned to block j, and yij = 0 otherwise.
Cj is the expected population size of the block j based on the
observed users. One group can only be assigned to one block,
but one block may have multiple groups. Bj is the jth block.
Any two groups assigned to the same block should have no
conflict edge; thus, Euv = 0. For example, in Fig. 5, y1 and
y4 has an edge between them, which indicates that they cannot
be in the same block.

Generally, the above problem is NP hard, but there are nu-
merous heuristic solutions, such as the one in [8]. Some users’
privacy may be breached easily under certain circumstances.

We also observe that, if the block size in terms of population
is divided evenly, although the optimal matching is perfect, the
adversary would not know the right index value. As in Fig. 5,
even it is known that one of the groups (y3 and y4) is actually in
block 3, and the other is in block 4, we still do not know which
one should be in block 3 or 4 exactly. When the population
sizes of blocks are similar to each other, it is hard to distinguish
them. This can be seen by using entropy to represent the whole
system’s uncertainty as

H = −
m∑
i=1

p(xi) log p(xi) (2)

where m is the total number of blocks in a level, and p(xi) is
the ratio of average population within block x to the average
total population in this level. Clearly, H is maximized when
p(x1) = p(x2) = · · · = p(xm). It also indicates that we should
divide the map into blocks based on the population size.

Since phase one only uses the location bit sequence of a
multilevel grid, it does not provide high accuracy for friend
locator application. To achieve higher accuracy, the nearby
users need to enter the second phase, i.e., the fine resolution
level, to be discussed in the following.

B. Phase Two: Point Inclusion to a Convex Polygon

Through phase one, it is expected that only a small number
of friends from a user’s friend list will be selected for further
exploration. The friends or buddies who are in different blocks
are no longer considered.

Representing Interested Area by Convex Polygons: As will be
shown later, our algorithm achieves strong privacy preservation
through linear operations. By converting user’s interested area
into convex polygons, the original friend locator problem can be
transferred to the point inclusion to a convex polygon problem.
This problem then can be represented by matrix and solved
through linear operation. While this conversion is for privacy
purpose originally, we will show later that by solving the friend
locator problem through point inclusion to convex polygon, it
can also achieve higher accuracy and become more flexible than
general Euclidean distance methods.

The first step is to convert a user’s interested area into
convex polygons. We first introduce some basic definitions and
concepts.

(Half-space): A half-space in R
n is a set of the form

H =
{
x ∈ R

n : pTx ≤ α
}

(3)

Fig. 6. Concept of half-space and convex polygon.

Fig. 7. Interested area is represented by a polygon.

where p ∈ R
n is a fixed nonzero vector, and α is a fixed real

number. Fig. 6(a) gives a half-space example in 2-D space.
(Convex Polygon): A convex polygon is the intersection

of a finite number of half-spaces. It can be defined as

P =
{
x ∈ R

2 : Ax ≥ b
}
. (4)

Fig. 6(b) shows an example of convex polygon.
If ai ∈ R

2 represents the ith row of A, i = 1, . . . ,m, then we
can represent P as

P =
{
x ∈ R

2 : aTi x ≥ bi, i = 1, . . . ,m
}
. (5)

The interested area of a user can be represented as a polygon.
As shown in Fig. 7, a polygon is either a convex polygon
itself, or it can be divided into a set of convex polygons. A
polynomial-time algorithm to find a decomposition into as few
convex polygons as possible is described by Chazelle [2]. Thus,
we can write P = P 1 ∪ P 2 ∪ · · · ∪ P z , and

P =
{
x ∈ R

2 : (A1x ≥ b1) ∨ (A2x ≥ b2)∨
· · · ∨ (Azx ≥ bz)} (6)

Preserving Privacy Through Matrix Operation: By repre-
senting interested area into a set of z convex polygons, we then
determine if a user B’s location x = (x1, x2) is inside current
user A’s interested area. We check if x is a feasible point of P .
Without privacy consideration, current user A only submits a
set of matrices Ai and vectors bi, which describe its interested
area as a set of convex polygons to the location service provider.
Then, the server computes Aix and compares the results
with bi.

