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Abstract—This paper presents an intelligent spectrum mobility
management scheme for cognitive radio networks. The spectrum
mobility could involve spectrum handoff (i.e., the user switches to
a new channel) or stay-and-wait (i.e., the user pauses the trans-
mission for a while until the channel quality improves again).
An optimal spectrum mobility management scheme needs to
consider its long-term impact on the network performance, such
as throughput and delay, instead of optimizing only the short-
term performance. We use a machine learning scheme, called
the Transfer Actor-Critic Learning (TACT), for the spectrum
mobility management. The proposed scheme uses a compre-
hensive reward function that considers the channel utilization
factor (CUF), packet error rate (PER), packet dropping rate
(PDR), and flow throughput. Here, the CUF is determined by
the spectrum sensing accuracy and channel holding time. The
PDR is calculated from the non-preemptive M/G/1 queueing
model, and the flow throughput is estimated from a link-adaptive
transmission scheme, which utilizes the rateless (Raptor) codes.
The proposed scheme achieves a higher reward, in terms of the
mean opinion score, compared to the myopic and Q-learning
based spectrum management schemes.

Index Terms—Cognitive Radio Networks, Spectrum Manage-
ment, Spectrum Mobility, Spectrum Handoff, Rateless Codes,
Transfer Actor-Critic Learning (TACT).

I. INTRODUCTION

The spectrum mobility management is very important in
cognitive radio networks (CRNs) [1]. Although a secondary
user (SU) does not know exactly when the primary user (PU)
will take the channel back, it wants to achieve a reliable
spectrum usage to support its quality of service (QoS) re-
quirements. If the quality of the current channel degrades, the
SU can take one of the following three decisions: (i) Stay in
the same channel waiting for it to become idle again (called
stay-and-wait); (ii) Stay in the same channel and adjust to
the varying channel conditions (called stay-and-adjust); (iii)
Switch to another channel that meets its QoS requirement
(called spectrum handoff). Generally, if the waiting time is
longer than the channel switching delay plus traffic queueing
delay, the SU should switch to another channel [2].

In this paper, we design an intelligent spectrum mobil-
ity management (iSM) scheme. To accurately measure the
channel quality for spectrum mobility management, we define
a channel selection metric (CSM) based on the following
three important factors: (i) Channel Utilization Factor (CUF)
determined based on the spectrum sensing accuracy, false
alarm rate, and channel holding time (CHT) [3]; (ii) Packet

Dropping Rate (PDR) determined by evaluating the expected
waiting delay for a SU in the queue associated with the
channel; (iii) Flow throughput which uses the decoding-CDF
[4], along with the prioritized Raptor codes (PRC) [5].

The spectrum management should maximize the perfor-
mance for the entire session instead of maximizing only
the short-term performance. Motivated by this, we design an
iSM scheme by integrating the CSM with machine learning
algorithms. The spectrum handoff scheme based on the long-
term optimization model, such as Q-learning used in our
previous work [2], can determine the proper spectrum decision
actions based on the SU state estimation (including PER,
queueing delay, etc.). However, the SU does not have any
prior knowledge of the CRN environment in the beginning. It
starts with a trial-and-error process by exploring each action in
every state. Therefore, the Q-learning could take considerable
time to converge to an optimal, stable solution. To enhance
the spectrum decision learning process, we use the transfer
learning schemes in which a newly joined SU learns from
existing SUs which have similar QoS requirements [6]. Unlike
the Q-learning model that asks a SU to recognize and adapt
to its own radio environment, the transfer learning models
pass over the initial phase of building all the handoff control
policies [6], [7].

The transfer actor-critic learning (TACT) method used in
this paper is a combination of actor-only and critic-only mod-
els [8]. While the actor performs the actions without the need
of optimized value function, the critic criticizes the actions
taken by the actor and keeps updating the value function. By
using TACT, a new SU need not perform iterative optimization
algorithms from scratch. To form a complete TACT-based
transfer learning framework, we solve the following two
important issues: Selection of an expert SU and transfer of
policy from the expert to the learner node. We enhance the
original TACT algorithm by exploiting the temporal and spatial
correlations in the SU’s traffic profile, and update the value
and policy functions separately for easy knowledge transfer.
A SU learns from an expert SU in the beginning; Thereafter,
it gradually updates its model on its own. The preliminary
results of this scheme appeared in [9].

The CSM concept as well as the big picture of our iSM
model is shown in Fig. 1. After the CSM is determined, the
TACT model will generate CRN states and actions, which
consist of three iSM options (spectrum handoff, stay-and-wait,
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or stay-and-adjust).
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Fig. 1: The big picture of iSM concept.

The main contributions of this paper are:
1) Teaching based spectrum management is proposed to en-
hance the spectrum decision process. Previously, we proposed
an apprenticeship learning based transfer learning scheme for
CRN [6], which can be further improved in some areas. For
example, the exact imitation of the expert node’s policy should
be avoided since each node in the network may experience
different channel conditions. Therefore, it is helpful to consider
a TACT-based transfer learning algorithm which uses the
learned policy from the expert SU to build its own optimized
learning model by fine tuning the expert policy according
to the channel conditions it experiences. More importantly,
we connect the Q-learning with TACT to receive the learned
policy from the expert node, which greatly enhances the
teaching process without introducing much overhead to the
expert node.

