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Abstract—We propose a novel spectrum decision scheme (i.e.,
channel selection and handoff) for wireless mesh networks
(WMN) which use multiple channels and nodes equipped with
multi-beam directional antennas. Our scheme has the follow-
ing features: (i) It performs spectrum decision by considering
various WMN parameters, including the channel quality, beam
orientation, antenna-caused deafness and capture effects, and
application priority level; (ii) It uses the reinforcement learning
(RL)-based spectrum decision process to achieve the optimal
quality of multimedia transmission in the long term. However,
a newly-joined WMN node could take a long time to make a
correct spectrum decision due to the difficult choice of initial
RL parameters. Therefore, our scheme uses the apprenticeship
learning in conjunction with the RL model, to speed up the
spectrum decision process by choosing a suitable neighboring
node (called ‘expert’) to teach a newly-joined node (called
‘apprentice’). Our experiments demonstrate that the proposed
spectrum decision scheme improves the network performance
and multimedia transmission quality.

Index Terms—Spectrum Decision, Channel Selection, Wireless
Mesh Networks (WMN), Directional Antennas, Multi-Beam,
Apprenticeship Learning, Reinforcement Learning, Multimedia
Transmission.

I. INTRODUCTION

The performance of wireless mesh networks (WMN) de-
grades when their size and number of hops increase. The use of
multiple channels can significantly improve WMN throughput
due to the reduction in the contending transmissions in the
frequency domain [1], [2]. The use of directional antennas
can further improve the WMN capacity by enhancing the
transmission range and spatial reuse. Lately, the use of multi-
beam smart antennas (MBSAs) has been investigated in the lit-
erature [3], [4]. However, most schemes select channels simply
based on the non-interference principle between neighboring
links, without considering other important factors (such as the
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link quality, antenna deafness, and node capture effect); these
factors can considerably degrade the network performance.

In this paper, we address the spectrum decision issues in di-
rectional, multi-channel WMNs, consisting of nodes equipped
with MBSAs. Here, the spectrum decision process includes
two steps: Step 1 is spectrum selection (i.e., selection of a
suitable channel with proper bandwidth to suit the application
quality of service (QoS); Step 2 is spectrum handoff, which
allows a node to switch to a new channel if the existing
channel becomes unavailable or has poor quality. The spectrum
handoff also includes a special case, i.e., a node may choose
to temporarily pause its data transmission until the channel
is available again. This would be useful when the spectrum
handoff delay is relatively large and the link outage is likely
to be short.

It is important to make an intelligent spectrum decision in
directional, multi-channel WMNs due to the following reasons.
First, the spectrum selection should consider the time-varying
WMN conditions. Second, the use of multi-beam directional
antennas complicates the channel switching scheme in WMNs,
as widely different traffic patterns may be present in different
beams of a node. Also, the nodes equipped with directional
antennas suffer from the deafness and hidden terminal prob-
lems. Third, the spectrum decision should not be executed in
a myopic way since a channel selection in the current time
slot could adversely impact the long-term optimization goal.
For example, if the existing channel has started experiencing
high interference, we may not need to immediately switch to
a new channel if we know that the current channel will again
become available soon (based on the statistical analysis of the
past channel usage), and the application allows us to buffer the
unsent packets during the link outage period. Therefore, it is
important to define a long-term optimization goal to determine
the spectrum decision policy based on cumulative reward.

In our previous work [5], we designed a reinforcement
learning (RL)-based intelligent spectrum handoff scheme for
cognitive radio networks (CRNs), to achieve the maximum cu-
mulative, long-term system rewards. In this paper, we use RL-
based spectrum decision scheme for wireless mesh networks
with directional antennas, which has a different application
environment than [5]. In the proposed scheme, we consider
the beam orientation, and the antenna-caused deafness and
capture effects. A significant contribution of this scheme is
the use of a teaching model (called the apprenticeship learn-
ing (AL)) for speed-up of the spectrum adaptation process.
The proposed intelligent spectrum decision scheme not only
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utilizes the channel usage history of the node which is making
the spectrum decision, but it also exploits the usage history of
its neighboring nodes by using the AL algorithm to speed up
the optimization of spectrum decision, by shortening the RL
algorithm execution time and avoiding the local maxima.

We denote a newly-joined WMN node or an existing node
that needs “guidance” from other nodes as an apprentice node.
The node to be learned from is called an expert or teacher
node. The AL-based learning model has the following two
advantages: (1) In order to speed up its optimization procedure,
the apprentice node can initialize its own reward function
based on the useful RL parameters (such as critical state-action
pairs) from an expert node that has well-adapted channel
selection/handoff behavior; (2) AL can largely avoid channel
switching errors (i.e., switching to a wrong channel and/or
at a wrong time) through future WMN state prediction. By
analyzing the past state transition patterns, a node can predict
which channel will be available in the next phase.

The above AL-based inter-node learning model needs to
solve three critical issues. (1) When: the first issue is to
figure out when an apprentice node should trigger its learning
process. (2) Who: the second issue is to find a suitable expert
which has the most appropriate information/knowledge for the
apprentice node. (3) How: the third issue is how to learn
from the expert. To reduce the communication overhead, the
expert node should select only the most critical, representative
data for transfer to the apprentice node. In this paper, we
use the Manifold learning to reduce the dimensionality of the
data. The apprentice node uses this information (transferred
from the expert node) to come up with a complete radio
environment adaptation model, in order to handle any unseen,
complex WMN conditions.

