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Active Compressive Sensing via Pyroelectric
Infrared Sensor for Human Situation Recognition
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Abstract—Conventional pyroelectric infrared (PIR) motion
sensors use paired elements for moving target detection. This
method makes them incapable of measuring thermal signals
from static targets. We need an active sensor that can detect
static thermal subjects. This paper presents our design of active
PIR sensors. The proposed PIR sensing systems can actively
detect static thermal targets by using three methods that are
suitable to different applications: (1) a sensor that can be
rotated by a self-controlled servo motor for the detection of
moving or static thermal subjects nearby; (2) a sensor that is
equipped with a mask for low-complexity posture recognition;
(3) a sensor that can be worn on the wrist for the recognition
of surrounding subjects (this sensor is especially useful for blind
users). Compressive sensing (CS) theory indicates that random
down-sampling method can capture more accurate information
of the original signal than the evenly spaced sampling. Based on
CS theory, we have developed the random sampling structures
for the active PIR systems, and have built a statistical feature
space for human scenario recognition. The experimental results
demonstrate that the active sensing system can efficiently measure
the static thermal targets, and the random sampling scheme has
a better recognition performance than the even sampling scheme.

Index Terms—Active sensing, PIR sensor, Situation recogni-
tion, Compressive sensing, Random sampling.

I. INTRODUCTION

HUMAN situation recognition systems have attracted
many attentions due to their applications in healthcare,

intelligent control, smart house, etc. The situation understand-
ing can be achieved by using the information of locations
and motions of the subjects. Generally situation recognition
is different from motion recognition. The latter focuses on
the individual’s motions, while situation recognition is more
concerned about the scenario context such as the size of the
group, locations and postures of human subjects, and so on.
The identification of such information does not require very
accurate motion capture since our interest is to extract the
intrinsic patterns of the motion signals instead of analyzing
each action’s snapshot images. In situation understanding, the
targets can be measured at a distance despite the subject’s cos-
metic conditions. The system can use low-resolution sensory
data for accurate context identification, and it can be non-
intrusive since the subject may be unaware of the deployed
sensors nearby.

Regarding human situation recognition, the video camera is
perhaps the most widely used device. However, it consumes
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large communication bandwidth and storage space, and it
can be easily influenced by the illumination and background
conditions. For example, it cannot accurately capture the
subject that is in dark environment or is hidden behind other
objects.

Pyroelectric Infrared (PIR) sensors have been employed for
human detection, tracking and identification due to their low
cost, small size, and operation stability under varying temper-
atures. The existing systems employ the passive PIR sensor
that uses dual elements to form a differential measurement, so
that it can detect the thermal change of the environment (rather
than the absolute temperature). This configuration enables it to
detect the moving thermal source, but also limits its application
for static targets.

In daily lives, many ordinary scenarios involve static hu-
mans. During the process of indoor scenario perception, one
or several human subjects may not generate any detectable
motions within a certain period. For example, people are
sitting or reading books. Therefore, it is necessary to develop
active sensing for PIR sensors. Active PIR sensors can detect
the static human subjects by moving the sensor or the mask
(attached in the front of the sensor) to actively generate thermal
changes.

In this paper, we present the hardware and software imple-
mentations of active PIR sensing systems. Particularly we will
present 3 innovative designs that can complement with each
other to form an active compressive PIR sensing system:

The first one has an active thermal sensor that can be rotated
by the motor. It can scan the room to count the number of
people via simple software. The rotation of sensor generates
thermal changes for the detected target(s).

The second one uses rotating multi-mask based on com-
pressive sensing theory for human posture recognition. The
rotating multi-mask is composed of four small masks which
rotate around the sensor. And the rotation of the mask can also
generate active thermal changes for the detected scene.

The third one has a special watch-like design, and can
be worn around the wrist. Active sensing can be achieved
by waving the arm randomly. This mechanism mimics the
mouse’s whiskers as shown in Fig. 1. The mouse has poor
vision and simply uses its whiskers to sense the surrounding
environment. This wearable sensor enables many interesting
applications. For example, it can be used for the blinded to
distinguish between human and non-human thermal sources
surrounding them. Active PIR sensors can serve as the exten-
sion of the walking stick/cane without interfering with other
people. Disabled people can also utilize this sensing system to
assist with their social behaviors, such as avoiding obstacles,
perceiving concealed fellows, etc.
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Fig. 1. The biological sensor and sampling mechanism of mouse’s whiskers.