2) Decoding-CDF with prioritized Raptor codes (PRC)
are used to perform the high-throughput spectrum adaptation.
Due to mobility, the SU may experience fading and poor
channel conditions. In order to improve the QoS performance,
we introduce spectrum adaptation by using the decoding-CDF
along with machine learning. Initially, the decoding-CDF was
proposed for use with the Spinal codes [10], whereas we use
the decoding-CDF along with our prioritized Raptor codes
(PRC) [5]. Our PRC model considers the prioritized packets
and allocates better channels to high-priority traffic.

The rest of this paper is organized as follows. The related
work is discussed in Section II. The channel selection metric
is described in Section III, followed by an overview of the
Q-learning based iSM scheme in Section IV. Our TACT-
based iSM scheme is described in Section V. The performance
evaluation and simulation results are provided in Section
VI, followed by a discussion in Section VII. Finally, the
conclusions are given in Section VIII.

II. RELATED WORK

In this section, we review the literature related to our work,
which includes the three aspects:

a. Learning-based Wireless Adaptation: The strategy of
learning from expert SUs was proposed in our previous work,
called the apprenticeship learning based spectrum handoff [6],
which was further extended in [11] as the multi teacher ap-
prenticeship learning where the node learns spectrum handoff
strategy from multiple nodes in the network. Other related
work in this direction includes the concept of docitive learning
(DL) [7], [12], reinforced learning (RL) used in CRNs [13],
RL-based cooperative spectrum sensing [14], and Q-learning
based channel allocation [6], [15], [16]. DL was successfully

used for interference management in femtocell [7]. However,
it did not consider the concrete channel selection parameters.
Also, it does not have clear definitions of expert selection
process and node-to-node similarity calculation functions. A
channel selection scheme was implemented on GNU radio
in [4]. But the CHT and PDR were not used for channel
selection. The same drawback exists in [15] and [16]. The
TACT learning scheme is superior to RL since it can use
both node-to-node teaching and self-learning to adapt to the
complex CRN spectrum conditions.

b. Channel Selection Metric: The concept of channel selec-
tion metric in CRN was proposed in [6], [17]. A SU selects
an idle channel based on the channel conditions and queueing
delay. A QoS-based channel selection scheme was proposed
in [18], but the channel sensing accuracy and CHT were not
considered. Note that the CHT determines the period over
which a SU can occupy the channel without interruption from
the PU. Further, authors in [19] proposed OFDM based MAC
protocol for spectrum sensing and sharing which reduces the
sharing overhead, but they did not consider the kind of channel
that should be selected by the SU for transmission. Our
spectrum evaluation scheme considers the channel dynamics
with respect to the interference, fading loss, and other channel
variations.

c. Decoding-CDF based Spectrum Adaptation: The rate-
less codes have been used in wireless communications due
to its property of recovering the original data with low error
rate. The popular rateless codes include the Spinal codes [10],
[20], Raptor codes [21] and Strider codes [22], [23], [24].
The rateless codes for CRNs were proposed in [12], [25].
Authors in [12] proposed a feedback technique for rateless
codes using multi-user MIMO to improve the QoS and to
provide delay guarantee. Authors in [4] used decoding-CDF
with the Spinal codes. In this paper, we use decoding-CDF
along with our prioritized Raptor codes (PRC) [5] to perform
spectrum adaptation.

III. CHANNEL SELECTION METRIC

In order to select a suitable channel for spectrum handoff,
the SU should consider the time varying and spatial chan-
nel characteristics. The time-varying channel characteristics
comprise of CHT and PDR, which are mainly observed
due to PU interruption and SU contentions, and the spatial
characteristics comprise of achievable throughput and PER
observed due to the SU mobility. As mentioned in Section I,
the CSM comprises of CUF, PDR and flow throughput which
are described below.

A. Channel Utilization Factor (CUF)
If a busy channel is detected as idle, this misinterpretation

is called as false alarm, which is a key parameter of spectrum
sensing accuracy. We use the spectrum sensing accuracy and
CHT for evaluating the effective channel utilization. From [3],
we know that a higher detection probability, Pd, has a low false
alarm probability, P f . Hence we express the spectrum sensing
accuracy as

MA = Pd(1−P f ) (1)
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If T denotes the total frame length and τ is the channel
sensing time, the transmission period is T - τ. We assume that
the PU arrival rate λph follows the Poisson distribution and the
CHT with duration t has the following probability distribution,

f (t) = λphe−(λph)t (2)

Since PU’s arrival time is unpredictable, it can interfere
with the SU’s transmission. Hence, the predictable interruption
duration can be determined as [26],

y(t) =
{

T −τ− t, 0 ≤ t ≤ (T −τ)
0, t ≥ (T −τ) (3)

The SU transmits the data with an average collision duration
[26] as,

ȳ(T ) = 1−
∫ T−τ

0
(T −τ− t) f (t)d(t) = (T − t)− t(1− e(− (T−τ)

t ))

(4)

Hence, the probability that a SU experiences the interference
from a PU within its frame transmission duration is given by

Pp
s =

ȳ(T )
(T −τ)

= 1−
t

(T −τ)

(
1− e

(
−

(T−τ)
t

))
(5)

(6)

The total channel utilization (CUF) is determined by using
CHT and probability of interference from PU as,

CUF = MA
(T −τ)

T
(1−Pp

s) (7)

Substituting the results from (6) in (7), the CUF can be defined
as follows,

CUF = MA.
t
T

(
1− e

(
−

(T−τ)
t

))
(8)

The CUF can be used to represent the spectrum evaluation
results for the selection of an optimal channel. According
to IEEE 802.22 recommendations, the probability of correct
detection, Pd = [0.9,0.99] and the probability of false alarm,
P f = [0.01,0.1]. Therefore, the probability of spectrum sensing
accuracy is Pd(1−P f ) = [0.81,0.99].

