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Cyberphysical System With Virtual Reality for
Intelligent Motion Recognition and Training

Fei Hu, Qi Hao, Qingquan Sun, Xiaojun Cao, Rui Ma, Ting Zhang, Yogendra Patil, and Jiang Lu, Member, IEEE

Abstract—In this paper, we propose to build a comprehensive
cyberphysical system (CPS) with virtual reality (VR) and intel-
ligent sensors for motion recognition and training. We use both
wearable wireless sensors (such as electrocardiogram, motion sen-
sors) and nonintrusive wireless sensors (such as gait sensors) to
monitor the motion training status. We first provide our CPS
architecture. Then we focus on motion training from three per-
spectives: 1) VR—first we introduce how we can use motion
capture camera to trace the motions; 2) gait recognition—we
have invented low-cost small wireless pyroelectric sensor, which
can recognize different gaits through Bayesian pattern learning.
It can automatically measure gait training effects; and 3) gesture
recognition—to quickly tell what motions the subject is doing,
we propose a low-cost, low-complexity motion recognition sys-
tem with 3-axis accelerometers. We will provide hardware and
software design. Our experimental results validate the efficiency
and accuracy of our CPS design.

Index Terms—Cyber-physical system (CPS), motion training,
virtual reality (VR), wireless sensors.

I. INTRODUCTION

THE top three leading causes of death in many coun-
tries, especially in developing or developed countries,

are heart disease, cancer, and stroke. Among those, stroke is
one of the most typical reasons to cause permanent disability
among adults. Fig. 1(a) shows conventional manual in-hospital
post-stroke motion training method. It is labor intensive and
expensive. A robot-aided training system [see Fig. 1(b)] could
significantly reduce physical therapists (PTs)’ involvement due
to its intelligent patient motion assistance. However, it still
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Fig. 1. Illustration of motion training. (a) Manual training. (b) Robot-assisted
training. Here we use KineAssist robot. (c) CPS-based training.

Fig. 2. Three-layer, multifaceted CPS architecture.

requires the patient to visit the hospitals due to the high-cost,
heavy-size robot system. A virtual reality (VR)-based training
system [Fig. 1(c)] could be a simple computer video gaming
system with some interactive units (such as digital glove). It
has light weight and low cost.

In this paper, we propose a cyberphysical system (CPS)
with intelligent sensor data mining and motion analysis. It
can be potentially used for next-generation rehabilitation due
to its cyber controlled, automatic motion analysis. Such a CPS
allows a patient to interact with a VR game. The motion sen-
sors worn by the patient can automatically tell which gesture
the patient is performing, and the worn medical sensors can
tell the patient’s health status.

Fig. 2 shows the big picture of the CPS. It consists of three
layers.

1) The assembly layer uses the concept of mobile
agents (MAs) [1] for sensing and VR devices control.
We use four types of MAs: a) VR gaming; b) physi-
ological monitoring; c) motion disorder detection; and
d) patient tracking. Each MA is an independent hard-
ware/software co-operation unit.
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TABLE I
COMPARING THREE MOTION TRAINING SCHEMES (USED IN OUR SYSTEM)

2) The interface layer aims to achieve a seamless intercon-
nection of all devices for medical device interoperability
and training information exchange. The operation inter-
locking among medical devices is important to patient
safety. We use coordination agents to manage device
interoperation. We also build communication agents to
achieve device internetworking.

3) The adaptation layer uses open-source software tools for
the analysis of the body flexibility and coherence level
to achieve an agile and adaptive training.

This paper will present our CPS design, especially about
the automatic gait/gesture recognition mechanisms. We will
focus on motion recognition, which includes gait and ges-
ture recognition. While gait recognition aims to extract the
intrinsic walking/running patterns for body balancing analy-
sis, gesture recognition aims to analyze the coherence level
between all limbs and see if the patient can achieve cer-
tain standard limb motions. For gait recognition, we will
explain how our system can automatically recognize differ-
ent gait patterns during walking or running. Such patterns
can tell the body balancing levels of a patient. For gesture
recognition, we will use low-cost three-axis accelerometers to
automatically recognize the patient’s motions (such as raising
right arm).

This paper has made three contributions as follows.
1) First, we propose a low-cost VR system with motion

recognition. We use low-cost Microsoft Kinect (< $200)

as well as its software development kit to automatically
recognize human motions. Such a system can help the
patient to see clearly how well his or her body interacts
with the VR scenes. This can significantly motivate the
patient to finish each training phase via interesting VR
games.

2) We have invented low-cost pyroelectric sensor, which
uses wireless thermal sensing to capture different gait
patterns. We have designed intelligent sensing data

analysis algorithms which can extract the most impor-
tant features from binary raw sensor data. We pro-
pose to use Bayesian non-negative matrix factoriza-
tion (NMF) model to accurately recognize different gait
patterns.

3) Third, we have designed an accurate limb motion (ges-
ture) recognition system. By using multiple, low-cost,
3-axis, wireless accelerometers in the joints of limbs,
we are able to automatically recognize dozens of limb
gestures. Such a low-cost gesture recognition system
is important to home-oriented motion training since it
automatically tells the similarity between the patient’s
gesture and the standard ones (prestored in the gesture
database).

Table I summarizes the pros and cons of the proposed three
motion training approaches to be elaborated later. As we can
see, they have their own application scenarios, and can com-
plement with each other. For example, although Kinect-based
3-D reconstruction can help to visualize the body motion
images, it involves complex image processing, and also does
not have accurate gait/gesture capture.

The rest of this paper is organized as follows. In Section II,
we will summarize related works. Section III then provides a
systematic description of the entire CPS. The motion recon-
struction is introduced in Section IV. We then move to the gait
recognition in Section V. Here our new invented gait sensor
and the corresponding machine learning algorithms will be dis-
cussed. The gesture recognition based on motion sensors will
be explained in Section VI. Section VII has our experimental
results. Section VIII concludes this paper.