The data measured by PIR sensors has the sparsity nature
due to the similarity among the data samples collected by
the PIR sensor. The PIR sensing system uses much less
sensors than the MRI and computer vision, but it many PIR
sensors may form a wireless sensor network for large building
monitoring. The energy consumption and computing load may
still be large for these small wireless sensors. Applying the
CS technique largely reduces the number of sensors needed to
achieve the same sensing resolution. Conventional or general
PIR sensors are not able to achieve scenario recognition
without the random sampling technique (random modulated
mask or random sensor deployment). So the use of CS for the
recognition is critical.

Traditional even-spaced sampling method takes equal num-
ber of samples from the sensing space, and thus it has poor
efficiency in terms of removing the data redundancy during the
information acquisition from these compressed analog signals.
To solve this problem we propose to use binary sensing and
pseudo-random sampling in our PIR active sensor design:

(1) In binary sensing, the sensor’s sensing space, called
field of view (FOV), is divided into small regions. If the
signal is detected in a region, it means that the human subject
walks across that region, and the sensor generates a binary
signal ‘1’. Otherwise, it generates ‘0’ for that region. With this
method, the binary sensor signal can describe the geometric
information of the targets since the target may occupy multiple
regions. Binary data has stronger resistance to noise than
analog data due to easily differentiated high and low signals.
Since only bits 1 or 0 are used in the sensing results, it reduces
the data throughput and communication overheads.

(2) Compared to evenly spaced sampling, the pseudo-
random sampling structure based on compressive sensing
principle acquires more information of the target, and thus
has better recognition performance. Based on Buffon’s Needle
model from integral geometry theory, we extract the binary
statistic features to estimate the target size, and achieve the
recognition of static human postures. Such geometric informa-
tion cannot be acquired through analog signals or traditional
algorithms.

The contributions of our work are three-fold:
(1) Design of active sensing schemes through a new rotating

motor unit. Such a motor only adds a 2x2x2 inch volume to the
tiny PIR wireless sensor board. The sensor and its masks can
be periodically rotated to detect static thermal subject (such
as a sitting person or sleeping pet).

(2) Pseudo-random sampling based on multi-mask hard-
ware: We utilize compressive sensing principle to create a
multi-mask lens with pseudo-random sampling structure. Such

a multi-mask can generate rich signal patterns for any thermal
target to be detected. Without such a multi-mask, the incoming
sensing signals just have simple sinusoidal-like curves without
much dominant features. Those rich patterns can be used for
more accurate scenario recognition.

(3) Three-dimensional sampling for wearable PIR sensors:
We have also designed a watch-like PIR sensor with 3-D
sampling method. It can be worn in hand wrist to detect
surrounding subjects.

We will provide the detailed hardware and software design
principle below for our new invented sensor platform. Signif-
icant experiments have been conducted to verify the efficacy
of the sensor hardware design as well as its sampling method.

The rest of the paper is organized as follows. Section II
reviews the related work. In Section III we will introduce
the sensing system setup and sensing theory. Then Section
IV details the sensor design and sensing method. In Section
V we present the experimental results. Section V concludes
the entire paper.

II. RELATED WORK

Video cameras and sensors are the main approaches to hu-
man scenario information acquisition. Below will summarize
the related work in those areas.

Video camera and computer vision have been long used
for human activity and behavior recognition. Oliver et al.
used video camera and Hidden Markov Models (HMM) to
model and recognize the human interactions [1]. Brdiczka et
al. proposed a 3-D video tracking system with multi-modal ob-
servations for daily human activity derivation in smart homes
[2]. Tang et al. used multiple cameras to count the number of
people [3]. Hou et al. proposed a method for human counting
in crowded situation [4]. Microsoft Kinect is a popular camera
which can detect the depth information of the targets. But the
conventional video camera or MS Kinect can be disturbed by
the background objects, especially in indoor scenarios with
much furniture. It causes high computation overhead due to
the algorithms of background image subtraction and subject
segmentation from the furniture items.

