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Abstract—In this paper, we study the communication-oriented
UAV placement issue in a typical Manned-and-UnManned
(MUM) airborne network. The MUM network consists of a few
powerful aircraft nodes in the higher layer and high-density
unmanned air vehicles (UAVs) in the lower layer. While the
aircraft network is relatively stable, the UAVs can form different
swarm network topologies. Some UAVs are selected as gateway
nodes to aggregate the received UAV data and send to a nearby
aircraft which acts as a control node for the UAVs in a swarm.
Assume a source UAV has data to be sent to its gateway node by
using a route which may have broken links. Our goal is to guide
the position of one or more relay UAVs to make up for the broken
wireless links under the dynamic swarm topology. The placement
of the relay node is determined by both traffic quality-of-service
(QoS) requirements and the link conditions. We design a new
queueing model, called multi-hop priority queue, to analyze the
achievable QoS performance through multi-hop queue-to-queue
accumulation modeling. To handle dynamic swarm topology and
time-varying link conditions, we design a deep Q-learning (DQN)
model to determine the optimal link between two UAV nodes,
and then use an optimization algorithm to locally fine-tune
the position of the UAV node to optimize the overall network
performance. The DQN-based UAV link selection is computed in
the powerful aircraft (control node) which maintains the graphs
of the swarm topology, where the optimization is implemented at
the UAV. Our simulation results validate the throughput efficiency
of our DQN-based UAV positioning scheme.

Index Terms—UAV Swarming, Deep Q-Learning Network
(DQN), Deep Learning, Relay Placement, Multi-Hop Queueing
Model, Manned-and-UnManned (MUM) Network

I. INTRODUCTION

A. UAV Swarm Network

Unmanned aerial vehicles (UAVs) equipped with different
types of sensors are useful in a wide variety of applications,
including the surveillance, target tracking, search and rescue,
and damage assessment. The swarm of micro UAVs [1]
consisting of autonomous UAVs is inherently resilient and
scalable as more nodes can be added and the redundant nodes
removed. Effective communication among UAVs is required
in a swarm to coordinate and achieve the desired tasks [2].

In this paper, we control the position of some UAVs (known
as relay UAVs) to compensate for the broken RF links and
achieve an end-to-end packet delivery in the UAV swarm
network. To achieve efficient UAV swarm management, a
hierarchical airborne network architecture is used, as shown
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in Fig. 1. It is also called the manned-and-unmanned (MUM)
network due to the use of both manned aircrafts (in higher
layer) and unmanned UAVs (in lower layer). The aircrafts have
powerful computational capabilities and can communicate
over long distances. These aircrafts are chosen as the control
node, which can run computation-intensive algorithms (such
as deep learning) in real-time. The UAVs can form different
swarm topologies based on their mission and commands from
the control node in the higher layer.

To simplify the management, the control node communi-
cates only with a small number of selected UAVs, called
gateway nodes (see the star nodes in Fig. 1). These gateway
nodes can be the center of different swarms if a multi-
swarm architecture is used. They typically have relatively less
mobility and higher communication capability. The gateway
UAVs can operate in multiple frequency bands. For example,
one band can be used for UAV-to-UAV and the other for UAV-
to-aircraft communication.

If a UAV has important event data to report, it will search
for a shortest-hop route to reach the closest gateway. However,
due to the dynamic swarm topology, the source UAV may
not be able to find a ’good’ 1-hop neighbor that has the
shortest and high quality route to reach the gateway UAV.
Therefore we use relay UAV node(s) in that sparse area to
serve as the communication ’bridge’. Without such a relay
node, the source node may need to forward its packets over
a much longer route, which is not desirable for quality-of-
service (QoS)-oriented applications.

B. Problem Statement

The goal of this paper is to find the optimal position for
the relay nodes such that the QoS requirements of UAV
swarm applications are met. We illustrate the challenges of
our problem with the help of two examples below.

In the left part of Fig. 1, the Source 1 wants to send its text
data to gateway node G1 but it does not have a good 1-hop
neighbor. Assuming that the control node in the higher layer
maintains the topology map of entire UAV swarm network,
it guides a nearby relay UAV node (denoted as A) to move
to a suitable location to serve as a relay. Here, node A has
two choices: It can move to the P1 (or P2) location to relay
the source data along Path 1 (or Path 2). Here, the control
node needs to make a choice (P1 or P2) based on both paths’
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Fig. 1: Architecture of a UAV swarming network.

QoS support capabilities. Both the coarse and fine location
information is needed where the coarse location tells which
path/link the relay should be placed to and the fine location
tells the exact location in that link.

In the right part of Fig. 1, the Source 2 needs a relay node in
its 1st link, in order to send its video data to gateway G3. Here
the location of relay node needs to be determined carefully.
The P3 location for the relay node, which is close to a high-
density swarm region, is likely to experience congestion. In
contrast, the P4 location is near a sparse network region
that may not generate much data traffic. From congestion
avoidance viewpoint, P4 is a better location than P3.

Note that the need for a relay node can arise not only due
to the long distance between two nodes but also due to strong
interference experienced by the link. To get around a strong
interference region, one or more relay nodes may be needed
to form a detour path away from the interference region.

The relay UAV positioning can be modelled as an optimiza-
tion problem. But the optimization algorithm might get stuck
in local optima due to time-varying swarm network topology.
Since the formation of swarming network may change with
time, the relay node(s) should be repositioned to maintain the
communication performance. Hence, the optimization process
should be performed in stages to establish and maintain the
throughput-optimal communication. It should also consider
the impact of relay node’s position in a specific stage on
the overall throughput performance across all the stages. In
addition, since UAV are power limited, running complex
optimization algorithms on UAV nodes is not feasible.

