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An Intelligent Thermal Sensing System for
Automatic, Quantitative Assessment of Motion

Training in Lower-Limb Rehabilitation
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Abstract—Many patients who suffer from the paralysis can
recover body functions by taking appropriate rehabilitation train-
ing. This paper presents an intelligent, low-cost sensing system
which can automatically generate quantitative measures of the
quality of human motions. This study aims to develop a home-
oriented cyber-physical system (CPS) to help the patients improve
their motion coordination capability via physical training. The
system provides quantitative evaluation for the performed mo-
tions. The measures evaluated by the system include the motion
style of the legs, the periodicity of the foot trajectory, and the foot
balance level, which are recommended by the physical therapists.
The motions of legs and feet are recorded by the thermal camera,
and the plantar pressure is measured by the insole pressure
sensors. We have developed innovative algorithms to extract the
leg skeletons from the thermal images, and to implement motion
signal auto-segmentation, recognition and analysis for the above
mentioned measures. The experimental results have verified that
the proposed system could efficiently acquire and analyze the
lower-limb motion information.

Index Terms—Rehabilitation, physical therapy, motion seg-
mentation, recognition, thermal camera, pressure sensor.

I. INTRODUCTION

RECOVERY from a stroke or a spinal cord injury is
difficult and could be a life-long process. Many patients

can improve their motion functions after receiving carefully
arranged physical training. Nowadays patients typically go to
hospitals or facilities for rehabilitation. The nurses or therapists
are needed in the programs to guide and correct the patients’
training. The labor costs are thus very high. For example, the
cost of physical therapy for stroke patients in the United States
is about $28 billion per year [1], and this number keeps going
up in modern society.

One way to alleviate the medical burdens is to use intelligent
rehabilitation systems to automatically recognize the patient’s
motions, and provide real-time evaluation and feedback. Today
there are various sensing systems as well as machine learn-
ing techniques for systems. Unlike the general applications
(such as smart homes) which coarsely recognize the human
motions, the sensing system for rehabilitation training needs
to recognize the motion of specific limbs or body parts with
fine resolution. Today wearable inertial sensors [2], general
cameras [3] and Microsoft Kinects [4], are the typical sensing
systems used for this purpose.
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In this research, we regard a complete human motion as a
series of static postures (with time). Wearable sensors can de-
tect the dynamic motion signals, but they typically capture the
changes of the posture (such as acceleration values), instead of
the concrete posture image itself. Thus they have limitations
when the measurement of the human limbs’ absolute positions
is desired. For example, one issue we concern is that if the
patient’s knee is raised high enough in the training. The
positions of the knee, thigh, and foot cannot be captured via
existing wearable sensors such as accelerometers since they
do not record the image data. The cameras and depth sensors
(such as Microsoft Kinect) can capture the image. However,
general cameras are limited by the illumination conditions
and the obstacles. MS Kinects cannot accurately capture the
images within a short distance (less than 1 meter). Although
some special algorithms can be applied to overcome those
limits, they typically involve high computation cost.

In our image sensing system, we have used the thermal
camera, which has the advantages of general cameras, but has
no limitations in illumination and background since it takes the
thermal images. It needs much less effort to extract the human
subject from the images. In home-based rehabilitation systems,
the thermal camera is desired to have low price, reasonable
resolution, and small size. Most of the thermal cameras on
the market are huge and expensive. The system Therm-App
[7] wireless thermal camera that we used has a size smaller
than a cell phone, costs less than $1K, and can be connected
to any Android platforms.

Many machine learning techniques can be used for rec-
ognizing the human motions. Most of those methods either
extract the features from the motions, or perform the motion
recognition by directly comparing the similarity of motion
series. For the recognition of continuous motion data, segment-
ing the motion series is a necessary step. And segmentation
and recognition of motion series are actually interrelated. The
segmentation methods include supervised methods [9], [10]
and unsupervised methods [12]. The feature-guided methods
may lose some important raw information because the motion
is represented by the extracted features. The unsupervised
methods have large uncertainty in the segmentation process.