II. RELATED WORK

Conventional rehabilitation systems are based on labor-
intensive and therapist-assisted manual recovery [2]. Such
high-cost, in-clinics treatment still dominates today’s



HU et al.: CPS WITH VR FOR INTELLIGENT MOTION RECOGNITION AND TRAINING 349

rehabilitation. Robot-aided rehabilitation platforms have been
used in clinics to reduce therapy assistance [3]. An ankle
robot was developed at MIT for neurorehabilitation of stoke
patients [4]. VR-based platforms have been proposed recently.
In [5], a system with a pneumatic glove and immersive VR
environment was proposed for post-stroke rehabilitative
training. However, very little work has designed an integrated
low-cost sensing and VR system for automatic rehabilitation
purpose. Our system will use low-cost wireless gait/motion
sensors and low-complexity data processing algorithms to
achieve motion training.

A. Gait Recognition and Training

There are dozens of neurodisorder related gait symptoms,
which need distinct classifications between epileptic seizures
and paroxysmal movement disorders [6]. The conventional gait
assessment in clinical practice is typically performed manually
through PTs’ observations [7]. In many hospitals, the integra-
tion of videotaping and EEG sensing signal analysis (called
video-EEG) [8], has been used for neurodisorder symptom
diagnosis.

Most conventional approaches for automatic (labor-free)
gait recognition are based on image sensors and digital image
processing [9]. They typically involve intensive computation
and also impose high hardware requirements such as real-time
signal processing. Other wearable devices (such as gyroscopes,
accelerometers, weight sensors, etc.) have also been used for
gait measurement with low-fidelity motion recognition [10].
However, it is difficult for the conventional schemes to handle
the high-dimensional, geometry-preserved gait signal pattern
extraction. In this paper, we will use our new invented gait
sensors as well as a Bayesian learning to analyze gait patterns
from high-dimensional sensor data.

B. Gesture Recognition and Training

In gesture rehabilitation, our goal is to train the patient to
achieve different limb motions often used in their lives. Since
our CPS needs an automatic gesture recognition, it is impor-
tant to use low-cost motion sensors as well as real-time pattern
recognition software to detect different limb motions. By com-
paring the similarity level (such as using special distance
definition) between the patient’s gesture and the prestored stan-
dard ones, we can tell how well the patient can successfully
achieve the desired gestures.

Some studies have recognized some simple gestures by
using a single accelerometer [11]. uWave [12] provides an
efficient recognition algorithm based on dynamic time warp-
ing (DTW) [13]. It is a user-dependent system only for
personalized gesture recognition and thus limits its applica-
tions. In a practical application, the recognition of complex
gestures by using multiple motion sensors is needed. In [14],
a correlation method was proposed for gait recognition by
capturing acceleration signals. Gafurov et al. [15] attached
two bi-axial accelerometers to the participant’s right leg to
achieve recognition through histogram similarity and cycle
length method. However, the dimension of feature set will be
high when the number of sensors is large.

In this paper, we will solve the gesture recognition problem
by efficiently processing high-dimensional, complex motion
sensor streams. Multiple Wiimote sensors will be used to rec-
ognize complex gestures. A new gesture recognition scheme
via NMF is used to reduce the complexity of gesture recogni-
tion. Our approach comprises two main phases: 1) a training
phase and 2) a testing phase. During the training phase,
the NMF algorithms are applied to create exemplars for
training gestures. Then, in the testing phase, we project an
unknown gesture trace onto a lower-dimensional subspace for
effective gesture recognition.

This paper is a significant extension of our previous work
in VR-based training [16]–[18], multiagent-based system man-
agement [19], [20], and gait recognition [21]–[25]. The dom-
inant differences between this paper and our previous work
include the following two aspects.

1) New Gait Sensing System: Compare to our previous
work, this paper has made two new designs. First,
regarding hardware design, we have designed a new sen-
sor that is much more sensitive to human movements
but with lower power consumption. Second, from soft-
ware perspective, the previous system cannot maintain
the temporal and spatial correlations between different
gait sensors’ signals. This new work uses NMF with
smoothness and sparseness constraints to achieve such
a goal.

2) Complete CPS Interaction Scheme: Those former works
only provided the big picture and basic principle of
the rehabilitation system without detailed description
of hardware and software components. This paper will
comprehensively describe the details of our CPS sys-
tem, especially the sensor hardware as well as software
design.

III. CPS ARCHITECTURE

Our goal is to achieve the integration of VR and multi-
faceted [wearable, implantable, noninvasive (WIN)] sensing
(Fig. 3 shows a logical architecture). The implantable medial
devices and radio frequency identification (RFID) have been
studied before and will be integrated into the system. The
devices mainly include three types.

1) Game Interaction Devices (Such as Digital Glove): They
directly reflect the patient’s hand adaptation progress
during VR game play.

2) Medical Sensors: They mainly include electrocardio-
graphy (ECG, to measure heart beat rhythm), elec-
tromyography (EMG, to measure muscle activities),
accelerometers (to measure movement), SpO2 (to
measure Oxygen saturation), and other wearable
sensors.

3) RFID Mini-Reader: It can read the RFID tags attached
to surrounding objects. This is helpful to vision impaired
or elder patients who can hear the beep of RFID
reader’s speaker in dangerous situations (e.g., when
wrong medicine bottle is grabbed). The noninvasive
sensors include pyroelectric/photonic sensors for gait
disorder detection.
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Fig. 3. CPS logical architecture.

A. Information Flow

The signals transferred among WIN devices include inputs
(i.e., patient/device signal collections) and outputs (i.e.,
device/game control commands). As shown in Fig. 3, all
device/patient status data are collected and sent to the
server for symptom-of-interest (SoI) learning. Our system
uses machine learning tools to achieve data fusion, signal
projection (to visualize complex signals in low-dimensional
subspace), signal correlation analysis (such as finding the
patient’s body coordination level), and pattern recognition
(such as identifying heart attack events based on ECG pro-
cessing). The learning results (for example, the patient shows
satisfied cognitive capability for the current game level), can
be used to achieve training adaptation, which includes two
aspects.

1) Game Control: The game level should change based on
the patient’s training progress.

2) Device Adjustment: Some devices need to reconfigure
themselves to adapt to the patient’s status.

