
Text Draft; Copyrighted Materials; No Distribution or Commercial Use allowed.

To Fei’s family - Fang and Gloria ……

To Matt’s family …...

ABOUT THE AUTHORS

Dr. Fei Hu is currently an associate professor in the Department of Electrical and Computer
Engineering at the University of Alabama (main campus), Tuscaloosa, Alabama, USA. His
research interests are sensor networks, wireless networks, network security and their applications
in Bio-Medicine. His research has been supported by U.S. NSF, Cisco, Sprint, and other sources.
He obtained his Ph.D. degrees at Tongji University (Shanghai, China) in the field of Signal
Processing (in 1999), and at Clarkson University (New York, USA) in the field of Electrical and
Computer Engineering (in 2002). He obtained his M.S. and B.S. degrees in Telecommunication
Engineering from Shanghai Tiedao University in 1996 and 1993, respectively. He has published
over 100 journal/conference papers and book (chapters).

Dr. Xiaojun Cao is currently an assistant professor in the Department of Computer Science at
Georgia State University. He received his B.S. degree from Tsinghua University and M.S. from
Chinese Academy of Sciences. In June 2004, he received his Ph.D. degree in Computer Science
and Engineering from the State University of New York at Buffalo (UB). Dr. Cao's research has
been sponsored by U.S. National Science Foundation (NSF), IBM and Cisco's University
Research Program. Dr. Cao is a recipient of NSF CAREER Award, 2006-2011. Dr. Xiaojun Cao
is working on modeling, analysis, and protocols/algorithms design of communication networks.
Important among these are Optical Networking, Waveband Switching, Optical Burst Switching,
Mobile Ad hoc Networks, Sensor Networks and Security, and Optical Wireless Communications.

PREFACE

Needless to say, one of the hottest research and developing fields in current information
explosion era is wireless sensor networks (WSN). The latest advances in science and engineering
pave the way towards employing the low-power, low-cost WSN. It provides a high order of
spatial and effective resolution for an ever-increasing universe of applications, such as
infrastructure protection and security, surveillance, healthcare, habitat/environment monitoring,
food safety, smart energy and so on. While promising many advantages over the traditional
networking techniques and sensing methods in aforementioned applications, WSNs also pose
many challenging issues and optimization problems in the design of network architectures,
protocols and algorithms. To resolve these challenges in the presence of constraints on available
energy, bandwidth, memory space and computing power, high rates of node failure and data loss,
adverse communication environments and unique application requirements, a significant amount
of efforts have been done by the academia and industry communities.

Although some books on sensor networks have been published recently, most (if not all) of them
are not suitable for textbook use due to the limitation of topics covered or the nature of editorial
collections. This textbook attempts to comprehensively discuss all the major technologies,
standards, topics and developments in sensor networks. It contains almost everything readers
need to know to enter this burgeoning field, including hardware design, medium access control,
routing schemes, transport protocols, OS support, middleware, data management, localization,
synchronization, security, actuator/underwater/video sensor networking, power control and
sensor simulations.

This textbook makes complicated concepts easy to understand through interesting examples and
WSN applications. In addition, it has exercises, assignments and detailed case studies that help
readers understand the contents and then apply their knowledge in designing their own
applications or solving real-world problems. We have included some practical sensor network
design cases such as medical applications.

TARGETED AUDIENCES

This book is ideal for senior college students or first-year graduate students in the majors of
Computer Engineering, Electrical Engineering or Computer Science. It is also an excellent
reference book for sensor network designers, researchers and engineers who wish to fully exploit
WSN technology and for government employees who wish to use WSNs to enhance homeland
security.

SCOPE OF THIS BOOK

Because we target both engineering and science students, we have covered both hardware and
software topics in this textbook. This book organizes 18 chapters based on the following
structure:

Chapter 1. Introduction (WSN Overview; basic network concepts)

Chapter 2. Hardware (Micro-sensors with Microcontrollers and Radio)
Computer
Engineering
Knowledge

Chapter 3. MAC Layer (neighborhood wireless transmission)

Chapter 4. Routing Layer (Find an optimal source-to-end path)

Chapter 5. Transport Layer (loss recovery, congestion control)

Network
Protocol
Stack

Chapter 6. Operating System (such as TinyOS)

Chapter 7. Middleware (Hide networking details for programmers)

Chapter 8. Sensor Data Management

Computer
Science
Knowledge

Chapter 9. Localization (also called calibration; very useful)

Chapter 10. Clock Synchronization (correct clock drifts in sensors)

Chapter 11. Security (Countermeasure WSN attacks)

Advanced
WSN Topics

Chapter 12. Wireless Actor and Sensor Networks (with mobile actors)

Chapter 13. Underwater Sensor Networks (Using acoustic; Not RF)

Chapter 14. Video Sensor Networks

Special
Sensor
Networks

Chapter 15. Energy Models and Low-energy design

Chapter 16. WSN Simulators
Miscellaneous

Chapter 17. WSN for Tele-healthcare applications

Chapter 18. WSN for Light Control
Case Studies

WHAT CAN BE COVERED IN A COURSE

For One-Semester (15 weeks) Course: The following table is our suggested time allocation
plan among different topics. Instructors should adjust their teaching plan based on students’
feedback and learning practices.

 Time
length

Teaching Topics Chapters

2 weeks WSN Basics; Sensor Hardware (for Computer science
major, the hardware part can be shortened).

Chapters 1, 2

2 weeks MAC layer (teach at least 2 MAC schemes; emphasizing
“energy-saving” design)

Chapter 3

2.5 weeks Routing layer (teach proactive / reactive Routing schemes;
emphasizing “scalable” design)

Chapter 4

1.5 weeks Transport layer (teach both “reliable end-to-end
transmission” and “congestion control”)

Chapter 5

1 week Operating system; Middleware (for Computer Science
major, 2 weeks may be used).

Chapters 6, 7

1 week Sensor data management (for Computer Science major, 2
weeks may be used).

Chapter 8

1 week Sensor localization; time synchronization (for PhD/MS
students, 2~3 weeks could be used).

Chapters 9, 10

1 week WSN security (Teach uTesla, Key pre-distribution) Chapter 11
1.5 weeks Special sensor networks (especially underwater WSN). Chapters 12, 13, 14
0.5 weeks Energy models; WSN simulators Chapters 15, 16
1 week Case Studies Chapters 17, 18
Total:
15 weeks

In each chapter, teach both math principles and concrete design cases. Leave
some topics for after-class reading assignments.

Note that some time should also be allocated for class labs.

For One-Quarter (10 weeks) Course:

Time
allocation

Teaching contents Chapters

1.5 weeks WSN Basics; Sensor Hardware Chapters 1, 2
1 week MAC layer (emphasizing “energy-saving” design) Chapter 3
1.5 weeks Routing layer (teach proactive / reactive Routing schemes;

emphasizing “scalable” design)
Chapter 4

1 week Transport layer (teach both “reliable end-to-end
transmission” and “congestion control”)

Chapter 5

0.5 weeks Operating system; Middleware (for Computer Science
major, 1.5 weeks may be used).

Chapters 6, 7

0.5 week Sensor data management (for Computer Science major, Chapter 8

1.5 weeks may be used).
1 week Sensor localization; time synchronization (for PhD/MS

students, 2~3 weeks could be used).
Chapters 9, 10

0.5 weeks WSN security (Teach uTesla, Key pre-distribution) Chapter 11
1 week Special sensor networks (especially underwater WSN). Chapters 12, 13, 14
0.5 weeks Energy models; WSN simulators Chapters 15, 16
1 week Case Studies Chapters 17, 18
Total:
10 weeks

In each chapter, teach both math principles and concrete design cases. Leave
some topics for after-class reading assignments.

For Computer Engineering majors, Chapter 2 (sensor hardware) is important. It could be taught
in more details. Thus a longer time may be allocated. For Computer Science majors, Chapter 6~8
(OS, data management) should be covered in more details.

Some chapters, such as Chapters 8~10 (localization, synchronization, and security), may be
assigned to PhD/MS students as term papers topics (i.e., the students are required to explore
more details on this topic and submit a research paper based on their investigations).

Chapters 17~18 could be used for senior projects.

During the teaching, simply using survey-like Powerpoint slides is not recommended in class
since this book has provided detailed descriptions on each WSN topic. Instructors should select
good design examples to elaborate some concepts. For instance, in MAC layer, at least one of the
MAC schemes (such as S-MAC) should be taught in details.

Math principle is extremely important to WSN design. Therefore, if the chapter has some good
math models, such models should be covered in details. Especially for PhD/MS students, those
math principles should be emphasized.

ACKNOWLEDGEMENTS

Dr. Xiaojun Cao has written Chapter 3 (MAC layer) and Chapter 4 (Routing layer). He has
also edited the lab materials. The remaining chapters have been written by Dr. Fei Hu. We wish
to express our thanks to the people who have helped during the preparation of this book. Some
students in Department of Electrical and Computer Engineering at University of Alabama (main
campus) have helped to edit some figures and math equations. They have also helped to edit
some contents. Very special thanks to Rahul Mallampati for his help with revisions, some figures,
and Microsoft Word formatting. Thanks to Barnali Chakrabarty, staffs from the Auerbach
Publications who have provided a pleasant support of this writing effort.

A final note: many of the contents and concepts of the textbook are based on the existing
research efforts from the literature that we cannot list here specifically. We would like to
especially express our appreciation to those authors who have published excellent materials on
WSNs.