Wearable sensors have been used for scene detection for a
long time. Olguin et al. presented a system which can measure
the human interactions, conversational time, physical proxim-
ity to other people for organizational behavior identification
[5]. Baek et al. built a posture monitoring system for context
awareness [6]. Hache et al. used accelerometers in smartphone
platform to detect the daily mobility events [7]. Elhoushi et
al. employed multiple inertial sensors to recognize the indoor
stationary humans or moving actions for navigation purpose
[8]. These wearable sensors for human scenario measurement
need the awareness and cooperation of the targets. In other
words, it is intrusive. For example, an accelerometer needs
to be worn by the target, and the device and the target need
to be registered in the sensing system. Otherwise, the signal
of the target cannot be correctly collected. Wearable inertial
sensors often only focus on individual motion measurement,
thus cannot count the number of people, and are not good at
group activity recognition either.
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PIR sensors with low cost and the ability of motion detec-
tion are widely applied to different applications. Those sensors
can form a distributed sensor network to monitor a room or
other spaces. Wahl et al. used distributed PIR sensors for
people counting [9], and Erden et al. used a single PIR sensor
as the assistance of the video camera for the same purpose
[10]. Luo and Kim et al. proposed the wireless PIR sensor
systems for indoor human localization and monitoring [11],
[12]. Zappi and Yun et al. presented PIR sensor arrays for
human motion direction and tracking systems [13], [14]. Sun
et al. presented a distributed PIR sensor network for moving
human scenario recognition [19]. A research group at Duke
University has conducted a series of studies on distributed
PIR sensor network for human tracking and gait identification
[15]–[18]. Their work used passive PIR sensors. The analog
signal serves as the input of their algorithms. It is unstable
and may change through time.

These works on PIR sensors have demonstrated their ef-
ficiency for motion detection. But they are all applied as
passive sensors. In other words, they cannot detect static
thermal objects. More research on the sampling method of
PIR sensors can be explored to enhance their capability of
human information acquisition. In addition to PIR senors,
other existing non-intrusive sensor systems also have difficulty
when the targets are stationary.

There are some pioneering works in PIR systems us-
ing choppers which have similar functions as our systems.
Hashimoto et al. presented a PIR sensor system with 8-element
array and oscillating mechanical chopper to count the number
of people passing through a wide door [20]. Kobayashi et
al. used the liquid crystal as the chopper of PIR sensor for
human detection [21]. But these PIR systems with choppers
are different from our proposed systems in several ways: (1) In
many conventional systems, the purpose of using choppers in
PIR sensors is to obtain a continuous output as the alternative
of using dual pyroelectric elements for differential detection.
By using choppers for a single sensor (instead of dual sensors),
the sensor can recognize the existence of surrounding thermal
objects. However, unless such a chopper is also equipped a
rotating motor as our system does, it does not aim to detect
“static target as our system does. Due to its non-mask, single-
sensor architecture as well as its simple software, it typically
can only detect the existence (yes or no) of the thermal
target without the capability of distinguishing among different
scenarios (such as people or animal, sitting or walking, etc.).
Our system aims to detect the static target through a masked
sensor array architecture with rotating motor as well as intelli-
gent machine learning algorithms, and can thus recognize the
shapes, types, and scenarios of the thermal targets. (2) Another
major difference is the use of the compressive sensing based
mask (lens) in our PIR system. Conventional pyroelectric
choppers use mechanical [20] or optical [21] mechanisms
and only modulate the thermal signal in the binary format
(such as detected or not detected for thermal sources). Thus
they cannot recognize complex scenarios (such as two people
talking). Our masks on the other hand provide rich modulation
patterns via particular compressive sensing masks, thus it can
generate more diversified signal patterns for different thermal
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Fig. 2. Hardware diagram of PIR sensor with servo control.

sources. (3) The simple modulation model of the conventional
pyroelectric choppers is difficult to interpret in physical model.
The modulation of our mask is closely tied with the Buffons
Needle model, which provides an elegant, accurate physical
explanation of the collected thermal signals.

In our previous work [22], we presented a compressive
gait sensing system based on passive PIR binary sensors, and
developed statistical geometric models for gait information ac-
quisition using several bit streams. Our previous work provides
the insights upon the physical parameters of gait configuration,
and demonstrates the high intra-subject biometric invariance
under different experimental conditions.

In this work we will utilize integral geometry for the
target modeling and feature extraction. With the novel active
sampling method, we are able to measure the static targets.

III. PIR SENSOR SYSTEM AND SENSING MODEL

Our active PIR sensor hardware consists of an IRIS wireless
mote and a sensor board. The IRIS mote is used for the signal
processing and wireless networking. The sensor board includes
a programmable system-on-chip (PSoC), an amplification cir-
cuit, and our invented motor drive unit. The PSoC reads the
ADC data from the sensor and controls the motor. All the
data (sensor signal, amplification gain, rotating angle, etc.) is
sent to IRIS mote via PSoC through I2C protocol for wireless
transmission. The hardware architecture of the sensor node is
shown in Fig. 2.

The PSoC adds certain intelligence to the sensor: it can
change the amplification gains of the sensor when the target-
to-sensor distance is changing. It can also control the sensor’s
orientation for calibration purpose, as shown in Fig. 3. In our
system, there is an angle sensor in the mini motor. PSoC reads
the angle data and determines how to rotate the sensor or the
mask according to the pre-programmed operation modes.