B. Non-Preemptive M/G/1 Priority Queueing Model

We use a non-preemptive M/G/1 priority queueing model
where a lower priority SU accesses channel without inter-
ruption from higher priority SUs. We denote j=1 (or N)
as the highest (or lowest) priority SU. However, any SU
transmissions can be interrupted by a PU. When the channel
becomes idle, a higher priority SU will be served. When a
SU is interrupted by a PU, it can either stay-and-wait in the
same channel until it becomes idle again, or handoff to another
suitable channel.

Let Delay j,i be the delay of a S U j connection due to the first
(i−1) interruptions. A S U j packet will be dropped if its delay
exceeds the delay deadline d j. In our previous work [2], we
deduced the PDR(k)

j,i as the probability of packet being dropped
during the ith interruption for channnel k with packet arrival
rate, λ, and mean service rate, µ. It equals to the probability
of handoff delay E[Dk

j,i] being larger than d j−Delay j,i [2].

PDR(k)
j,i = ρ

(k)
j,i .exp(−

ρ(k)
j,i × (d j−Delay j,i)

E[D(k)
j,i ]

) (9)

Here, ρ(k)
j,i is the normalized load of channel k caused by

type j SU. It is defined as follows,

ρ(k)
j,i =

λi

µk
≤ 1 (10)

C. Throughput Determination in Decoding-CDF based Rate-
less Transmission

After we identify a high-CUF channel, the next step is to
transmit the SU’s packets in this channel. Even a channel
with high CUF can experience the time varying link quality
due to the mobility of SU. Therefore, link adaptation is
important to avoid frequent spectrum handoffs. Generally, the
sender needs to adjust its data rate depending on the channel
conditions since a poor link (lower channel SNR) can result
in a higher packet loss rate. For example, in IEEE 802.11, the
sender uses the channel SNR to select a suitable modulation
constellation and forward error correcting (FEC) code rate
from a set of discrete values. Such a channel adaptation cannot
achieve a smooth rate adjustment since only a limited number
of adaptation rates are available. Because channel condition
variations can occur on very short time scales (even at the
sub-packet level), it is challenging to adapt to the dynamic
channel conditions in CRNs.

Rateless codes have shown promising performance improve-
ment in multimedia transmission over CRNs [5]. At the sender
side, each group of packets is decomposed into symbols with
certain redundancy such that the receiver can reconstruct the
original packets as long as enough number of symbols are
received. The sender does not need to change the modulation
and encoding schemes. It simply keeps sending symbols until
an ACK is received from the receiver, signaling that enough
symbols have been received to reconstruct the original packets.
The sender then sends out the next group of symbols. For a
well-designed rateless code, the number of symbols for packets
closely tracks the changes in the channel conditions.

In this paper, we employ our unequal error protection
(UEP) based prioritized Raptor codes (PRC) [5]. In PRC,
more symbols are generated for the higher priority packets
than the lower priority packets. As a result, PRC can support
higher reliability requirements of more important packets. We
describe below how we can achieve cognitive link adaptation
through a self-learning of ACK feedback statistics (such as
inter-arrival time gaps between two feedbacks). We also show
how a SU can build a decoding-CDF by using the previously
transmitted symbols and how it can be used for channel
selection and link adaptation.

1) CDF-Enhanced Raptor Codes: In rateless codes, after
sending certain number of symbols, the sender pauses the
transmission and waits for a feedback (ACK) from the re-
ceiver. No ACK is sent if the receiver cannot reconstruct
the packets, and the sender needs to send extra symbols.
Each pause for ACK introduces overhead in terms of the
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total time spent on symbol transmission plus ACK feedback
[4]. The decoding-CDF defines the probability of decoding a
packet successfully from the received symbols. In the CDF-
enhanced rateless codes, the sender can use the statistical
distribution to determine the number of symbols it should
send before each pause. The CDF distribution is sensitive
to the code parameters, channel conditions, and code block
length. Surprisingly, only a small number of records on the
relationship between n (number of symbols sent between two
consecutive pauses) and τ (ACK feedback delay) are needed
to obtain the CDF curve [4].

In order to speed up the CDF learning process, the Gaussian
approximation can be used which provides a reasonable ap-
proximation at low channel SNR, and its maximum likelihood
(ML) requires only mean (µ) and variance (σ2). In addition,
we introduce the parameter α, which ranges from 0 (means no
memory) to 1 (unlimited memory), to represent the importance
of past symbols in the calculation. This process has two
advantages: the start-up transition dies out quickly, and the
ML estimator is well behaved for α = 1. The Algorithm 1
defines the Gaussian CDF learning process.

Algorithm 1 : Decoding CDF Estimation by Gaussian Ap-
proximation

1: Input: alpha, % learning rate [0,1]
2: Step-1: Initialization
3: NS =1 % encoded samples
4: sum = 0
5: sumsq = sum2 + 0
6: Step-2: Update % updating sum and samples
7: NS = NS*alpha +1
8: sum = sum*alpha + NS
9: sumsq=sumsq*alpha + NS2

10: Step-3: Get CDF: % estimating CDF by mean & variance
11: mean = sum/NS
12: variance= sumsq/NS - mean2

13: estimate CDF

Using Algorithm 1, the decoding-CDF can be estimated by
using the following standard equation,

F(x) =
∫ NS

0

1

σ
√

2π
e−

(NS−µ)2

2σ2 dx (11)

Here, NS, µ and σ are the number of symbols, mean and
variance, respectively.