In the lowest layer of our platform (i.e., the assembly layer,
see Fig. 2), we need to ensure that all hardware/software
drivers work as what we expect. Moreover, devices of the
same subsystem should seamlessly work together, and some
software threads should be able to migrate from one device
to another in the same subsystem. Here, thread migra-
tion means that we can use the same programming object
with the function definition of action matching between
the previous object and the new one. For example, the
body sensors’ signal pattern recognition thread needs to
be migrated to the server’s game control thread for game
adjustment.

For the convenience of subsystem management and soft-
ware thread migration, we propose to use an MA approach to
manage all sensing and acting devices [1]. Without loss of gen-
erality, we define an agent as independent hardware/software
co-operation unit (such as a digital glove with hand ges-
ture recognition software). The message exchange and thread

Fig. 4. Message exchange between MAs.

Fig. 5. CPS deployment (❶ VR agents, ❷ physiological agents, ❸ motion
agents, and ❹ tracking agents).

migration between MAs are implemented through message
objects based on an agent interaction procedure of deliver-
write-listen and take-deliver (Fig. 4).

Especially, in assembly layer we will manage four cat-
egories of MAs (Fig. 5 shows the device deployment
architecture).

1) VR Gaming Agents: They control the basic functions of
VR-based game interaction devices. They are responsi-
ble for the data collections including hand movement
trajectory, brain activity patterns and game contents.
They also call the communication and coordination
agents (ComA) to analyze the coherence levels between
hands and brain.

2) Physiological Monitoring Agents: They run in the body
sensors (such as ECG, EMG, SpO2, etc.) to collect real-
time physiological signals. Those agents could interact
with VR gaming agents in order to control the game
contents based on the patient’s health status.

3) Motion-Disorder Detection Agents: They run in noninva-
sive sensors, especially in the gait recognition sensors,
in order to monitor the patient’s motion-disorder and
body imbalance status. They provide direct indication
of neurodisorder levels since motion disorder is strongly
related to neurodisorder.

4) Patient Tracking Agents: They control the operations
of RFID readers/tags. The RFID devices can detect the
surrounding objects such as a medicine bottle.

B. VR Gaming Agents

They are used to control the operations of the following
VR devices. As shown in Fig. 6(a), our platform uses the
head mounted display (HMD) to provide the patient a 3-D
virtual gaming interaction environment. The digital glove [27]
[Fig. 6(b)] reflects the hand flexibility. VR MAs is designed
with the following features. For the digital glove, the MA
performs hand gesture recognition based on hidden Markov
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Fig. 6. (a) HMD [26]. (b) Digital glove [27]. (c) Glove sensor model.

model (HMM). Such an HMM-based scheme can recognize
more ranges of hand motions besides the 26-letter and other
simple hand gestures provided by the manufacturer. Fig. 6(c)
shows the digital glove model with accelerometers in the fin-
gers’ joints. Such a model will be used to build HMM state
transition matrix.

C. Physiological Monitoring Agents

These agents are used to collect the stroke patient’s phys-
iological data (such as heart beat rhythm) from wearable
sensors.

1) The game exciting level can be adjusted based on
the medical sensors’ signals. For example, an action-
intensive game should be stopped if the patient shows a
heartbeat rate over 130.

2) Many rehabilitation tasks need to train the patient’s body
parts. The EMG sensors, combined with others (such as
the accelerometers attached to the arms and legs), could
be used to measure body motions.

D. Motion-Disorder Detection Agents

This type of agents can control the functions of the gait sen-
sors for motion disorder/body imbalance detection. The agents
can also perform gait pattern recognition via machine learning
algorithms. Because we target a home-oriented rehabilitation
system, the gait sensors can provide important at-home patient
behavior data for the doctor’s reference. We have built a
pyroelectric sensor network (PSN) [Fig. 7(a)] to recognize nor-
mal or abnormal gaits [Fig. 7(c)]. To generate rich visibility
modes from thermal sources, we attach a Fresnel lens to each
pyroelectric sensor [see Fig. 7(b)].

E. Patient Tracking Agents

These agents control RFID readers/tags to keep track of
the patient’s indoor trajectory and to recognize the surround-
ing objects (such as a medicine bottle). We have used RFID
mini-reader M1 [28] [Fig. 8(a)] to identify a medicine bottle
[Fig. 8(b)]. The design of tracking agents are based on our
customized wireless boards [Fig. 8(c)].

F. Communication/Coordination Agents

These agents are responsible for the internetworking of all
devices. The VR devices could use wireless or wired inter-
faces to communicate with the server. A ComA aims to
provide desired communication performance. The ComA also
ensures seamless interface communications between RFID

Fig. 7. (a) Gait sensor array. (b) Pyroelectric sensor and lens.
(c) Disorder/imbalance.

Fig. 8. (a) RFID reader. (b) Medicine detection. (c) RF node (here RFID
reader is Skyetek product; the RF node is developed by us).

Fig. 9. PN model of agents.

mini-readers and wireless motes. In order to resolve the pos-
sible conflicts in scheduling and resource allocation (such as
wireless channel access), we propose to use Petri-net (PN)
models to study the reachability and consistency issues during
multiagent collaborations. As shown in Fig. 9, a PN consists
of positions, transitions, and input and output functions. A PN
is said to be safe for an initial state if all goal states are reach-
able. To check the security and reachability of a multiagent
collaboration scheme, we define PN as a four-tuple combi-
nation P, T , IN, OUT, where P = P1, P2, . . . , Pn is a set of
states, T = T1, T2, . . . , Tn is a set of transitions. IN is an input
function that defines directed arcs from states to transitions,
and OUT is an output function that defines directed arcs from
transitions to states.
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Fig. 10. Settings for VR.

Fig. 11. (Left) IR pattern from the IR emitter of the Kinect. (Right) Depth
map generated by Kinect.

IV. BODY MOTION RECONSTRUCTION

FOR VIRTUAL REALITY

A VR systems can give the patient a virtual training environ-
ment through video games. For example, cooking is a basic
life activity in the patient’s life. However, it is not conve-
nient for a PT to go with the patient for cooking training.
In our CPS, a patient can use digital glove to interact with a
virtual scene. Our system adopts inexpensive depth cameras—
Microsoft Kinects (< $200), to capture 3-D human motions
at video rate. We can avoid the interference between cam-
eras through only three Kinects deployed as shown in Fig. 10:
two Kinects capture the upper part and lower part of a human
body, respectively, and the third Kinect is used to capture the
middle body part. The Kinect IR emitter projects a pattern of
a light throughout the room [see Fig. 11(left)]. The receiver
then compares this data to a hard-coded image and generates
a depth map [see Fig. 11(right)]. A skeleton is then applied to
the body-like object in the depth map.