A. Main Contributions

The main contributions of our work are:
(1) Spectrum decision with the consideration of a time-

varying WMN environment: We design an efficient spectrum
decision scheme with optimized spectrum selection and hand-
off, and effectively exploit the spatial opportunities provided
by a multi-beam directional antenna as well as the frequency
opportunities from orthogonal multi-channels. Our scheme
considers the channel quality, beam orientation, the antenna-
caused deafness and capture effect, and the application QoS.
Note that the conventional channel selection schemes only
consider the interference between the neighboring links.

(2) AL enhanced learning model: Conventional spectrum
selection simply picks up the best channel in a myopic
manner, without considering its impact on the long-term QoS
performance. Our scheme uses RL to overcomes this issue
by defining a cumulative reward after each phase of spectrum
decision. Besides, our scheme uses the AL model to speed up
the spectrum decision process by enabling an apprentice node
to learn from an appropriate neighboring expert node. We also
solve the above mentioned when-who-how issues in AL.

The rest of this paper is organized as follows. The related
work is briefly discussed in Section II. Section III describes
the assumptions of directional WMNs used in this paper.

Section IV describes the core idea of our proposed spectrum
decision scheme. Section V briefly describes the RL-based
spectrum decision which is an important part of our proposed
scheme. The AL-based enhancement of our proposed spectrum
decision scheme is described in Section VI. Simulation results
are presented in Section VII, followed by conclusions in
Section VIII.

II. RELATED WORK

In this section, we briefly describe the existing literature
related to our work.

A. WMNs with Directional Antennas:

Use of directional antennas in WMN has been investigated
in several schemes. The authors in [3] proposed a MAC
protocol to address beam-synchronization, beam-overlapping,
mobility, and receiver blocking (deafness problem). A polling-
based MAC protocol for a WLAN with multi-beam access
point was discussed in [4]; it supports the QoS and power
conservation for individual mobile users. A unified MAC layer
in ad hoc networks with smart antennas was explored in
[6]. Other MAC protocol designs which exploit directional
antennas to improve the network performance can be found
in [7]–[10]. However, these schemes select a channel for
transmission based on the idle status of the selected channel.
They seldom investigate other factors that can affect the system
throughput, such as the link load, channel quality, and antenna-
caused deafness and capture effects.

B. Multi-channel WMNs:

Several channel selection schemes have been proposed for
WMNs. For example, the authors in [11] investigated the
unique constraints and issues of channel assignment in WMNs,
and proposed a channel assignment scheme which incorporates
the traffic pattern and connectivity issues to minimize the
interference in WMNs. A multi-channel network architecture
that integrates multiple channels and directional antennas to
improve the network capacity was proposed in [12]. Other
channel assignment schemes in WMNs can be found in [13]–
[16]. However, these schemes choose the channel for transmis-
sion in a myopic manner (i.e., they maximize the immediate
rewards without considering the impact of the current action
on the future node state). In fact, a greedy scheme may not
be able to achieve the optimal rewards in the long-term in a
time-varying WMN.

C. Learning-based Node Adaptation:

The concept of an old node teaching a new node was
initially proposed in [17]; it can save energy during the
startup and learning process. It has been successfully used
for interference management in Femtocell Networks [18]–
[21]. However, these schemes simply assume that the nearest
neighbor node is the expert node. In directional WMNs, the
neighbor nodes may have totally different traffic patterns or
application requirements, compared to a newly-joined node.
Therefore, a similarity comparison scheme needs to be used
to compare the node status.
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III. NETWORK MODEL

A hybrid WMN architecture is assumed in this paper, in
which the mesh clients can access the network through mesh
routers or by directly meshing with other clients [22]. We
assume the use of an efficient directional MAC scheme, called
circular directional RTS MAC (CDR-MAC) protocol proposed
in [10]. The CDR-MAC introduces a circular directional
transmission of the RTS control packet to discover and track
their neighbor nodes. By caching the neighbor information,
CDR-MAC protocol can reduce the hidden-terminal and the
deafness problems.

A. Antenna Model

1

2

3

4

5

6

7

8

 (a) Omni beam

1

 
(b) Single beam

1

46

 

(c) Multiple beams

Fig. 1. The antenna model.

The antenna model of multiple beam smart antennas (MB-
SAs) in this paper follows the antenna model of [3], [4].
As shown in Fig. 1, the antenna system consists of 8 non-
overlapping narrow beams, where each beam has a beamwidth
of 360◦

8
. All beams together cover the entire (360◦) azimuth

plane. The antenna can implement various multi-beam patterns
by turning on/off some subset of the beams. When all beams
of the antenna are turned on, it acts as an omnidirectional
antenna. An idle node uses the omnidirectional mode to listen
to all its beams for detecting the signals. When a signal arrives
or a communication is set up, the node turns the antenna into
the directional mode by using its beam in the direction that
has the maximum signal strength.

IV. SPECTRUM DECISION SCHEME

In this section, we describe our spectrum decision scheme,
followed by the description of channel quality, packet drop
rate, and the utility function, which measures the overall
benefit of selecting a candidate channel for transmission. The
spectrum decision scheme described in this section is myopic
but it considers a comprehensive WMN metric, including the
link load, channel quality, node position, beam orientation,
antenna-caused deafness and capture effects, interference to
neighboring nodes, and application priority level (i.e., QoS).
It serves as the baseline for our proposed AL-based scheme
which is described in Section VI.