For the observed link SNR, we can determine the number
of symbols that need to be transmitted in order to decode the
packet successfully. When the channel condition degrades in-
terms of PER but PDR ≤ PDRth, the additional symbols are
transmitted to adapt to the current channel conditions, which
avoids unnecessary spectrum handoff. After the number of
transmitted symbols reaches the maximum value, (NS )max, the
SU should perform spectrum handoff to a new channel. This
is called as link adaptation using decoding-CDF.

After determining the number of symbols per packet (NS),
which are required to successfully decode a packet, we can
calculate the rateless throughput (TH) of channel k in a

Rayleigh fading channel as [4],

T Hk =
2× fs× (NS )

t
symbols/s/Hz (12)

Where fs and t are the sampling frequency and transmission
time, respectively. The value of NS varies over time due
to the Rayleigh fading channel and number of symbols per
packet estimated using the decoding-CDF curve. Since each
node observes either time spreading of digital pulses or time-
varying behavior of the channel due to mobility, Rayleigh
fading channel is appropriate due to its ability to capture both
variations (time spreading and time varying).

The normalized throughput is:

(T Hk)norm =
T Hk

(T Hk)ideal
(13)

Here, (T Hk)ideal is the ideal throughput calculated via Shannon
capacity theorem.

Now we can integrate the above three models together into
a weighted channel selection metric for ith interruption in kth
channel for the S U with priority j [15],

U(k)
i j = w1?CUF +w2? (1−PDR(k)

i j )+w2? (T Hk)norm (14)

Where w1,w2 and w3 are weights representing the relative
importance of the channel quality, PDR and throughput, re-
spectively. Here w1 + w2 + w3 = 1. Their setup depends on
application QoS requirements. For real-time applications, the
throughput is more important than PDR. On the other hand,
PDR is the most important factor for the FTP applications.
For video applications, CHT (part of CUF model) is more
important.

IV. OVERVIEW OF Q-LEARNING BASED INTELLIGENT
SPECTRUM MANAGEMENT(ISM)

In this paper, the Q-learning scheme is used to compare
the performance of our proposed TACT-based learning scheme
for intelligent spectrum mobility management. More details
about Q-learning based spectrum decisions are available in [2].
The Q-learning uses special Markov Decision Process (MDP),
which can be stated as a tuple (S ,A,T,R) [13]. Here, S depicts
the set of system states; A is the set of system actions at
each state; T represents the transition probability, where T =
{P(s,a, s′)}, and P(.) the probability of transition from state s
to s′ when action a is taken; and R : S ×A 7→ R is the reward
or cost function for taking an action a ∈ A in state s ∈ S . In
MDP, we intend to find the optimal policy π∗(s) ∈ A, i.e., a
series of actions {a1,a2,a3, ...} for state s, in order to maximize
the total discount reward function.

States: For S Ui, the network state before ( j+1)th channel
assignment is depicted as si j = {χ

(k)
i j , ξ

(k)
i j ,ρ

(k)
i j ,φ

(k)
i j }. Here k is

the channel being used; χ(k)
i j depicts the channel status (idle

or busy); ξ(k)
i j is the channel quality (CSM); ρ(k)

i j indicates the
traffic load of channel; and φ(k)

i j represents the QoS priority
level of S Ui.

Actions: Three actions are considered for iSM scheme
- stay-and-wait, stay-and-adjust and spectrum handoff. We
denote ai j = {β

(k)
i j } ∈ A as the candidate of actions for S Ui
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on state si j after the assignment of ( j+1)th channel, and β(k)
i j

represents the probability of choosing action ai j.
The Q-learning algorithm aims to find an optimal action

which minimizes the expected cost of the current policy
π∗(si, j,ai, j) for ( j+1)th channel assignment to S Ui. It is based
on the value function Vπ(s) that determines how good it is
for a given agent to perform a certain action under a given
state. Similarly, we use the action value function, Qπ(s,a); It
defines which action has low cost in the long term. Bellman
optimality equation gives the high and discounted long-term
rewards [27]. For the sake of simplicity, in further sections we
consider si, j as s, action ai, j as a, and state si, j+1 as s′.

Rewards: The reward R of an action is defined as the
predicted reward function for data transmission, for a certain
channel assignment. For multimedia data, we use the mean
opinion score (MOS) metric. Based on our previous work [2],
the MOS can be calculated as follows,

R = MOS =
a1+a2FR+a3ln(S BR)

1+a4T PER+a5(T PER)2 (15)

where FR, SBR and TPER are the frame rate, sending bit
rate, total packet error rate, respectively. The parameter ai,
i ∈ {1,2,3,4,5} is estimated using the linear regression process.
MOS varies from 1 (lowest) to 5 (highest). When the channel
status is idle, ’transmission’ is an ideal action to take, which
would achieve MOS close to 5. On the other hand, when PDR
(State: traffic load) or PER (State: channel quality) is high, low
MOS would be achieved which reflects poor performance in
the acquired channel.