The contributions of our work include (1) the integrated
sensing system for home-oriented rehabilitation training, con-
sisting of a low-cost mobile thermal camera and the wireless
thin film pressure sensors as shown in Fig. 1; and (2) the
corresponding novel algorithms for real-time motion analysis:

(a) The fast skeleton extraction algorithm for the thermal
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image data.
(b) The Peak Match Time Warping (PMTW) algorithm

for accurate recognition and auto-segmentation of the motion
series. It reduces the computation time of warping path search
used in conventional DTW schemes. It can avoid mismatches
between the time series containing peaks and has strong ability
to resist data noise.

(c) The Scored Time-Delay Embedding (STDE) for period-
icity analysis of the motion series. Few related studies have
been reported in this area.

(d) Foot balance measurement. The Fourier power spectrum
of the plantar pressure is used to provide the foot balance
status of the patient, which is also an important rehabilitation
progress metric.

The rest of the paper is organized as follows. Section II
briefs the related work. In Section III we will introduce the
architecture of our sensing system and the measures to be
considered in rehabilitation. Then we detail our proposed
algorithms for segmentation, recognition and analysis of the
motion data in Section IV. Section V presents the experimental
results. And Section VI concludes the paper.

II. RELATED WORK

We will discuss the related studies in terms of hardware and
software designs that are close to our system.

A. Hardware

Up to this point, the inertial sensor, video camera, MS
Kinect, and marker based motion capture system are the most
popular sensing hardware units for human motion detection.

The inertial sensors mainly include accelerometers and
gyroscopes. Hsu et al. [2] have used inertial sensors for
stride detection and gait cycle decomposition to analyze to
gait pattern and balance level. However, inertial signals can
accumulate the displacement errors, and cannot capture the
comprehensive human postures since they cannot “see” the
real images of human body.

Video camera can “see” the body skeleton. For example,
Ayase et al. [3] have built an general camera system for at-
home fitness exercise guidance. General cameral system can
record the postures of human motions. However, video/image
processing often consumes huge computing resources when
extracting the limb motions. It is also limited by the illumi-
nation conditions and background obstacles, and often has a
limited field of view. MS Kinect captures depth images and
has been used in medical applications. But its signals can be
blocked by the obstacles near the subject. For example, Ar
et al. [4] have built a recognition system with home-based
physiotherapy exercises based on MS Kinect. Marker-based
system is usually used in research and film industry. It uses
cameras to detect the markers on the body joints. Das et al.
[5] have performed full-body motion capture for Parkinson
patients through a marker-based Vicon system. Marker-based
system captures the most accurate human posture in the
existing techniques. But its high cost makes it not suitable
to home-oriented applications.

B. Software

Some proposed algorithms used simple signal features for
the segmentation of motion series. In the work [2] they
segment the gait cycles by examining the changing points
of the sensor signals. Some other works used more accurate
segmentation and recognition methods. For example, Lin et
al. [9] have proposed an online segmentation scheme by using
zero-velocity crossings and velocity peaks as features, and
Hidden Markov Model as recognition method. Lin’s method
has applied a frequency filter, and can thus filter out the
fast or slow motions. Frank et al. [10] have used Time-
Delay Embedding (TDE) method to recognize the time series.
The TDE projection of the original signals may lose much
information of the motion series.

Another popular method for the recognition of the time
series is Dynamic Time Warping (DTW). It can calculate
the similarity between two time series with different lengths,
but the DTW alignment of two time series only considers
the amplitudes of time series. It will match the points with
close amplitudes together even one point is at the peak and
the other is at the valley. Keogh et al. [11] have proposed a
Derivative DTW (DDTW) that alleviates the above mentioned
mismatch problem by introducing the first order derivative of
the time series. Zhou et al. [12] have developed a hierarchical
segmentation (HACA) based on Dynamic Time-Alignment
Kernel method (DTAK) and k-means clustering. It uses an
unsupervised learning, but has large computation overhead and
is sensitive to initial values and parameters.