C. Research Novelty

The first novelty of our work is the use of multi-protocol-
layer (MPL) parameters for identification of UAV swarming
state. The benefit of using different parameters from physical,
data link and routing layers is that they comprehensively cap-
ture the wireless network conditions from both the radio signal
and packet flow viewpoint. Moreover, these parameters can
capture the single-link as well as multi-hop route variations.

Our MPL parameters include: (1) In the physical layer, the
signal-to-interference-noise-ratio (SINR) is used to represent
the signal quality in each link. The interference graph (IG) is
built at the control node to reflect the SINR distribution in all
the links. (2) In the data link layer, the bit error rate (BER) is
used. A well-designed medium access control (MAC) protocol
can minimize the channel access collisions and thus reduce the
BER. (3) In the routing layer, the packet drop rate (PDR) and
routing topology graph (RTG) are used as the state parameters
of the entire UAV network. The RTG is also maintained by
the control node.

The second novelty of our work is the design of a multi-
hop queuing model with M/G/1 Preemptive Repeat Priority
(MHQ-PRP). The queueing model is an important tool for
calculating the packet transmission latency and PDR as it can
quantify the queue congestion status in each node and the
data delivery efficiency. Most conventional queueing models
[3] [4] can only reflect the queue dynamics in a single
node. The advantages of using a multi-hop queueing (MHQ)
model are: First, it can be used to analyze the correlations
among different neighboring queues. Second, it can help a
source UAV to choose the best position for relay node(s)
by comparing the total transmission delay in different multi-
node combinations. For example, the combination of nodes
’source-P1-G1’ (i.e., Path 1 in Fig. 1) may be better than
the combination of ‘source-P2-G1’ (i.e., Path 2). Third, it can
effectively determine the interference experienced in each link.
The MHQ helps to compare the regional interference levels by
co-analyzing the multiple nodes’ queues. We build MHQ-PRP
to reflect different priority and QoS requirements of data flows.

Since the optimization algorithm alone may not achieve the
optimal relay positioning, the third novelty of our research
is to integrate an optimization model with deep Q-learning
network (DQN)-based algorithm for determining the relay
UAV position. The relay node positioning is performed in
two phases: One of the links between UAV nodes is first
selected as the candidate link for placing the relay UAV node.
The relay node then performs local optimization to find an
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optimal position within the link to improve the communication
performance.

The use of DQN has two benefits: First, DQN has a deep
learning module [5], which can be used to accurately identify
the swarm network state based on the comprehensive analysis
of network parameters. Here, the hidden layers of the convolu-
tional neural network (CNN) provide a high-resolution pattern
recognition based on the large number of feature parameters
in the input layer. Second, DQN has a reinforcement learning
(RL)-compatible ‘action’ generation engine, which can search
a globally optimized policy to find the most suitable action
based on the learned state. Here the ’action’ refers to the
selection of a suitable link for placing the relay node between
two UAV nodes. The use of DQN for link selection and
the optimization for accurate relay location determination is
a unique feature of our proposed scheme, compared with
conventional relay placement schemes such as [6], [7], [8].

The DQN model selects a suitable link by considering the
MAC and physical layer parameters at each link. Since our
model also considers the network layer information, it can
capture the information and irregularities at each layer for
every link. Hence, the PDR seen at every link also acts as
an input parameter at every stage of decision making in DQN
algorithm.

Traditional Q-learning [9] algorithms are not able to keep
track of different UAV swarming patterns and channel con-
ditions. Similarly, the algorithms we proposed in [10] [11]
cannot learn the changes in the graph patterns. Hence, we
adopt the memory replay concept [12], i.e., different patterns
of the UAV swarming and channel conditions are recorded and
used to retrain the convolutional layer when the UAV is unable
to choose an optimal action. The replay buffer is maintained
at the control node, and the optimal Q-function values are sent
to UAV nodes to perform an optimal action. By doing so, the
overhead of finding the optimal Q-function in a large swarm
network is reduced.

Note that there is a close relationship between our proposed
queueing model and DQN-based node positioning scheme.
This is because DQN is just a machine learning algorithm
to recognize the network patterns and make decisions. It
cannot run without knowing the input parameters. Hence we
use the queueing model’s results to serve as the DQN input.
Especially, since our multi-hop queueing model includes the
information from both the routing layer (such as multi-hop
architecture) and MAC layer parameters (such as link SINR),
we use the queueing results (such as queueing delay and traffic
service rate) as inputs to DQN. Therefore, it is necessary to
integrate the DQN and queueing models together, to find the
globally optimal UAV relay position in a congested or broken
route.

Paper Organization: The rest of the paper is organized as
follows: The related work is summarized in Section II. The
swarm network model is described in Section III, folowed by
the MHQ-PRP queueing model in Section IV. In Section V, the
deduced queueing results and other swarm network parameters
are used as the input to the DQN model for accurate UAV
positioning. The performance analysis is discussed in Section
VI, followed by the conclusions in Section VII.

II. RELATED WORK

In this section, we briefly review the literature on UAV
swarm network, followed by the multi-hop queueing models
and relay positioning solutions.

A. UAV Swarm Network

Some studies on UAV swarming strategies have been per-
formed in [13] [14] to address the node movement/trajectory
control issues. As mentioned in Section I, the integration of
swarming and networking schemes are critical. Since the goal
of swarming is to mainly generate a particular formation, it can
result in the "communication hole(s)" when the neighboring
nodes have a long distance between them. A relay node must
move there to build a wireless communication ‘bridge’. The
research on UAV communication aims to design the optimal
routing and MAC protocols for a group of UAVs [15] [16].