Obviously, for privacy concern, the exact information of
matrices Ai or vectors bi as well as the location (x1, x2) should
not be disclosed at the server side. On the other hand, simply
bypassing the server is not the solution since a user’s location

ZAN et al.: DUAL-RESOLUTION FRIEND LOCATOR SYSTEM 841

information will be disclosed to his/her friends. One common
method to hide information is transformation. To be specific,
let both A and B transform their interested area information or
location information into a different coordinate system that is
only known by A and B themselves. For example, transforming
Ai into Ãi = AiH and x into x̃ = HTx. However, with the
new Ãi and x̃, user A must offer the server a new b̃i accordingly
to compare with Ãix̃ = AiHHTx. An alternative is using x̃ =

H−1x, and Ãix̃ = AiHH−1x = Aix. Through this method,
the information of matrix Ai and x are not revealed to the
server, but the server can still compute Aix and compare it
with bi. This solution is much simpler than the homomorphic
encryption method [20], and user A has a higher flexibility in
choosing its interested area instead of just using a circle of fixed
radius.

Achieving Strong Privacy: When the central server cooper-
ates with one of the users, neither the above method nor the
homomorphic encryption method can protect the privacy of the
second user. For example, with available information, i.e., H at
user A and x̃ at the central server, an adversary can figure out
the location information of user B through x = Hx̃.

This problem can be induced to a secure multiparty com-
putation problem [3], [5], [19]. There are some methods to
solve such problem as early as Yao’s millionaire problem
[19]. However, considering the complexity, many of them are
impractical for the friend locator application. In the proposed
algorithm, we develop a method that is inspired by [3]. In this
method, we only disclose partial data in Ai by user A and x by
user B. To be more specific, at user A, we have

Ãi = AiH =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12
a21 a22
.
.
.

am1 am2

⎤
⎥⎥⎥⎥⎥⎥⎦

[
h11 h12

h21 h22

]
(7)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

h11a11 + h21a12 h12a11 + h22a12
h11a21 + h21a22 h12a21 + h22a22

.

.

.
h11am1 + h21am2 h12am1 + h22am2

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

and at user B, we have

x̃ = H−1x = c

[
h22 −h12

−h21 h11

] [
x1

x2

]
(9)

=

[
c(h22x1 − h12x2)
c(−h21x1 + h11x2)

]
(10)

where c = 1/(h11h22 − h12h21). It is easy to see that, given
only one column of matrix Ãi or one row of vector x̃,the
additional knowledge of matrix H cannot help an adversary
to obtain the value of Ai or x. Therefore, let users A and B
exchange part of their own information through the server. User
A sends Ãi

∗1, i.e., the first column of matrix Ãi, to user B,
and user B sends x̃2, i.e., the second row of vector x̃, to user

Fig. 8. Strong privacy protection in geometric theorem.

A. Next, user A computes U i = Ãi
∗2x̃2, and user B computes

V i = Ãi
∗1x̃1. Since

Aix = Ãix̃ = Ãi
1x̃1 + Ãi

2x̃2

= U i + V i ≥ bi (11)

⇒ U i − bi + V i ≥ 0 (12)

if user A sends the results of U i − bi to user B, user B can
add V i and compare with 0 to determine if user B is inside the
convex polygon of P i or not. Finally, user B informs user A the
result. During the whole process, the vector bi should be kept
secure at user A side only, whereas the invertible matrix H can
be known to everyone.

We further illustrate the given ideas in Fig. 8. Assume H and
H−1 are public known. When user A sends Ãi

∗1, i.e., the first
column of matrix Ãi, to user B through the server, it discloses
the vertical intersection point L1. That is because Ãi

11 is the
inner product of the vector Ai

1∗ = (a11, a12), and (h11, h21).
If user A also sends Ãi

12, which is equivalent to publicize the
value of L2, then, since two straight lines determine one point if
they cross over, the real Ai

1∗ will be known. However, knowing
that L1 alone is not enough to recover the original vector Ai

1∗,
it could be any point on the vertical line passing the real value.
The same argument also works for user B. Next, from the re-
sult of U i

1 = Ãi
12x̃2 = (h12a11 + h22a12)c(−h21x1 + h11x2),

user B and the server can still derive the vertical intersection
point L2 of vector Ai

1∗ and (h12, h22). It is true that L2, together
with the knowledge of L1, can reveal the original vector Ai

1∗.
However, user A does not send U i

1 exactly; instead, the sum of
U i
1 and −bi1 is sent. Because bi1 is unknown, this is equivalent

to say that L2 can be any point on the vector (h12, h22) and
can push the value L2 back to an unknown status. Therefore,
the exact value of Ai

1∗ can still be any point on the straight
line passing by L1 and the real point. On the other hand, since
user B only replies with the final decision, there is not enough
information disclosed at user B for an adversary or others to
figure out the real value of (x1, x2).