Regarding the analysis of the periodicity of motion series,
very few studies have targeted on the quantification of peri-
odicity. Liu et al. [13] have used Fourier spectrum power to
determine the periodicity of image series. However, the Fourier
spectrum power can only determine the existence of sinusoid
components, and thus is not a good measure of periodicity for
more complex signals.

III. SENSING SYSTEM OVERVIEW

The overview of the system is shown in Fig. 1. In this work
we focus on measuring three aspects: the motion of raising
legs, the periodicity of the motion trajectory, and the foot
pressure balance. The proposed sensing system is designed
to acquire these measures in lower-limb motions, but it can
also be used for other detections such as upper-limb motions.

A. Rehabilitation Measures

American Physical Therapy Association (APTA) has de-
fined 54 outcome measures [14] for the patients with stroke
in rehabilitation. The measures such as “6 minute walk” and
“Berg Balance Scale” are proper assessment of the patient’s
speed, strength, endurance, etc. However, those measures
mostly reveal the final training effects without descriptions of
the entire process. For example, does the patient’s motion show
good periodical patterns? In this work, we will consider some
other measures that can reveal the dynamics of the patient’s
motions. Especially, we will target the following 3 measures:

(1) Height of raising legs. Jaffe et al. [8] have found that
the individuals with post-stroke hemiplegia have an obvious
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Fig. 1. The sensing system architecture.

improvement in gait velocity and endurance by taking the
training of stepping over obstacles. As a matter of fact, raising
legs is not a simple training step. It requires good coordination
and enough strength for most of the leg muscles.

(2) Periodicity. The repeatability of the motion trajectory is
considered as an important measure of the patient’s capability
of controlling the limbs. For normal people, it takes no effort
to repeat the walking cycles. But for the stroke patients, it is
already difficult for them to move the limbs, not to mention
moving with the same pattern each time. By training them to
walk with high repeatability we can help them to improve the
control of the leg muscles.

(3) Foot balance. For this measure, we focus on the dis-
tribution of the plantar pressure. The imbalance of pressure
between two feet or within one foot can tell which part of the
foot the subject intends to use: is it right/left leg, inside/outside
foot, front foot, or heel? These parameters are helpful to
correct the patient’s gaits.

B. Sensing System
The sensing system includes the mobile thermal camera and

the wireless pressure sensors.
(1) The thermal camera obtains the thermal video stream

of the subject, and sends it to the server through an Android
device such as a cell phone with Wi-Fi. The thermal images
of the video stream are converted to B&W images, and the
background in the images is subtracted. The skeleton model of
the detected lower limbs is then extracted out from the B&W
images for later use.

(2) The wireless pressure sensor nodes detect the plantar
pressure of both feet, and send the data to the server via
ZigBee-based wireless protocol. The pressure distribution is
obtained by searching the peak values in the power spectrum
of the pressure sensor signals.

The server processes all the sensor data to recognize and
evaluate the subject’s motion patterns as shown in Fig. 1.

IV. LOWER LIMB MOTION ANALYSIS

The motion analysis of the lower limbs is composed of
three parts: (1) the recognition and segmentation of the motion
series, (2) the quantification of the periodicity of the motion
trajectory, and (3) the foot balance analysis. First, the thermal
images from the camera are processed to obtain the human
skeleton model. Second, PMTW algorithm is applied to the
skeleton data for motion segmentation and recognition. Third,
STDE algorithm is applied to the skeleton data for periodicity
assessment. Fourth, the pressure distribution obtained from
the pressure sensors are used to analyze the foot balance of
walking subject.

(a) (b) (c) (d)

Fig. 2. The skeleton extraction of lower limbs from a thermal image: (a) raw
image; (b) B&W image; (c) noise reduction; (d) skeleton extraction.
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Fig. 3. The segmented linear regression of the edge of a leg taken from the
thermal image.