The estimation of expected discounted reinforcement of
taking action a in state s, Q∗(s,a) can be written as [2],

Q∗(s,a) = E(Ri, j+1)+γ
∑

s′

Ps,s′(a)max
a′∈A

Q∗(s,a) (16)

We adopt softmax policy for long-term optimization. π(s,a),
which determines the probability of taking action a, can be
determined by utilizing Boltzmann distribution as [2]

π(s,a) =
exp( Q(s,a)

τ )∑
a′∈A exp( Q(s,a′)

τ )
(17)

Here, Q(s,a) defines the affinity to select action a at state
s; it is updated after every iteration. τ is the temperature.
The Boltzman distribution is chosen to avoid jumping into
exploitation phase before testing each action in every state.
The high temperature indicates the exploration of the unknown
state-action values, whereas the low temperature indicates the
exploitation of known state-action pairs. If τ is close to infinity,
the probability of selecting an action follows the uniform
distribution, i.e., the probability of selecting any action is
equal. On the other hand, when τ is close to zero, the
probability of choosing an action associated with the highest
Q-value in a particular state is one.

Fig. 2 shows the procedure of using Q-learning for iSM.
Here the dynamic spectrum conditions are captured by the
states, which are used for policy search in order to maximize
the reward function. The optimal policy determines the corre-
sponding spectrum management action in the current round.
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Fig. 2: The Q-learning based iSM.

V. TACT BASED INTELLIGENT SPECTRUM
MANAGEMENT(ISM)

The Q-learning based MDP algorithm could be very slow
due to two reasons: (1) It requires the selection of suitable
initial state/parameters in the Markov chain; (2) It also needs
proper settings of Markov transition matrix based on different
traffic, QoS and CRN conditions.

Let us consider a new SU which has just joined the network,
and needs to build a MDP model. Instead of using trial-and-
error to find the appropriate MDP settings, it may find a
neighboring SU with similar traffic and QoS demands, and
request it to serve as "expert" (or teacher) and transfer its
optimal policies. Such teaching or transfer based scheme can
considerably shorten the learning (or convergence) time.

We use the TACT model for the knowledge transfer between
SUs, which consists of three components: actor, critic and
environment [8][9]. For a given state, the actor selects and
executes an action in a stochastic manner. This causes the
system to transition from one state to another with a reward
as feedback to the actor. Then the critic evaluates the action
taken by the actor in terms of time difference (TD) error, and
updates the value function. After receiving the feedback from
the critic, the actor updates the policy. The algorithm repeats
until it converges.

To apply TACT in our spectrum management scheme, we
solve the following two issues:

(1) Selection of the Expert SU: We consider a distributed
network without a central coordinator. When a new SU joins
the network, it performs the localized search broadcasting the
Expert-Seek messages. The nearby nodes may be located in
the area covered by the same PU(s), and thus have similar
spectrum availability. The SU should select a critic SU based
on its relevance to the application, level of expertise, and
influence of an action on the environment. To find the expert
SU, the SUs share the following three types of information
among them, i.e., channel statistics (such as CUF), node statis-
tics (node mobility, modulation modes, etc.), and application
statistics (QoS, QoE, etc.). The similarity of the SUs can be
evaluated in an actor SU by using the manifold learning [6],
which uses the Bregman Ball concept to compare the complex
objects. The Bregman ball comprises of a center (µ(k)) and a
radius (R(k)). The data point Xp which lies inside the ball
possesses strong similarity with µ(k). We define their distance
as [6],

B(µk,Rk) = {Xt ∈ X : Dφ(Xt,µk) ≤ Rk} (18)
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Here D(p,q) is known as the Bregman Divergence, which
is the manifold distance between two signal points (the expert
SU and learning SU). If the distance is less than a specified
threshold, we conclude that p and q are similar to each other.
All distances are visualized in Gephi (a network analysis and
visualization software) [28], as shown in Fig. 3. The similarity
calculation between any two SUs includes three metrics: (1)
The application statistics, which mainly refer to the QoS
parameters such as the data rates, delay, etc.; (2) The node
statistics, which include the node modulation modes, location,
mobility pattern, etc.; (3) The channel statistics, which include
the channel parameters such as bandwidth, SNR, etc. The SU
with the highest similarity value with the learning SU is chosen
as the expert SU. In Fig. 3, SU3 is selected as the expert SU
(i.e., the critic) since it has stronger similarity to the learning
SU (SU1) compared to the rest of the SUs.

Fig. 3: Gephi-simulated expert SU search.

(2) The Knowledge Transfer via TACT Model: The actor-
critic learning updates the value function and policy function
separately, which makes it easier to transfer the policy knowl-
edge compared to the other critic-only schemes, such as Q-
learning and greedy algorithm. We implement the TACT-based
iSM as follows:

(i) Action Selection: When a new SU joins the network,
the initial state is si j in channel k. In order to optimize
the performance, the SU chooses suitable actions to balance
two explicit functions: a) searching for the new channel if
the current channel condition degrades (exploration), and b)
finding an optimal policy by sticking to the current channel
(exploitation). This also enables the SU to not only explore a
new channel but also to find the optimal policy based on its
past experience. The probability of taking an action a in state
s is determined, as mentioned in equation (17).

(ii) Reward: The MOS from equation (16) is evaluated as
the reward resulting out of an action a ∈ {A} taken in state s
∈ {S }.