A. Channel Selection

Proposed spectrum decision scheme effectively exploits
the spatial separation from the directional antennas and the
frequency separation in the frequency domain. A node chooses
the channel according to a utility function, which measures the
the impact of interference among nodes, traffic load, channel

 

Fig. 2. Channel assignment schemes. Double arrows with dash line
show the nodes that are trying to set up their connections. Double
arrows with solid line show the nodes that have already set up a link.

quality (i.e., packet error rate, PER), and the position of the
interfering node(s), on the system performance.

The node needs to know the channel usage information in
its vicinity in order to select a channel with the best utility
value. The node also needs to know the position and the beam
direction of its neighbors in order to determine whether it is
located in their interference range. Each node will periodically
broadcast its local channel usage information to its neighbors.

An example explaining the scheme is shown in Fig. 2. We
consider the scenario with two channels (N = 2) which are
ranked based on the proposed utility function. The channel is
denoted as Ck, where k = 0, ..., N−1, and C0 (CN−1) has the best
(worst) quality. There are six nodes with directional antennas,
and two links (A ←→ B and C ←→ D) are in communication.
Assume that node E, which is located in the interference range
of a beam of B, wants to set up its connection with node F .
E first finds a free channel with the best utility value from the
channel list. Since channel C0 is already used by the link `AB

and E is in the interference range of the link `AB , E needs to
check the availability of the second best channel. In Fig. 2(a),
our proposed scheme selects channel C1 for communication
between E and F . However, the link `CD between C and
D can select channel C0 because C and D are not located
in the interference range of the link `AB . Thus, with the
directional antennas in A,B,C,D, the links `AB and `CD can
simultaneously select the same best channel C0. Therefore, our
proposed scheme can effectively exploit the spatial separation
from directional antennas as well as the frequency separation
from multiple channels to improve the network performance.

If E and F cannot find a free channel, our proposed scheme
uses the best available channel as determined by its utility
function. For example, in Fig. 2(b), channel C0 and channel
C1 are used by the links `AB and `CD, respectively. Since,
no free channel is available for E and F , our algorithm uses
channel C0 for E and F which has the best utility value. After,
the best channel is selected, the node performs the RTS/CTS
handshake to set up its connection. Meanwhile, the beams not
used for transmissions are turned off to reduce the interference
from the sidelobes and backlobes.

Thus our proposed scheme can effectively avoid the interfer-
ence from sidelobes by prohibiting a node from selecting the
channel(s) which are being used by its interfering neighbor
nodes. This is very important in directional communication
[23]. Moreover, we can use the the exchanged node positions
and beam directions to track neighbors’ directions. Therefore,
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it can alleviate the deafness as well as the hidden-terminal
problems.

B. Channel Quality

We use PER to represent the channel quality. Let PER(k)
ij

denote the PER of channel Ck for the link `ij . For a given
SINR, the PER can be approximated by a sigmoid function
[5], [24], [25] as

PER
(k)
ij =

1

1 + e
η(SINR

(k)
ij
−σ)

, (1)

where σ and η are constants corresponding to the coding and
modulation schemes for a given packet length.

TABLE I
PARAMETERS FOR QUEUEING ANALYSIS

Symbol Meaning

λ
(k)
m Arrival rate of a user with priority m at channel k

µ
(k)
m Service rate of a user with priority m at channel k

E[X
(k)
m ] First moment of service time for a user with priority

m at channel k

E[(X
(k)
m )2] Second moment of service time for a user with

priority m at channel k

E[N
(k)
m ] Average number of users with priority m in queue

Q
(k)
m at channel k

ρ
(k)
m Normalized load of channel k due to a user with

priority m, where ρ(k)
m = λ

(k)
m E[X

(k)
m ]

E[W
(k)
m ] Average waiting time of priority m at channel k

R(k) Average residual service time of the ongoing con-
nection at channel k

C. Non-preemptive M/G/1 Queueing Model for Delay Analy-
sis

Multimedia applications have different delay deadlines and
Quality of Experience (QoE) requirements. Based on these
requirements, we categorize the multimedia applications in
M different priorities, where priority m = 1 (m = M) is the
highest (lowest) priority. We assume that the arrival process of
different data flows follows independent Poisson process and
their service time is also independent.

We use a non-preemptive M/G/1 queueing model to charac-
terize the spectrum decision behavior of each node, in which
a user with lower priority is allowed to complete its service
without being interrupted by a higher priority user. However,
when the channel becomes idle, the higher priority user is
served first. Moreover, in order to avoid the head-of-line
blocking effect [26], [27], each channel maintains a separate
queue for each prioritized user group. The main parameters of
non-preemptive M/G/1 queueing model are listed in Table I.

Assume that the maximum transmission rate of a user with
priority m over channel k is Tkm. The first and second moments
of the service time can be obtained as [25]:

E[X
(k)
m ] =

Lm

T
(k)
m (1− PER(k)

m )
, (2)

E[(X
(k)
m )2] =

(Lm)2(1 + PER
(k)
m )

(T
(k)
m )2(1− PER(k)

m )2
. (3)

where Lm is the average packet length for priority m.