To conclude, through the given method, we can achieve a
strong privacy in phase two. Assume user A and the central
server are colluding since during the whole process, user B
only discloses the value of x̃2, which by it alone is not enough
to solve a two-variable system. Therefore, user B’s privacy
is preserved. On the other hand, user A discloses Ãi

1 and
U i − bi during the whole process. This information constructs a

842 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 2, FEBRUARY 2016

Fig. 9. For a regular user, a small grid level results in small communication
overhead in each updating period; however, it increases the chance to enter
phase two.

2mi-equation system with 3mi unknown variables, which in
general has no unique solution.1

IV. EVALUATION

We evaluate the proposed system through two steps: The first
step is numerical analysis, and the second step is simulation.

A. Numerical Analysis

First, we study the advantage of using various lengths of
sequences. We can generalize the communication overhead for
a regular user during a location update period as

O = l ∗ x+ qL−l ∗ ρ ∗ y (13)

where l is the specific grid level the user preferred, x is the
number of bits each level needs (assume the same length for
all levels), L is the total level, ρ is the probability the user will
be checked by his/her friend who is in the same block of the
lowest level during the update period, q is the probability to
be selected to enter phase two, and y is the communication
overhead for phase two operations. In Fig. 9, we assume L = 5.
It can be seen from the first subplot, while fixing the value of
ρy/x, that the smaller the value of q, the more communication
overhead we save while reducing the level to a more coarse one.
On the other hand, as shown in the second subplot, while fixing
the value of q, the smaller the ratio of ρy/x, the more coarse
level is preferred in terms of reducing communication overhead.
Finally, this could be formulated as an integer programming
problem. By first computing the continuous relaxation version,
we can minimize

l ∗ x+ qL−l ∗ ρ ∗ y (14)

subject to

l ∈ R (15)

which has an optimum value at

l = L−
ln
(

x
ρy

)
− ln (ln(q))

ln(q)
. (16)

1By choosing special matrix H , it is possible to determine the original values
through partial information; however, in such a case, users can decide if the
public H is safe for using.

Fig. 10. Constant number of groups for a user.

Fig. 11. Fixed size of a group for a user.

Then, we can further determine the integer solution.
Next, we study the advantage of using differential permuta-

tion. As we know, through differential permutation, a regular
user can avoid uploading multiple copies of his/her location
bit sequence. The only disadvantage of this method is that if
one user leaks his/her secret key, the server or adversary can
also break his/her friends’ secret keys. Therefore, we offer
two methods based on differential permutation to avoid ripple
effect. First, we allow a user to have a fixed number of groups of
friends. For each group, the user will use the same secret key,
in other words, the same permutation. Based on a user’s own
preference, he/she assigns his/her friends to different groups.
Second, we allow a user to have groups of fixed size. When a
group is full, the user starts a new group and gives a new key
to that group. As shown in Fig. 10, while we fix the number
of groups, the overhead is first increasing as in nondifferential
methods, and until the user has all groups activated, then the
number of copies stays in the same level. In Fig. 11, when the
size of each group is fixed, the overhead will keep increasing;
however, the speed is far lower than nondifferential methods.

B. Simulations

Here, we further study the proposed algorithm through sim-
ulations. The data set of user movements is obtained through
the MilanoByNight simulation [13] by EveryWare Laboratory
of the University of Milan, Milan, Italy. The data set represents
100 000 users’ movement in the city of Milan during a weekend
night. The whole data set is collected over 5 h, and locations are
sampled every 20 s. The total size of the map is 174 mi2, and
the average density is 572 users/mi2.

ZAN et al.: DUAL-RESOLUTION FRIEND LOCATOR SYSTEM 843

Fig. 12. Map of application users.

Fig. 13. Population-based split achieving higher entropy values.

Fig. 12 shows a snapshot of the user distribution at a random
time.

In the first experiment, we split the whole map into 16 blocks
in two different ways. First, we use traditional method, which
divides the map based on geographical size. Second, we divide
the map based on the proposed entropy-based scheme. As
shown in Fig. 13, by splitting the map based on the population,
the entropy value increases from 3 to 4 over the simulation
period.