To utilize Kinect to automatically recognize the patient’s
body gesture and then generate the corresponding skeleton,
an open source application called be the controller (BTC) was
used to build the database of poses and gestures (Fig. 12).

V. GAIT REHABILITATION

In many rehabilitation training tasks, we are interested in
the capture of different abnormal gaits. By comparing them
with a prestored gait pattern database (through a pattern dis-
tance model), we will get to know the body training progress.
Although the above Kinect-based system can tell the basic
body motions, it has a few shortcomings. First, the depth image
processing involves complex image pixel analysis and huge
memory overhead, which makes real-time motion recognition

Fig. 12. BTC application used to create poses/gestures.

difficult to implement. Second, Kinect can only provides a
coarse gait/gesture reconstruction. It cannot accurately capture
the minor changes of body motions. Thus it cannot be used to
analyze the quantitative rehabilitation progress levels for a gait
training, which needs an accurate capture of body movement
patterns during gait training. Our designed low-cost wireless
pyroelectric sensors could detect the gait of an approaching
walker through a highly sensitive thermal sensor that can dis-
criminate among very minor thermal changes. Through the
binary processing of the raw analog thermal signals, as well
as using efficient machine learning algorithms, our system can
recognize the normal gaits of different walkers.

Our final goal is to extend our previous work to the recogni-
tion of different abnormal gaits (compared to healthy people’s
well-balanced gait patterns). Such an extension is not trivial
due to two reasons.

1) Higher Gait Recognition Accuracy Is Needed: While
it is relatively easier to detect different walkers’ nor-
mal gaits due to people’s obvious walking habit dif-
ferences, it is difficult to distinguish among various
abnormal gaits due to their minor differences. For exam-
ple, the borderland between two types of motor disorders
(epileptic seizures and paroxysmal movement disor-
ders) is not obvious [6]. It needs high-fidelity gait
recognition schemes to distinguish among the follow-
ing motor disorders: episodic ataxia, stereotypies, drop
attacks, paroxysmal kinesigenic dyskinesia, and other
symptoms. In order to achieve higher resolution gait
recognition, we have redesigned our pyroelectric sen-
sors with a richer gait sensing mode. Inspired by the
insect’s compound eyes (Fig. 13), we have designed
the Fresnal lens with interleaved, small thermal signal
filters. Such a special lens architecture could segment
the surrounding thermal detection space into many
delicate regions, and thus improve the gait detection
sensitivity by checking which regions have signals. We
have invented low-cost, small-size, and wireless gait
sensor.
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Fig. 13. (a) Insect compound eyes. (b) Fresnal lens.

Fig. 14. Geometry-aware gait sensing.

2) Temporal and Spatial Correlation Between Different
Gait Sensors’ Signals Needs to be Maintained During
Gait Signal Processing: In order to accurately record the
gait features from different angles, we propose to use
pyroelectric sensor array in each deployment position
(Fig. 14). There exists data correlation between different
array signals: one is intra-array geometry: in the same
sensor array, their data have high similarity since they
sense the same body part’s gait. The other is interar-
ray geometry: between different sensor arrays, A and B
(Fig. 14) should have stronger spatial correlation than A
and C since A and B capture gaits in the same vertical
line. And A and C should have stronger spatial/temporal
correlation than A and D due to two reasons. First, A and
C are closer to the patient while D is far away. Second,
A and C capture signals with closer temporal correla-
tion when the patient walks from A to C. Later on we
will explain how our proposed geometry-preserved NMF
scheme could preserve the intrasensor and intersensor
signal correlations.

A. Hardware—Wireless Gait Sensor

The basic principle of pyroelectric sensor-based gait detec-
tion is to utilize the thermal change detection when a human

Fig. 15. (a) Principle of gait sensing via pyroelectric sensors. (b) Binary gait
sensing signals.

subject walks across a sensor [Fig. 15(a)]. We have invented
Fresnel lens (Fig. 13) that use special filters to generate rich
thermal detection patterns. Note that the layout of filters (see
the vertical holes in Fig. 13) needs a careful design since
human’s thermal patterns are different from animals. We have
compared over dozens of layouts and select some effective
ones. Recently, we have invented a pyroelectric sensor which
can automatically adjust its sensing power levels in order
to capture a walker’s thermal patterns. A field-programmable
gate array-based control circuit can automatically reconfigure
the gait sensor’s sensitivity in order to detect gait patterns in
different distances.

Binary signal (0,1) is the simplest data representation.
Fig. 15(b) shows the principle of binary gait sensing: we
collect the raw analog thermal signals, and then use space
encoding [25] to obtain the binary representation. Such binary
data from multiple gait sensors in the same room place (we
call those sensors as a sensor array), form a matrix for gait
pattern extraction.

B. Software—Geometric Bayesian Learning of Gait Patterns

Our gait recognition scheme aims to seek a pattern extrac-
tion solution for high-dimensional array signals. Such a solu-
tion can maintain sensor array geometry structure (AGS) for
delicate gait discrimination. For example, in Fig. 14, since
sensor arrays A and B record body motions in the same
location (but deployed in different heights to capture arms
and legs’ motions, respectively), by maintaining their AGS
we can describe the entire body’s gait features. By main-
taining A and C and A and D pairs’ AGSs, we guarantee
the repeatability and consistency of all extracted gait patterns
since we can analyze the signals along the patient’s walk-
ing path (in this example, it is A-C-D). In order to retain
such intraarray/interarray AGS information, we extend our
previous general NMF-based gait recognition model [24] to
a geometry-preserved NMF (denoted as gNMF) based on
graph embedding models [29]. The gNMF could maintain the
geometric structure among neighboring arrays’ signals even
after we map the high-dimensional sensor array signals to a
low-dimensional gNMF feature subspace.