A. Skeleton Extraction from Thermal Image

The thermal camera only requires simple noise reduction
to subtract the background and obstacles as shown in Fig.
2. We have developed a fast skeleton extraction algorithm
for the given B&W images, based on the segmented linear
regression. The algorithm includes the following three steps:
(1) The edge of the extracted subject is taken out as a curve
to be processed. (2) The curve is scanned through to find
the changing points. (3) The changing points are moved in
parallel inside the leg silhouette to become the skeleton joints.
The curve is fitted by the segmented straight lines based on
the detected changing points, as shown in Fig. 3. They are
determined by the minimum error between the curve and the
segmented lines. The overall error function is given by

ERR =

n∑
i=1

(1− wi)×MSEi + wi/li, (1)

Where wi is the weighting factor, MSE is the mean square
error, and li is the length of the segmented line. n is the
number of segments. In this case, there are four segmented
lines, thus n = 4. The objective function minimizes the overall
error by choosing the weighted MSEi and li.

We can set up the value of li based on certain prior
knowledge. If the range of length between skeletons is known,
we can set up the value of li in this range and assign a
relatively large weighting to it, such that the objective function
can converge quickly. The above method can be also used for
skeleton extraction of human arms and other body parts.

B. Motion Recognition

Recognition of the motion series can be performed based
on the extracted lower limb skeleton data. Two problems need
to be solved to recognize the motion series: (1) calculating the
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similarity between different motion series; (2) segmentation of
the motion series.

1) General DTW Method: The motion series may differ
in length. The similarity between different vectors can be
calculated directly. However, it is challenging to define the
similarity between motion series with different lengths. A
widely used solution for this problem is DTW. It calculates
a similarity matrix for two series, and then searches for an
optimal warping path with the maximal cumulative similarity.

2) Proposed PMTW-based Approach: Most of the human
motions contain positive and negative peak patterns. We
thus developed a Peak Match Time Warping (PMTW) based
scheme to calculate the similarity between two time series. The
series alignment in PMTW is based on the matching of the
peaks. It can avoid DTW’s singularity and mismatching issues,
and also avoids the search of the optimal warping path. The
procedure of PMTW algorithm is as follows:

(a) Finding the peaks. The time series with noise typically
contains small noise peaks everywhere. A popular solution
is to use frequency filter, but it is not efficient in our
applications because human motions may have different
speed with the same frequency as the noise. We have
developed a new algorithm “amplitude smoothing” to get
rid of the noise and find the peaks. First, it detects all
the peaks including the noise in the signal. Second, if
the amplitude of a peak is under a threshold, it will be
replaced by the average of its neighboring two peaks.
The averaging operation is implemented iteratively until
the amplitudes of all peaks are above the threshold. In
our tested cases, at most 5 iterations of computation is
enough to eliminate all the noise. And the computational
cost of our amplitude smoothing with 4 iterations is the
same as using one discrete Fourier transform for the same
series. The MATLAB functions ”tic” and ”toc” are used to
calculate the time they consume. Fig. 4 shows the detected
peaks in two artificial signals with noise.

(b) Matching the peaks and warping the series. All the peaks
obtained in the last step will be matched. And the rest of
points in the series will be equally aligned between the
neighboring two peaks, as shown in Fig. 4. This warping
does not need to search for the optimal path since the main
structure of the warping has already been determined by
the matched peaks. If the testing series having different
peak pattern from the template series, the unmatched peaks
will be aligned to the end of the series. In Fig. 4 (c),
since PMTW cannot find the matched peaks, it gives a
low similarity score; but in Fig. 4 (d), DTW tries to align
the testing points with their similar counterpoints, even
the alignment is totally wrong. This can result in a high
similarity score between two dissimilar series. Therefore,
using DTW to recognize motion series can sometimes
generate wrong matching results.