A. Model of Human Target

Binary sensors can achieve highly data-efficient sensing
and captures the intrinsic geometric information of the target.
Direct use of binary data for scenario classification is feasible.
But we may also want to understand the meaning of the binary
data in addition to classifying them for scene identification
purpose. If we could create a physical model that relates the
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geometric meaning to the binary data, we may be able to
explain the generated sensing signals. To recover the geometric
target information from the binary data, we start by building
the physical model of the human target, such that we can know
the size or geometric distribution of the target.

To model the motion of human target, we utilize the
Buffon’s Needle model from the field of integral geometry,
where the human target is modeled as a moving needle in the
FOV of sensors. The probability of the target triggering the
detection by the sensor can be calculated by the math operation
of integration [23]. Two cases are considered here, as shown
in Fig. 4:

(1) In the first case, the traditional sampling structure of
parallel lines are used. The probability of the target touching
the parallel lines is given by [23]:

pc =
2l

πd
, (1)

where the l is the length of the needle, and d is the distance
between two lines.

(2) In the second case, the probability of the target touching
the pseudo-random lines is given by [23]:

prc = 1− (1− 2l

πd
)N , (2)

where d is the diameter of the circle, and N is the number
of the lines in the area. The probability of target triggering the
sensor is the probability of having ‘1’ in the generated sensory
data. Buffon’s Needle model thus can establish the relation
between the geometric information and the binary sensor data.

B. Statistical Features of Binary Sensors

The statistics of binary data can represent the static and
dynamic features of the target. However it usually has a

non-Euclidean geometric structure [24], which means that the
general statistic features are not independent.

We have extracted the statistical features from the binary
sensor’s data streams, as shown in Fig. 5. For the 1-bit
PIR sensory data stream, two features can be generated: (1)
temporal correlation θ, and (2) intersection probability or
marginal density η. They have the following relationship:

η =
ρ10 + ρ01

2
+ ρ11,

θ = log

(
ρ00ρ11
ρ01ρ10

)
, (3)

where [ρ00, ρ01, ρ10, ρ11] are the joint probabilities of
each group of two consecutive bits in a binary data stream.

For a 2-bit PIR sensory data stream, the third feature, spatial
correlation θ12, can be calculated as

θ12 = log

(
p00p11
p01p10

)
, (4)

where [p00,p01,p10,p11] are the joint probabilities of the two
sensors on the same node.

Those three statistical features are orthogonal to each other
[24], and they can be obtained from the decomposition of
a higher-order Markov chain. They can be used for the
scenario recognition. For the passive PIR sensors, the temporal
correlation is related to the temporal transition of the thermal
source; the marginal density is related to the size of thermal
sources; and the spatial correlation is related to the spatial
distribution of the thermal source. The above 3 parameters
have the following features:

(1) On temporal correlation: As shown in Fig.5, suppose
we use 2 sensors in one wireless node. Those two sensors are
arranged in a vertical direction. The top sensor and bottom
sensor each generate a series of sensing results (‘1 means
‘detected, and ‘0 means ‘missed). We define the temporal
correlation (formed by lij) as the ‘1 / ‘0 signal transition
pattern in each row (i.e., a particular sensors results). These
‘1’ and ‘0’ sensor signals are generated from left to right
along the time dimension, so it is called temporal correlation.
It reflects the geometric information of the thermal source
in the ‘horizontal direction. (2) The marginal density is the
probability of signal ‘1’. Generally speaking, a larger ther-
mal source would trigger more ‘1’ signals. (3) The spatial
correlation formed by pij represents the ‘1’ and ‘0’ signal
pattern between two (or more) sensor data streams in the
vertical direction. Generally, a thermal source with bigger size
in vertical direction would more easily trigger “11 pattern (for
a two-sensor case) and may not trigger “00 pattern. Thus
the spatial correlation reflects the geometric distribution of
the thermal source in the vertical direction. We can deploy
those two sensors in a vertical direction with some distance
between them (say 1 foot). Thus the upper sensor can capture
the moving patterns of the upper limbs and the lower sensor
captures the lower limb movement patterns.

C. Compressive Sampling Principle
We have created a multi-mask for the PIR sensor based on

compressive sensing/sampling principle. Such a multi-mask
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Fig. 5. The statistical features of binary sensors.

plays a critical role in sensing process since it can use special
lens architecture to generate rich sensing patterns. Without the
multi-mask, the sensor just generates a simple, smooth analog
signal curve. Below we briefly introduce the mathematical
model of the compressive sampling.