DISCLAIMER

Since the purpose of this textbook is to collect a series of latest resources on WSNs
design and to explain those concepts in a textbook style in order to train students and engineers,
the authors claim that this book is NOT for the publishing of original research ideas. We have
tried our best to provide credits to all cited publications in this book. Due to the time limit, this
textbook could have some errors or missing contents. And we sincerely thank to all authors who
have published WSNs materials and directly / indirectly contributed to this textbook through our
citations. If you have questions on the contents of this book, please contact the authors {Fei Hu:
fei.hu@ieee.org or Matt Cao: cao@cs.gsu.edu} and we will correct the errors and thus improve
this textbook in the future editions.

IBASICS

AU9215_S001.indd 1AU9215_S001.indd 1 12/17/2009 2:56:45 PM12/17/2009 2:56:45 PM

AU9215_S001.indd 2AU9215_S001.indd 2 12/17/2009 2:56:45 PM12/17/2009 2:56:45 PM

3

1Chapter

Introduction

1.1 Basics
One may have seen “sensors” on many occasions. Th is book targets tiny sensors that
have RF (radio frequency) communication capabilities. Th ese sensors could form a
wireless network, called the wireless sensor network (WSN). Th en a natural question
arises: “Why do WSN technologies advance so quickly?”

WSNs become a reality because of the integration of
three technologies: (1) microelectromechanical sys-
tems (MEMS), which could make sensors’ mechanical
parts fi t into a very tiny chip (even less than a quarter!);
(2) digital electronics, which make a tiny chip (with a
microcontroller) powerful enough to handle the incom-
ing sensor data (such as data compression, data fusion,

and networking operations); and (3) wireless (RF) communications, which
relay the sensor data among many sensors.

WSNs

Remember

As shown in Figure 1.1, a WSN sensor typically includes an analog sensing chip to
sense environmental parameters (such as temperature and light), a microcontroller
to execute local data processing (such as video compression) and networking opera-
tions (such as performing a routing protocol with a neighbor sensor), and a radio
transceiver to send/receive sensed data through a wireless medium. Th e entire sensor
can be powered by batteries or other power sources (such as solar energy) with a
lifetime of several months to a few years.

AU9215_C001.indd 3AU9215_C001.indd 3 2/22/2010 4:01:01 PM2/22/2010 4:01:01 PM

4 ◾ Wireless Sensor Networks: Principles and Practice

In Chapter 2, we will discuss each WSN sensor component in detail. In this
chapter, the following few important points are covered:

 1. Figure 1.1 lists only the most important components of a WSN sensor. Th ere
could be other circuit parts depending on practical application requirements.
For instance, we may plant a GPS receiver in a sensor to keep track of accu-
rate positions. A solar panel that avoids the use of AA batteries could be used
to absorb solar energy.

 2. Th e following facts explain that not all devices that can sense environmental
parameters can be termed as a “WSN sensor”:

Analog sensor, digital sensor, and WSN sensor: An ana-
log sensor detects environmental parameters and, accord-
ingly, changes its voltage level or other signals. Its output
is a continuous, weak, and noisy analog signal. A digital
sensor has an internal ADC (analog-to-digital converter)
and a low-capacity CPU (also called a microcontroller).
It can interface with a computer to display the sensed

data. A WSN sensor adds the RF communication capability to a digital sensor.
Its CPU runs wireless network protocols, such as hop-to-hop routing protocols.
Moreover, the design of a WSN sensor emphasizes the tiny size, low cost, and
low energy consumption.

Difference

WSNs

To build a practical WSN application, a WSN sensor should have the following
features: tiny size, low cost, and low energy consumption.

 1. Tiny size: A WSN sensor should be portable to achieve a large-scale, convenient
deployment. For instance, we may ask each patient in a nursing home to carry a
few medical sensors to achieve anytime, anyplace monitoring. If medical sensors
are large (say, larger than a cell phone), it is not convenient for a patient to carry

Power (to all components)

Antenna

Radio transceiverMicrocontroller
Temperature

Lights

Acceleration

Sensing chip
(analog signals)

The CPU has multiple “analog,” “digital,” or
serial interfaces to read sensing data.

Memory (with OS, networking software, etc.)

Figure 1.1 WSN sensor hardware components.

AU9215_C001.indd 4AU9215_C001.indd 4 2/22/2010 4:01:02 PM2/22/2010 4:01:02 PM

Introduction ◾ 5

them. As another example, if we want to achieve environmental surveillance in
a large city, many tiny sensors could be dropped from a plane. If the sensors are
large, they may not be easily deployed. Moreover, it is better for the sensors to
look more “hidden” to achieve a safe, “clean” sensing in the environment.

 2. Low cost: A WSN should be able to operate well even though there are numer-
ous sensors (greater than thousands) in the network. Th erefore, each sensor
should have low cost for popular applications. In the future, the unit price of
sensors could be less than $1 each [Akyildiz02].

 3. Low energy consumption: Because each sensor is designed to be disposable,
we need not replace every sensor’s batteries, especially in a large-scale network.
If we wish a WSN to operate for a long time, it should have low energy
consumption.

In the future discussion, unless we specify the type of sensor (analog or digital), when
we use “sensors,” we mean “WSN sensors.” A “WSN sensor” is often called a “mote.”

WSNs have a wide range of applications in health, military, homeland secu-
rity, and other domains. For example, the physiological data about a patient can
be monitored remotely by a doctor through a medical sensor network. While this
arrangement is very convenient to the patient, remote doctors can monitor the
patient’s condition 24/7. WSNs can also be used to detect chemical pollutions, such
as E. coli inside drinking water. A well-designed WSN can quickly fi nd out pollut-
ants’ names and locations [John06].

Mobile ad hoc networks (MANETs) [CPERKINS00] have attracted much atten-
tion. A typical example is the wireless network among some laptops carried by people
who are on the move. Because of the nodes’ mobility, the design objective of a MANET
is to make the routing protocols adapt to quickly changing network topology.

So, what are the diff erences between WSNs and MANETs?

WSNs and MANETs [Akyildiz02]:

 Th e number of sensors in a WSN can be several orders ◾
of magnitude higher than the nodes in a MANET.
Th erefore, sensors are more densely deployed.
Due to the low-cost design objective, sensors are ◾

prone to failures. But the MANET nodes (such as
laptops) could be designed to have strong calculation capability.
Most typical WSN applications do not require mobility, that is, the ◾
sensors are stationary. But a MANET node has high mobility.
Sensors are limited in power (typically, battery driven), computa- ◾
tional capacity (their CPUs have slow operation frequency), and
memory (typically <100 kB).

Difference

WSNs

AU9215_C001.indd 5AU9215_C001.indd 5 2/22/2010 4:01:03 PM2/22/2010 4:01:03 PM

6 ◾ Wireless Sensor Networks: Principles and Practice

Similar to a MANET, in a WSN, hop-to-hop communications are necessary because
of the limited RF communication distance between each sensor. For instance, most
of the current WSN sensors can only transmit data to a distance less than 300 ft.
It is not possible to ask a remote sensor to directly (i.e., using a single hop) com-
municate with a server.

Besides the limited wireless signal-broadcasting distance, from the energy con-
sumption viewpoint, a multi-hop approach is better than a single-hop one. Th is is
because the signal energy level fades away quickly as the distance increases:

 α∝ 1RSS
d

 (1.1)

where
RSS is the received signal strength in a receiver
d is the radio signal propagation distance between a sender and a receiver
α is the path loss ratio, whose value is typically between 2 and 5

Th e larger the path loss ratio, the smaller the RSS. Th e path loss ratio, α, varies in
diff erent radio propagation terrains and weather conditions.

If α = 2 and if we increase the distance, d, by 10 times, the RSS will be 100
times weaker than the original value. Th erefore, we can assume the following:

In WSNs, multi-hop, relay-based data communications
can generally save more energy (and make the received
signal stronger) than direct sender–receiver (1-hop) com-
munications. Also remember: In WSNs, one of the top
concerns is energy consumption. Th at is why so many
WSN communication mechanisms are proposed with
energy effi ciency as the main target.

WSNs

Remember

In WSNs, diff erent sensors that can measure mechanical, thermal, biological,
chemical, optical, and magnetic parameters may be attached to WSN nodes to
measure the parameters of the environment. In some cases, actuators may be used
in WSNs to perform some responses based on the sensors’ inputs. However, if the
sensors communicate through other strong hardware components, such as actua-
tors, the common WSN design concerns (such as low power, low cost, and short
communication range) may not exist anymore. Th is book focuses on common
WSNs with these resource constraints [Jennifer08].

Remember: WSNs have very serious design and resource constraints [Akyildiz02,
CPERKINS00]. Based on the defi nition in [Jennifer08], resource constraints mean
that each sensor has very limited power supply, short wireless communication range,
low network bandwidth, and limited CPU processing and memory storage; design

AU9215_C001.indd 6AU9215_C001.indd 6 2/22/2010 4:01:03 PM2/22/2010 4:01:03 PM

Introduction ◾ 7

constraints emerge from environmental conditions and application requirements.
For instance, an indoor environment has lots of obstacles, which means the wireless
communication quality for it could be lower than that for outdoor applications.

Can we call a multi-camera network (using wireless signals) a
WSN, as each camera uses light sensor(s) to capture picture
pixels? If a camera does not have serious resource constraints
(for instance, its memory could be over 1 GB and its CPU
could operate with more than 16 bits of bus width), we nor-
mally call such a network an ad hoc network or a general
wireless network (instead of calling it a WSN). However,
if each camera has serious resource constraints (for instance,

it has an 8 bit CPU, <100 kB storage, and limited radio communication distance),
we could call it a WSN. Recently, the concept of video sensor network (VSN),
which consists of many low-cost video sensors, has been proposed. Th e VSN
is a special type of WSN. Remember: Th e design of a WSN is so challenging
because of such serious resource constraints. If these constraints were absent, we
could easily borrow the network design ideas from traditional wireless networks.