3) Segmentation of Motion Series: The segmentation of
time series based on PMTW is a supervised learning process.
It finds the segments with matched peaks and high similarity
with the template series. The series that is not matched with
the template library will not be recognized. The segmentation
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Fig. 4. Comparison between PMTW and DTW: (a) PMTW alignment and
(b) DTW alignment; (c) PMTW similarity and (d) DTW similarity
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Fig. 5. The segmentation of synthetic signals.

starts from the beginning to the end of the input series to find
all the matched segments, based on the following main steps:

(a) Find all the peaks in the input motion series.
(b) Locate the first group of matched peaks.
(c) Initializing the starting point and ending point. Set starting

point at the first matched peak, and ending point at the last
matched peak.

(d) Move starting point backward until encountering the pre-
vious peak, and then calculate the PMTW score. Pick the
point with the largest score as the final starting point.

(e) Move the ending point forward. Do similar thing as last
step to find the final ending point.

(f) Go forward to search for the next group of matched peaks.

An example of the segmentation of a long synthetic series
containing different patterns of peaks is shown in Fig. 5. It
can be seen that the series matched with different templates
are recognized and segmented from the long series, even they
are disturbed by noise and different speeds.

C. Periodicity of Trajectory

Regarding the period detection, Fourier Transform is the
first consideration. However, frequency analysis can only find
out the existence of sinusoid signals. Therefore, it cannot
accurately measure the quality of periodicity.

1) TDE-based Scheme: TDE is a technique of reconstruct-
ing the dynamics of time series. Suppose there is a dynamical
system with its state at time t as st ∈ Rd, and all these
states belong to the phase space. These states cannot be
directly measured, and the dimension of the phase space d
is also unknown. But we have the observation of the system
ot = α(st) ∈ R, where α is a smooth observation function.
According to Takens Embedding Theorem, the system states
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Fig. 6. The examples of TDE applied to some common signals: (a)
sinusoid with noise; (b) random signal; (c) the STDE-based quality of the
periodicity: 1.sinusoid; 2.sinusoid with noise; 3.sawtooth; 4.synthetic sinusoid;
5.complicated synthetic sinusoid; 6.random signal.

st can be embedded by the observations ot:

f(st) = [α(st), α(st−τ ), ..., α(st−(k−1)τ )]

= [ot, ot−τ , ..., ot−(k−1)τ ],
(2)

Where τ is the lag of time-delay coordinates. A closed subset
of the states st of the system is an attractor. This attractor A ⊂
Rd can be reconstructed by the the embedding k-dimension
delay-vector [ot, ot−τ , ..., ot−(k−1)τ ]. The TDE reconstruction
of some common 1-D time series in 3-D space is shown in
Fig. 6. As we can see, the series with simple periodicity have
a simple and closed attractor, while the random signal has a
mess. The readers who are interested in more details about the
TDE please refer to Takens’ paper [15].

2) Proposed STDE-based Method: TDE can help to ob-
serve the periodicity of the time series, but it does not provide
the procedure on how to measure the periodicity. By observing
the TDE of the signals shown in Fig. 6, some intuitive
conclusions can be drawn: the more periodical the series is,
(a) the shorter length the attractor has; (b) the more likely
the points of the attractor lie in the same place. Based on
the above two observations, an algorithm can be developed to
calculate the repeatability of the time series, that is, we can
calculate the linear density of shortest path in the attractor.
We thus propose an enhanced TDE method, called Scored
TDE (STDE), to achieve such a calculation. Its procedure is
as follows:
(1) Calculate the TDE attractor of the time series.
(2) Pick any point of the attractor as the starting point, and

select the nearest neighbor as the second point.
(3) Repeat the same step to select the third point and the rest

of points. The points can be used for only once.
(4) Calculate the linear length Ls of the generated shortest

path and the degree of periodicity:

QSTDE =
Number of Points

Ls
, (3)

The purpose of calculating the linear density of the shortest
path instead of the direct path is to handle the case that
the distance between two sequential points in a periodical
series is relatively large. For instance, the series (1, -1,..., 1,
-1). The measurement of the periodicity has a few important
characteristics: (1) the length of the periodic series does not
affect its result; (2) the noise in the signal can seriously
decrease the quality of periodicity. The quality of periodicity
based on STDE method for some commonly seen signals is
shown in Fig. 6 (c). It can be seen that

Fig. 7. The experiment setup (with the KineAssist robot treadmill) and the
sensors.