According to the non-preemptive M/G/1 queueing model in
[27] and the arrival rate λ(k)

m , we can obtain the expected queue
waiting time E[W

(k)
m ] and the average delay E[D

(k)
m ] of a user

with priority m using channel k as

E[W
(k)
m ] =

R

2(1−
m−1∑
b=1

ρ
(k)
b )(1−

m∑
b=1

ρ
(k)
b )

. (4)

E[D
(k)
m ] =

1

µ
(k)
m

+ E[W
(k)
m ]. (5)

where R(k) is the average residual service time of the ongoing
connection at channel k, and can be represented as [27]

R(k) =
1

2

M∑
b=1

λ
(k)
b E[(X

(k)
b )2]. (6)

A data packet with priority m will be dropped if its delay
exceeds its deadline dm. It can be shown that a packet is more
likely to be dropped when it is transmitted over a channel with
a higher traffic load. Let PDR(k)

m be the probability of a packet
being dropped during its transmission. It equals the probability
of the average delay E[D

(k)
m ] being larger than dm −Delay(k)

m ,
where Delay(k)

m is the current delay of the packet. Then we can
calculate PDR

(k)
m as [28], [29]

PDR
(k)
m =

{ ρ
(k)
m exp(− ρ

(k)
m ×(dm−Delay

(k)
m )

E[D
(k)
m ]

) if ρ(k)
m < 1

1 if ρ(k)
m ≥ 1

,

(7)

where ρ
(k)
m is the normalized load of channel Ck caused by

priority m applications.

D. Utility Function

We represent the overall metric used for selecting a channel
for a link between nodes i and j, as a utility function, which
is defined as,

U
(k)
ijm = ω1 ∗ PER(k)

ijm + ω2 ∗ PDR(k)
ijm. (8)

Where the weight ω1 represents the relative importance of
channel quality, and ω2 represents the channel traffic load
and delay. Different users may have different preferences for
values of ω1 and ω2 as some applications may have stringent
delay constraints whereas others may need higher network
throughput (and hence care more about the channel quality
than delay). In our experiments, we set ω1 = 0.3 and ω2 = 0.7

since our video streaming applications are delay sensitive.
More discussion about the optimal values of ω1 and ω2 based
on the applications can be found in [30].

In order to evaluate the utility function of a channel, each
node broadcasts the following information to its neighbors: 1)
The channel status, which specifies whether a channel is used
or not; 2)The node position and its beam direction denoted as
the vector Υ, which is used to determine whether a node is
located in the interference range of its neighbor nodes; 3)The
channel quality represented by its PER; 4) The traffic load
<. These attributes are stored at each node for future channel
assignments.
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Fig. 3. The system diagram of the proposed RL-based spectrum decision scheme for directional WMNs (algorithm viewpoint).

Next, we describe a video quality metric to evaluate the
impact of spectrum decision on the video quality at the
receiver. The peak signal-to-noise ratio (PSNR) is widely used
to measure the video quality on the receiver side. However,
computing the video PSNR requires complete decoding of the
real-time video at the receiver. Therefore, the use of PSNR as
the spectrum selection metric is not realistic due to its heavy
computational complexity and the resulting delay. We use a
low-complexity and widely-used QoE metric (known as the
mean opinion score (MOS)) to represent the video quality [5],
[31]. The value of MOS is in the range of 1 to 5. In general,
the higher the MOS, the higher the PSNR is. The MOS can
be calculated as [31]

MOS
(k)
j,i =

τ1 + τ2FR+ τ3ln(SBR)

1 + τ4(TPER
(k)
j ) + τ5(TPER

(k)
j )2

. (9)

where TPER
(k)
j = PER

(k)
j + PDR

(k)
j − PER(k)

j · PDR(k)
j is the

estimated total PER of channel k for node j. The coefficients τ1
, τ2 , τ3 , τ4 , τ5 can be obtained by a linear regression analysis
[31]. In our scheme, we focus on the analysis of MOS as a
function of the expected spectrum decision, while assuming
that other parameters of MOS including sender bitrate (SBR)
and frame rate (FR) are fixed.

The above approach uses a myopic spectrum decision
strategy since it greedily chooses a channel with the maximum
utility value, without considering the time-varying radio envi-
ronment in WMNs and the impact of the current decision on
future states. RL [5] can overcome this drawback by allowing
a node to adaptively select a channel under dynamic channel
conditions in each phase. Thus, it can achieve asymptotically
optimal long-term reward by considering the maximum value
of the cumulative rewards for all phases of spectrum decision.
We use RL to define specific states, actions, and rewards, in
order to solve the spectrum decision issue. A brief introduction
of RL is given in the next section.

V. OVERVIEW OF RL-BASED SPECTRUM DECISION

The RL-based spectrum decision scheme used in this paper
is based on our previous work [5]. The RL-based spectrum
decision model uses the Markov decision process (MDP) [32],
which can be described by a tuple of parameters: (S,A, T,R).
Here S denotes the set of system states; A is the set of

candidate actions at each state; T = {Ps,s′ (a)} is the set of state
transition probabilities, where Ps,s′ (a) is the state transition
probability from state s to s′ when taking action a in state
s. R : S × A 7→ < is the reward function, which specifies the
reward or cost at state s ∈ S when taking action a ∈ A.

1) States: For a node i, its state before the (t +

1)th spectrum assignment can be represented as si,t =

{χ(k)
i,t , ϕi,t, ζi,t, θi,t, ξ

(k)
i,t , ρ

(k)
i,t }, here k is the channel ID, χ

(k)
i,t

represents of the idle status of channel k, and ϕi,t reflect the
deafness status. χ(k)

i,t = 0 means node i is NOT in the deafness
direction of its next hop node, whereas χ

(k)
i,t = 1 means node

i is in the deafness direction of its next hop node. ζi,t tells
whether node i is in the capture range of other nodes. The
remaining parameters have the same meaning as before.