B. M/G/1 Preemptive Repeat Priority (PRP) Queueing Model

An M/G/1 repeat priority queueing model was proposed
in [17] for the multi-hop video transmission applications.
The video packets were prioritized based on their QoS re-
quirements in a multi-source, multi-receiver wireless network.
In this paper, we extend it to multimedia data including
voice, real-time video, pre-encoded video, and delay-tolerant
data transmissions. A delay- and rate-based priority model
for multi-hop network was proposed in [18]. But it did not
consider the packet-level retransmissions to meet the QoS
demands. This does not fit many practical networks which
use TCP for reliable transmissions. A location-based multi-
hop queueing model was proposed in [19] where packets
are forwarded to the next hop based on the distance of the
source node to the gateway. But the packet priorities were
not considered. Our MHQ-PRP model considers the QoS
differences among multimedia flows and deduces the queueing
delay in each UAV.

C. UAV Positioning Problem

Optimization theory for UAV positioning was proposed in
[6], [7], which considered both energy reduction and through-
put maximization. But it only targets a single UAV case which
acts a relay node between the source and destination. Thus it
is not suitable for a swarm network with dynamic topology.
The UAV was considered as a relay node and its throughput
optimization formulation was proposed for both uplink and
downlink rate adjustments in [20]. But it assumed a simple
network scenario and focused on the placement of a single
moving node. It did not consider the entire multi-hop route
and the impact of dynamic network architecture.

A few other studies did consider the impact of routing
scheme on relay node placement. For example, the UAV
swarming with routing optimization was studied in [21], where
a hueristic approach was used to improve the information
control plane (ICP) performance for building the high-quality
routes among the static nodes. It also used physical control
plane to guide the nodes to reconfigure their positions, ac-
cording to the instructions from ICP. But this scheme can
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easily get stuck in local maxima since it does not have a
reliable method to estimate what will occur in a route in the
future communication stages. In our work, we use a DQN-
based positioning algorithm to find the globally optimized
relay positions.

A time-varying formation tracking protocol with Riccati
equation was proposed in [22] which uses the neighboring
UAV’s profile information (such as traffic types) to guide a
follower UAV to follow a leader UAV. Although this work
considered dynamic topology, it did not not differentiate the
traffic priorities and cannot guarantee the global optimization
of relay node placement.

The path planning of mobile robots was proposed in [23]
by predicting the wireless links through a supervised learning
of the sensed data collected from the neighboring robots.
However, our work aims to determine the suitable location(s)
of intermediate node(s) given the source and destination. It
is not a path planning problem although we also need to
determine location of the next forwarding node.

In a nut shell, although some studies on relay placement
in wireless networks have been conducted, our unique contri-
butions here include the use of a deep-learning-based global
optimization algorithm to determine the best locations for one
or more relay UAV nodes, as well as the adoption of prioritized
multi-hop queueing model to determine the best route for
each type of traffic, in a highly dynamic MUM-based swarm
network.

III. SYSTEM MODEL

As mentioned in Section I, we assume a MUM network
with two layers of nodes. Three types of nodes are present in
the UAV swarm network:

(1) Swarm nodes: Most UAVs (> 90%) belong to this type
of nodes, which form different swarm topologies based on the
application. Fig. 2 shows a typical swarm formation where
N nodes are arranged in a spiral pattern (or circular pattern)
with radius r of S spirals. The center of spiral is the leader
UAV. Such a spiral formation has good surveillance coverage
(its shape naturally covers a specific region). It also has good
communication performance because nodes in the outer circles
can use gradient routing to reach an inner circle node. The
distance between a node ni and any of its immediate neighbors,
such as n j, have the minimum separation Di j ≥ Dmin, where
Dmin is the minimum separation that the two nodes should
maintain. When two nodes are out of each other’s transmission
range, a relay node is needed between them.

Note that the spiral pattern in Fig. 2 is used only as an
example of UAV swarm pattern. In fact, our scheme can be
applied to any type of UAV swarming pattern since our pro-
posed DQN-based node placement algorithm is independent
of UAV swarm formation.

(2) Gateway nodes: a small number of nodes (< 5%) are
chosen as gateways which can directly communicate with the
higher-layer control (i.e., aircraft) nodes. They typically have
a longer communication range than other UAVs. They run data
aggregation algorithms to fuse the received data from different
UAVs and forward the packets to the closest aircraft. They

Fig. 2: UAV swarming pattern.

can also perform dual-band communications. For example, one
band can be used for UAV network, and the other band can
be used to forward the data to the aircraft. Swarm UAV nodes
need to find a multi-hop route to reach the gateway node.

(3) Relay nodes: A small number of nodes (< 5%) among
the swarm nodes do not participate in the swarm formation.
Instead, they are used for compensating the ’communication
holes’. In other words, they move to the broken wireless links
to serve as the communication relays. This paper studies the
movement control of these relay nodes.

In our two-layer network architecture shown in Fig. 1, the
upper layer has a few aircraft nodes which are more powerful
than the lower layer UAV nodes. These control nodes serve
multiple purposes: (1) Execute the DQN algorithm because
such an algorithm needs higher CPU capacity; (2) Control
the global routing topology and send commands to ask the
relay nodes to move to the suitable locations based on the
DQN algorithm; (3) Collect all nodes’ communication status
information from the lower layer UAV nodes.