(1) the sinusoid and sawtooth have a quality larger than 40,
and the random signal has a quality near zero;

(2) the quality of sinusoid with light noise is half of the normal
sinusoid;

(3) the complex sinusoid containing multiple frequency com-
ponents has a very low quality even it is still periodical,
because it takes more effort to repeat itself.

D. Feet Balance Measurement

In this paper we focus on the balancing capability of
patients in their rehabilitation training. Thus only the spatial
distribution of the plantar pressure is considered. Four pressure
sensors are placed on the insole to measure four main pressure
areas of the foot, as shown in Fig. 15. These areas cover the
front, back, left and right side of the foot. Fourier Transform
is applied to the signal of each sensor to obtain its power
spectrum, and the highest peak value in the power spectrum
is chosen as the pressure level. The pressure level of these
four points form a rough plantar pressure distribution of one
foot, and two feet generate total eight pressure level points,
which is denoted by a vector p as follows:

p = [p11, p12, p13, p14, p21, p22, p23, p24], (4)

This pressure vector is directly used as the feature vector to
recognize different balance situations:
(a) which leg of the patient is weak;
(b) whether the patient uses too much front/back or

outer/inner side of foot;

V. EXPERIMENT AND RESULTS

The experiment results are composed of three parts: mo-
tion recognition and segmentation, quality of periodicity, and
feet balance measurement. The experiment platform and the
sensors are shown in Fig. 7, We have designed the wireless
pressure sensors. The insoles with thin film pressure sensors
are put in the subject’s shoes. The thermal camera is deployed
right beside the treadmill.

A. Motion Recognition and Segmentation Results

The presented PMTW is for 1-D time series data, but it
could easily be generalized to high-dimensional data. The
skeleton of the lower limbs extracted from the thermal images
has eight skeleton nodes in the 2-D plane with 8 × 2 =
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16 dimensions in total. For the high-dimensional data, the
matching process is implemented as follows: First, we can
select a dimension with the peaks matching with the template
peak pattern. For example, in our case the x displacement
of ankle has a peak pattern. The peak pattern is matched
with the template as shown in Fig. 9. Second, based on the
matched peak pattern, we can calculate the total distance of
all dimensions. Third, we can finish the rest of dimensions, as
described in Sec. IV. B.

Figure 8 shows the the subject’s skeleton model in a
walking cycle. The tested subject walks on the treadmill, and
is asked to perform four motions: gliding, normal walking,
high striding, and kicking. Gliding is to imitate the walking
style of the patients with leg problems, and kicking is to test
the subject’s strength. Four template series corresponding to
those 4 motions are used to segment the tested series. The
segmentation result is shown in Fig. 10.

Another existing segmentation algorithm, called HACA
[12], is used to compare with the performance of our PMTW
scheme. HACA algorithm requires input parameters before
execution, such as the number of motions, the number of
segments, the length of the segments. If these input parameters
are close to the true values, it will have good performance. But
our result indicates that HACA missed one gliding motion
and confused it with the walking motion even the optimal
parameters were given. Compared with other segmentation
methods, PMTW does not need to define many parameters.

The typical similarity scores between the recognized seg-
ments and the template series are also shown in Fig. 10. It can
be seen that all the tested motions have much higher similarity
to their corresponding template series than other templates. For
example, in the 1st bar chart, the recognized gliding segments
has a similarity score of 0.7 to the template of gliding, and
has the similarity score lower than 0.2 for all the other three
templates. All the three walking style motions (gliding, normal
walking, striding) have very low similarity to the kicking.