Because NMF uses iterative W (basis matrix) and H (feature
matrix) updates [30], it is time-consuming to analyze a large
observation time window. Therefore, before gNMF analysis
we first use the on-line signal segmentation to limit our gNMF
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Fig. 16. (a) Fence data. (b) Feature basis obtained from general NMF.
(c) Basis from gNMF.

analysis within a window with proper size. For a window of
sensor array data, we can use a weighted graph G = X, S to
represent the geometric relation between all data points. Here
X = [x1, x2, . . . , xn] and n is window size (i.e., how many data
points). S = Sij is the graph similarity matrix, which can be
formed through a Gaussian kernel denoted as Exp(‖xi−xj‖2/t),
or using other kernel methods [31]. The diagonal matrix E of
the graph is: E = Sii, and Laplacian matrix L = E − S. For
each original point xi, we map it to gNMF low-dimensional
subspace through x̃i = WTxi. All mapped points form a data
matrix: X̃ = [x̃1, x̃2, . . . , x̃n]. In order to retain the AGS infor-
mation of the original weighted graph, we could add a new
constraint to the original NMF cost function as follows:

Cost(X‖WH) = KL(X‖WH) + ζ

⎛
⎝∑

ij

∥∥x̃i − x̃j
∥∥2

Sij

⎞
⎠. (1)

Here KL(·‖·) is K-L divergence. Obviously, the second item
of the above function penalizes the graph distance of two
data points that are far away from each other (thus with less
geometric similarity).

Besides the reservation of AGS information between neigh-
boring sensor array readings, another important advantage of
gNMF is its capability of suppressing redundant dimension-
ality from high-dimensional signals. This is due to its matrix
factorization nature and the use of kernel mapping. We have
verified gNMF’s signal suppression characteristics through
the example of fence data analysis [Fig. 16(a)]. While gen-
eral NMF generates basis vectors with detailed feature points
[Fig. 16(b)], gNMF generates very sparse feature basis vectors
[Fig. 16(c)].

The complete solution to gNMF (i.e., solving W and
H through a gradient optimization) involves a stationarity-
guaranteed conditional optimization problem. Conventional
NMF uses simple multiplicative update through an auxil-
iary function. However, it cannot guarantee the algorithm to

Fig. 17. Gait pattern detection scheme.

converge to a stationary point. We can form a conditional
optimization problem in order to find such a stationary con-
vergence point [32] (here we use the basis matrix W’s update
rule as an example)

Wt+1 = [
Wt − βγ · ∇KL(X‖WH)t]+. (2)

Here [·]+ means max [·, 0] (thus it keeps non-negative entries)
and KL(·‖·) is K-L divergence between two distributions. Here
β can be set up to a constant based on some empirical analysis.
The value of γ is the first non-negative integer that meets the
following inequality:

KL(X‖WH)t+1 − KL(X‖WH)t

= c·< ∇KL(X‖WH)t, Wtβγ − Wt >. (3)

Here c is a constant, and <·, ·> is the Frobenius inner product
between two matrices.

Our gait training system uses a gait sensor cluster architecture
(Fig. 14). Instead of evenly distributing sensors everywhere,
we deploy sensors into “clusters.” This can fully utilize the
sensitive, wide-angle thermal detection capability of pyroelec-
tric sensors and thus reduce repeated sensor measurements.
Moreover, since a microcontroller has multiple analog-to-digital
converter interfaces, by grouping multiple sensors in one cluster,
we can use one RF communication board to send out multiple
sensors’ data, which reduces the hardware cost. Through care-
ful control of each sensor’s facing direction, we could well
capture a 360 view of a neighborhood around a cluster.

Assume a cluster has N sensors. For such N-dimensional
data stream, we will use the principle shown in Fig. 17 to iden-
tify a new gait context (called context extraction). As shown
in Fig. 17, for such a N-dimensional data, first we need to seg-
ment it into different windows. The window size depends on
how much data a sensor can handle in real-time. Here we use
an 8×16 window size to form a binary matrix, called obser-
vation data X. Each value is either 1 (means “detected”) or 0
(means “not detected”).

The context extraction system includes two phases.
1) Training Phase: It is important to identify some com-

mon aspects to be compared among different scenarios. For
instance, in traditional video systems, to identify human faces,
we typically use eye size, nose length, distance between eyes,
etc. to serve as comparison “bases.” Likewise, we need to
identify some gait bases in our system although each basis
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may not have physical interpretation of gaits that are as clear
as human face does. Through NMF we could obtain a set of
bases for all pyroelectric sensor data to be trained. We select
the windows of binary data for almost all different contexts.
For each of those contexts, we obtain the corresponding coef-
ficients (called weights) for each basis. All contexts’ bases and
weights are stored in the context template database for testing
purpose.

2) Testing Phase: When a new window of data comes, to
extract the context information from this window, we project
the data into the bases prestored into the context database and
calculate the corresponding basis coefficients (weights). We
then calculate the similarity level between the new calculated
weights and the ones in the database. The closest match indi-
cates a found “context.” In Fig. 17, we use H to represent
the context weights prestored in the database, and use H′ to
represent new tested context weights. In order to visualize the
context features, we utilize the linear principal regression to
project the multidimension vectors (H or H′) to a 2-D space.

a) Improvement of NMF schemes through sparseness
constraint: One of NMF advantages is its basis sparseness.
For example, if we extract some common features (to form
“basis”) from humans’ faces, such as eyes, nose, mouth, and
so on, we could use different methods (NMF, principle com-
ponent analysis (PCA), wavelet, etc.) to search for those bases.
It was found that NMF gave us the sparsest bases [33]. The
sparseness is important to the reduction of memory storage
and calculation complexity. More importantly, it makes NMF
more like “parts-based” feature extraction, i.e., we can easily
recognize an object by looking at its few features.