2) Actions: We denote ai,t = {α(k)
i,t , β

(k)
i,t } ∈ A as the

candidate actions of node i in state si,t at its (t+ 1)th channel
assignment. α(k)

i,t represents which beams will be turned on
for transmission after the (t + 1)th channel assignment. β(k)

i,t

represents the channel selection parameter, which determines
the probability of selecting channel k as the transmission
channel after the (t+ 1)th channel assignment.

3) Rewards: The reward R of an action is defined as the
predicted reward function of multimedia transmission, for a
certain channel assignment. If the transition and reward models
of MDP are known, we can obtain the optimal action for each
node. It enables a node to find an optimal policy π∗(s) ∈ A, i.e.,
a sequence of actions {a1, a2, a3, ...} for state s, to maximize the
total expected discounted reward in the long run. The Bellman
optimality equation [33] takes into account the discounted
long-term reward of taking an action.

The system diagram of the proposed RL-based spectrum
decision scheme is shown in Fig. 3. The node i first observes
the current state si,t at its tth spectrum decision. Based on
the current state, the node will choose an action for spectrum
decision. After the selected action is performed, the node
transits to a new state. Meanwhile, the node can calculate the
reward based on the exchange information from its neighbors
and its current state. For example, based on the neighbors’
position, beam direction, and channel usage, the node can
determine the idle status of a channel. From the traffic load of
the channels, the node can calculate the waiting time before
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being served again. The node uses the calculated reward to
update its policy. Then it repeats the same process.

VI. APPRENTICESHIP LEARNING BASED PERFORMANCE
SPEED-UP

Due to the complex and dynamic nature of channel as-
signment in directional WMNs, the learning process of RL
is slow, especially in the startup phase or when a node
experiences unexpected changes. Moreover, it is difficult to
define an explicit reward function to exactly represent the
different action-state pairs due to the large state space of
directional WMNs. In this section, we describe how to use the
knowledge from expert nodes to expedite the learning process
of the apprentice node. Besides, the apprentice node is able to
learn from the expert node via expert demonstration with the
unknown reward function.

The AL algorithm is adapted from [34], but we have used
it for a different application and also defined different states,
actions, and rewards function. The issues of HOW to choose
the teachers (i.e., expert nodes) and WHEN to learn from the
teachers were not addressed in [34]. These issues have been
addressed in our paper as discussed below.

A. When to Learn?

We use the AL for only the following two cases by taking
into account the tradeoff between the learning rewards and the
overhead. (i) A new node joining the network can learn from
its neighboring expert node which has already acquired the
optimal polices. (ii) The performance of a node may degrade
(such as decrease in the link SNR below a threshold) due to
changes in the network (such as the node mobility or changes
in the beams). As a result, the current channel occupied by
the node may become unavailable because this node may
move into the interference range of other nodes currently using
this channel. Our scheme can be used by this node to learn
from its neighboring expert node about how to act in its new
environment.

B. How to Select a Teacher or Expert Node?

The node should select the most suitable expert node, based
on the level of expertise and the impact that its actions may
have on the environment. We assume that the expert node is
already stable and has a maximum-reward function, which is
a linear combination of known features. We use three types
of information (i.e., channel condition, node statistics, and
application information), shown in Table II to evaluate the
similarity between the expert and apprentice nodes.

Since the log database that stores the expert node’s radio
condition data could be huge (because many records are
buffered and there are multiple attributes for each channel),
we need to deal with high-dimensional data. We propose to
use the manifold learning (as shown in Fig. 4) to extract the
past channel features from each beam’s records. The manifold
learning uses Bregman Ball models (Fig. 4) to extract different
types of patterns from the database. We define a Bregman ball
[35]–[37] as the minimum manifold with a central µk, and a

TABLE II
PARAMETERS FOR SEARCHING THE EXPERT NODE

Layer Symbol Parameters

Channel Statistics

y1 Bandwidth
y2 RSSI
y3 CINR
y4 Code Rate
y5 BER

Node Statistics
y6 Modulation Schemes
y7 Available Data Rate

Application Statistics
y8 Application Data Rate
y9 Delay Constraint

X1 X2 

… … 

Bregman Balls 

Q 
Q 

P 

Beam/node logs 

 
Information Geometry  

If Q is here, a new 
Bregman Ball 
should be initiated.  

Geodesic walk 

 

Fig. 4. Information Geometry based node-to-node teaching.

radius Rk. Any data point Xt at time t, which is inside this ball,
has a strong statistical similarity (or, small signal distortion)
with the central µk. That is:

B(µk, Rk) = {Xt ∈ X : DΦ(Xt, µk) ≤ Rk}. (10)

Here DΦ(p, q) is well-known Bregman divergence, which is
defined as the manifold distance between two signal points
p and q (both are probability distribution mass values in a
manifold space of X). Such a distance calculation is associated
with a strictly convex and differentiable generator function Φ():

DΦ(p, q) = Φ(p)− Φ(q)− 〈∇Φ(q), p− q〉. (11)

where ∇Φ = [ ∂Φ
∂x1

, ∂Φ
∂x2

, . . .] is a gradient operator. Here < ∗, ∗ >
is the inner product operation. An interesting aspect of Breg-
man divergence is that many types of distances could be
generated from its different generator functions. For example,
if Φ(x) = x log(x)− x, Bregman divergence becomes Kullback-
Leibler (K-L) divergence [35]–[37].