Next, we estimate the communication overhead. We assume
each active user has friends (buddies) varying from 10 to
500, and we assume there are two levels of grids. In the first
level, the whole map is divided into 16 blocks, and in the
second level, each block in the first level is again divided into
16 blocks. As shown in Fig. 14, after phase one, the proposed
algorithm eliminates most friends of each user and dramatically
reduces the overhead in phase two operation. Most times, the
average number of friends nearby is less than 5. Even when the
average number of friends of a user is 500, the simulation data
still show the maximum of 15 friends nearby. Following this
result, we further show an active user’s total communication
overhead during the 5-h period in Fig. 15. We assume each
user updates his/her location every 20 s, and every user uses
the most accurate level, which is 2 in this case. The length
of location bit sequence is 1 B for everyone. We also assume
that, for every 100 friends, a user uses a special secret key, and
the active user’s interested area is a rectangle. According to the
proposed algorithm, the communication overhead for the active

Fig. 14. Whole map is divided into two levels, and each level has 16 blocks.
The number of friends each user has varies from 10 to 500. As shown,
in average, a user has far fewer nearby friends than the total number of
friends he/she has. Therefore, a two-phase structure is necessary, and it can
dramatically reduce the overhead of each user.

Fig. 15. Active user’s total communication overhead during the 5-h period.

user with every friend in the same block is 72 B.2 As shown
in the figure, by using two phases, we can dramatically reduce
the communication overhead for an active user except when a
user has only a very small number of friends because, at that
time, periodically uploading location information causes high
communication overhead.

Next, we show the accuracy of using the proposed polygon
decomposition method, compared with previous work [20],
which is based on homomorphic encryption. The homomorphic
encryption method can be used to determine if two users have a
Euclidean distance that is less than a predefined value. We use
the square shape as example. In the simulation, we randomly
select 200 users and assume they are looking for friends inside
a square. For Euclidean-distance-based method, users always
use the smallest circle to cover the square, and the accuracy
is defined as follows: When a friend is found inside the circle
area, what is the probability that it is actually inside the real
interested area? In Fig. 16, we show that, when the size of the
square changes (side length varies among 100, 200, and 400 m),
the accuracy changes. For small side length, the chance to get
accuracy of either 0 or 1 is higher than the large side length.
This is because when the interested area is small, the probability
that none of a user’s friends is inside both the interested area
and the circumcircle becomes large, which results in more ap-
pearance of accuracy of 1. On the other hand, a small interested

2The active user sends 32 B Ãi∗1, receives 8 B x̃2, sends 32 B U i − bi, and
ignores the last 1-bit result message.

844 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 2, FEBRUARY 2016

Fig. 16. Accuracy observed from the simulation data, in which we assume
among the 100 000 users that 2% of users are a particular user’s friends. The
side length of the square interested area varies from 100, 200 to 400 m.

Fig. 17. Accuracy observed from the simulation data, in which we assume the
user interested area is the square area centered at his current location, and the
side length is 200 m.

Fig. 18. By using a polygon-based method, the accuracy of the friend locator
application can be improved. When the size of the interested area and/or the
density of friends increases, the enhancement finally reaches the analysis value.

area also results in higher probability of having friends inside
the circumcircle but not in the real interested area. In Fig. 17,
we fix the size of intersected area but vary the ratio of friends. It
can be seen that a small ratio of friends results in more accuracy
of 0 and 1. The reason for this is similar to the reason for a small
interested area.

Finally, in Fig. 18, we show the accuracy improvement by
the polygon decomposition method. As shown in the figure,
when the size of the interested area and/or the friends density
increases, the improvement of accuracy becomes closer to the
theoretical value.

Fig. 19. Improve privacy by different types of decompositions. (a) Incorrect
convex polygon. (b) Extra splitting. (c) Approximate representation.

V. DISCUSSIONS

Recall the polygon decomposition uses matrix to represent
convex polygons. For different friends, we require the active
user to use different sets of convex polygons to represent an
interested area to prevent the attacks from the collusion of
multiple users and the server. Here, we give some suggestions
on how to choose different types of decompositions.

1) Multiply a row of A by random numbers. For example,
the active user has x1 + x2 ≥ 3 in matrix A for one
friend. However, for another friend, the active user uses
3.44x1 + 3.44x2 ≥ 10.32 to replace the row in matrix
A. Note that this method alone does not work; however,
combining with other methods will cause confusion at the
adversary side.