The measurement of sparseness can be regarded as a map-
ping from �n to � to quantify how much energy of a vector
is packed into a few components. Without loss of generality,
we adopt a sparseness definition used in [34] that considers
an observation vector X with n elements (x1, x2, xn)

Sparseness(X) =
√

n − (∑ |xi|
)
/

√∑
x2

i√
n − 1

. (4)

For a PSN with K clusters and each cluster has N sensors,
if we sense N × M data X, the goal of “sparse pyroelectric
sensing” can be formulated into a matrix factorization pro-
cedure: we seek non-negative weight matrix W and context
matrix H, such that the least square meets, that is, minimizing
‖X − WH‖2. In the meaning time, W and H should meet two
sparseness constraints: 1) Sparseness (wi) = Sw, for any ith
row of W. Here Sw is the desired W sparseness (preset by user;
range: [0, 1]) and 2) Sparseness (hi) = Sh, for any ith column
of H. Here Sh is the desired H sparseness (Range: [0, 1]).

b) Improvement of NMF schemes through smoothness
constraint: Although sparseness can make NMF more like
parts-based feature recognition, too sparse matrix represen-
tation could not accurately describe an object since most
elements of the context matrix H will be zero (or very small
values). Therefore in some applications, we could control the
“richness” of context matrix H by adding smoothness con-
straints to H. Smoothness tries to reduce the big differences
among elements to make values have “smooth” differences.

Here we define a smoothing function S as follows [35]:

S = (1 − θ)I + θ

K
11T (5)

where I is the identity matrix and 1 is a vector of ones
[111 · · · ]. The parameter θ is important. Its range is [0, 1].
Assume H′ = SH, The larger θ is, the more smooth effect we
can get. This can be seen from the following fact. If θ = 0,
H′ = H and no smoothing on H has occurred. However, when
θ is approaching to 1, that is, θ → 1, H′ tends to be a constant
matrix with all elements almost equal to the average of the ele-
ments of H. Therefore, parameter θ determines the extent of
smoothness.

VI. GESTURE REHABILITATION

The above gait sensing system can discriminate the minor
gait pattern changes. However, it is still a nonintrusive sens-
ing system that cannot well capture gaits if deployed far away
from the target. Moreover, the gait sensing aims to extract
the walking/running related patterns without knowing exactly
what gestures the patient is doing in the upper or lower limbs.
Therefore, wearable motion sensors attached to limbs can be
used to trace the exact gestures such as far reaching, flat
arm, kicking, etc. By using some pattern distance functions
(such as K-L divergence) between the patient’s motion sig-
nals and the prestored standard gestures, we know how close
to the standard gestures a patient can achieve. Especially in
home-oriented rehabilitation, it is critical to have such a low-
cost gesture recognition system for self-training purpose. Note
that today the light-weight motion sensors can be seamlessly
embedded into e-textile [36]. Thus a patient can just wear such
“smart clothing” during rehabilitation.

Unlike traditional single-accelerometer schemes, we adopt
multisensor system to recognize more complex gestures. By
deploying multiple, tiny, wireless accelerometers in the joints
of limbs, we can obtain a more accurate gesture understanding.
In order to recognize gestures, we again need to compare a
gesture trace to a prestored template. Such a gesture distance
can be defined by multisensor DTW as follows (assume we
have total k motion sensors):

DTW
(
Ti, Tj

) =
√∑k

l=1
D2

n,m(xl) + D2
n,m(yl) + D2

n,m(zl) (6)

where Dn,m(x), Dn,m(y), and Dn,m(z) are the DTW costs
between the gesture traces Ti of size n×3 and Tj of size m×3
in the x-, y-, and z-axis, respectively (we use 3-axis accelerom-
eters). The general DTW is calculated as follows. Assume two
time sequences, p = [p1, . . . , pn] and q = [q1, . . . , qm], with
differential phases and lengths (n and m, respectively). We can
then compute the matching cost DTW[p, q] based on dynamic
programming Di,j

DTW[p, q] = Dn,m (7)

here

Di,j = d
(
pi, qj

) + min Di,j−1, Di−1,j, Di−1,j−1 (8)

where d(pi, qj) is defined as: d(pi, qj) = (pi − qj)
2.
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Fig. 18. NMF-based gesture recognition system.

We use an NMF-based gesture recognition method. The
overview of this system is depicted as Fig. 18. It also
incorporates a training stage and a testing stage.

In “step 0—interpolation,” we uniformly interpolate all the
shorter gesture traces to the same length as the longest trace.
Thus all traces have the same size. In “step 1—matrix con-
struction,” conventional ways just simply align all sensors’
data into a matrix Vn×m, where n is the length of the trace
and m is the number of traces

Vn×m =

⎡
⎢⎢⎣

x1,1 y1,1 z1,1 · · · xr,1 yr,1 zr,1
x1,2 y1,2 z1,2 · · · xr,2 yr,2 zr,2
· · · · · · · · · · · · · · · · · · · · ·
x1,n y1,n z1,n · · · xr,n yr,n zr,n

⎤
⎥⎥⎦

n×3r

. (9)

Here xj,l, yj,l, and zj,l are the lth (1 ≤ l ≤ n) acceleration data
point of the jth (1 ≤ j ≤ k) accelerometer in x-, y-, and z-axis,
respectively.

However, our experiments show that the above simple mul-
tisensor data alignment causes very low gesture recognition
rate (less than 70%). Therefore, we propose a new way to
construct the V matrix. The observation on the curves of
different gesture traces inspires us to generate the idea of
transforming gesture traces into images. As a matter of fact,
when NMF algorithm was invented in the beginning [37],
it was successfully used for face image decomposition and
recognition.

Fig. 19 shows the basic principle of the trace-to-image trans-
formation. Each trace image has s × n pixels, where s is the
range of the acceleration value and n is the length of the trace.
The value of any pixel is

{
0 if there is no curve in the pixel∑

i∈[1,3×k]2i×16 if there is curve in the pixel
(10)

where i is the indexes of curves across this pixel and k is
the number of accelerometers. The value of a pixel can be
thought of the color index in the image of Fig. 19. The image
is sparse, i.e., the value of most pixels is 0. The pixel value
is not 0 when there is a curve across the pixel. Each curve
has a unique value to fill in the pixels it crosses. Moreover, if
there is more than one curve across the same pixel, the value
of that pixel is the sum of the values of those curves. In this
way, a gesture trace is transformed into an image.

Fig. 19. V matrix on the curves of gesture traces.