Case study

Can we call a multi-robot system a WSN, as each robot
could have one or multiple sensors? Normally, we do not
call a multi-robot network a WSN due to the following
reasons: Although each robot has tiny, low-memory, slow-
CPU sensor(s), it also has other circuit components that
may achieve powerful CPU calculations or long-distance
RF communications. Th erefore, we cannot say that all
wireless networking functionalities are achieved only by
the tiny sensors. In this case, we would call it a MANET.

Case study

Can we call a multi-vehicle network a WSN, as each vehicle
has hundreds of tiny sensors? If we limit our research to
the wireless networking achieved by the tiny, RF-capable
sensors in diff erent vehicles, we may call such a network a
WSN. Although vehicles normally use strong RF anten-
nas to maintain their communications, the main chal-
lenge is the highly dynamic network topology due to
vehicles’ mobility. Th erefore, we call such an assembly a
vehicle ad hoc network (VANET) instead of a WSN.

Case study

AU9215_C001.indd 7AU9215_C001.indd 7 2/22/2010 4:01:03 PM2/22/2010 4:01:03 PM

8 ◾ Wireless Sensor Networks: Principles and Practice

After we understand general WSN concepts, a natural question that arises is “how
challenging is it to design networking protocols among tiny sensors with serious
resource constraints?” To answer this question, fi rst, we simply review the network
protocol concepts. Later on, we will explain the design challenges in each protocol
layer. For more details on protocols, please refer to other course materials such as
Computer Networks, Wireless Networks, Digital/Data Communications, and so on.

As shown in Figure 1.2, assume that a sender (sensor) reports the event data (such
as fi re) to a remote server (receiver). Th e sender needs to use multi-hop communica-
tions to relay its data through some intermediate sensors. Based on the Open Systems
Interconnection (OSI) standard, we have seven layers of network protocols, that is,
application layer, session layer, presentation layer, transport layer, routing layer, data
link layer, and physical layer. However, in WSNs, typically we do not need the session
layer and the presentation layer. But, as shown in Figure 1.2, on the receiver side, we
do need the other fi ve layers to achieve successful sensed-data collections:

 1. Application layer: Th e receiver needs to display the data on the screen. Th e
application layer defi nes the sensor data display format and performs sensor
database management. If the sensor data has to be displayed on Internet Web
pages, the application layer needs to understand Internet application layer
protocols, such as HTTP.

 2. Transport layer: Th e TCP is a typical transport layer protocol. Th e main func-
tionalities of the transport layer are to (a) achieve “end-to-end” (E2E) reliable
data transmission and (b) reduce network congestion. Th e TCP achieves E2E
reliable transmission through packet retransmission and time-out check. Th e
TCP also reduces network congestion through data-rate control. However,
in WSNs, the TCP is not a suitable transport layer protocol due to its high
overhead. In Chapter 5, we will discuss transport layer in WSNs in detail.

Event area

Sender

Application Application Application
Transport layer Transport layer Transport layer
Routing layer

Routing layer Routing layer
Data link layer

Data link layer
Data link layer

Physical layer
Physical layer

Physical layer

Relay sensor Receiver

Figure 1.2 WSN network protocol stack.

AU9215_C001.indd 8AU9215_C001.indd 8 2/22/2010 4:01:03 PM2/22/2010 4:01:03 PM

Introduction ◾ 9

 3. Routing layer: It achieves hop-to-hop data forwarding among numerous
sensors. It searches the optimal path that has low energy consumption, or
low delay, or other good features. Once the optimal path is established, the
sensed data can be relayed one-by-one by sensors. Th e routing layer also
maintains the route in case the network conditions change from time to time
(for instance, a sensor in the path may drain its batteries).

 4. Data link layer: While the transport layer is responsible for E2E transmission
control, the data link layer only handles neighboring (1-hop away) nodes’
communication issues. For instance, a sensor may determine whether or not
it should adjust its sending rate, based on its upstream and downstream sen-
sors’ buff er setups. Sometimes the data link layer is called the Medium Access
Control (MAC) layer. Actually, MAC is part of data-link-layer tasks because
MAC only takes care of the wireless-medium-sharing issues among 1-hop
neighbors. MAC ensures that all neighboring sensors do not cause signal
transmission confl icts, while a data link layer may handle error detection,
data framing, and other tasks.

 5. Physical layer: It converts meaningful data to wireless signals through encod-
ing/modulation and other wireless communication modules. As this layer
only sees “signals” such as voltage levels (“0” or “1”), it cannot understand any
higher-layer issues (such as routing, data content, and reliability).

Just like the Internet network, WSNs also need
the above five layers of protocols. Note: Typically,
the sensors do not run application layer protocols,
because it is the server’s task to correctly display the
sensor data. The relay sensors between a sender and
a receiver should not run transport layer protocols,
because the transport layer only exists between two

ends (i.e., the source and the destination). Figure 1.2 uses the dashed
boxes to represent nonexistent layers.

WSNs

Remember

In the following discussion, we provide an overview of the design issues in diff erent
WSN layers. Akyildiz et al. [Akyildiz02] present a more comprehensive review on
these layers. We also cover other important issues such as sensor localization.

1.2 MAC Layer [John06]
A MAC protocol coordinates signal transmissions over a shared RF channel. When
a group of sensors communicate using an RF, the MAC protocol determines the
communication schedules and rules, because at any time only one pair of users can

AU9215_C001.indd 9AU9215_C001.indd 9 2/22/2010 4:01:04 PM2/22/2010 4:01:04 PM

10 ◾ Wireless Sensor Networks: Principles and Practice

use the frequency to send out data to each other. Th e MAC protocol determines the
wireless-channel-occupancy durations and many other things.

Th e most popularly used channel-sharing solution is the contention-based
scheme. In such a scheme, a sensor having messages to transmit will fi rst listen to
the channel to see whether or not it is idle (i.e., not busy). If the RF channel is idle,
it immediately transmits data. If the RF channel is busy, it waits (sometimes uses
exponential backoff) and tries again later.

In many wireless network MAC protocols, sensors that do not send or receive
a packet in a given time frame go into sleep mode to save energy. Some variation
schemes exist for such a sleep-based protocol. Th e main point is that a WSN MAC
scheme should be energy effi cient and collision free, have low-complexity schedule
control and low memory requirements, and be able to adapt to changing RF and
networking conditions [John06].

1.3 Routing
WSNs use multi-hop routing paths to forward data. Traditional routing schemes,
such as the IP (Internet Protocol), do not perform well in WSNs. For instance, the
IP assumes highly reliable wired connections (such as fi ber optics or cables), where
packet errors are rare; this is not true for WSNs, because wireless links have high
bit error rates. Many MANET routing solutions are also not suitable to WSNs,
because they are often optimized for highly mobile nodes, and they often assume
symmetric links between neighbors (i.e., if node A can reliably reach node B, then
node B can reach node A). Such an assumption may not be suitable for WSNs
where nodes are typically stationery. Th erefore, new routing schemes are needed
in WSNs [John06].

For WSNs, which are often deployed in an ad hoc (random) fashion, the rout-
ing protocol typically begins with neighbor discovery. Sensors send out rounds of
HELLO messages (packets) and build local neighbor tables. Th e tables typically
have part of the following information: each neighbor’s ID, location, remaining
energy, delay via that sensor, and an estimate of link quality [John06].

1.4 Other Communication Issues [John06]
Th ere could be some other communication issues besides the above basic protocols:

 1. Reliability: Remember that each wireless link has a high packet error rate due
to the unreliable nature of wireless communications. Its error rate could be
1/100 (i.e., one out of 100 packets could get damaged due to wireless interfer-
ence). How do we measure link quality? For this, we could use packet drop

AU9215_C001.indd 10AU9215_C001.indd 10 2/22/2010 4:01:04 PM2/22/2010 4:01:04 PM

Introduction ◾ 11

rate, received signal strength, etc. Another reason that causes link unreliabil-
ity is that WSN links are typically asymmetric, that is, even though sensor A
can successfully send a packet to sensor B, the reverse link from sensor B to
sensor A may not be reliable [John06].

Typically, reliable data transmission is achieved in the
transport layer. Th e sender could invoke a timer after
sending a packet. When the acknowledged packet for
such a sent packet cannot be received before the timer
expires, the sender will retransmit the packet.

On the other hand, in WSNs, E2E retransmission
does not work well due to the large amount of relay
sensors having unreliable wireless links among them.

Th erefore, it is better to use retransmissions in each hop instead of waiting for
the destination sensor’s feedback. In this case, we could say that the reliability
is actually achieved in the data link layer instead of the transport layer.

WSNs

Remember

 2. Designing proper wake/sleep schedules: Th e best way to save energy is to put a
sensor into sleep mode. However, it is challenging to determine the wake/
sleep schedule for a group of neighboring sensors, based on the practical data
transmission timing conditions.

 3. Unicast, multicast, and anycast semantics: In some cases, a WSN server routes
messages to a geographic destination area with a group of sensors. Should the
server talk with one specifi c sensor in that area or all sensors in that area? Th ere
are a few choices. First, to achieve unicast communication, we can include a
specifi c destination address (sensor ID) in the sensor’s message. Second, we can
specify that a message should be sent to a few sensor IDs. Th is is called multicast
communications. Th ird, we can just specify an event area and send the message
to any node in that area. Th is is called anycast communication. Sometimes we
do not specify any destination, and just simply fl ood (broadcast) a command
message to the entire network. Many WSN routing schemes support the above
unicast, multicast, anycast, or broadcast communications [John06].