In general, a signal measurement process can be represented
as:

s = Φx, (5)

where s is the measurement data matrix ∈ RM×1, Φ is the
sensing system coefficient matrix ∈ RM×N , and x is the
original (raw) signal ∈ RN×1. In conventional sensing, Φ is
a strict diagonally dominant matrix or diagonal matrix, and it
has M ≤ N . In compressive sensing, the sparse signal can be
measured at a much lower sampling rate than the traditional
Nyquist rate by using random sampling technique. Here Φ is
a random matrix and it could be M � N . For compressive
sensing, the random sampling is an important mechanism that
guarantees the success of signal reconstruction [25].

The human scenario signals can be treated as sparse signals
in thermal distribution space. The human postures can be
modeled as a set of moving sticks, and has much less intrinsic
degree-of-freedom than the mega pixels of video signals.
This makes the scenario recognition easy to achieve via the
PIR sensors. The compressive sensing indicates that random
sampling can better preserve the main features of the target.
Thus we apply pseudo-random sampling design for our PIR
sensors:

- For PIR sensor with rotating mask: we use multiple
random coded masks.

- For wearable PIR sensor: we use 3-dimensional random
sampling with arm movement.

The efficiency of these random sampling designs is verified in
our experimental results in Section V.

Our compressing sensing based sensor design significantly
reduces the hardware and software complexity. To see the
benefit of using compressive sensing in our PIR design, lets
quickly take a look at the original application of compressive
sensing. In the initial study of compressive sensing, people
found that by just using one-pixel camera lens with a recon-
figurable mask pattern in the front of the lens, we can capture
the image of the surrounding scene with high resolution.
The mask keeps changing its grid patterns each time (some
holes blocked, some open). And the camera software then
reconstructs the original high-resolution image by combining
those pixels from different mask patterns. Without using the
above compressive sensing based pixel system, the camera
must have numerous one-pixel lens to form an array in order to

capture the entire scene within only one single shot. Obviously,
this significantly increases the hardware manufacturing cost.

By using the similar principle, our proposed PIR com-
pressive sensing system can measure the human scenarios or
posture information with only one or two pyroelectric sensors
in the chip, after using our manufactured multi-mask that is
equipped in the front of the sensors. Without such a multi-
mask, the same sensing accuracy can only be achieved by
using a huge sensor array with numerous sensors. Thus the
biggest benefit of using compressive sensing is to reduce
the hardware cost. It also saves much energy consumption
due to much less sensor operations. It significantly reduces
the calculation complexity due to much less sampling data
collections, which is critical in any wireless sensor network
with constrained CPU and memory resources.

Our design here is superior to conventional compressive
infrared sensing [26] due to its important feature as follows:
it does not perform signal reconstruction for scenario recog-
nition. As we know, compressive sensing systems typically
need to reconstruct the original signals from the sparsely
sampled signals. Such a reconstruction is often based on high-
complexity L1 or L2 normalization (or other optimization
algorithms). The conventional systems then use such a re-
constructed signal to perform pattern analysis. However, our
system here does not need to perform signal reconstruction,
and we build machine learning algorithms to directly analyze
the compressive signals from multi-masks. We use classifica-
tion schemes to find out which human scenario it belongs to.
Due to the avoidance of complex signal reconstruction, our
system has ultra-low computation overhead. This is important
to real-time applications.

IV. ACTIVE SENSING SYSTEMS

In this section, we will present our three active sensing im-
plementations: (1) rotating sensor, (2) sensor with multi-mask,
and (3) wearable sensor. They can complement with each other
to form a more powerful sensing system. For example, the
rotating sensor and multi-mask sensor can be integrated in
one system to achieve active, compressive sampling.

A. Rotating Sensor

The rotating PIR sensor has a mini motor. The node has two
tiny thermal sensors, which are assembled above the motor.
There is an angle sensor in the motor that sends back the angle
information to the sensor node, such that the PSoC knows
how much it has rotated and determines how much more to
rotate next. At least two sensor nodes are required to count the
number of people by scanning the room. A single node is not
able to achieve that when the subjects are standing in line with
the node, as shown in Fig. 6. In Fig. 6, the number of people
is counted as one for Node 1 and two for Node 2. When more
sensor nodes are used together, ambiguous situations can be
identified more accurately. In this sensor design, the mask of
the sensor uses parallel line sampling structure, as shown in
Fig. 6.
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Fig. 6. Human scenario scanning.

B. Sensor with Multi-mask

With limited number of PIR sensors, we may not obtain
enough information for accurate human posture recognition.
Increasing the number of sensors with different masks is an
approach to extracting more comprehensive target information.
However, the deployment of many sensors is inconvenient.
Compressive sensing provides a promising solution.