The Manifold learning analyzes each segment (called ”win-
dow”) of high-dimensional data and detects similar or dis-
similar data points based on their statistical distances. Such a
distance is based on a geodestic distance model, which is a
special K-L divergence value between two statistical variables.
The central µk is the cluster center in each data window from
the apprentice node’s network context statistics. The radius
Rk is the pre-set threshold of geodestic distance. It cannot be
set too small since the teacher node’s context may have much
dissimilarity from the apprentice node. Also, it should not be
too large, otherwise different contexts would be classified in
the same Bregman ball.
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We now describe the process to find the similarity among
nodes: First, we take all nodes’ information as multi-variable
random signals, and map them to a manifold that uses Fisher
Information (here Bregman divergence is used to approximate
its value) to measure a Geodesic walking distance (it is the
shortest path distance between any two manifold points). Each
manifold point (Fig. 4, P or Q) could follow a particular
probability distribution. Therefore, the Geodesic distance (be-
tween P and Q) reflects the similarity between two probability
distributions. Such a similarity level could be strictly defined
as follows:

For any two manifold points P and Q, we define a distance,
called symmetric Bregman divergence (SBD) [35]–[37]:

Dis(P,Q) = [DΦ−L(P,Q) +DΦ−R(Q,P )]/2. (12)

Where DΦ−L is left-type Bregman divergence, and DΦ−R is
right-type Bregman divergence [35]–[37]. If SBD is less than
a pre-defined threshold, we say P and Q are similar to each
other. The reason for using such a SBD-based distance metric
is because general single-type Bregman divergence does not
meet the conditions of Symmetry (i.e., dis(y, x) = dis(x, y)) and
Triangle Inequality (i.e., dis(x, y) ≤ dis(x, z) + dis(z, y)).

Next, based on the node similarity level between a new node
point (say, Q), and a central point (say, P), Q is regarded as a
part of the Bregman ball of P if they are similar to each other;
otherwise, Q is used as a center and a new Bregman ball is
initiated. Fig. 4 illustrates such an idea. Each ball actually
represents a “cluster” from classification viewpoint. Thus we
have used the information geometry theory to achieve both
segmentation and clustering.

C. How to Learn?

To avoid the overhead, only those state-action pairs of the
Q-table that occur frequently should be sent to the apprentice
node. In AL, an expert node has the optimal policy πE and its
state-action pairs. This optimal policy can be found according
to some unknown reward function R∗. The goal of AL is
to have the apprentice node learn this reward function by
sampling the trajectory of the expert node. In this paper, we
adopt the AL [34] to learn a policy π̃ that can achieve as
good performance as the expert policy πE under the unknown
reward function R∗.

We assume that, in directional WMNs, there exists a
vector of features φ(s) over states and the “true” reward
functions R∗(s) which belong to some hypothesis space H =

{(w∗)Tφ(s), w ∈ Rk}. We impose the constraint w∗ < 1 as in
[34], to ensure that the rewards are bounded by 1. With the
vector w*, we can specify the relative weights among different
system states, which may have different effect on the network
performance. A policy π denotes the probability of an agent
taking the action a given the state s. Therefore, we can redefine
the value function V π(s) of a policy π as [34]:

V π(s) = E[
∞∑
t=0

γtR(st)|π]

= E[
∞∑
t=0

γtwTφ(st)|π]

= wTE[
∞∑
t=0

γtφ(st)|π].

(13)

where the expectation is achieved by starting from an initial
state s0, and taking the actions according to the policy π for
a random state si. We express the second term of the value
function in (13) as µ(π), the so-called feature expectations.
Therefore, the function can be rewritten as V π(s) = wTµ(π).
From the above equation, we can see that the apprentice node
in directional WMNs can perform as well as the expert node
with an optimal policy πE if we find a policy π̃ for the
apprentice node such that ‖µE −µ(π̃)‖2 ≤ ε, where ε is a small
value with ε > 0.

The use of a high-similarity value would require more
calculations in the apprentice node. We set ε to be 0.01 in
order to achieve a good balance between the computational
complexity and the accuracy. The AL algorithm used in our
channel assignment scheme is described in Algorithm 1 (Part
2) [34]. It was shown in [34] that AL algorithm can converge
in a small number of iterations, and the apprentice node can
find a policy that can achieve the performance close to that
of the expert node, even when the algorithm cannot correctly
recover the expert’s reward function.

The proposed AL-based spectrum decision scheme is dis-
cussed in Algorithm 1. The apprentice node broadcasts its state
information through the HELLO messages in the all-beam-on
mode. Once the neighbor nodes within communication range
receive the broadcast messages, they will determine their sim-
ilarity with the apprentice node by using the manifold learning
as described in Section VI-B. Every neighbor node sends the
similarity score to the apprentice node. The apprentice node
ranks its neighbor nodes according to their similarity scores
and chooses the one with the highest score as the expert node.
Then AL is performed for this apprentice node to learn the
policy for its spectrum decision.

VII. EXPERIMENTAL RESULTS

In this section, we compare the performance of our proposed
spectrum decision scheme with the CI-based scheme which
uses only the channel interference (CI) as the metric for
spectrum decision. Both schemes also use the multi-beam
antenna and multiple channels. However, the CI-based scheme
does not consider the traffic priority. Four types of multimedia
applications are considered in our experiments, which are
prioritized according to their delay deadline requirements.