 4. Real time: In many WSN applications, it is important to deliver the data to
a destination within a delay threshold. For instance, if a patient has a heart
attack, the electrocardiogram (EKG) data should be transmitted back to a
doctor within one second.

 5. Mobility: In most WSN applications, sensors are stationery. If sensors are
mobile, it is very challenging to design protocols that can adapt to a large-
scale, mobile network topology.

AU9215_C001.indd 11AU9215_C001.indd 11 2/22/2010 4:01:04 PM2/22/2010 4:01:04 PM

12 ◾ Wireless Sensor Networks: Principles and Practice

 6. Broken links: As WSN sensors have limited RF transmission range, it is
possible that there are no forwarding sensors in the path where a message
is supposed to travel. Or, the sensors may drain their batteries and not
work anymore. Th e routing protocols should be able to deal with such
broken wireless links.

 7. Security: A malicious user can conduct a wide variety of attacks on WSN pro-
tocols. For instance, an attacker may itself become a valid relay node and then
intentionally drop the packets. Security is an important area in any wireless
network due to the unreliable, broadcast-based radio signal transmissions.

 8. Congestion: A WSN could have high traffi c density in some areas due to fre-
quent events in that area. A good routing protocol should try to detour to
escape from such congested areas. How to detect congestion areas and how
to avoid them are two challenging issues.

1.5 Sensor Localization
Node localization: We often need to detect the exact location of a sensor in a WSN.
If an event is detected, we need to know the exact sensor location. Many issues
need to be considered in node localization. For example, how do we effi ciently use
beacons (nodes that know their locations) to fi nd other nodes’ locations? If using
beacon nodes, how do we determine their communication ranges? Depending on
diff erent localization accuracy requirements (for instance, <5 or <1 m), we need
diff erent algorithms. Is the system indoors or outdoors? Is it a two-dimensional
(2D) or a three-dimensional (3D) localization problem? What is the algorithm’s
communication overhead (or how many command messages does it use in unit
time)? How long should it take to localize a sensor? And many other issues should
be considered [John06].

In outdoor applications, we may equip each node with a GPS. Th is solution
seems simple. However, the sensor’s cost will rise, and thus such a scheme becomes
unacceptable in most WSN applications. Localization schemes can be classifi ed
as either range based or range free. In range-based schemes, we fi rst determine the
range, that is, the distance between nodes. Th en we can use geometric principles
to calculate the exact locations. An example of this is as follows: We can use some
special hardware or circuit to detect the time diff erence between arrivals of sound
and radio waves. Th en, such a diff erence can be converted into a distance measure-
ment. In range-free schemes, we do not determine distances directly. Instead, the
number of hops is used. Once the hop counts are determined, we can estimate the
distances between nodes using an average distance per hop. Obviously, range-free
solutions may not be as accurate as range-based solutions. But they do not require
extra hardware in the sensors [John06].

AU9215_C001.indd 12AU9215_C001.indd 12 2/22/2010 4:01:04 PM2/22/2010 4:01:04 PM

Introduction ◾ 13

When proposing a new WSN protocol, always keep in
mind the low-cost requirements of sensors/systems. For
example, adding a GPS to each sensor could solve many
problems easily. However, a GPS requires expensive sat-
ellite communication systems to receive timing/position
information. Currently, many commercialized sensors
still cost more than $100 per unit. However, our long-

term goal is to make each sensor cheaper than $1. Th us, large-scale deploy-
ment becomes feasible.

WSNs

Remember

1.6 Clock Synchronization [John06]
Th e clocks of each node in a WSN should have the same time control scheme. In
many cases, we need to know at what time the event occurred. We also need to use
accurate time to achieve some network tasks. For example, when sensors prepare
sleep/wake-up schedules, they need to know what time to go to sleep and wake up.
In some localization algorithms, we require to measure time diff erence.

Because the internal clock control hardware/software in a tiny sensor could
have a clock drift from time to time, it is necessary to synchronize its clock read-
ings periodically.

Traditional Internet uses the NTP (Network Time Protocol) [DLM91] to syn-
chronize clocks in diff erent Internet hosts. But NTP is too complex (thus, needs
extensive memory and calculation overhead) for WSNs, because they require fre-
quent message exchanges. GPS is too expensive. Some good clock synchronization
protocols have been proposed, such as RBS [JElson02], TPSN [SGaneriwal03], and
FTSP [MMaroti04]. We will discuss this in detail in Chapter 10.

1.7 Power Management [John06]
Today, most commercial WSN nodes (such as Mica2 and MicaZ [Crossbow08]) run
on two AA batteries. If we continuously run sensing functions in the sensors without a
good power control, these sensors can drain the batteries in a few days. However, most
WSN applications prefer the power lifetime to be larger than a few months or even one
year. Th erefore, it is important to perform power management in sensors.

Today, renewable power sources are under active research. Th is means
that we could use solar cells in sensors or just utilize energy from a
sensor’s movement or wind. For example, underwater sensors can store

AU9215_C001.indd 13AU9215_C001.indd 13 2/22/2010 4:01:04 PM2/22/2010 4:01:04 PM

14 ◾ Wireless Sensor Networks: Principles and Practice

energy from water current. Th e effi ciencies of batteries and low-power
circuits are improving each year. Many sensor products can set up mul-
tiple power-saving states (off , idle, on) for each component of the sensor
(such as the analog sensor chip, the RF transceiver, and the microcon-
troller). Th ese components will be active only when they have tasks.

Other ways to save power include the following few aspects: We could put sen-
sors in a complete sleep state, as listening to messages also consumes energy; and
carefully design a good wake-up/sleep schedule, so that a sensor wakes up only
when it needs to help relay data.

To save power, all WSN protocols should be designed with minimum control
message exchange, as each wireless transmission consumes energy. Some protocols
have complex algorithms that should be avoided, as CPU calculations also consume
much energy. It is not surprising to see so many WSN protocols being proposed
with “energy-effi cient” features.

1.8 Special WSNs
Th ere are many types of WSNs. For instance, if the sensors have video-capturing
capability, the WSN is called a VSN. In the following two sections, we highlight
two special WSNs: multimedia WSNs and underwater WSNs.

1.8.1 Wireless Multimedia Sensor Networks
[Akyildiz07, Purushottam07]

A wireless multimedia sensor network (WMSN) is a special type of WSN technol-
ogy. Such an application poses many challenges to the traditional WSN design.
As the term suggests, it collects multimedia (or video/audio) data from its sensors.
Multimedia data needs quite a large storage compared to the traditional data (such
as fl oating-point value) collected by WSNs, and thus the demand for bandwidth is
increased; and additional processing power is required for such networks. Despite
the additional resources required for such networks, the applications are of great
interest, and many are used in military and civil services.

WMSNs have many new applications, such as

Storage of potentially relevant activities ◾ . For instance, a WMSN may be used
to capture a criminal act in progress, such as a robbery.
Traffi c avoidance, enforcement, and control systems ◾ . For instance, a traffi c light
camera may watch for a license plate of a getaway car and report to a nearby
police offi ce of its recent location.
Advanced healthcare delivery ◾ . Medical sensor networks [HU03] can be used
to enable healthcare services that can receive a distress alert and locate the

AU9215_C001.indd 14AU9215_C001.indd 14 2/22/2010 4:01:05 PM2/22/2010 4:01:05 PM

Introduction ◾ 15

distressed patients. A patient carries sensors to allow remote doctors to monitor
his/her various bodily factors, including temperature, blood pressure, glucose
levels, ECG, and breathing. Additionally, remote medical staff can monitor
their patients via video and audio sensors, location sensors, motion or activity
sensors, all of which can be embedded in wrist devices [HU03].
Automated assistance for the elderly ◾ . WMSNs can be used to monitor, record,
and study the behavior of the elderly so as to identify the causes of their ail-
ments. Networks of worn video and audio sensors can detect any critical
health conditions of the elderly patients.
Environmental monitoring ◾ . Acoustic and video sensors can be used to perform
habitat monitoring, in which information has to be conveyed in a time-critical
fashion. For example, oceanographers can use video sensors to capture the pro-
cess of sandbars evolving, via image-processing techniques [HOLMAN03].
Person locator services ◾ . Multimedia such as live video streams and images, along
with advanced multimedia signal-processing schemes, can be used to deter-
mine the location of a missing person or identify suspects and criminals.
Industrial process control ◾ . Multimedia information, such as image, temperature,
pressure, as well as other parameters, could be used to direct a time-critical
industrial process. A VSN can be used to monitor the manufacturing process
in semiconductor chips, automobiles, food products, or pharmaceutical prod-
ucts. Another advantage is that we may use video sensors to quickly detect
manufacturing mistakes. Also, machine vision systems are able to determine
the location and orientation of parts of the product to be grasped by a robotic
arm. Integrating machine vision systems with WMSNs allows for the simpli-
fi cation of visual inspection systems and adds additional fl exibility for those
that require continuous, high-velocity, and high-resolution operations.

WMSNs require a design approach that accounts for several important factors,
including bandwidth demand, power consumption, application-specifi c QoS
(quality-of-service) requirements, ability to support heterogeneous applications,
multimedia coverage, multimedia in-network processing, and integration into
other network technologies. Th e ever-increasing demand for higher resolution and
higher quality in the data collected by the sensor network translates into an ever-
increasing demand for bandwidth.