In addition, we assume that the location of each swarming
node is known via the GPS services. Since the network has
some more powerful gateway UAVs equipped with better
antennas and RF transceivers, they can provide accurate po-
sition information to the control node. If some UAVs can
not provide their accurate location information due to poor
weather conditions or high mobility, an existing wireless
positioning mechanism can be used, such as the GPS-free
positioning [24], time-of-arrival (ToA) or direction-of-arrival
(DoA) based positioning [25]. Since gateways nodes have
reliable location information, they can also be used to deduce
the location of other UAVs by using an existing scheme, such
as the landmark-based positioning scheme [26].

We assume the network is assigned a transmission band-
width of B Hz. The Doppler effect due to the mobility of UAVs
is assumed to be properly compensated. Every swarming node
moves with an approximately constant speed in 2D plane. We
also assume that time interval T is divided into NT discrete
time slots with T = NT ∗ δt, where δt is the length of a time
slot. The value of δt is sufficiently small and the UAV location
is assumed to remain unchanged within each time slot.
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Parameters List

Parameters Description

H Maximum number of hops

di Delay deadline of priority i packet, i ∈ {1,2,3,4}

λi,s,h Arrival rate of packets generated at the source node at hth hop, h ∈ {1,2,3, ..,H}. The packets have priority i

λi,r,h Arrival rate of relayed priority i packets received by a node at hth hop.

Li Length of priority i packet

Ri Bit rate of priority i packet

E[Xi,h] Packet service time of priority i packet at hth hop due to channel quality

Wh Channel access delay at a node of hth hop

Wi,h Queueing delay of priority i packet at a node of hth hop

ρi,h,h+1 Packet error rate (PER) for priority i packets due to the link quality of hth and (h + 1)th hops

Ψi,h Packet dropping rate (PDR) for priority i packets seen at (h)th hop due to channel access delay (Wh) and channel quality

Ch,h+1 Channel capacity of the nodes between hth and (h + 1)th hops

δi,h,h+1 Maximum number of retransmissions for priority i packets between hth and (h + 1)th hops

TABLE I: Parameters List

We assume the link between the two nodes located at (xi,yi)
and (x j,y j) has the Rician fading. The associated SINR level
observed between these two nodes at time slot n can be defined
as

γi j[n] =
Pi[n]Gi j[n]∑N

k=1,k,i Pk[n]Gik[n] +σ2
j

, n = 1,2, ....,NT (1)

Here Pi is the transmit power of node i, Pk is the transmit
power of node k causing interference to node j, σ2

j is the
Gaussian noise variance, and Gi j[n] is the associated channel
response. Thus, the achievable average data rate per time slot
observed at node i is given by,

Ri =
1

NT

NT∑
n=1

Ri[n] =
1

NT

NT∑
n=1

B.log2
(
1 +γi j[n]

)
(2)

IV. PROPOSED MHQ-PRP QUEUEING MODEL FOR UAV
PATH

We consider four priority classes of data packets: 1. Real-
time voice, 2. Real-time video, 3. Non-real-time video, and 4.
General delay-tolerant data. We denote di, i ∈ {1,2, ..,4} as the
delay deadline of each packet priority, where d1 < d2 < d3 < d4.
The used parameters are listed in Table 1.

To make our queueing model more general, we do not tie
it to a specific MAC layer protocol. Each node in the network
maintains two queues, one for its own data with arrival rate
λs,h, and another for relay packets to the gateway node with
the arrival rate λr,h. The gateway node then delivers all the
data packets to the control node in higher layer.

To meet the delay constraints of each packet over the multi-
hop path, we design a queueing model for a multi-hop path
based on the packet priority level. The structure of queueing
model is shown in Fig. 3. For any incoming or generated
packet at the source node, the information such as packet
priority, multi-hop information, time-to-live (TTL), and SINR,

are captured at each hop. If the node is a follower node (tail
end), it directly forwards the packet to the next hop. If the
node is a relay node, it determines the service time, TTL and
arrival rate of each packet.

To analyze the queueing delay in multi-hop environment, the
parameters from different layers are taken into consideration
as discussed below:

1) Application Layer: In this layer, the packet priority
level is assigned based on application’s QoS requirements. For
example, the real-time voice data and commands sent from the
aircraft are assigned the highest priority.

2) Network Layer: Although a shortest path routing proto-
col like AODV [27] is used, we also attempt to build a much
shorter path by adding one or more relay nodes on poor quality
links between the source and gateway nodes. When selecting
a relay node, the following parameters are considered: (i) long
channel idle time (i.e., the channel available in the new link
is not used in neighboring links and thus has the long idle
time), (ii) minimum contention from the neighboring nodes
during channel access, and (iii) minimum transmission power
required to reach the relay node.

3) MAC Layer: Let p(h) be the probability of successful
channel access for the h hop node. The determination of p(h)
should consider the RF interference from other links, channel
contention when multiple neighbors compete for the channel,
the number of available RF channels (if multiple RF channels
are available) and the MAC protocol (such as CSMA-CA or
a schedule-based time division multiple access (TDMA)).

Generally, the node close to a gateway needs to be given
more channel access opportunities, due to its large amount of
relayed traffic. Besides, we use δi,h,h+1 to denote the maximum
number of retransmissions allowed for the priority i packets
between node h and h+1, which depends on the delay deadline
of packets.
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Fig. 3: Proposed queueing model for multi-hop case.