(iii) State-Value Function Update: Once the SU chooses an
action in channel k , the system changes the state from s to
s′ with a transition probability,

P(s′|s,a) =
{

1, s′ ∈ S
0, otherwise (19)

The total reward for the taken action would be Rs.a. The time
difference (TD) error can be calculated from the difference
between (i) the state-value function, V(s) estimated in the

previous state, and (ii) Rs,a+V(s′) at the critic [29],

δ(s,a) = Rs,a+γ
∑
s′∈S

P(s′|s,a)V(s′)−V(s)

= Rs,a+γV(s′)−V(s) (20)

Subsequently, the TD error is sent back to the actor. By using
TD error, the actor updates its state-value function as

V(s′) = V(s)+α(ν1(s,m))δ(s,a) (21)

Where ν1(s,m) indicates the occurrence time of state s in these
m stages. α(.) is a positive step-size parameter that affects the
convergence rate. V(s′) remains as V(s) in case of s , s′.

(iv) Policy Update: The critic would employ the TD error
to evaluate the selected action by the actor, and the policy can
be updated as [28],

p(s,a) = p(s,a)−β(ν2(s,a,m))δ(s,a) (22)

Here ν2(s,a,m) denotes the occurrence time of action a at
state s in these m stages. β(.) denotes the positive step size
parameter defined by (m∗ logm)−1 [8]. Equations (17) and (22)
ensure that an action in a specific state can be selected with a
higher probability, if we reach the highest minimum reward,
i.e., δ(s,a) < 0.

If each action is executed for infinite times in each state and
the learning algorithm follows a greedy exploration, the value
function V(s) and the policy function π(s,a) will ultimately
converge to V∗(s) and π∗, respectively, with a probability of
1.

(v) Formulation of Transfer Actor-Critic Learning:
Initially, the expert SU shares its optimal policy with
the new SU. Let p(s,a) denote the likelihood of taking action
a in state s. When the process eventually converges, the
likelihood of choosing a particular action a in a particular
state s is relatively higher than that of other actions. In
other words, if the spectrum handoff is performed based on
a learned strategy by S Ui, the reward will be high in the
long term. However, in spite of the similarities between the
two SUs, they might have some differences, such as in the
QoS parameters. This may make an actor SU take more
aggressive action(s). To avoid these problems, the transferred
policy should have a decreasing impact on the choice of
certain actions, especially after the SU has taken its action
and learned an updated policy. This is the basic idea of
TACT-based knowledge transfer and self-learning.

ActionAction

Fig. 4: TACT based SU-to-SU teaching.

The new policy update follows TACT principle (see Fig. 4),
in which the overall policy of selecting an action is divided into



7

a native policy, pn and an exotic policy, pe. Assume at stage m,
the state is s and the chosen action is a. The overall policy
can be updated as [8]:

p(m+1)
o (s,a) = [(1−ω(ν2(s,a,m))p(m+1)

n (s,a)

+ω(ν2(s,a,m))p(m+1)
e (s,a)]pt

−pt
(23)

Where [x]b
a with b > a, indicates the Euclidean distance of

interval [a,b], i.e., [x]b
a = a if x< a; [x]b

a = b if x> b and [x]b
a = x

if a≤ x ≤ b. In this scenario, a = −pt and b = pt. In addition,
p(m+1)

0 (s,a)= p(m)
0 (s,a), ∀a ∈ A but a, ai j. And pn(s,a) updates

itself according to equation (22).
During the initial learning process, the exotic policy pe(s,a)

is dominant. Therefore, when the SU enters a state s, the
presence of pe(s,a) forces it to choose the action, which might
be optimal based on the expert SU. Subsequently, the proposed
policy update strategy can improve the performance. We define
ω ∈ (0,1) as the transfer rate, and ω 7→ 0 as the number of
iterations goes to ∞. Thus the impact of exotic policy pe(s,a)
is decreased. Algorithm 2 describes our proposed TACT-based
iSM scheme.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme, including the channel selection, decoding CDF and
enchanced TACT learning model.

A. Channel Selection:

We first examine our channel selection scheme (described in
Section III), including the effect of spectrum sensing accuracy
(MA) and CHT. We setup the parameters as shown in Table I.

Parameters Values
Number of time slots, (T) 100
False Alarm Probability,P f [0.01,0.1]
Detection probability, Pd [0.9,0.99]

Exponential distribution rate λpi, i = 0,1 [0.02,1]
Temperature, τ 1000

Discount factor, γ 0.001
Transfer rate, ω 0.7

The number of channels 10
Learning rate, α (decoding CDF) [0.9,0.8,0.99]

Packet aggregation cost, n f 10

TABLE I: Simulation Parameters

We consider N=10 PUs, each of them possessing one
primary channel, and randomly select the probability param-
eters given in Table I. Fig. 5a and 5b represent MA and
CHT, respectively. By considering both MA and CHT, the SU
determines the CUF for each channel and ranks them in the
decreasing order as shown in Fig. 5c.

Fig. 6 shows the normalized throughput of the system that
can be achieved by our channel selection scheme (BIGS)
for different frame rates and PU idle durations (CHT). Here,
BIGS refers to the channel sensing using Bayesian Inference
with Gibbs Sampling [3]. For comparison, we also show the
normalized throughput achieved by a random channel selection
(RCS) scheme. Our scheme achieves better throughput than
RCS because it selects the channel with high sensing accuracy

Algorithm 2 : TACT-based Spectrum Decision Scheme

Input: Channel, Node and Application statistics
Output: best policy π(s,a) of S Ui
Part-I