Two thresholds have been used in our algorithms: (1) The
first one is in the preprocessing “amplitude smoothing”. This
threshold is to eliminate the noise. In our experiment, the
magnitude of the noise is smaller than half of the smallest
signal. Hence the threshold is set smaller than this magnitude.
(2) The second one is in the segmentation algorithm that
calculates the similarity between the tested segment and the
template segment. This threshold affects the recognition true
positives and true negatives. After we evaluate the recognition
rate, we select the similarity threshold as 0.5. As shown in the
similarity score bar chart of Fig. 10, most true positives are
larger than 0.6, and most true negatives are less than 0.4.

The amplitude features of selected skeleton joints in the
motions from different subjects are shown in Fig. 11. The dif-
ficulty levels of performing the four motions: gliding, walking,
striding, and kicking, are increased in order. It can be seen that
for easy motions like normal walking, the subjects have less
differences among them, and their feature clusters are separate
but not so clearly distinguished. For more difficult motions like
kicking, the subjects start to show more differences. And their
clusters are more separate in the feature space, especially there
are obvious differences in the heights of the knees. Performing

Fig. 8. The thermal images and the extracted leg skeletons in the experiment.
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Fig. 9. The segmentation of right leg ankle motion series.

the more difficult motions can better reveal the motion ability
of the tested subjects. For example, in Fig. 11 (b), the motion
features of kicking divides the tested subjects into clearly
different levels.

B. Periodicity Analysis Results

The thermal camera is deployed in front of the treadmill
in this experiment. We focus on the periodicity of the foot
trajectory. We use the foot trajectory instead of the whole
lower-limb trajectory since the foot trajectory is effective to
determine the quality of periodicity of the lower-limb motions.
If the foot trajectory of the subject has a high repeatability,
it typically means that the subject is making good progress.
The variables used for the analysis are shown in the thermal
images of Fig. 12. We trace the trajectory of toex, toey , and
foot angle, where toex = x1, toey = y1, heelx = x2,
heely = y2, and foot angle = tan−1((y2 − y1/(x2 − x1)).

The quality of periodicity of the three variables are consid-
ered separately. In most situations, once the foot strikes on the
ground, it does not move anymore. Thus we only focus on the
area on which the foot strikes. Besides, the supporting foot is
usually blocked by the moving leg in the thermal image. Thus
in our analysis, the motion data after the foot has struck on
the ground is cut off, as shown in Fig. 13.

In Fig. 13 it can be seen that the abnormal walking style is
more random in both temporal and spatial domain. By using
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Fig. 11. The amplitude features of selected skeleton joints from different
tested subjects: (a) gliding; (b) kicking.
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Fig. 12. The feet skeleton extracted from the thermal image.

STDE-based scheme, the spatial domain can be normalized,
and the periodicity can be quantified. The time series shown in
Fig. 13 are reconstructed by TDE method, as shown in Fig. 14
(a). We can see that the normal walking has more converged
attractors for all the three time series. The attractors of those
data look like that of sawtooth signal. The quantification result
given by STDE is shown in Fig. 14 (b). The amplitude of the
tested time series is around 50, which is much larger than the
synthetic signals. Thus the STDE score shown in Fig. 14 (b) is
normalized for better consistence with Fig. 6 (c). This bar chart
shows that the quality of periodicity of the abnormal waling
is about half of the normal walking for all three variables.

C. Plantar Pressure Results

In this experiment the thin film force sensors FlexiForce
A201 from Tekscan are used to measure the pressure under
the feet. The specification of the sensor is given in Table I.
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TABLE I
SPECIFICATION OF THE FLEXIFORCE FORCE SENSOR.

Thickness 0.008 in. Sensing Area 0.375 in. diameter
Length 7.5 in. Standard Force Ranges 445 N (0 - 100 lb)
Width 0.55 in. Response Time < 5 µ sec
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Fig. 15. The pressure signals when the left leg is disabled.