4) Physical Layer: Over H-hops, the end-to-end PDR for
priority i packets is given by

Ψi = 1−
(
1−Ψi,0

) H∏
h=1

1−Ψi,h

 (3)

Here Ψi,h is the PDR incurred due to delay deadline expira-
tion in hop h. Parameter Ψi,0 is the initial PDR observed at the
source node. We provide main queueing delay results below
after adapting some parameters from [11] to the proposed
MHQ-PRP model.

A. Packet Arrival Rate

Assume the packets with priority i arrive at hop h with PDR
Ψi,h. The expected packet arrival rate is given by

(1−Ψi,h)λi,r,h =

h∏
ĥ=1

(1−Ψi,ĥ)λi,s,h (4)

B. Packet Service Time

Assuming the geometric distribution of service time, the first
moment of service time of priority i packets at hop h with
transmission rate Ri,h,h+1 packets/sec due to channel quality
can be expressed as

E[Xi,h] =
Li(1−ρ

γi,h,h+1
i,h,h+1)

Ri,h,h+1(1−ρi,h,h+1)
(5)

After γi,h,h+1 retransmission attempts at the MAC layer, we
can approximate (1−ργi,h,h+1

i,h,h+1) ≈ 1 [17]. Then we have

E[Xi,h] =
Li

Ri,h,h+1(1−ρi,h,h+1)
(6)

Hence, the average service time of priority i packet at hop
h with average channel access delay E[Wh] is given by

E[S i,h] = E[Wh] + E[Xi,h] (7)

C. Average Queueing Delay and Packet Dropping Rate

Let E[Wi,h] be the average queueing delay of priority i
packet at hop h. Based on the priority queueing analysis for
the preemptive priority M/G/1 queueing model [28], we get

E[Wi,h] =

4∑
i=1
λi,hE[S 2

i,h]

2
(
1−

4−1∑
i=1

λi,hE[S 2
i,h]

)(
1−

4∑
i=1
λi,hE[S 2

i,h]
) (8)

where E[S i,h] is the expected service time and E[S 2
i,h] is its

second moment. Hence, the average end-to-end PDR at hop h
for the packets sent from source node can be determined as
shown in (9).

V. DQN-BASED OPTIMAL POSITIONING FOR RELAY NODES

In this section, we discuss our relay node positioning model
based on the network condition, such as link quality. We
consider UAV positioning problem as deep reinforcement
learning (DQN)-based optimization.

We assume N UAV nodes in the network which form M
links including the links between gateway nodes and control
nodes. The first stage of relay node positioning relates to
selecting a suitable link for node placement. The second stage
of positioning is local optimization for determining accurate
location of relay node in the selected link.

The network parameters we consider for each link h include:
(1) SINR (can be deduced from path loss model), (2) PDR
(determined from the previous section), (3) Interference from
external source, which is a binary value (0 or 1) to indicate
the presence of external signals (i.e., not generated from the
network itself).

A. Deep Q-Network

Using the information collected at each link, we train our
DQN model to select an optimal link for the relay UAV place-
ment. After link selection, we run an optimization algorithm
to locally optimize the relay node location. Our DQN model
is represented as a tuple {s,a,R} as discussed below.

1) State, s: Q-learning is used to derive the best long-term
policy to determine the optimal UAV positioning pattern under
different conditions, such as low channel quality and external
interference signals. The action (in terms of determining the
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Ψi,h = Prob
(
Wi,h > di−

h−1∑
j=0

E[Wi, j]
)

=

( 4∑
i=1

λi,hE[S i,h]
)
exp

−
(
di−

h∑
j=1

E[Wi, j]
)(

4∑
i=1
λi,hE[S i,h]

)
E[Wi,h]

 (9)

UAV location) is selected based on the current system state
sn at time slot n. Specifically, the system state sn consists of
the information regarding link SINR (γi j), PDR (Ψi,h), and
external interference condition (Jh), for the time slot [n−1] at
link h, i.e., sn = {γh j,Ψi,h, Jh}

(n−1).
2) Action, a: The actions are used to change the UAV

behavior in response to the states seen at time slot n. They
are executed sequentially. To optimally deploy the UAVs, we
define our action set as the probability of selecting a link lh,
where h ∈ H. Optimal action selection maximizes the average
reward of the network.

3) Optimization: After a particular link is chosen, we use
the optimization process to place the UAV at the optimal
location within the grid Ag, g ∈ Ng, where Ng is the total num-
ber of grid locations. The optimization problem for optimal
positioning is depicted as:

max
1
T

∫ T

n=0
Rndn

s.t : i. dt,k ≥ dmin; k ∈ {1,2, ...,Nneigh}

ii. E[W j] ≤ D j; j ∈ {1,2, ...,4}
iii. Jg = 0; g ∈ Ng

(10)

Here, T is the entire optimization time duration, dmin is the
required minimum inter-UAV distance. The objective function
defines the achievable reward R at a specific position at time
slot n. The first constraint defines the minimum distance pa-
rameter the UAV should maintain with each of its neighboring
UAVs to avoid physical body collisions. The second constraint
specifies that the average queuing delay at grid Ag should be
less than the delay threshold D j. The third constraint defines
the presence of external interference signal to the network,
where a binary decision variable 1 (or 0) represents that ESS
is present (or absent).