Th ere are several approaches to the design of a WMSN [Purushottam07]. One
is to use a fl at, homogeneous single-tier design with central storage. Th is design
allows the network to expand easily, simply with the addition of another sensor. Th e
disadvantages of such a design include single-point (central storage) failure, poor
scalability (due to single-tier, centralized architecture), limited processing capabil-
ity, and the limited scope of a single sensor, which disallows on-demand network
utilization. For example, a surveillance network using this design would not be able
to utilize multiple cameras to recognize an object and wake up on demand to perform
object recognition. Another design approach is to use a multi-tier network, in which

AU9215_C001.indd 15AU9215_C001.indd 15 2/22/2010 4:01:05 PM2/22/2010 4:01:05 PM

16 ◾ Wireless Sensor Networks: Principles and Practice

the higher tiers include some form of central processing. Th is design has better
scalability and can meet diff erent cost/performance trade-off requirements. For
instance, the higher-capacity cameras may perform less frequent, but more power-
ful image-processing operations. Some researchers propose the single-tier clustered
design approach, where each cluster contains a variety of sensors. Th is approach
provides slightly more processing capability and visibility; yet, one cluster cannot
use another cluster’s collected data.

1.8.2 Underwater Acoustic Sensor Networks [Akyildiz04a]
Although the traditional terrestrial WSNs have many applications within population
centers, several factors prevent such networks from being used off shore. Off shore
networks (also called underwater WSNs) would require that traditional WSNs have
the ability to survive underwater, need low-maintenance, and require a protocol that
is tolerant of high transmission delay (due to the use of acoustic signals instead of RF
ones under water) and high bit error rates. Underwater acoustic sensor networks pres-
ent many design challenges, primarily due to the medium (water) in which they are
placed, sensor corrosion by water, lack of sunlight, the propagation delay of acoustic
signals (∼1500 m/s) that is 105 times longer than the delay of radio transmission (light
speed), common loss of connectivity, and high packet loss. Despite these challenges,
such networks do perform well for applications such as assisted navigation, disaster
prevention (namely, tsunami threats), environmental monitoring, mine reconnais-
sance, tactical surveillance, and the exploration of the depths of the sea.

Underwater acoustic networks primarily come in three distinct types
[Akyildiz04a]:

Static 2D underwater WSNs for ocean-bottom monitoring. Such networks ◾
consist of sensor nodes that anchor to the bottom of the seabed.
Static 3D underwater WSNs for ocean-column monitoring. Th ese include ◾
networks of sensors whose depth into the water can be controlled, and may be
utilized for monitoring applications of several oceanic phenomena (pollution,
bioactivity, chemical processes, etc.).
Th ree-dimensional networks of ◾ autonomous underwater vehicles (AUVs). Th ese
networks include fi xed portions composed of anchored sensors and additional
sensors attached to autonomous vehicles to guide the piloting thereof. (As we
discussed before, these types of networks are typically called MANETs, as
the vehicles may have strong communication/data-processing capabilities.)

Th ree-dimensional underwater networks are used as a means of detecting, observ-
ing, and capturing underwater phenomena that cannot be eff ectively observed via
ocean-bottom sensor nodes. An interesting factor in such networks is that sensor
nodes suspend at diff erent depths to observe a certain phenomenon. Of the possible
solutions, one would be to attach each underwater sensor to a surface buoy via wires

AU9215_C001.indd 16AU9215_C001.indd 16 2/22/2010 4:01:05 PM2/22/2010 4:01:05 PM

Introduction ◾ 17

whose length can be adjusted to control the depth of each sensor node. Although
such a solution allows for ease of deployment of the sensor network, such buoys can
interfere with ships passing by, or, additionally, they are susceptible to being located
and disabled by enemies in military applications. Floating buoys are also vulnerable
to changes in the weather and random tampering.

With these reasons in mind, another approach would be to anchor sensor
devices to the bottom rather than the top. In such an approach, each sensor device
is attached to the ocean bottom and consists of a fl oating buoy that can be infl ated
by a pump. As a result of pressure, the buoy is able to push the sensor upward to the
surface. Th e sensor’s depth can be adjusted by constricting or relaxing the length
of the wire that is connected to the sensor and the anchor via an electronically con-
trolled engine that resides on the sensor device. One challenge to such an approach
is that the ocean currents can sway the devices. Th ere are various challenges with
such an architecture that need to be resolved to enable 3D monitoring, including

Sensing coverage ◾ . Sensors should collaboratively regulate their depth to fully
cover the ocean column with their sensing ranges in consideration. Th us, the
network can be capable of sampling the desired phenomenon at all depths.
Communication coverage ◾ . In 3D underwater networks, it may be possible that the
sink is not immediately reachable; therefore, sensors should be able to relay data
to the surface station by means of multi-hop paths. As a result, network devices
must coordinate their depths to ensure that the network topology is always con-
nected, so that at least one path exists between each sensor and the sink.

AUVs can function without the need for tethers, cables, or remote control; thus,
they have a plethora of applications in the fi elds of oceanography, environmental
monitoring, as well as underwater resource study. Th e feasibility of inexpensive
AUV submarines equipped with multiple underwater sensors that can reach any
depth in the ocean has been demonstrated by prior experiments. Th us, these can
be utilized to improve the abilities of underwater sensor networks in many ways.
An area of research, the integration and enhancement of fi xed underwater sensor
networks and AUVs, calls for new network coordination algorithms such as

Adaptive sampling ◾ . Th is includes control techniques to direct the mobile
vehicles to locations where their collected data will be of most use. Such an
approach is known as adaptive sampling. For instance, the density of sensor
nodes can be adjusted in an area where a higher sampling rate is requested for
a certain monitored phenomenon.
Self-confi guration ◾ . Th is involves control procedures to automatically detect
connectivity gaps due to node failures or channel impairment. Moreover,
AUVs may either be used to install and maintain the sensor network infra-
structure or to install new sensors into the network. AUVs may additionally
be used as temporary relay sensor nodes to restore connectivity.

AU9215_C001.indd 17AU9215_C001.indd 17 2/22/2010 4:01:05 PM2/22/2010 4:01:05 PM

18 ◾ Wireless Sensor Networks: Principles and Practice

Although underwater sensor networks also use “wire-
less” media to transmit the data, they are diff erent from
terrestrial WSNs where RF signals are used. Th e typical
unlicensed RF spectrum could be 433 MHz or 2.4 GHz.
Underwater WSNs use “acoustic signals” as wireless
media. Acoustic signals have much lower frequency
than RF ones. For instance, it could be only 11 kHz.

However, such acoustic signals can propagate for a much longer distance
than RF ones in water environments.

Difference

WSNs

1.9 WSN Applications [Hartung06,
Chehri06, Manish06]

In this section, we list some typical WSN applications. Many important applications
are used for environmental monitoring. Environmental monitoring applications,
such as those used for the monitoring of habitats of birds, pollution detection, earth-
quake monitoring, planetary exploration, fl ood detection, forest fi re detection, and
pollution study, are all extremely important to protect our living environments.

Sensor networks can be strategically deployed into a forest to detect the origin
of forest fi res. As these sensor networks may be unattended for a long time, effi cient
energy-saving mechanisms and renewable energy technologies may be used. Th e
sensors perform distributed collaboration and overcome obstacles (such as trees and
rocks) that block the line-of-sight of the sensors. Researchers from the University of
California (UC), Berkeley, have used WSNs in a fi re environment (called FireBug)
[DOOLIN05]. Th ey could accurately measure important environmental condi-
tions, such as relative humidity and temperature, as a fl ame front passed during
a prescribed burn. Such a sensor network is better than the current fi re detection
system that typically uses high-tech airborne infrared sensors to track fl ame fronts
and intensities over very large-scale areas [Hartung06].

Th e Internet can be used by remote users to control, monitor, and observe
the bio-complexity of the environment. Satellite and airborne sensors are use-
ful in observing large-sized biodiversity, but they are not fi ne-grained enough
to observe small-sized biodiversity, which makes up most of the biodiversity in
an ecosystem. So there is a need for ground-level deployment of sensor nodes to
observe the bio-complexity. Figure 1.3 shows an Internet/WSN-integrated appli-
cation scenario.

Sensors could be easily dropped in rugged terrain and under extremely harsh
conditions. Some researchers at Harvard recently deployed a sensor network on an
active volcano in South America to monitor seismic activity using vibration sen-
sors. Th ough they only used a single-hop deployment strategy, they implemented

AU9215_C001.indd 18AU9215_C001.indd 18 2/22/2010 4:01:05 PM2/22/2010 4:01:05 PM

Introduction ◾ 19

a fairly tight time synchronization protocol to accurately correlate their data. With
this system, they hope to be able to monitor and help predict volcanic eruptions,
earthquakes, and other similar volcanic activities [JOHNSON05].

On a smaller scale, a sensor network can be deployed on a single redwood tree
using nodes to cover roughly 50 m. With this unique deployment, researchers were
able to map the diff erences in the microclimate over a single tree.

Sensor networks deployed in natural parks and wildlife reserves closely monitor
and aggregate data from plant and animal life. Earlier methods of fi eld monitor-
ing were error prone, tedious, and potentially dangerous to plant and animal life.
Data gathered from sensor networks can be studied, and useful information such
as nesting patterns, fl owering seasons, and eff ects of diff erent microenvironments
can be inferred without causing harm to plant or animal life. Researchers at UC,
Berkeley, have deployed a WSN at the Great Duck Island off the coast of Maine
[Anderson02]. Sensors were placed in burrows to detect the modes of nesting birds,
providing statistical data to biological researchers. Additionally, their work provides
other researchers with good outcomes on WSN performance, routing, and topol-
ogy construction. In this application, the researchers at UC, Berkeley, used Mica
motes. Th e sensor uses an Atmega103 microcontroller running at 4 MHz and a
916 MHz radio from RF monolithics to provide bidirectional communication at
40 kbps. Th irty-two motes were placed in the area of interest. Th ese motes transmit
sensor data to a gateway, which is responsible for forwarding the data to a remote
base station. Figure 1.4 represents simulation scaling for the motes versus the time
delay for busy, quiet, and inactive networks [Hartung06].