1: Initialization
2: if node is new then
3: if there is expert then
4: Perform TACT algorithm from Part-II
5: else
6: Determine the channel k status and CUF from (8).
7: Find PDR from (9) and (T H)norm from (13).
8: Calculate U(k)

i j using (14) and select the best chan-
nel

9: Perform Q-learning itself
10: end if
11: else
12: Perform TACT algorithm from Part-II
13: if channel condition is below the threshold then
14: Perform one of the three actions: stay-and-wait,

stay-and-adjust, or Handoff
15: end if
16: end if

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Part-II
Input: Channel, Node and Application statistics
Output: best policy π(s,a) of S Ui

1: Initialize Vπ(s) arbitrarily.
2: Exchange node information among node i and its neigh-

bors.
3: Using manifold learning to find the expert.
4: Get the expert policy, i.e., exotic policy Pe(s,a), from

expert SU.
5: Initialize native policy, pn(s,a) .
6: Repeat:
7: Choose an action based on the initial policy π(0).
8: Calculate MOS, update TD error using (20), state-value

function (21), and native and overall policy using (22) and
(23), respectively.

9: Update the strategy function using (17).
10: end

as well as high CHT, whereas RCS does not consider the CHT
and is also prone to channel miss detection and false alarm.

In Fig. 7, we compare the normalized throughput of our
channel selection model with [16] and [17]. In our scheme,
the SU senses the channel and ranks them based on the
channel sensing accuracy and CHT. Similarly, authors in [17]
performed the channel sensing based on the energy detection,
and categorized the channels based on their CHT. In addition,
they considered the directional antenna whereas we use the
omni-directional antenna. Therefore, [17] has higher channel
sensing accuracy than our scheme as the interference level
is much lower in directional communication as compared to
the omni communication. As a result, the throughput of [17]
is higher than ours. To compare our schemne with [16], we
consider that the channel can use one band at a time and
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Fig. 5: The channel selection parameters.

Fig. 6: Comparison of the proposed and random channel
selection schemes. Here, FD represents the frame dura-
tion.

Fig. 7: Comparison of the proposed channel selection
scheme with [16] and [17].
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Fig. 8: Average delay for the non-preemptive M/G/1
priority queueing model and non-prioritized model.

also assume that the Q-learning has achieved the optimal
condition. Alongside we also consider that SU communicates
in its current channel until it is occupied by other users. Since
the channel selection is random in [16], the SU may select
a channel with small CHT even when a channel with longer
CHT is available. Therefore, though its sensing accuracy is
close to ours, the throughput is lower. Channel selection based
on the channel ranking is very important to achieve smooth
communication and to avoid frequent spectrum handoffs.

B. Average Queueing Delay:

We assume that the service time of SUs follows the ex-
ponential distribution, and the number of channels is 10. The
maximum transmission rate of each channel is 3Mbps, and the
PER varies from 2% to 10%. Different priorities are assigned
to the SUs depending on the delay constraint of their flow.
The highest priority (priority = 1) is assigned to the interactive
voice data with rate of 50Kbps and strict delay constraint of
50ms. Priority 2 is assigned to the interactive Skype call with
rate of 500Kbps and delay constraint of 100ms. Priority 3
is assigned to the video-on-demand streaming data with rate
of > 1Mbps and delay constraint of 1sec. Finally, the lowest
priority (priority = 4) is assigned to the data without any
delay constraint (e.g., file download). Fig. 8 shows that the
non-preemptive M/G/1 priority queueing model outperforms
the non-prioritized model. The idle channels are assigned
based on the priority of the applications in priority model.

The higher priority user(s) (such as voice data and real-
time video) will get more channel access opportunities, which
decreases their average queueing delay, whereas the lower
priority user(s) experiences a longer average waiting time. In
the non-prioritized model, all the applications are given the
same priority, which leads to an increase in the average delay.
Therefore, the priority based queueing model is suitable for
SUs with different delay constraints.

C. Decoding CDF Learning:

In this section, we examine the performance of decoding
CDF with Raptor codes over a range of symbols for different
SNR values. Fig. 9 shows the plot of decoding CDF using
Algorithm 1 for the SNR values from -5dB to 25dB. For higher

Fig. 9: Estimated CDF for different SNR levels.
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(lower) SNR, we require less (more) symbols to decode a
transmitted packet. The Rayleigh fading channel is used.

Using the decoding CDF, we examine the throughput for
Raptor codes in Fig. 10. For better visualization, Fig. 11 zooms
in a section of Fig. 10. As mentioned before, the decoding
CDF enables us to find the optimal feedback strategy, i.e.,
when to pause for feedback and how many symbols should be
transmitted before the next pause. The throughput is examined
for a SU moving at a speed of 10 m/s over Rayleigh fading
channel at 2.4GHz (channel S NR= 15dB) within a time range
of 100 ms with a packet aggregation cost n f = 10, which
decides the number of packets to be aggregated to send an
ACK. The throughput is estimated offline using Algorithm 1
with learning rate parameter, α, set to 0.9. It can be seen from
Fig. 10 and 11 that α need not to be close to 1 to obtain a good
performance. The throughput achieved by the Raptor codes is
almost half of the Shannon capacity [4]. The decoding CDF
performance is close to that of the ideal learning which is
determined based on receiving ACKs from the receiver.
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Fig. 10: Channel throughput estimation for Raptor codes for Rayleigh fading channel.
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Fig. 11: Zoomed-in section of Figure 10 (for time 61-73 ms).