In “step 2—NMF on V matrix,” V is factorized into two
smaller matrixes, W and H. W is the basis matrix and H is
the coefficient matrix. Different varieties of NMF algorithms
rely on the choice of cost functions or the regulation of W
and/or H [37]. In this paper, two different implementations of
NMF algorithm are employed. One is proposed in [38] called
graph regularized NMF (gNMF). The other one is proposed
in [39] as a block principal pivot NMF (BPNMF). The results
of these two NMF algorithms will be compared later.

In “step 3—non-negative least squares curve fitting between
W and t, for a test trace t, our target is to find the coefficient
x that makes Wx closest to the t. This is non-negative least-
squares curve fitting problem

min
x

‖Wx − t‖2
x, where x ≥ 0. (11)

In “step 4—find the closest coefficient column in H,” we
will find the coefficient column in the coefficient matrix H that
is closest to the coefficient vector x calculated in step 3. We
can find out the candidate column by calculating the cosine
similarity between vector x and each column vector of H.
The cosine similarity [40] between vector x and vector hj is
calculated as

cos
(
θj

) = x′ · hj

‖x‖ × ∥∥hj
∥∥ . (12)

Two vectors are more similar to each other when their cosine
similarity is closer to 1 than other vector pairs. Therefore, the
corresponding gesture of trace j is the most probable gesture
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TABLE II
GESTURE DICTIONARY I

TABLE III
GESTURE DICTIONARY II

of test trace x if the cosine similarity between hj and x is the
largest.

A dictionary of 14 gestures is defined as shown in Table II.
The first 7 gestures are from [41]. The other seven gestures
are also typical motions. Another gesture dictionary containing
six gestures is defined in Table III. Those gestures are more
complex than the ones in dictionary I and multiple sensors are
needed.

VII. EXPERIMENTAL RESULTS

A. Multiagent-Based CPS Management

We have implemented multiagent-based model in Java
development environment (JADE). A group of devices can
use JADE to implement sharing of data and control. Fig. 20
shows our agent control architecture. We have programmed
the agent behaviors and built four communication components:
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Fig. 20. Agent control model.

1) message format and content definitions; 2) searching agents
for communication purpose; 3) the sending/receiving mecha-
nism between agents; and 4) message filtering function.

We have also developed a belief, desire, and intention
(BDI)-based agent behavior control scheme. The beliefs are
derived from motion training status and results (such as
gait/gesture training progress levels). We then formulate the
possible desires based on the available beliefs. A new set of
intentions and decisions can be generated based on previous
BDIs. Generally, a simple agent behavior (such as sending
out a sensing data sample) has low complexity intentions.
However, a complicated agent behavior (such as multiagent
interaction behavior) has high-complexity intentions.

For JADE programming convenience, we further classify
the agents into four types.

1) Sensing Agents: They detect medical, gait, or motion
signals.

2) Decision Agents: They are abstract software units for
device control purpose. For example, the VR games can
be controlled based on the training progress. A better
body flexibility can indicate that it is the time to upgrade
the game difficulty level.

3) Action Agents: They are devices that can be repro-
grammed in order to change their actions. For example, a
reprogrammable treadmill can change its running speed.

4) Database Agents: They can update the gait/gesture
databases.

In our experiments, we have investigated three types of
agent behaviors: 1) simple—such as generating a depth
image; 2) high—such as NMF-based gesture recognition; and
3) medium—such as calculating 3-D body reconstruction.
They generate three types of beliefs: 1) belief 1; 2) belief 2;
and 3) belief 3. Fig. 21 shows the intention complexity result.
Here p is the complexity coefficient, and n is the total num-
ber of states for an agent. As we can see, a more complex
behavior generates a higher intention complexity. Here sens-
ing and decision agents have higher intention complexity due
to the complex sensor data mining for motion pattern extrac-
tion. Because belief 1 agent behavior has the low belief, it has
the highest intention complexity. Belief 2 has the high belief
and thus it has the lowest intention complexity.

B. Kinect-Based 3-D Motion Reconstruction

As discussed in Section III, we have used Microsoft
Kinect [Fig. 22(a)] to perform low-cost, fast 3-D motion

Fig. 21. BDI models for four types of agents.

Fig. 22. (a) Kinect-based image capture system. (b) Three-dimensional
reconstruction GUI.

Fig. 23. (a) Three-dimensional reconstruction of “right leg rise.” (b) Three-
dimensional reconstruction of “arm wave.”

reconstruction. Fig. 22(b) shows the graphical user interface
(GUI) for motion recognition and reconstruction. The skele-
ton is generated from the depth image. It is then used for 3-D
reconstruction.

Fig. 23 shows two motion reconstruction examples.
Currently, we have implemented the recognition and recon-
struction of 18 poses/gestures. More motions can be easily
added to the database. As discussed before, it is used for
coarse body motion recognition, and cannot accurately tell
the gait/gesture changes. But it is good enough for general
VR-based motion recognition applications.

C. Gait Rehabilitation

We have used our new invented pyroelectric sensors to mea-
sure the trainee’s walking gait patterns. Fig. 24 shows our
gait sensor data and gait classification results. As shown in
Fig. 24(a), a certain gait shows noisy, however, periodical ther-
mal sensing patterns. We have used a sensor array (with four
sensors) to detect human gaits. Here we use binary format
to represent the space encoding results: the dark parts means
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Fig. 24. (a) Gait sensor array’s signals. (b) Gait classification/clustering
results.

Fig. 25. Gait recognition rate with different NMFs.

binary “1,” which means the sensor detects the walker in its
detection angle. The blank parts mean binary “0.”

We have further used NMF-based pattern recognition
schemes to discriminate among four different gait scenarios.
Those four scenarios have similar gaits if using human eye’s
observations. But our wireless gait sensors could successfully
cluster those scenarios into different groups [see Fig. 24(b)].
This indicates that our gait training system can be used to dis-
tinguish among similar gaits. By comparing the NMF feature
matrix to a template database, we get to know the gait training
progress levels.

We have created different variants of NMF algorithms for
gait recognition purpose: one is general NMF algorithm under
the assumption of uniform distribution of gait sensor detection
events in a room; the second one is probabilistic NMF (PNMF)
with the exponential assumption on the gain detection events;
the third one is PNMF with Gaussian assumption. The received
operating characteristics (ROC) curves are shown in Fig. 25.
As we can see, the Gaussian assumption with PNMF has the
highest ROC. This could be explained as follows.