1) Video with very low delay constraint of 500ms is
assigned the highest priority. The 420p resolution, whale show
video sequence is used in this application, encoded at 10
frames per second and 512Kbps bit rate. The video PSNR
is 31.4dB.

2) Live streaming with delay constraint of 2s is assigned
the 2nd highest priority. The 720p resolution, park joy video
sequence is used in this application, encoded at 30 frames per
second and 2Mbps bit rate. The video PSNR is 34.9dB.

3) Video on demand with delay constraint of 4s is assigned
the 3rd highest priority. The 720p resolution, old town se-
quence is used in this application, encoded at 30 frames per
second and 2Mbps bit rate. The video PSNR is 34.3dB.

4) File download application, which is best effort, is as-
signed the lowest priority. No packet is dropped due to the
long delay deadline.
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Algorithm 1 The AL-based spectrum decision scheme.
Part 1:

Input: channel statistics, node statistics, application statistics
Output: The best policy π(s, a) for node i
1) if node i is a new node
2) Perform AL algorithm in Part 2.
3) elseif
4) Determine the status of channel k used by node i based on node’s

position and beam orientation.
5) Calculate channel PER using (1).
6) Calculate the expected queue waiting time E[W

(k)
j ] using (4).

7) Calculate the average delay E[D
(k)
j ] using (6).

8) Calculate the PDR using (7).
9) //Calculate the utility function

10) U
(k)
ij = ω1 ∗ PER(k)

ij + ω2 ∗ PDR(k)
ij .

11) if U(k)
ij is less than a predefined threshold

12) //The performance of node i is worse
13) Perform AL algorithm in Part 2.
14) After learning from the expert node, node i performs RL by itself.

Part 2:
Input: channel statistics, node statistics, application statistics
Output: The learning policy of node i
1) Initialize Q(s, a) arbitrarily.
2) Exchange info. among node i and its neighbors.
3) Use manifold learning to find the expert node.
4) Transfer the frequently occurring state-action pairs from expert node

to node i.
5) Repeat
6) Node i randomly selects an initial policy π(0).
7) Compute µ(π(0)) and set j = 1.
8) Solve maxt,wt(j) to find w, s.t. wTµE ≥ wTµ(k) +

t(j), k = 0, . . . , j − 1 and ‖w‖2 ≤ 1.
9) if t(j) ≤ ε

10) Terminate the AL learning process.
11) Select a policy from a set of policies {π(0), . . . π(j−1)}

which is closet to the expert policy µE as in [34].
12) elseif
13) Slove the MDP by using RL algorithm and the reward function

R(j)(s) = (w(j))Tφ(s).
14) Obtain the optimal policy π(j).
15) Compute the feature expectation µ(j) = µ(π(j)).
16) Set j ← j + 1.

The video sequences were encoded using H.264/AVC JM
reference software [38] at the transmitter.

We carried out our simulations using Matlab. We assume
that IEEE802.11 MAC layer and a proactive routing scheme
(such as dynamic source routing or DSR) are used for
searching the teacher (or expert) nodes in the neighborhood.
Physical layer uses OFDM-based multi-carrier modulation.
The WMN has 30 nodes, which are randomly deployed in
a 5000mx5000m area. Each node is equipped with directional
antenna and has mobility (< 10m/s). The antenna beamwidth
is 45◦, and ON (OFF) duration of each beam is 1s (3s). The
number of channels is 10 and the maximum transmit rate
of each channel is 3Mbps. The PER of a channel is chosen
randomly from 2% to 10%.

1) Effect of the Traffic Load: In this section, we study the
performance of both spectrum decision schemes for various
traffic loads. Fig. 5 shows the average traffic delay as a
function of per node traffic load. The traffic delay (when
the application priority is ignored) in our proposed scheme is
lower than the the CI-based scheme. When the applications are
prioritized in four levels, the applications with higher priority
have more strict delay constraints. Our proposed scheme
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Fig. 5. The effect of traffic load on the average delay of directional
WMNs for spectrum decision schemes.

is able to satisfy the delay requirements of different video
applications. The higher priority applications in our scheme
have much better performance than the CI-based scheme. This
is because the non-preemptive M/G/1 queueing model in our
scheme can provide more channel access opportunities for the
higher priority applications. Moreover, our scheme considers
the effect of link load, channel quality, node position, beam
orientation, deafness, capture, and application priority levels,
rather than selecting a channel with the lowest interference
between neighboring links in the CI-based scheme.

In Fig. 5, the average delay increases with the increasing
traffic load. Since the probability of a channel being busy
increases for a higher traffic load, the packets have to wait for
longer duration in the queue before being served. However,
the delay for the higher priority (lower priority) applications
in our scheme increases at slower rate (faster rate) than the CI-
based scheme. Since the applications are prioritized according
to their delay deadlines, our proposed scheme allocates more
network resources for the higher priority applications at the
cost of increasing delay of the lower priority applications.