2) Include incorrect convex polygon. An incorrect convex
polygon can be added in matrix A to confuse the adver-
sary. An example is shown in Fig. 19(a).

3) Split a convex polygon into multiple convex polygons.
The active user could do unnecessary splitting on the
convex polygon to confuse the adversary, as shown in
Fig. 19(b).

4) Use convex polygons to approximately represent the ex-
act area. As shown in Fig. 19(c), this method sacrifices
a little accuracy, However, since this method can replace
multiple rows of the matrix A completely, it is hard to
break.

When combining all the given methods, it becomes even
harder for the adversary to figure out the real interested area.
Note that we assume a statistical attack is impossible in such
case since it is not normal for an active user to have thousands
of friends nearby.

VI. PRIVACY ANALYSIS

A. On Level 1 (Coarse Resolution) Privacy

We now formally proof that the privacy of our friend locator
scheme can be achieved. We first analyze the security strength
of the coarse level process, which is based on differential
permutation.

ZAN et al.: DUAL-RESOLUTION FRIEND LOCATOR SYSTEM 845

Lemma 1: Denote the server as S and each mobile user as Ui.
Assume users are authenticated through third-party methods.
We also assume that an adversary is not interested in spoofing
attack (such as masquerading as a friend of the target user).
The adversary’s only interest is to break the location privacy,
i.e., it tries to deduce the user’s exact location or the distance
between users. The proposed first-level friend-finding scheme,
i.e., a multilevel location splitting coding and a Ui-to-S location
update protocol based on differential permutation, can achieve
the following two effects in friend locator applications: 1) It
greatly reduces the communication overhead among Ui and S,
and 2) it achieves desired privacy level for Ui.

Proof: The purpose of using a differential permutation
method is to achieve the privacy and improve the efficiency
of the multilevel splitting algorithm. We define a set as a
collection of distinct objects. The proposed multilevel splitting
algorithm defines a user’s location information as an object
in a set of plaintext. Being encoded with a secret key for a
location bit sequence is equal to transfer the object into the
corresponded object in another set, which is a set of encrypted
text. We call such a process as transfer mapping. The objects in
two encrypted text sets are one-to-one mapping. However, the
objects in plaintext and encrypted text sets may not necessarily
be one-to-one mapping.

Originally without a differential permutation method, every
pair of friends shares an encryption set. Thus, each user Ui

has to prepare k copies of its location information since he/she
needs to have one copy in every set of encrypted text that he/she
shares with a friend for encrypted data. Then, the server S can
compare the location information between two friends in the
same set.

Communication Overhead Reduction: With a differential
permutation method, however, Ui only publishes one copy of
its location information, i.e., an encrypted object in its own set.
Since S knows the distance between two sets, in another words,
it knows how to convert an object in one set to the corresponded
object in another set, and S can make the comparisons between
two location bit set sequences. This reduces the total message
from k to 1 for Ui.

Privacy Protection: S does not know how to transfer an
object in the set of encryption to the set of plaintext of Ui.
Although it knows how to convert location information between
two sets of encrypted text, it still is not able to convert an
object in an encrypted set to an object in the plaintext set.
Of course, if S steals the information from Ui and knows
one plaintext with location information and its corresponding
encrypted text, it is able to find out the specific encrypted text
location information represented by a friend of Ui through the
distance information that it knows. However, depending on the
complexity of the mapping, it still has no way of knowing other
cases. For example, if the mapping is n complexity, which
means that the rule of mapping can only be solved when n
corresponding mapping results are known. One location record
stolen by S gives it only 1/n knowledge of the mapping, but it
still cannot solve the mapping fully. The higher complexity n,
the more difficult S can reversely figure out the mapping rules.

When S knows every possible object in the plaintext set
of Ui and its matched object in the encrypted text set, it is

possible for S to also know each object in a friend of the users.
However, this will be also true for any method without using
differential permutation. The differential permutation method
maintains the same security level as without the differential
permutation, as long as the conversion from Ui’s plaintext set
to his/her corresponding encrypted text set is not fully known
to S.

B. On Level 2 (Fine Resolution) Privacy

Lemma 2: Following the assumptions in Lemma 1, by using
our proposed convex polygon decomposition scheme with only
partial information exchange among user A, user B, and server
S, we can achieve privacy protection of location locator appli-
cation. The privacy level has similar privacy strength as in ideal
case, i.e., user A knows whether user B is in its interested area,
without information exchange.