The compressive sensing of thermal images with just one
pixel is demonstrated in [26]. A comparison between conven-
tional sensing and compressive sensing of a thermal image
is shown in Fig. 7. In conventional sensing shown in Fig. 7
(a), the target is measured with N measurements, and each
measurement captures a small part of the target. While in
compressive sensing shown in Fig. 7 (b), the target is measured
with M measurements, and each measurement is a sum of the
whole target. The underlying theory of compressive sensing
says that such measurement can reconstruct the target even
M � N .

PIR sensor measures the overall thermal change in the FOV,
and is a good candidate of compressive sensing. The proposed
PIR sensor uses a PSoC-controlled servo to change the mask
of the sensor, such that one sensor can measure the target
with different masks, in order to obtain different measurements
based on the principle of compressive sensing. Without the
need of reconstructing the entire human target shape, our
design can use just one PIR sensor to detect the shape features
of the target.

The proposed PIR sensor is shown in Fig. 8. It has a recon-
figurable multi-mask set with four different masks applied to
the sensor when it rotates. These masks divide the FOV of the
sensor into 4x3 areas, as shown in Fig. 9. Higher resolution
of the mask is not needed here because our design targets a
low-cost PIR sensor architecture, which does not have high
sensitivity to fit such a high-resolution mask.

Different mask architectures could generate different mea-
surements for the same target, and the same mask architecture
may also generate different signals for various targets, as
shown in Fig. 10. In Fig. 10, the thermal subject moving along
“up, middle and down” directions can make the multi-mask
sensor generate different numbers of wave peaks. Thus the
shape of the subject can be measured after one round of mask
rotation, based on the signals detected by the four masks. Note
that in Fig. 10 we regard that each thermal subject consists

…++

1 2 N

(a)

…++

1 2 M

(b)
Fig. 7. The sensing procedure of thermal image: (a) conventional measure-
ment; (b) compressive measurement.

Thermal Sensor

Rota!ng Mask

Mini Motor

Fig. 8. The active PIR sensor with rotating multi-mask.

of multiple hot spot sources, and each of those hot spots is
called a ‘target. From this point of view, we are actually testing
different targets. The reason we can capture the movement
pattern of those different hot spots (i.e., targets) in the same
humans body is because that we used ‘sensor array for a single
wireless PIR node. For instance, in vertical direction we can
use two sensors (see Fig.5). Those two sensors may have 1
foot of gap between them. Thus we can capture the gesture
of two targets (one is arm target and the other is leg target).
Since the arms can be seen as a hot spot (target), we can let
a target move along “up, middle and down directions to study
different geometric distribution of the target.

C. Wearable Sensing for Situation Perception

The wearable sensor is useful for blind people who would
like to detect other people around them. The sensor node uses
similar hardware units as the sensor with servo control but
without a motor. And it is specially designed to fit the hand

Mask 1 Mask 2

Mask 3 Mask 4

Fig. 9. Pseudo-random coded multi-mask design.
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Fig. 10. Different masks generate different measurement for different targets.

Fig. 11. The random three-dimensional sampling.

wrist. It can be tied with a cell phone armband, as shown in
Fig. 11. Its mask also uses parallel sampling structure, and a
pseudo-random sampling can be actually generated from the
natural, random arm movements.

The PIR sensor is capable of detecting thermal sources in
motion, but it cannot detect static targets. Fortunately it is a
wearable sensor. As long as the arm with the sensor moves
just a little bit, (which happens each time the person walks
or just slightly swings the arm), the sensor is able to generate
the detection signals. The blinded can use them to perceive
the situations of surrounding human subjects.

During the measurement process, the user’s arm swings a
little to detect the static targets. In order to achieve better
recognition rate and to alleviate the impacts from different tar-
get distances and orientations, we further propose the pseudo-
random 3-dimensional (3D) sampling. In this sampling, the
sensor is swung left and right, up and down, back and forth
randomly, such that it could sample more information of the
target, and meanwhile it is insensitive to target distance and
orientation in a certain scope. Such a 3D hand movement
aims to find any thermal objects around the user. The ‘back
and forth’ sampling will generate different signal patterns
for the 2D target, and it also helps to alleviate the variance
introduced by the distance to the same target. However, since
the generated sensor data is still based on ‘2D space coding’,
the data is still ‘2D measurement. In other words, we use
‘3D sampling to perform ‘2D measurement. Such random
sampling structure can be represented by Buffon’s Needle
model, already shown in Fig. 4. The similar sampling process
is used by the mouse which can use its whiskers to sense the
geometric shape of the target.