4) Reward, R: The reward defines the effect of relay UAV
positioning scheme in the current state s for the adopted action
a in time slot n. The DQN scheme optimizes the position of
UAV when it maximizes the SINR level. In our model we use
the total SINR of the entire swarm network as a parameter to
quantify the optimal positioning of UAV since the existence of
a route can have impact on other paths. Using (1), the reward
term is defined as follows,

R = γi j[n] =
Pi[n]Gi j[n]

PES S Jg +
∑M

k=1,k,i Pk[n]Gik[n] +σ2
j

,

n = 1,2, ....,NT (11)

The updated and locally optimized location with Reward R
is chosen, and the location information with reward value is
stored in the memory replay in deep learning model.

There are mainly two components in our DQN model: (1)
convolutional neural network (CNN) [5], and (2) Q-learning
based decision model. As depicted in Fig. 4, the system uses
CNN to enhance the learning rate of Q-learning module as the
UAV swarm formation and network communication capacity
change over time. Similar to Q-learning, DQN updates Q-
function for each state-action pair, which is the expected
discounted long-term reward for state s and action a at time
slot n. The Q-function is given by [5]:

Q(s,a) = Es′

[
Rs +γmax

a′
Q(s′,a)|s,a

]
(12)

where Rs is the reward received at the state s for action
a which results in the next state s′ with a discount factor γ,
defining the uncertainty of the UAV nodes about the future
reward. The discount factor reflects the less impact on the
throughput performance from the older actions.

In fact, the Q-function can be approximated by using CNN
with tunable weight parameters. It is a non-linear approximator
for each action. However, due to network dynamics, the CNN
model needs to be retrained to adapt to the UAV swarming
process. Hence, a replay memory is used with the collection
of past experienced state-action pairs and their respective
rewards.

The CNN consists of two convolutional layers and two fully
connected (FC) layers. The first convolutional layer consists
of 20 filters, each with the size of 3× 3 and stride 1, and
the second convolutional layer consists of 40 filters with the
size of 2× 2 and no change to stride value. Rectified linear
units (ReLU) is used as an activation function in each layer
including FC layers. The first FC layer consists of 180 ReLU
units and the second FC has M + 1 ReLU units, where M is
the total number of links. At time slot n, the weight of the
filter in each layer is denoted by θn.

Furthermore, at time slot n, the observed state se-
quence for B system state-action pairs is denoted as ϕn =

{sn−B,an−B, ...,an−1, sn}. Input to the CCN is from the replay
buffer by reshaping the state sequence into 6× 6 matrix to
estimate the Q(ϕn,a|θn). The state sequence in replay buffer
is chosen randomly from the experience memory pool, D =

{e1, .....,en}, where en = (ϕn,an,Rn
s ,ϕ

n+1). Basically, experience
replay chooses an experience ed randomly, with 1 ≤ d < n to
update the weight parameter θn according to the stochastic
gradient descent (SGD) method [5]. Updating θn results in
the minimum mean-squared error of the targeted optimal Q-
function with the minibatch updates, and the following loss
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Fig. 4: DQN-based UAV deployment.

function can be denoted as [5]:

L(θn) = Eϕn,a,Rs,ϕn+1

[(
QTarget −Q(ϕn,a : θn+1)

)2
]

(13)

where QTarget is the target optimal Q-fucntion, which is
given by

QTarget = Rs +γmax
a′

Q(ϕn+1,a′ : θn−1) (14)

The weights θn are updated by using the gradient of loss
function L w.r.t to the weights θn. The loss gradient ∇θnL(θn)
can be expressed as

∇θnL(θn) = Eϕn,a,Rs,ϕn+1

[
QTarget∇θn Q(ϕn,a : θn)

]
−Eϕn,a,Rs,ϕn+1

[
Q(ϕn,a : θn)∇θn Q(ϕn,a : θn)

]
(15)

The weight parameter θn is updated for every time slot. The
update repeats by randomly selecting the experiences from
the experience pool. Finally, with the updated Q-function, the
action an is chosen for the state sn according to the ε-greedy
algorithm. The optimal action is chosen from the set of Q-
functions with the probability of (1− ε), and we have:

a∗ = argmax
a′

Q(ϕn,a′) (16)

When a link is selected for UAV placement, the UAV
observes SINR as a reward information from the swarming
network. Based on the next state, the UAV stores the new
experience {ϕn,an,Rn

s ,ϕ
n+1} in the replay memory as shown

in Fig. 4.
As shown in Fig. 4, in DQN-based UAV positioning scheme,

the UAV network’s features in terms of link quality (SINR),

traffic-load (PDR), ESS condition of each link, are created at
each timestamp. The current state, the next state, the action,
and the reward incurred due to such an action, are all stored
as the feature vector for CNN in replay memory, which stores
D past experiences. In each iteration, B out of D batches are
selected to train the CNN module to fine-tune the decision-
making result to fit the environment conditions. Once the DQN
makes the position selection, the UAV performs the fine-tuning
of the position where it is placed, and the whole process
repeats again.

The entire relay node positioning algorithm is shown in
Algorithm 1 and its convergence to the optimal point is proved
in Appendix. It takes the SINR, PDR and ESS conditions
as the input parameters, and finds the best position for a
relay UAV. It uses an iterative process to perform training and
inference for DQN with replay memory. It converges when
the maximum reward is achieved.

VI. PERFORMANCE ANALYSIS

A. Average Multihop Queueing Delay

In this section, we analyze the performance of our proposed
M/G/1 PRP multi-hop queueing model for a network structure
shown in Fig. 5. Each hop has its own source data and also
helps to relay the data forwarded from the previous hop with a
link capacity of 5 Mbps. We consider the following four types
of data transmissions and the packet length Lk is 1000 bytes:

1) Voice data with a bitrate of 50 Kbps and latency con-
straint of 50 ms.