Researchers from the UC, Berkeley, Center for Embedded Networked Sensing
deployed a sensor network into the James Reserve Forest in California that could
be used for a wide range of purposes, from monitoring the soil temperature to
tracking wildlife [CERPA01]. Th ey used multi-hop routing and multiple, hetero-
geneous nodes.

Th ere are more habitat-monitoring applications, such as the use of a sensor sys-
tem for monitoring cane toad populations [Bulusu05] and a WSN for tracking the
movements of zebras [JUANG02].

User

Internet

MetaServer Micro-
Server

Sensor network

Figure 1.3 Connecting WSN to the Internet.

AU9215_C001.indd 19AU9215_C001.indd 19 2/22/2010 4:01:05 PM2/22/2010 4:01:05 PM

20 ◾ Wireless Sensor Networks: Principles and Practice

WSNs have proved to be very useful in both off ensive and defensive military
applications. Sensor networks can be used to gather data about the existing state
of a military troop. Th e data gathered may include the amount of equipment
at hand, the ammunition and troop strength, and the location of troops. Th ese
reports can be gathered and sent to higher offi cers in the clustering hierarchy of
troop leaders, where an appropriate decision can be taken depending on the cur-
rent state of aff airs. Sensors used for battlefi eld surveillance are randomly deployed
in inaccessible regions and critical areas for closely monitoring the presence of
opposing forces. Moreover, these networks can also be deployed to discover new
approach routes and paths in scenarios without human intervention.

Target tracking is another useful military application. Sensor networks may be
used to track the path of enemy troops. Th e analyzed data can be fed to an intel-
ligent ammunition system. When the target, such as a vehicle, is moving in the sen-
sor fi eld, target-state histories (such as a spatial trajectory) have to be estimated on
the basis of sensor measurements. Each sensor node provides a local measurement
useful in estimating the target state. Just before or after an attack, sensor networks
can be deployed into the target area to assess the extent of the battle damage. Sensor
networks can also be deployed to raise an alarm against potential nuclear, biologi-
cal, or chemical attacks. Th e networks can be incorporated with the ability to take
countermeasures against such attacks as well.

As mentioned before, a WSN can be used for patient diagnostics, drug adminis-
tration in hospitals, collections of human physiological data, etc. Th e physiological
data collected from sensors can be used for medical exploration. Th is data can also be
stored for a long period of time. Th e sensor networks detect elderly people’s behavior.
Th ese small sensor nodes allow the doctors to identify predefi ned symptoms. Each
sensor node has its specifi c task, for example, one sensor node may detect the heart rate.

8
7
6
5
4
3
2
1
0

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
Motes (log scale)

Lo
g

(ti
m

e i
n

m
s)

Busy

Quiet

Inactive

Figure 1.4 WSN delay performance. (Adapted from Anderson, J. et al., Wireless
sensor networks for habitat monitoring, Workshop on Wireless Sensor Networks
and Applications (WSNA 2002), Atlanta, GA, September 2002.)

AU9215_C001.indd 20AU9215_C001.indd 20 2/22/2010 4:01:06 PM2/22/2010 4:01:06 PM

Introduction ◾ 21

Sensor networks used for drug administration in hospitals help to minimize the
chances of receiving and prescribing the wrong medication to patients.

WSNs are envisioned to be ubiquitous, integrating themselves to all homes,
offi ces, and household appliances. Such devices can be connected to actuators,
which take an action when the environment changes to a particular state. End
users can communicate with these devices to make control decisions remotely.
In smart homes, the sensors make intelligent decisions, such as what changes to
make, and what actuations to perform based on the transforming states of the
environment. Th e lights automatically turn on when a person enters the room at
night. Th e temperature inside an offi ce can vary by a few degrees. If the airfl ow
in a room is not evenly distributed, a distributed sensor network can be used to
control the airfl ow and temperature. Smart sensor nodes and actuators can be
placed in appliances such as refrigerators, ovens, and air conditioners, so the end
users can manage home via the Internet or satellite. In a warehouse, each item
may have a sensor node attached. Th us, by querying the network details of an
item, the type, the price, and the serial number can be collected and stored in
a backend database. New items are added to the inventory by attaching a new
sensor to it.

WSNs can be used for monitoring a nuclear reactor. WSNs can control the
chain reaction in nuclear reactors. Th e sensors monitor the reaction by observing
parameters like radiation and temperature. Th e observer uses data from sensors
and maintains the nuclear reactor in a stable state. Th e sensor node senses informa-
tion and it sends to a sink that checks abnormal conditions, like drastic changes
in radiation or temperature. If an abnormal condition occurs, the sink raises an
alarm.

Another sensor network application is suspicious individual detection. Consider
a scenario in which a person is making frequent trips to a shop that sells chemicals
and then also makes visits to a shop that sells fi rearms. Detecting such persons and
placing them on a suspicious individuals list can help determine these persons’
connections and motivations. With appropriate mining of the data collected from
sensors placed in various shops, connections, links, and associations, we could
detect suspicious groups or individuals.

WSNs also have many applications in underground mines. Sensors can mea-
sure physical phenomena in a mine, such as temperature, luminosity, and oxygen
concentration. Sensors can also detect a possible anomaly, such as fi re and toxic
gas. With WSNs, the objects (or persons) can be localized by simply labeling
them with a small node. Th is task is important for many applications, such as
traffi c management in underground mines and tracking or rescue operations
[Chehri06].

In summary, WSNs have important roles for a variety of applications, such as
off ensive and defensive military applications, environmental monitoring, building
automation, traffi c management, industrial process control, civilian infrastructure

AU9215_C001.indd 21AU9215_C001.indd 21 2/22/2010 4:01:06 PM2/22/2010 4:01:06 PM

22 ◾ Wireless Sensor Networks: Principles and Practice

protection, and target tracking. WSNs are especially useful in areas diffi cult to
access. Wired network is not suitable in many applications due to two reasons:
cost—wiring typically accounts for 80 percent of the cost of sensor installations;
and safety—by using a WSN measurements can be automatically collected in loca-
tions where the wiring is very diffi cult or impossible to install [Legg, Chehri06].

Th e advantages of WSNs are due not only to their self-
organized nature (i.e., after deployment, numerous sen-
sors could automatically form a connected network),
but also to their “wireless” communication capabilities
under harsh environments. Th is book does not target
“wired” sensor networks, because wireless media make
protocol design much more challenging than wired
media.

WSNs

Remember

Problems and Exercises
1.1 Multi-choice questions

1. Th e diff erences between “analog sensors” and the sensors in WSNs do not
include which of the following?
a. WSN sensors have ADC capabilities.
b. WSN sensors have CPUs (also called microcontrollers) to do some local

data processing.
c. Traditional analog sensors typically do not need power input.
d. Traditional analog sensors cannot self-organize themselves into a wire-

less network.
2. Th e diff erences between WSNs and MANETs do not include which of the

following?
a. WSNs typically have a larger scale (more nodes) than MANETs.
b. MANETs have more mobility behaviors.
c. MANET nodes typically have more power storage capability than WSN

nodes.
d. WSNs have a higher design/deployment cost than MANETs.

3. Underwater sensor networks are diff erent from terrestrial sensor networks
in which of the following features?
a. Underwater sensors typically do not use RF communications. Acoustic

communications are used instead.
b. Underwater sensors are mobile while terrestrial sensors are fi xed.
c. Underwater sensors are more expensive than terrestrial ones.
d. Underwater sensors typically use solar power.

AU9215_C001.indd 22AU9215_C001.indd 22 2/22/2010 4:01:06 PM2/22/2010 4:01:06 PM

Introduction ◾ 23

4. WMSNs require which of the following?
a. Th ey need large storage due to video/audio data.
b. Th ey need strict QoS considerations.
c. Th ey need a large bandwidth.
d. All of the above.

5. With respect to WSN localization, which of the following items is true?
a. WSN localization typically uses a GPS.
b. WSN localization can easily achieve <0.1 m accuracy.
c. WSN localization can use the triangle theory to localize a node.
d. WSN localization does not need clock synchronization.

1.2 Explain the hardware architecture of a WSN sensor node. What type of CPUs
can it use? List some examples after doing some Web research.

1.3 What kinds of design and resource constraints does a WSN have?
1.4 Why cannot underwater sensor networks use RF communications?
1.5 Assume that we use WSNs for vineyard monitoring. Conduct some Web

research and draw a feasible WSN system diagram (including sensors, sink,
Internet server, etc.) to achieve such an application.

AU9215_C001.indd 23AU9215_C001.indd 23 2/22/2010 4:01:06 PM2/22/2010 4:01:06 PM

AU9215_C001.indd 24AU9215_C001.indd 24 2/22/2010 4:01:06 PM2/22/2010 4:01:06 PM

IIENGINEERING
DESIGN

AU9215_S002.indd 25AU9215_S002.indd 25 12/17/2009 2:58:30 PM12/17/2009 2:58:30 PM

AU9215_S002.indd 26AU9215_S002.indd 26 12/17/2009 2:58:30 PM12/17/2009 2:58:30 PM

27

2Chapter

Hardware—Sensor
Mote Architecture
and Design

In this chapter, we study the hardware design details of sensor nodes. A WSN
sensor node (also called a mote) consists of analog sensors, a microcontroller,
memory, an RF (radio frequency) communication unit, a battery, and other com-
ponents. We will use [Jason03] as the main reference, as it provides a pioneering
sensor mote design.