Fig. 12. The experiment set up for the human scenario.

V. EXPERIMENTS AND DISCUSSIONS

The experiment setup for the human detection scenario is
shown in Fig. 12. One person or two people standing in
different positions are tested in the experiment with active
PIR sensors. We have tested several scenarios for each of the
three sensing devices. Some human subjects participated in the
experiments: (1) In the scenarios where the rotating sensor is
used to count people, the subjects stand together, and each
scenario lasts about 10 seconds. (2) In the scenarios where
the sensor with rotating mask is used for posture recognition,
each scenario lasts about 60 seconds in which the subject
performs three postures (standing, sitting, and squatting), each
for several times. (3) In the scenarios of the wearable sensor,
the human subjects to be detected stand or sit in front of the
user wearing the sensor. Each scenario lasts about 25 seconds,
and the worn sensor scans both of the human subjects and the
warm computer/TV screen.

In the experiments, the subjects perform the three postures
(sitting, standing, and squatting), not in a sequential manner.
Instead, they perform those postures randomly.

Our designed and fabricated active PIR sensor nodes and
the sensor board with servo control are shown in Fig. 13.

A. Performance of Target Counting
In the first sensor design (with the rotating motor), the

sensor board generates the logic signal “0 0”, “1 0” and “0
1” to control the motor for stopping, rotating forward, and
backward operations. The control circuit’s voltage output for
the motor is shown in Fig. 14 when the motor is rotating back
and forth. Such a figure is directly taken from the oscilloscope.
The driving voltage is about 2 volts. This output drives the
motor to rotate back and forth to scan the targets nearby.

When two people are standing in a line with one of the
sensors, the sensor signal is shown in Fig. 15. The sensor mask
can help to distinguish the signals from different numbers of
people. The statistical feature of the target counting is shown
in the feature space, as illustrated by Fig. 16. It can be seen that
the scenario of one person has a higher temporal correlation θ,
since one person has a simpler shape and the sensed signals are
more correlated with each other during the process of scanning
the room.

B. Sensor with Rotating Mask
First, a hot soldering iron is used to test the impulse

response of the PIR sensor with a rotating mask. The detected
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Fig. 13. The PIR sensor nodes.

Fig. 14. Motor control signal when scanning the room (voltage captured by
oscilloscope).
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Fig. 15. Signals of two PIR thermal sensor nodes in two direction of scanning
two static human subjects.

signal is shown in Fig. 17. The hot soldering iron stays in
different locations to generate various signals. This result
verifies the functions of active sensing with rotating mask.

In the next experiment, the PIR sensor with a rotating
mask is used to detect the static target’s postures, such that
the system can infer whether the target is reading books or
sleeping, etc. A comparison between the parallel-coded and
random-coded masks is given in Fig. 18. It can be seen that
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Fig. 16. Scanning results of counting people represented in feature space.
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Fig. 17. The hot spot test for the rotating multi-mask along different
trajectories.

for parallel-coded mask, different postures generate the same
signal. Thus they cannot be distinguished from each other.
However, for the case of pseudo-random coded mask (already
shown in Fig. 9), the sitting posture can be easily distinguished
from the standing posture, even just using the raw signal. This
can be seen from Fig. 18.

The comparison between different gesture recognition re-
sults is shown in Fig. 19. The recognition of three basic pos-
tures is tested: standing, sitting and squatting. Two statistical
features θ and η are used for the recognition because only
1-bit binary stream is generated from the PIR sensor with the
rotating mask.

It can be seen from Fig. 19 that from standing to squatting,
the η ’s value, which represents the overall size of the target,
decreases obviously because the actual target size decreases
from the standing, sitting to squatting posture.

The θ ’s value represents the target shape correlation. We
can see that the standing posture has a larger θ variance but the
global distribution of θ is smaller than the squatting gesture.
The θ of the sitting posture is obviously smaller than squatting,
which again proves that the target with the smaller shape has
a larger shape correlation θ.

In summary, the statistical features θ and η are able to
represent the geometric information of the targets.