TABLE III
COMPARISON OF TPER VALUES FOR DIFFERENT TRAFFIC LOAD PER

NODE (BPS) FOR BOTH SPECTRUM DECISION SCHEMES.

traffic
500K 750K 1M 1.25M 1.5M 1.75M 2M 2.25M

P1 Ours 3.6% 3.7% 3.9% 3.9% 4.1% 4.2% 4.4% 4.5%
CI 7.5% 7.7% 8.2% 8.9% 10.1% 11.2% 12.4% 14.0%

P2 Ours 3.0% 3.2% 3.4% 3.8% 4.4% 4.8% 5.2% 5.6%
CI 7.0% 7.2% 7.5% 8.0% 8.7% 9.7% 10.8% 11.9%

P3 Ours 2.3% 2.4% 2.7% 3.3% 3.9% 5.5% 7.3% 10.0%
CI 6.4% 6.5% 6.8% 7.1% 7.5% 8.0% 8.4% 9.0%

P4 Ours 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%
CI 5.6% 5.6% 5.6% 5.6% 5.6% 5.6% 5.6% 5.6%

In Table III, our proposed scheme achieves much lower
TPER values than the CI-based scheme. This is because
the CI-based scheme does not consider the priority of the
applications and selects an idle channel for the transmission
without considering the channel quality and the traffic load of
that channel. Another interesting observation in Table III is
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that the applications with the second priority (having longer
delay deadline) have a lower TPER value than the applications
with the first priority (having smaller delay deadline) when
the traffic load is less than 1250Kbps in our proposed scheme.
Similarly, the applications with the third priority have lower
TPER values than the applications with first and second
priority when the traffic load is less than 1500Kbps. This is
because less packets of a lower priority application are dropped
due to their longer deadlines when the traffic load is lower.
However, the TPER value of a lower priority application
increases faster than a higher priority application for a higher
traffic load, because (i) more packets are generated by the
application, leading to longer delay in the queue before being
transmitted. If their waiting time exceeds their delay deadline,
these packet are dropped; and (ii) our scheme allocates the
best channel(s) for a higher priority application by considering
the channel PER, load, etc. Also, the TPER values of the
applications with the 4th priority are always very low because
they do not have a delay deadline requirement.
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Fig. 6. The effect of traffic load on video PSNR of directional WMNs
for spectrum decision schemes.

Fig. 6 shows the video PSNR of different priority appli-
cations as a function of the traffic load. The PSNR drops
when the traffic increases, because many packets are dropped
due to their delay deadline. Our scheme has much better
PSNR performance than the CI-based scheme for the reasons
described above.

2) Effect of Node Density: The maximum traffic per node
is 2Mb/s and the PER of a channel is picked randomly from
2% to 10%. Fig. 7 shows the average delay as function of
node density achieved by the proposed and the CI-based
schemes, for the traffic of the same priority and different
priorities. As expected, the average delay increases with the
increasing number of nodes in the network as more traffic
is generated which leads to more contention for the channel
access among these nodes. However, our scheme achieves
much better performance than the CI-based scheme because
it considers the effect of the node deafness, capture and
the traffic load. Moreover, the delay of the higher-priority
applications increases at a much slower rate in our scheme
than the the CI-based scheme, because the non-preemptive

M/G/1 queueing model in our scheme provides more channel
access to the packets of the higher-priority applications.
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Fig. 7. Effect of node density on the average delay of directional
WMNs for the spectrum decision schemes.

A. Comparison of AL, RL, and Myopic-based Spectrum De-
cision Schemes

In this experiment, we compare the performance of the
AL-based spectrum decision scheme with the myopic and the
RL-based schemes when (1) the mobility of the newly-joined
node is very low (i.e., it does not experience widely different
channel conditions); (2) The mobility of the newly-joined
node is relatively high (i.e., it experiences different channel
conditions with time). The AL-based scheme searches for the
expert node(s) in the 1-hop neighborhood of the newly-joined
node. If it cannot find an expert node, the routing or neighbor
discovery scheme is used to extend the search area to find a
suitable expert node.

We use the MOS metric, instead of PSNR, to represent the
QoE. Fig. 8(a) shows the performance of different spectrum
decision schemes for a very low mobility node. As expect-
ed, the RL-based spectrum decision scheme outperforms the
myopic scheme. Furthermore, the AL-based spectrum decision
scheme achieves slightly better performance than the RL-based
scheme during the start-up stage, as it speeds up the learning
process by allowing the newly-joined node to learn from its
expert neighbor node(s). Fig. 8(b) shows the performance of
different spectrum decision schemes for a relatively higher
mobility node. The AL-based scheme outperforms the RL-
based scheme during the start-up as well as the other time
slots. This is because the AL-based scheme allows the expert
nodes to transfer their policy and their frequently occurring
state-action pairs to the apprentice nodes when they join the
network or experience a different channel condition, which
speeds up their learning process. In our experiments, we
assume a different channel condition when the utility function
drops below a predefined threshold.

VIII. CONCLUSIONS

We proposed an AL-based spectrum decision scheme for
directional WMNs, which use multiple channels and nodes
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Fig. 8. Comparison of the myopic-based, RL-based, and AL-based spectrum decision schemes.

equipped with multi-beam directional antennas. The proposed
scheme performed the channel selection and handoff by con-
sidering various WMN parameters, such as the link load,
channel quality, node position, beam orientation, capture, deaf-
ness, video priority, and interference among nodes. In order
to achieve the optimal quality of multimedia transmission in
the long term, our scheme used the RL algorithm for channel
assignment. However, RL may be slow and complex due to
the distributed and time-varying features of the directional
WMNs. Therefore, we proposed an AL algorithm by allowing
an apprentice node to learn form the expert node to expedite
the learning process. In the AL algorithm, we addressed the
vital questions of When/Who/What to learn from the expert
nodes. Manifold learning was also used to deal with the
high-dimensional data available at the WMN nodes. Our pro-
posed learning-based channel assignment and handoff scheme
achieved better performance than other schemes.
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