Th is chapter also covers some physical-layer concepts in WSNs (such as
modulation and wireless signal transmissions). Th e next few chapters will cover
the details of higher layers (such as MAC layer, routing layer, and transport
layer).

In this chapter, we fi rst discuss each component of the sensor mote. Later on, we
will integrate everything together into an intelligent sensor mote.

2.1 Components of a Sensor Mote [Jason03]
In the following, we explain the hardware components of a sensor mote. Each of
the components should be designed from both operation performance and energy
effi ciency viewpoints.

AU9215_C002.indd 27AU9215_C002.indd 27 2/22/2010 4:06:24 PM2/22/2010 4:06:24 PM

28 ◾ Wireless Sensor Networks: Principles and Practice

A mote (i.e., a WSN sensor node) is a typical embedded
system from the computer engineering design viewpoint.
As we know, any embedded system needs a microproces-
sor (also called a CPU or a microcontroller) to control all
other chips. On the other hand, a mote needs to achieve
wireless networking with other motes. Th us, its CPU
needs to interface with an RF transceiver (i.e., a radio

chip). How do we interface its CPU with a radio chip in a fast, low-energy
way is a challenging issue.

Remember

WSNs

2.1.1 Sensors
Th ousands of diff erent analog/digital sensors have been invented, and are ready
to be attached to a wireless sensing platform to form a WSN node (also called
a “mote”). Recent advances in MEMS and carbon nanotube technologies have
enabled many diff erent types of sensors. Some examples are chemical sensors and
digital nose sensor. Table 2.1 lists some common microsensors and their main
features [Jason03].

Analog and digital sensors have the following diff erent characteristics:

 1. Analog sensors generate raw analog voltage values based on the physical
phenomena that they are measuring. Th ey produce a continual wave-
form, which needs to be digitized (i.e., forming digital signals such as
0101001…) by special chips (such as an ADC, i.e., an analog-to-digital
converter). Th ese digital signals can then be easily processed by CPU and
DSP (digital-signal-processing) chips.

After receiving the raw analog data, a CPU must process this data to
produce a reading in meaningful units. For example, when an accelerometer
generates a raw reading of 0.815 V, it must be translated into a meaningful
(i.e., human-understandable) acceleration measurement. Does 0.815 V cor-
respond to an acceleration of 0.5 or 1.1 m/s? Such an analog data translation
procedure could be a complicated process because of sensors’ diff erent timing
and voltage scales.

Because the output voltage generally has a DC off set among a time-varying
signal, we typically use amplifi ers and fi lters to match the output of the sensor
to the range and fi delity of the ADC.

 2. Digital sensors actually integrate all of the above-mentioned voltage-process-
ing hardware into a sensor to directly provide a clean digital interface.
Because they have implemented all required compensation and linearization
internally, their output is already a digital reading with an appropriate
scale.

AU9215_C002.indd 28AU9215_C002.indd 28 2/22/2010 4:06:25 PM2/22/2010 4:06:25 PM

Hardware—Sensor Mote Architecture and Design ◾ 29

If you purchase a commercial microcontroller (a CPU) to interface with the above
sensors, it typically has multiple interfaces with either analog or digital sensors.

Because sensors have limited power output, and the WSN sensors are typically
designed to be disposable, we need to carefully control how quickly a sensor can be
enabled, sampled, and disabled, because these operations have a huge impact on energy
consumption. For instance, although most sensors have the capability of producing
thousands of samples per second, in practice, we are interested only in a few samples
per minute. Such a low duty cycle (percentage of active time) can greatly save energy.

Although it is important to minimize the active time of a sensor (i.e., putting
the sensor to sleep for as long as possible), it is also important to minimize the
“transition” time, that is, the sensor should be turned on/off as quickly as it can be,
to save energy. For example, if a sensor takes 100 ms to turn on and read a sample,
assume that the sample reading consumes just 1 mA at 3 V; it will cost 300 μJ in
total to get a sample. Th is is the same amount of energy as a sensor that consumes
1000 mA of current at 3 V but takes only 100 us (i.e., 1000 times faster) to turn on
and read a sample [Jason 03].

Table 2.1 Power Consumption and Capabilities of Commonly
Available Sensors

Discrete Sample Voltage

Sensor Type Current Time Requirement (V) Manufacturer

Photo 1.9 mA 330 uS 2.7–5.5 Taos

Temperature 1 mA 400 mS 2.5–5.5 Dallas
Semiconductor

Humidity 550 uA 300 mS 2.4–5.5 Sensirion

Pressure 1 mA 35 mS 2.2–3.6 Intersema

Magnetic fi eld 4 mA 30 uS Any Honeywell

Acceleration 2 mA 10 mS 2.5–3.3 Analog Devices

Acoustic 0.5 mA 1 mS 2–10 Panasonic

Smoke 5 uA — 6–12 Motorola

Passive IR (motion) 0 mA 1 mS Any Melixis

Photosynthetic light 0 mA 1 mS Any Li-Cor

Soil moisture 2 mA 10 mS 2–5 Ech2o

Source: Adapted from Hill, J.L., System architecture for wireless sensor networks,
PhD dissertation, Department of Computer Science, University of
California at Berkeley, Berkeley, CA, Spring 2003.

AU9215_C002.indd 29AU9215_C002.indd 29 2/22/2010 4:06:26 PM2/22/2010 4:06:26 PM

30 ◾ Wireless Sensor Networks: Principles and Practice

In some applications, the voltage requirements may not match well with the bat-
tery outputs. Hence, an extra circuit may be needed. For instance, some sensors require
±6 V. If a sensor just uses AA or lithium batteries, we need special voltage converters and
regulators to use this sensor. Th e power consumption and turn-on times of converters
and regulators’ circuitry must be included in the total energy budget for the sensor.

Today, almost all analog sensors convert environmental
parameters into a readable low-voltage level. Interpreting
these voltage levels from the event detection perspective
is a diffi cult issue. Moreover, we need to capture such a
weak current and use an ADC to receive digital signals.
During the analog-to-digital conversion, the noise from
hardware and environments should be eliminated.Remember

WSNs

2.1.2 Microprocessor
Another important component, called a microcontroller (i.e., a tiny CPU, also
called a microprocessor or a processor), has pins (i.e., interfaces) to integrate fl ash
storage, RAM, ADCs, and digital I/O (input/output) onto a single integrated
circuit. Such tight integration makes the microcontroller ideal for use in deeply
embedded systems, like WSNs.

When we select a commercial microcontroller family for a WSN application,
we need to consider some of the application requirements, including power con-
sumption, voltage requirements, cost, support for peripherals, and the number of
external components required. Some of these are explained as follows:

 1. Power consumption: Diff erent microcontrollers have very diff erent power con-
sumption levels. For instance, 8 or 16 bit microcontrollers have varied power
consumption between 0.25 and 2.5 mA/MHz. Such a wide diff erence (over
ten times) between low-power and standard microcontrollers determines the
WSN system performance signifi cantly.

Many people think that sleep can put a sensor in a completely “relaxed”
state, and thus power consumption is minor in the sleep state. Th is is not
true in reality. In the sleep mode, the CPU stops execution. However, it still
maintains some basic memory control activities and time synchronization, in
case, later on, it needs to timely wake up. Th e electric current consumption
in the sleep mode varies from 1 to 50 μA across CPU families. As the CPU
is expected to be idle 99.9 percent of the time, such a 50× μA diff erence can
have a more signifi cant impact on mote performance compared to the
milliampere diff erence in peak power consumption.

AU9215_C002.indd 30AU9215_C002.indd 30 2/22/2010 4:06:26 PM2/22/2010 4:06:26 PM

Hardware—Sensor Mote Architecture and Design ◾ 31

 As mentioned before, the energy consumption also depends on how much
time the operation of entering into/exiting from the sleep mode takes. Such a
transition time (entering sleep/wake-up time) could take 6 μs to 10 ms. Th e
wake-up delay is used to start and stabilize system clocks. Th e faster a CPU can
enter or leave the sleep mode, the more energy a mote can save. As a matter of
fact, by a quick wake-up, we can put a mote into the sleep mode even in a very
short period of inactivity. For example, when sending out a packet, the controller
can even enter the sleep mode among “bits.” Th us, we save a lot of energy.

 2. Voltage requirements: CPU performance also depends on the operating voltage
range. Traditional WSN microcontrollers operate between 2.7 and 3.3 V. New
generations of low-power CPUs can even operate at 1.8 V. WSN applications
need a wide voltage tolerance.

 3. CPU speed: In a WSN, the CPU needs to execute the wireless communication
protocols and perform local data processing. Th ese operations do not need a high-
speed CPU. Th at is why most of today’s WSN CPUs have a speed of <4 MHz. To
select a proper CPU speed, we need to know the amount of sensor data to be pro-
cessed. Th e CPU must be able to fi nish the operations within delay deadlines.

 4. Dynamic CPU speed: Some WSN CPUs can dynamically change the oper-
ating frequency (i.e., CPU speed). CMOS power consumption obeys the
equation P = CV 2F. Th erefore, higher CPU frequency brings more power
consumption. But the CPU execution time is inversely proportional to fre-
quency, that is, higher frequency makes a program run faster, which also
saves energy. Th erefore, we cannot say that the sensor energy consumption
will change drastically by increasing or reducing CPU frequency.

Table 2.2 lists some important features to be considered when selecting a CPU,
such as power, memory size, reprogrammability, A/D channels, and operating sup-
ply. It compares some suitable CPUs used in diff erent motes in the market. Typically,
Atmel AT90LS8535 off ers a good performance in most WSN applications.

Note that the table does not intend to list all advanced
CPUs used in diff erent embedded systems. Instead, it
only lists some popular microcontrollers that may be
suitable to small, low-power, low-cost motes. In some
products, the microcontrollers are integrated with dif-
ferent memories (such as fl ash and ROM).