C. Wearable Sensor Test

An environment setting may consist of both human and
non-human thermal sources. Then how do we distinguish the
non-human thermal source from human sources? In this ex-
periment, the thermal features of TV screen, computer screen,
standing or sitting human subjects are extracted through our
designed wearable PIR sensor node.
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The recognition results of different thermal sources detected
by the wearable sensor are shown in Fig. 20. The wearable
sensor node has two PIR sensors and outputs 2-bit binary
data. Thus three statistical features θ, η and θ12 are used.
The non-human thermal sources such as the TV screen (40”)
and PC screen (21.5”), all have a larger width than the human
thermal sources. Thus they have larger η. And their shapes are
also simpler than human body. Thus they also have a higher
shape correlation θ than humans. θ12 is the shape correlation in
another dimension, and the non-human thermal sources have a
larger θ12 due to their simpler shapes. The clusters of different
thermal sources can be better distinguished in 3D feature space
than in 2D space.

The experiment for testing different sampling methods is
also performed, and the results are shown in Fig. 21. It can
be seen that the features of different thermal sources may not
be easily distinguished from each other when the signal is
collected by swinging the arm along a fixed path. This is
because that the sampling method performed along the fixed
path is not invariant with respect to the thermal source location
and orientation. There is also a difference in terms of c12 ,
which can be seen if we change the perspective angle of Fig.
21. Thus their differences could be due to the size of the target
and the posture (the subjects with different standing postures
may generate very different c12).

By comparison, the 3D random sampling method is in-
sensitive to the locations and orientations of thermal sources
and different users. Different thermal targets can be better
recognized in the feature space. The geometric information
represented by the three statistical features θ, η and θ12 accords
well with the practical truth.

The recognition of different scenario contexts including
different amount of people, different human postures or dif-
ferent thermal sources, can be easily achieved by using the
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Fig. 21. The comparison of fixed sampling results and 3-D random sampling
results.

above statistic features. Since those features reflect the intrinsic
geometric information of the target, the simple classification
method can be used: (1) First, we use the training samples
to obtain a set of features, and we calculate the center and
the covariance matrix of these features. (2) Then we calculate
the Mahalanobis distance between the training sample feature
center and the testing sample features using the covariance
matrix. (3) The Mahalanobis distance to the training sample
center can be used to determine the class of the testing
samples.

For the amount of people, 20 training samples for each
class are collected. For the classification of human postures,
60 training samples for each class are collected. For the
classification of thermal sources, 30 training samples for each
class are collected.

Here we further compare the recognition performance for
our 3 sensor designs. The recognition performance of the three
proposed active PIR sensor designs, in the form of receiver
operating characteristic (ROC), is shown in Fig. 22. It can be
seen that the rotating sensor has the best performance, because
it uses two nodes with 4 sensors, and the signal from different
numbers of people is quite different from each other. The
sensor with rotating multi-mask has the worst performance
among the three designs because it uses only one sensor for the
posture recognition. But its performance is still satisfactory,
with 92% true-positive (TP) rate at 7% false-positive (FP) rate.

Regarding to the noise (decibels) of our motor design,
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our tests show that it is much smaller than the building air
conditioning units. It does not bother the users at all. Moreover,
the motor does not rotate as long as the PIR sensor can detect
any thermal targets. Only when the sensor cannot detect any
thermal signals for over a certain time (the time threshold can
be set up based on the application preferences), the motor
will wake up and scan only once to detect any possible ‘static
thermal objects.

Regarding the energy consumption, the PIR sensor network
consists of both traditional ‘passive sensors and ‘active sen-
sors. As usual, we let all passive sensors turn on all the time
to detect any possible moving thermal objects. However, we
let all active sensors go to ‘sleep status. They are triggered
to wake up only when all nearby passive sensors cannot
detect any thermal objects. Due to such a trigger-based wake-
up scheme, our active sensors will have very low energy
consumption.

VI. CONCLUSIONS

This paper has presented a wireless active PIR sensing
system with three concrete implementations. The PIR sensors
are enhanced to measure the static human targets with the
servo control and arm movement. They complement with
each other for human scenario recognition and enable the
recognition of complex human situations.

The active compressive sampling scheme for the PIR sensor
with reconfigurable multi-mask is designed. This tiny sensing
board with only one sensor has accurate human posture recog-
nition. The wearable PIR sensor for blind user is proposed.
The pseudo-random 3D sampling method is developed for the
wearable sensor to obtain the invariant geometric features of
the static targets. The blind users can use it for indoor or
outdoor applications. They can even use it to detect the coming
cars when crossing the street.

In the future work, these active PIR sensors will be in-
tegrated to form a distributed sensor network for a better
information fusion. PIR sensor node with reconfigurable multi-
mask and two sensors, will be designed to obtain 2-bit binary
data, and the multi-mask assembled with different Fresnel
lenses will also be tested to obtain different sensor detection
distances and FOVs. The work of 2-bit PIR sensor with
multi-mask and multi-lens will provide more information
and improve the performance for complicated human posture
recognition.
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