D. TACT Enhanced Spectrum Management Scheme:

In this section, we study the performance of our TACT-
based spectrum mobility scheme. For 10 available channels
with capacity of 3Mbps each, we assume there are 10 different
PUs with different data rates for transmission which can
interrupt the SU transmission. Different SUs contending for
the channel access also have different data rates. We study
the performance of a SU which is supporting a Skype video
call at 500 Kbps and has a priority of 2. All SUs use the
Raptor codes, and the expert SU teaches a new SU about its
transmission strategy based on the decoding-CDF profile. We
consider the following four cases. Case 1: The newly joined
SU moves very slowly at <5mph; Case 2: The SU moves
fast (>50mph) and experiences different channel conditions;
Case 3: The SU moves fast but does not use the decoding
CDF and pause control for transmission. Instead, it manually
changes the symbol sending rate based on the current channel
conditions; Case 4: The SU moves fast and uses the decoding
CDF. We use the low-complexity MOS metric to estimate the
received quality.

In Fig. 12 (for Case 1), the Q-learning based spectrum
decision scheme outperforms the myopic approach, because

the former takes spectrum decisions to maximize the long-
terms reward (i.e., MOS) whereas the latter considers only the
immediate reward. Further, our proposed TACT-based scheme
outperforms the Q-learning scheme since the newly joined SU
can learn from the expert SU, and thus spends less time in
estimating the channel dynamics. Without the expert node, the
node in Q-learning scheme learns everything by itself, and thus
needs more time to converge to a stable solution. Fig. 13 shows
the result for fast moving SU for Case 2, which experiences
channel condition variations with time. Our proposed TACT
scheme still performs better than the Q-learning scheme.

Fig. 14 depicts the Case 3 where the SU moves fast but
does not use the decoding-CDF concept for Raptor codes.
Since the SU is moving fast, it experiences different channel
conditions. Once the SU attains the convergent state it achieves
a high MOS value. But this does not guarantee that it will stay
in the optimal state during the entire communication due to
variations in channel conditions. Without the use of decoding-
CDF, the SU is unable to adapt to the channel variations
which results in the lower MOS value of around 4. In Fig. 15
(Case 4), the SU uses the CDF curve to learn the strategy of
transmitting more symbols with lower overhead, and achieves
a higher MOS of around 4.4. In both cases we can see that
the MOS drops due to the change in channel condition at time
slot 7. But CDF helps to quickly improve the MOS value to
around 4.4.

Figure 16 shows the effect of transfer rate, ω on learning
performance. We observe that the transfer rate has impact only
at the beginning. Higher the transfer rate (ω = 0.8), faster the
adaptation to the network with less MOS variations. Whereas
lower the transfer rate (ω = 0.2), slower is the adaptation to
the network and more are fluctuations in the MOS value.
The performance converges after some iterations as the SU
gradually builds up its own policy using the expert node.

Figure 17 shows that our TACT based spectrum decision
scheme outperforms the Q (or RL) scheme [2] and the appren-
ticeship based transfer learning scheme [6]. In AL scheme,
the student node uses the expert node’s policy for its own
spectrum decision. This model works well if both the student
and expert nodes experience the same channel and traffic
conditions. Our TACT based model, on the other hand, can
tune the expert policy according to its own channel conditions
in a few iterations.

VII. DISCUSSION

Main concern in transfer learning approach is the overhead
introduced by the expert search and the transfer of its knowl-
edge (optimal policy) to the learner node. The proposed TACT
learning-based spectrum decision requires a ’learner node’ to
communicate only with the closest neighbors, since only these
nearby nodes are likely to have similar PU traffic distribution
and channel conditions. This communication with neighbors
can be easily achieved by the MAC (medium access control)
protocols. It is also possible to piggyback this information
exchange in the node discovery messages. Similarly, route
discovery messages could also be used for this purpose. In
this process, the learner node has more involvement and does
not put much burden of transfer of the expert strategies on
most other nodes in the network.
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Fig. 12: The MOS performance for slow moving node.
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Fig. 13: The MOS performance for fast moving node.
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Fig. 14: The MOS performance comparison without the decoding-CDF.
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Fig. 15: The MOS performance with the use of decoding-CDF
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In fact, a node which is new to the network needs to
exchange the control messages with its neighbors to find
an expert node only in the beginning. If there is a new
transmission task for an existing node, it might be able to
use the policy it has learned over the previous transmissions
without the need of triggering a new round of expert search.
More importantly, the policy π(s,a) is just an array of size 4
(≈ 20bytes), which does not add much overhead to the packet
size.

VIII. CONCLUSIONS

An intelligent spectrum management scheme was designed
by using the TACT based learning algorithm. The primary
goal of this scheme was to make an intelligent spectrum
handoff and stay-and-wait decision for the rateless multimedia
transmissions in dynamic CRN links. The spectrum desicion
scheme requires a good knowledge of channel quality. For
accurate channel quality evaluation of a link, we calculated the
CUF. To adapt to the dynamic CRN channel conditions, we
used the CDF-enhanced, UEP-based Raptor codes to achieve
intelligent link adaptation. A good link adaptation strategy can
significantly reduce the spectrum handoff events. The proposed
cognitive learning scheme can also be useful in other CRN
tasks, such as multimedia streaming over CRN, and dynamic
route establishment.

In future, we intend to further enhance our TACT-based
model, by using the budget-limited teaching process, in order
to efficiently transfer the important parameters from an expert
SU to a learning SU within the given time constraints. The
expert search model will be based on the manifold learning
and NMF (non-negative matrix factorization) pattern extrac-
tion/recognition schemes, so that a more suitable expert SU
can be found in the neighborhood of a learning SU.
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