2) Skype-like real-time video with a bitrate of 500 Kbps
and latency constraint of 100 ms.

3) Pre-encoded HD video with a bitrate of 3 Mbps and
playback delay deadline of 1 sec.

4) Data with 5 sec delay constraint (such as file download
at 2 Mbps).
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Fig. 5: Elementary network structure used for simulations.

Algorithm 1 : DQN based relay UAV positioning

Initialize, Ag, θ,γ,S INR0, J0

Initialize state-action pairs, B
Initialize batch size, B
Initialize replay memory size, D ← ∅
Estimate E[W] from (8)
Input: s0 = [S INR0,PDR0, J0]
Output: DQN:- Optimal UAV location with maximum R.

1: for n do=1,2,...
2: if n≤ B then:
3: Choose link randomly an ∈ {1,2, ...N}
4: else
5: Obtain CNN output Q(ϕn,a|θn) with input ϕn and

weights θn

6: Choose an via ε-greedy algorithm
7: end if
8: Perform optimization locally for grid Aan

9: Observe S INRn,PDRn,Jn

10: Estimate the Reward R and obtain
sn+1 = [S INRn+1,PDRn+1, Jn+1]

11: Create state, action, reward vector:
ϕn+1 = {sn−B+1,an−B+1, ....,an, sn+1}

12: Add the new experience to {ϕn,an,Rn,ϕn+1} to memory
D

13: for d do=1,2,...,B
14: Select randomly (ϕd,ad,Rd,ϕd+1) from D
15: Train CNN n′ iterations
16: Calculate QTarget using (14) in Section V-A4
17: end for
18: Update weight parameter θn using (15)
19: end for

We analyze the performance of our proposed multihop
queueing model in terms of the average queueing delay and
compare with a FIFO queueing model [19], where the packet
priority based on the latency requirement is not considered.
For the sake of simplicity, we assume that the average waiting
delay due to channel access operations for each node is
E[W] = 0. This is a reasonable assumption when enough
bandwidth is available in the network, especially when the
TDMA-based MAC scheme is used (it does not cause any
channel access conflict).

The expected queueing delay for priority i packets, E[Wi]
is shown in Fig. 6. Since the hop-1 source data has the voice
data with a low latency requirement, it is given the highest
priority across all hops. Hence it experienced almost zero
queueing delay at all hops. The Skype-like real-time video
generated at 2nd hop is given the second highest priority since

Fig. 6: Analytical value of average queueing delay at each hop for the source as well
as relay data, compared with FIFO queuing method.

its latency requirement is less strict than the voice. However,
the voice data generated at 4th hop is given a lower priority
than the real-time video. Therefore the voice and real-time
video experience comparable queueing delays at hop 4. In
addition, hop-3 source data is a HD video with a higher
play-back time, and is given a lower priority. Therefore, it
experiences a much higher queueing delay than other data.
The proposed queueing model performs better than the FIFO
model [19] for the high-priority data, which demonstrates its
capability of differentiating the traffic priorities.

Fig. 7 shows the average queueing delay experienced by the
source data of each hop. As stated earlier, HD video at hop-3
experiences the highest delay, whereas the voice data at hop-1
experiences the least delay.

Fig. 7: Average queueing delay for the source data for the network structure shown in
Fig. 7.
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B. DQN-based UAV Positioning Scheme

In this section, we analyze the performance of our DQN-
based UAV positioning scheme in the ESS and ESS-free
environments. We considered the real-time video data with
a bitrate of 500 Kbps and 100ms latency. Input to the CNN
is the 6x6x3 tensor with 36 past experiences of each of the
three parameters (SINR, PDR, and ESS (1/0)). Here the past
experiences are converted to a 6x6 matrix for each parameter.
The true label for each input is the Reward seen in the past
experience. As mentioned before, considering UAV position-
ing as a pure optimization task through gradient methods will
not suffice since we may have multiple local optima. We use
a swarming network of 150 UAV nodes. At each time stamp,
the network parameters for each link can be obtained at the
higher-layer node through the gateway nodes and the DQN
model is trained using those network parameters. Over several
iterations, the higher-layer node learns the optimal decision
model and updates the replay memory with the current network
observations. Once the relay UAV is placed at a particular link,
local optimization is performed by the UAV to determine its
location on the link. To demonstrate the optimization, we use
an elementary UAV positioning structure in Fig. 8, in which
4 UAVs are present at a certain distance on the four ends of
the 100x100 square meters area. The relay UAV should be
placed in the cross-section area such that the throughput is
maximized under dynamic network conditions.

Fig. 8: The UAV network model with four nodes.

1) UAV network without ESS: We consider the UAV
swarming network area without the presence of ESS. Due to
multi-path and path-loss effect, broken RF links are present
in the area. The performance of the proposed DQN-based
UAV positioning scheme is compared with Q-learning based
scheme. As shown in Fig. 9, the DQN-based optimization
algorithm significantly outperforms the Q-learning algorithm
since it can achieve a normalized throughput that approaches
1.

2) UAV network with ESS: Here we consider the presence
of ESS so that the UAV positioning area in Fig. 8 is affected
by external interference. Thus some of the UAVs in this
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Fig. 9: Performance comparison of UAV positioning for DQN and Q-learning algorithm
without ESS.

area cannot communicate with each other. For this ESS case,
the performance of our DQN-based optimization algorithm is
compared with the Q-learning scheme. As shown in Fig. 10,
our DQN algorithm significantly outperforms the Q-learning
algorithm and is able to achieve the maximum normalized
throughput close to 0.65. As expected, this performance is
lower than the ESS-free case. This performance would further
decreases if the area affected by external interference is
increased.