1) The thermal detection events during the patient’s walk-
ing is a random event, and Gaussian distribution is the
suitable assumption.

2) PNMF is a better scheme than NMF since the ther-
mal sensing results have certain noise, and probabilistic
model has better noise effect capture.

We then tested the similarity scores in NMF-based gait
recognition schemes. The similarity score is defined as fol-
lows. During gait context understanding (testing phase) we
can use K-means cluster and vector distance to compute the

Fig. 26. Similarity score distributions.

Fig. 27. ROC of PCA and NMF.

similarity score between H and H′

arg min
k∑

i=1

∑
hj∈Ci

∥∥hj − μi
∥∥2

. (13)

Here hj is a context feature vector and μi is the mean of
cluster i. C1, C2, . . . , Ck are k clusters.

As shown in Fig. 26, the two distributions (self-testing and
cross-testing) can be completely separated from each other.
The self-testing scores occupy only a small region and cross-
testing scores cross a larger region. These results show that
NMF can detect context more accurately.

Then we compare the ROC graphs between a conventional
pattern recognition scheme—PCA and NMF. As we can see
in Fig. 27, NMF is always 1 no matter what value the false
alarm rate is. PCA is lower than 1 in certain rates. This fur-
ther illustrates the advantage of using NMF for gait pattern
recognition.

Fig. 28 shows the NMF schemes under some constraints
assumptions. It shows that NMF under smoothness con-
straints have the best performance. This is mainly because that
scenario-dependent context prefers smoothness constraints.
Total two kinds of hidden context patterns can be extracted
via NMF algorithm. One is scenario-dependent context (i.e.,
gaits under different activities—running/walking); the other
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Fig. 28. ROC of NMF with constraints.

Fig. 29. GUI of gesture training software.

is path-dependent context (i.e., patient changes paths each
time he/she walks through the sensors). The former (scenario-
dependent) generates holistic context patterns (i.e., all NMF
weights tend to be more evenly distributed), while the latter
(path-dependent) generates local context characteristics (i.e.,
NMF weights tend to be distributed in two extremities). Our
experiments have chosen the former (scenario-dependent) as
the context identification objective. Therefore, adding smooth-
ness constraint makes the NMF weights look more holistic
(i.e., all weights become more evenly distributed), which
makes context extraction more convenient.

D. Gesture Rehabilitation

We have used C# to build a GUI for gesture training. Fig. 29
shows the gesture type management. The patient can select any
gesture for current rehabilitation task.

For the gesture dictionary I (Table II), two datasets have
been generated. Dataset A is made by one subject with one
Wiimote in hand performing 25 repetitions of each of the
14 gestures. Dataset B is made by one subject with two
Wiimotes (one is in hand, the other is bound with the upper
arm) performing 25 repetitions of each of the 14 gestures.
For the gesture dictionary II (Table III), three datasets have
been generated. The summary of datasets A to E is listed in
Table IV.

TABLE IV
GESTURE DATASETS

Fig. 30. Effect of basis factor selection.

An optimal NMF basis factor r (i.e., how many NMF basis
we should set up) is theoretically undecided and depends on
the input data statistics. Therefore, we have tried some possible
values to find a proper choice of r. Fig. 30 shows the recogni-
tion rate of different basis factors from 1 to 50. The experiment
is carried on the dataset A with binary NMF algorithm.
From the result, we can see that the recognition rate keeps
in a relative high level after the basis factor is larger than
15, but the trend is not stable. Therefore, we select 25 as the
universal basis factor for all NMF algorithms.

Fig. 31(a) shows the recognition rate comparison using dif-
ferent number of Wiimotes. Fig. 31(b) shows the average time
elapse accordingly. Datasets C, D, and E are based on the ges-
ture dictionary II, which is specifically designed to show the
different effects when using different number of Wiimotes.
Among the six gestures, three pairs of gestures (1 and 2,
3 and 4, 5 and 6) are supposed to be difficult to recognize
if using a single Wiimote. Therefore, the recognition rate
using a single Wiimote should be low. The result confirms
our expectation. The average recognition rate using a sin-
gle Wiimote is between 45% and 58%. The recognition rate
using two Wiimotes is much higher than that using a single
Wiimote and reaches nearly 80%. The second Wiimote pro-
vides more information to make gesture recognition perform
much better. After using three Wiimotes, the average recog-
nition rate is over 81%. On the other hand, the time elapse
using two Wiimotes is a little longer than the case of using
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Fig. 31. (a) Recognition rate. (b) Time elapse.

a single Wiimote, but much less than the case of using three
Wiimotes.

VIII. CONCLUSION

This paper described our CPS design for body motion train-
ing. Especially we proposed three effective ways for motion
recognition and training.

1) In order to perform a coarse 3-D image reconstruction
for the patient’s motion, we proposed to use Kinect hard-
ware to reconstruct the body shape. Such a shape can
be embedded into a VR game in order to implement
interactive virtual scene experience.

2) In order to accurately capture gait changes, we used our
new invented pyroelectric sensors and a set of Bayesian
learning algorithms to analyze the patient’s gait patterns.

3) We designed a low-cost, accelerometer-based motion
tracking system to automatically tell what limb gestures
the patient is performing.

One of the novelties is that we have proposed the
multiagent-based integration of wireless sensing and VR
devices. The other novelty is that we proposed a geometry-
preserved NMF algorithm to recognize the interarray sens-
ing patterns. The third novelty is that we have designed a
motion recognition model for more accurate limb motion
capture.

Future works include some important aspects. We are inves-
tigating the neuroimaging to locomotor mapping model, which
can find the quantitative relationship between EEG signals and
motion patterns. This can give us a deep understanding of
brain structure change during rehabilitation. The other field
we are conducting now is multisensor signal fusion for high-
dimensional data mining. It aims to use the complementary
characteristics between different sensors (such as gait sen-
sors, pressure sensors, medical sensors, etc.) to generate a
more comprehensive picture on the rehabilitation training
progress.
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