Proof: In Section III we have shown that both users A
and B’s privacy levels can be preserved as long as users A
and B only disclose part of their location matrix elements.
We have used geometric theorem (see Fig. 8) to show that it
is computationally infeasible to deduce the exact location or
distance information from the transformed matrix parameters.
Therefore, our friend locator algorithm in the fine resolution
level preserves strong privacy. Here, we provide more analy-
sis on the privacy performance of our convex-polygon-based
scheme.

The most common way to figure out if two users are
geometrically close by is to publish or exchange both users’
location information. This method does not consider the privacy
requirement of the users. To avoid exact location information
disclosure to the public, a pair of friends could exchange their
information with encryption. However, we still cannot protect a
user’s location information from his/her friend. To satisfy the
privacy requirement for users, even friend should not know
more than what should they need to know. In a friend finder
application, a user only needs to know if a friend is nearby or
not; he/she does not need to know the exact location of a friend.

The proposed convex polygon method achieves strong pri-
vacy by transferring secure friend-finding problem into a secure
multiple-party computation problem. There is certain downside
to achieve strong privacy—it reduces the dimension of the
secret. For example, originally, a user B’s location may be
represented by two numbers (x, y) on a map or a plane. As
explained in Section III, when messages are exchanged during
phase 2, user B’s location will be known to be limited within
a particular line. From a point on a plane to a point on a line,
this reduces a secret from a 2-D space into a 1-D space. The-
oretically, there are still an infinite number of points on a line.
If, originally, a secret in a 2-D space can be broken in 10 min,
then the 1-D case can be broken in 5 min. On the other hand,
if the original 2-D space is not breakable, the 1-D space does
as well. Although moving from 2-D down to 1-D is a security
degradation, it is the sacrifice we are willing to make in order
to achieve a high privacy level: Even friends should not know
more than what they need to know.

Fig. 8 shows that our convex-polygon-based privacy scheme
is based on the impossible decomposition of a matrix operation

846 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 2, FEBRUARY 2016

if only partial parameters are disclosed to each other. However,
if too many parameters are revealed, or too many neighbors are
colluding with each other, we cannot achieve desired privacy.
As a matter of fact, since any point is limited to a line, if the
server or a user A change the value of ui − bi for many times,
user B’s location will be disclosed. However, this kind of attack
is also true even in other location security schemes [21]–25].

Lemma 3: The proposed multilevel splitting coding in
a coarse level process, and the matrix transformation in a
fine level process can, together, prevent the colluding attack
between S and Ui.

Proof: In the ideal case, the server only knows whether
user B is in the interested area of user A. Without colluding
with one of the friends, when the location information is
updated, the server may get a sequence of yes or no. This
does not help the server to know where they are. Furthermore,
this special “yes” or “no” messages can be exchanged in an
encrypted way. Thus, the server will not obtain any information.
However, the proposed method does leak other information. As
discussed in Section III-B, since the value of H is publicly
known, a location information will be limited to be on a line. To
discover the true location of a user, however, we need another
nonparallel line to get the intersection point. For the same
pair of friends, since they will use the same H for multiple
comparisons, if a users location is not changing at all, then the
server will also observe the same line. On the other hand, if
the user’s location is changed, it is still hard to figure out two
different points on two lines. Furthermore, we can protect user
location from leaking to the server by keeping the value of H
to be a common secret between friends. This way, the server
will not be able to gather any information from the information
exchange of two users.

VII. RELATED WORKS

A. Privacy in Common User Query LBS

In common user query LBS, an LBS server stores a large
number of public information such as point of interest (POI).
A user tells the LBS server on his/her location information in
order to find the nearby POIs. The target of privacy protection
is to hide the location information of the user from the server
without decreasing the functionality of the query application.
A common technique for privacy preserving is anonymization,
e.g., in [1] and [6]. In particular, in the k-anonymity model [4],
[7], [14], the user privacy is protected by k-anonymity when the
information for the individual contained in the release cannot be
distinguished from at least k − 1 individuals whose information
also appear in the release. The spatiotemporal cloaking [7] and
the clique-cloak algorithm [14] are both based on k-anonymity.
However, k-anonymity is not suitable to protecting privacy in
friend locator applications.