Note that our DQN algorithm achieves the optimal solution
in less iterations when ESS is present as compared to the ESS-
free network. Since the reward (i.e., normalized throughput)
maps to zero for the regions affected by ESS, the action space
becomes small and helps the algorithm to achieve optimal
condition faster.

An important advantage of DQN over Q-learning (or other
traditional reinforcement-learning-based algorithms) is that it
can be trained for many different network conditions, includ-
ing ESS. Training it with CNN models creates a knowledge
base for the learning agent to choose the optimal action that
fits the current network conditions. We also observed that
the optimal throughput achieved by the DQN model linearly
increases with the number of epochs, which is not the case
with the Q-learning model. A reason behind this could be
that we each parameter of UAV network model is used as the
input to the CNN model for finding the optimized Q values,
which generates a better pattern separation among the input
parameters.

Next, we compare the performance of our proposed DQN
model by considering (a) only PDR, (b) only SINR, and (c)
PDR+SINR+ESS case with ESS=0 in Fig. 11. When PDR
over the link is considered as the only Reward value in DQN
learning model, the node finds the best link with low PDR. To
implement this in DQN model, we considered 36 previously
seen PDR values in that link as one state. Based on these
previously seen values, the DQN makes decision on selecting
the link with the lowest PDR to place the node.

When SINR over the link is considered as the only Reward
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Fig. 10: Performance comparison of UAV positioning for DQN and Q-learning algorithm
in the presence of ESS.

in DQN learning model, the node finds the best link which has
high SINR. The results in Fig. 11 show that the maximum nor-
malized throughput is achieved only when all the parameters,
i.e. PDR, SINR and ESS (we have considered ESS=0 case)
are considered. However, the DQN model based on individual
parameter (PDR or SINR) outperformed the simple Q-learning
model. For an ideal condition (with PDR = 0, very high SINR
and ESS = 0), the normalized network throughput of 1 was
achieved in the very first iteration.
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Fig. 11: UAV positioning performance comparison in different scenarios.

Finally, we compare the performance of our DQN model for
real-time video at 500kbps with the delay deadline of 100ms
at different hops in Fig. 12. We analyze the performance of
DQN over 1 to 3 hops for network configuration shown in
Fig. 5. For the first hop, the achieved throughput is close to
the maximum since it experienced no waiting delay except
some varying channel conditions. For the same hop (hop-
1) the Q-learning algorithm does not achieve such a high
throughput. The throughput value decreases in the subsequent
hops due to two reasons: (i) Increase in congestion level at

each hop, and (ii) Increase in the number of higher priority
packets. In each scenario, our DQN algorithm has considered
the dynamic channel conditions with temporal variations (such
as the multi-hop waiting delay) and spatial variations (such as
SINR variations).
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Fig. 12: Average normalized throughput comparison between DQN model and Q-
learning in ESS-free UAV deployment.

VII. CONCLUSIONS

A novel UAV positioning scheme was presented to achieve
the optimal communication among swarming nodes. Unlike
conventional single-UAV relay placement schemes, our solu-
tion is suitable to the networked, dynamic UAV swarming
applications by using the replay-buffer-based DQN learning
algorithm which can keep track of the network topology
changes. Our DQN scheme used the major parameters in
different protocol layers that reflect the swarm network condi-
tions, including the physical layer SINR, routing layer PDR,
and application layer QoS levels. The MHQ-PNP queueing
model was used to calculate the multi-hop latency and PDR
level. We implemented the DQN-based swarm simulation
platform and generated results, which validated the global
throughput optimization by using our proposed UAV relay
positioning scheme.

In the future, we will extend the above MUM swarm net-
work to a distributed UAV swarm network without centralized
control. We will also use a few concrete swarm formations
to study the inter-swarm communication optimization issues
when multiple swarm groups are present.
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VIII. APPENDIX

A. Optimality of Reinforcement Learning

In a given RL environment with state set S , action set A, and
reward r, the optimal value function in RL is the maximum
achievable value represented as Q∗(s,a), where s ∈ S and a ∈ A.
Using Bellman equation, the optimal values decompose into
Bellman equation as [5]:

Q∗(s,a) = Es′ [r +γmax
a′

(Q∗(s′,a′)|s,a)] (17)

We can treat r + γmax
a′

(Q∗(s′,a′) as the target function
for the DQN. Then using Q-values, Q(s,a) stored in the
Experience Replay we want to estimate MSE loss by stochastic
gradient descent as

I = (r +γmax
a′

(Q∗(s′,a′)−Q(s,a,w))2 (18)

where w is the hyper-parameter (weight) associated with
each target value in the DQN. Hence, optimization task is

min(r +γmax
a′

(Q∗(s′,a′)−Q(s,a,w))2

= min
1
2

( fi(w)) (19)

where fi(w) = (r +γmax
a′

(Q∗(s′,a′)−Q(s,a,w))2.
With the above optimization formulation, the stochastic

gradient method is implemented as follows,

wt+1 = wt −α∇( fi(wt)) (20)

where α is the learning rate, 0 ≤ α < 1. In RL, the algorithm
converges as t→∞ with∑

t

α =∞
∑

t

α2 <∞ (21)

In addition, from the results of [5] and eqn (19),

E[||wt+1−w∗||22] ≤ (1−
σmin(Q)2

||Q||2F
)E[||wt −w∗||22] (22)

The above equation shows that, SGD converges exponen-
tially fast and Q matrix does not need to be a full rank matrix.