The sampling rate of the pressure sensor is 25 Hz. The time
series of the pressure signals for a subject with disabled left
foot is shown in Fig. 15. The pressure distribution generated
from the power spectrum is shown in Fig. 16. The pressure
level is normalized within the eight pressure levels. The color
and the number indicate the pressure positions, as shown in
Fig. 15. The pressure distribution shows that:

(a) the area near tiptoe sustains the largest pressure load in
normal walking;

(b) when one leg of the subject is disabled, the corresponding
foot still sustains pressure, but the pressure is concentrated
on a small area of the foot. And the available foot is also
influenced, because the imbalance between two feet has
impact on the function of both feet;

(c) when the subject walks on his toes, most of the pressure
goes to the front foot;

(d) when the subject walks on his outer edge of the feet, the
pressure is concentrated on the two sides of the foot.

By studying different walking cases, we find that area 3 on
the foot always supports the body unless one walks on his
heel. Using the pressure feature vector in Eq. 4, the balancing
capability of the subject can be classified. These feature
vectors are originally strong, so we use direct classification:
First, calculate the distance between the tested feature vector
and the model feature vector. Second, the tested feature vector
is recognized as one of the models if its distance to that model
is smallest among all models. The classification performance
is shown in Fig. 17. There is little misclassification between
the disabled left leg walking and the normal walking 2, the
reason may be that subject 2 tends to use more of his left leg
in the tests. For other situations, the classification performs
well.
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Fig. 16. The normalized distribution of plantar pressure under different cases:
(a) normal; (b) walk on toe.
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Fig. 18. The confusion matrix of the recognition performance: (a) Accelerom-
eter system; (b) GEI based method; (c) PMTW scheme;

D. Comparison with Other Systems

(1) CC2540 BLE device with 3-axis accelerometers,
CMA3000d, is used in the experiments. The recognition
performance comparison result is shown in Fig. 18. It can
be seen that IMU sensors have good recognition rate except
that the walking is a little confused with striding. However, we
did not use IMU sensors in our system because they cannot
measure the absolute values of human posture such as the
angle of the knee. Those absolute values can be captured by
the thermal camera.

(2) The existing thermal camera systems are quite expen-
sive. For example, Xue et al. [6] use Flir A40M which costs
$14K. It has a 320x240 resolution and a 60Hz frame rate, and
weighs several pounds. Our system Therm-App has a 384x288
resolution and only 9 Hz frame rate, but it is good enough to
capture the motions of patients under rehabilitation training.
Also, the existing thermal camera systems cannot segment the
motion series automatically in real-time. In the work [6], gait
energy image (GEI) based method is used for the recognition.
The comparison with GEI is also given in Fig. 18. As we
can see, the GEI method has poor performance in terms of
differentiating the four motions, while our PMTW scheme has
small confusions among them.

(3) MMS Kinect can detect everything in the field of view.
In our application, the treadmill and the bands supporting the
subject, become obstacles in the depth image, as shown in Fig.
19. MS Kinect cannot capture the images well due to those
obstacles. While the thermal camera will not be affected by
them. Moreover, the original Kinect SDK cannot recognize the
human skeleton, and the extra image processing takes large
computation overhead.

VI. CONCLUSIONS

This paper has presented an intelligent sensing system for
the quantitative assessment of the motion quality in lower-
limb rehabilitation training. The system used portable thermal
camera and wireless sensors to collect lower-limb motion
data from the subjects. We have developed a series of fast

(a) (b)
Fig. 19. The comparison of detection performance: (a) MS Kinect depth
image; (b) thermal image.

algorithms to process the sensor data. To recognize and
segment the motion series, we have developed PMTW-based
algorithm to match the time series and calculate the similarity
between them. To assess the quality of periodicity of human
motions in rehabilitation training, we have developed STDE-
based method to define the motion repeatability. Little work
has been done in this area. For the feet balance evaluation, we
have utilized the spatial distribution of the plantar pressure
data.
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