B. Privacy in Friend Locator

In the friend locator [17], S̆iks̆nys et al. proposed a PPA for
detecting proximity among friend pairs within a client–server
architecture. The friend locator protects a users’ privacy by

reducing the accuracy of the proximity detection algorithm. Our
proposed algorithm, however, could accurately detect proximity
between a pair of users based on users’ requirement. Continuing
effort from the same group is shown in [15]. However, the same
issue still exists.

The Hide&Crypt protocol [12] is a hybrid approach in which
a secure computation is performed only after a filtering step
based on obfuscated locations. Different from our proposed
algorithm, Hide&Crypt does not have privacy protection during
the filtering step. Through geometrical transformations, Longi-
tude [11] hides the real location information of a user from the
server while still allowing the server to calculate the Euclidean
distance between two users. However, it is not as flexible as our
algorithm. Furthermore, Longitude cannot guarantee privacy if
the server and one of the user cooperate.

In [10], Manweiler et al. uses k-ID anonymity to protect
user privacy. In addition to its huge overhead (when the server
forwards a query probe to the source of an update, it must
broadcast the message to the entire identifier set), the privacy
is not guaranteed in the situation where some of clients and the
server cooperate.

C. Secure Multiparty Computation

The proposed convex polygon decomposition approach con-
verts a friend locator problem to a secure multiparty com-
putation problem. However, it is inefficient to use a secure
multiparty computation method to solve the friend locator prob-
lem with no modifications. For example, the original solution
in the famous Yao’s millionaire problem [19] is impractical if
the range of unknown variables is large.3

VIII. CONCLUSION

We have proposed a dual-resolution system architecture and
algorithm that can protect user’s privacy in the friend locator
application. Compared with previous work, this paper has the
following advantages. First, it uses multilevel grid and varied
length of bit sequence to represent a user’s coarse location,
which reduces the overhead. Second, a dual-resolution system
helps reduce the total communication overhead of all users.
Third, the proposed differential permutation method achieves
strong privacy while balancing the overhead at the same time.
Fourth, dividing the geographical location into small blocks
based on population is better than traditional geographical
splitting. Fifth, by converting a user’s interested area into mul-
tiple convex polygons, we could exploit the property of linear
operation to achieve high privacy preservation.

REFERENCES

[1] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–90, Feb. 1981.

[2] B. Chazelle and D. P. Dobkin, “Optimal convex decompositions,”
in Computational Geometry, G. T. Toussaint Ed. Amsterdam:
The Netherlands, Elsevier, 1985.

3In our case, the unknown variables are the exact location (x, y) of one user
and the interested area (x1, y1), (x2, y2), . . . (xn, yn) of another user’s; the
range can be as large as R2 and R2n, respectively.

ZAN et al.: DUAL-RESOLUTION FRIEND LOCATOR SYSTEM 847

[3] W. Du and Z. Zhan, “A practical approach to solve secure multi-party
computation problems,” in Proc. New Security Paradigms Workshop,
2002, pp. 127–135.

[4] B. Gedik and L. Liu, “Location privacy in mobile systems: A per-
sonalized anonymization model,” in Proc. 25th IEEE ICDCS, 2005,
pp. 620–629.

[5] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in Proc. 19th Annu. ACM STOC, New York, NY, USA, 1987,
pp. 218–229.

[6] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing for anony-
mous and private Internet connections,” Commun. ACM, vol. 42, no. 2,
pp. 39–41, Feb. 1999.

[7] M. Gruteser, D. Grunwalddepartment, and C. Science, “Anonymous usage
of location-based services through spatial and temporal cloaking,” in
Proc. ACM MobiSys, 2003, pp. 31–42.

[8] S. A. M. John Oommen, O.-C. Granmo, and M. G. Olsen, “Learning
automata-based solutions to the nonlinear fractional knapsack problem
with applications to optimal resource allocation,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 37, no. 1, pp. 166–175, Jan. 2007.

[9] F. Kandahl, Y. Singh, W. Zhang, and C. Wang, “Mitigating col-
luding injected attack using monitoring verification in mobile ad-
hoc networks,” Security Commun. Netw., vol. 6, no. 4, pp. 539–547,
Apr. 2013.

[10] J. Manweiler, R. Scudellari, Z. Cancio, and L. P. Cox, “We saw each other
on the subway: secure, anonymous proximity-based missed connections,”
in Proc. 10th Workshop HotMobile Comput. Syst. Appl., New York, NY,
USA, 2009, pp. 1:1–1:6.

[11] S. Mascetti, C. Bettini, and D. Freni, “Longitude: Centralized privacy-
preserving computation of users’ proximity,” in Proc. 6th VLDB Work-
shop SDM, Berlin, Germany, 2009, pp. 142–157.

[12] S. Mascetti, C. Bettini, D. Freni, X. S. Wang, and S. Jajodia, “Privacy-
aware proximity based services,” in Proc. Mobile Data Manage. Syst.,
Serv. Middleware, 2009, pp. 31–40.

[13] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia, “On the
impact of user movement simulations in the evaluation of LBS privacy-
preserving techniques,” in Proc. 1st Int. Workshop Privacy Loc.-Based
Appl., 2008, pp. 1–21.

[14] M. F. Mokbel, C. Yin Chow, and W. G. Aref, “The new casper: Query
processing for location services without compromising privacy,” in Proc.
VLDB, 2006, pp. 763–774.

[15] L. Siksnys, J. R. Thomsen, S. Saltenis, and M. L. Yiu, “Private and flexible
proximity detection in mobile social networks,” in Proc. 11th Int. Conf.
Mobile Data Manage., 2010, pp. 75–84.

[16] D. Stehle and R. Steinfeld, ”Faster fully homomorphic encryption,”
Cryptology ePrint Archive, Rep. 2010/299, 2010. [Online]. Available:
http://eprint.iacr.org/

[17] L. S̆iks̆nys, J. R. Thomsen, S. S̆altenis, M. L. Yiu, and O. Andersen, “A
location privacy aware friend locator,” in Proc. 11th Int. SSTD, Berlin,
Germany, 2009, pp. 405–410.

[18] X. Wang, L. Qian, and H. Jiang, “Tolerant majority-colluding attacks for
secure localization in wireless sensor networks,” in Proc. 5th Int. Conf.
WiCom, Netw. Mobile Comput., 2009, pp. 3427–3431.

[19] A. C. Yao, “Protocols for secure computations,” in Proc. 23rd Annu.
SFCS, Washington, DC, USA, 1982, pp. 160–164.

[20] G. Zhong, I. Goldberg, and U. Hengartner, “Louis, Lester and Pierre:
Three protocols for location privacy,” in Proc. 7th Int. Conf. PET , Berlin,
Germany, 2007, pp. 62–76.

Bin Zan (S’12) received the B.S. degree in com-
munication and information engineering from the
University of Electronic Science and Technology of
China, Chengdu, China; the M.S. degree in com-
puter science from Clarkson University, Potsdam,
NY, USA, in 2006; and the Ph.D. degree in electrical
and computer engineering from Rutgers University,
North Brunswick, NJ, USA, in 2013.

His research interests include location-aware
systems, mobile networking, privacy, and security.

Fei Hu (M’06) received the Ph.D. degree in sig-
nal processing from Tongji University, Shanghai,
China, in 1999 and the Ph.D. degree in electrical
and computer engineering from Clarkson University,
Potsdam, NY, USA, in 2002.

He is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
University of Alabama, Tuscaloosa, AL, USA. He is
the author of over 200 journal/conference papers and
books. His research has been supported by the U.S.
National Science Foundation, the U.S. Department

of Defense, Cisco, Sprint, and other sources. His research interests include
wireless networks and machine learning.

Ke Bao is currently working toward the Ph.D. degree
with the Department of Electrical and Computer En-
gineering, The University of Alabama, Tuscaloosa,
AL, USA.

His research interests include wireless networks,
multimedia quality of service, and wireless test beds.

Qi Hao (M’06) received the B.E. and M.E.
degrees from Shanghai Jiao Tong University,
Shanghai, China, in 1994 and 1997, respectively, and
the Ph.D. degree from Duke University, Durham,
NC, USA, in 2006, all in electrical engineering.

His postdoctoral training with the Center for Visu-
alization and Virtual Environment, The University of
Kentucky, Lexington, KY, USA, was focused on 3-D
computer vision for human tracking and identifica-
tion. From 2007 to 2014, he was an Assistant Profes-
sor with the Department of Electrical and Computer

Engineering, The University of Alabama, Tuscaloosa, AL, USA. He is currently
an Associate Professor with South University of Science and Technology of
China, Shenzhen, China. His research has been supported by the U.S. National
Science Foundation and other sources. His current research interests include
smart sensors, intelligent wireless sensor networks, and distributed information
processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