Remember

WSNs

A CPU design example: SNAP/LE [Virantha04] ◾

In [Virantha04], the author presents the design of a low-power microcontroller
called SNAP/LE (sensor network asynchronous processor/low energy), optimized for
data-monitoring operations in WSNs.

AU9215_C002.indd 31AU9215_C002.indd 31 2/22/2010 4:06:26 PM2/22/2010 4:06:26 PM

32 ◾ Wireless Sensor Networks: Principles and Practice

SNAP/LE does not just simply select a conventional microprocessor for low-energy
optimization. Instead, it is a self-designed brand-new microprocessor with new hard-
ware support for commonly occurring operations in WSNs. It aims to maximize the
lifetime of a network. SNAP/LE is event driven with extremely low-overhead transi-
tions between active and idle periods.

A dominant feature of SNAP/LE is to use automatic, fi ne-grained power
management, which can be seen from the following fact: When a circuit does not
perform a particular operation, it will not have any circuit-switching activities.
Such asynchronous circuits also remove glitches/switching hazards in the CPU,
which avoids another cause of energy waste.

Another interesting feature of SNAP/LE is that its hardware directly supports
sensor event execution, which means that we do not need an operating system (OS)
such as the TinyOS! No OS reduces static and dynamic instruction counts. It also
simplifi es CPU design, as we do not need to worry about precise exceptions and
virtual memory translation.

Most of the traditional mote CPUs adopt a commercial off -the-shelf (COTS)
microcontroller, such as Berkeley motes’ Atmel Mega128L [Atmel08]. SNAP/LE

Table 2.2 Comparison of Microprocessors

Atmel AVR
AT90LS8535

Microchip
PIC16F877

(Preliminary)
MC68H(R)
C 908JL3

Amtel
AT91M404000

16/32 Bit
Strong Thumb

Flash memory 4 K 8 Kx14 4 K External
memory

Endurance 1 K 1 K 10 K N/A

MIPS/mA 1.25 (minute) 1.66
(preliminary)

0.1 (typical) 0.6 MIPS/mA
(1.35 mA static
current)

A/D channels 8 (10 bit) 8 (10 bit) 12 (8 bit) 0

In-application
programming
(IAP)

No Yes Yes Yes

Operating
voltage

2.7–5.5 V 2.0–5.5 V 2.7–3.6 V 2.7–3.6 V

I/O pins 35 40 23 100

Source: Adapted from Hollar, S.E.-A., COTS dust, MS thesis, Mechanical
Engineering, University of California at Berkeley, Berkeley, CA, Fall 2000.

AU9215_C002.indd 32AU9215_C002.indd 32 2/22/2010 4:06:26 PM2/22/2010 4:06:26 PM

Hardware—Sensor Mote Architecture and Design ◾ 33

does not use a commercial CPU; instead, it is a processor designed specifi cally for low-
energy WSNs. It not only meets the computational demands of a WSN node, but
also consumes much less energy than other CPUs.

Customized Very Large-Scale Integrated Circuit
(VLSI) versus COTS design: It is hard to say which
one is the winner. Typically, from time and complexity
viewpoints, most researchers choose to use COTS, as so
many diff erent companies provide high-performance,
low-cost chips to assemble a mote. However, from
cost and performance viewpoints, customized VLSI
design is the fi nal solution, as you can minimize chip

size and achieve the best speed/energy performance. Later on, we will cover
Spec [Jason03]. Like SNAP/LE, it is also a customized design.

Good idea

SNAP/LE aims to design a CPU having all of the following features:

 1. A simple programming model: A good CPU design should allow easy program-
ming. Its programming model should support the following operation mode:
WSN motes sleep most of the time, periodically waking up to handle radio
traffi c or sensor data. Additionally, the CPU should effi ciently execute the most
common WSN tasks, such as scheduling internal timers or reading sensor data.
SNAP/LE was designed with these features in mind.

 2. Lower-power sleep mode: As we mentioned before, sensors remain in the sleep state
during most of the time. SNAP/LE is designed for extra-low power consumption
while it is in the sleep state.

 3. Low-overhead wake-up mechanism: As a fast transition between sleep and wake-
up states is needed to save energy, SNAP/LE aims to achieve around 10 ns of
transition time, which is much less than a typical sensor-event-handling time
(i.e., a few milliseconds).

 4. Low power consumption while awake: Besides maintaining a low power
consumption during the sleep state, SNAP/LE also minimizes the energy
consumption while in an “awake” (computing) state.

SNAP/LE uses a 16 bit data path. Its instructions can be one or two 16 bit words
long (two-word instructions take two CPU clock cycles to execute).

Simultaneous execution of several instructions is supported in SNAP/LE. Its
potential concurrency can be seen from its microarchitecture in Figure 2.1. Th e

AU9215_C002.indd 33AU9215_C002.indd 33 2/22/2010 4:06:26 PM2/22/2010 4:06:26 PM

34 ◾ Wireless Sensor Networks: Principles and Practice

event queue stores outstanding events that are yet to be processed. Th ese instruc-
tion tokens travel through the pipeline and are transformed by the computation
blocks (adders, decoders, etc.).

SNAP/LE uses a data-driven switching activity to reduce the total switching
capacity of the processor. It thus saves energy. Th e use of asynchronous (i.e., data-
driven) circuits further enables energy saving. (To achieve equivalent energy saving
in a clocked processor, the designer would have to clock the gate and every latch in
the processor.)

Th e SNAP/LE CPU core includes an important component, that is, the
event queue. It works with the instruction fetch unit to form a hardware imple-
mentation of a First Input, First Output (FIFO) task scheduler. Th e scheduler
fi rst executes the boot code. When the scheduler reaches the “done” instruction,
which is also the last instruction in the boot code, it will stop fetching instructions
and wait for an event token to appear at the head of the event queue.

Each event token tells what event has occurred. Event tokens are inserted into the
event queue by two hardware components: (1) the timer coprocessor when a time-
out fi nishes and (2) the message coprocessor when data arrives from the sensor node’s
radio or from one of its analog sensors.

SNAP/LE has only one sleep state called the “deep sleep” state. It takes only
10’s ns for its CPU to wake up from this sleep state. Th e “deep sleep” state and the
low wake-up latency both help with the energy saving. Th is feature is not seen in
conventional WSN CPUs: Most of them have several “sleep” states. For instance,
they may have a “deeper” sleep state that consumes less power, but requires more
time to wake up than a “lighter” sleep state. Th e Atmel microcontroller, for example,
has six sleep states.

Timer

Register file

Adder, ALU,
load/store unit

IMEM

Fetch
Event Message

FIFO

Message

DME

Decode

Figure 2.1 Microarchitecture of SNAP/LE showing major units. (Adapted from
Ekanayake, V. et al., An ultralow-power processor for sensor networks, ASPLOS ’04,
Boston, MA, October 7–13, 2004.)

AU9215_C002.indd 34AU9215_C002.indd 34 2/22/2010 4:06:26 PM2/22/2010 4:06:26 PM

Hardware—Sensor Mote Architecture and Design ◾ 35

As we can see from Figure 2.2, the SNAP/LE CPU has the following hard-
ware units: an adder, a logic unit, load-store units, a timer unit for interfacing
with the timer coprocessor, a jump/branch unit, a linear-feedback shift regis-
ter (for pseudorandom number generation), and a shifter. Th e most commonly
used units (such as the adder, the logic unit, and the load-store unit) are placed
on the fast busses and the rest on the slow busses. All of the function units
were designed with minimal pipelining to limit SNAP/LE’s power consumption
while awake.

2.1.3 Memory
After discussing the CPU, we move to another important mote component—memory.
Generally, WSN motes only require small amounts of storage and program mem-
ory. Th is is because the sensor data only stays in a local sensor for a short time, and
then is transmitted through the network to the WSN base station.

Today, many CPUs have an on-chip storage (i.e., a fl ash memory) that is typically
<128 K. Such an on-chip storage can be used for both program memory and
temporary data storage. WSN CPUs also have a data RAM (typically 32–128 kB)
that can be used for program execution.

Date to be
transmitted

Encoded data to
be transmitted

MAC
delay

Start symbol
transmission

Transmitting
encoded bits

Data received

Encoded data
received

Receiving
individual bitsSynchronization

Time

Start symbol
detection

Start symbol
search

Figure 2.2 Transmission to reception wireless communication phases. (Adapted
from Hill, J.L., System architecture for wireless sensor networks, PhD disser-
tation, Department of Computer Science, University of California at Berkeley,
Berkeley, CA, Spring 2003.)

AU9215_C002.indd 35AU9215_C002.indd 35 2/22/2010 4:06:27 PM2/22/2010 4:06:27 PM

36 ◾ Wireless Sensor Networks: Principles and Practice

Let us take a look at the diff erences between a fl ash memory and an SRAM
(static random access memory) [Jason03]:

 1. From the storage viewpoint, the fl ash technology has a higher density
than SRAM. For instance, a fl ash memory could have a storage density of
150 kB/mm2 in a 0.25 μm process [AMD03], while Intel’s recent SRAM
density record is 60 kB/mm2 using a 90 nm process [Intel02].

 2. From the energy consumption viewpoint, fl ash is a persistent storage technology
that does not need energy to maintain data. However, SRAM requires more
energy to retain data over time (but it does not require as much energy for the
initial storage operation).

 3. From the time viewpoint, a fl ash write operation requires 4 μs to complete
compared to .07 μs required by SRAM—both consuming 15 mA.

Th erefore, if we need to store data for long periods of time, it is more effi cient to use
fl ash instead of SRAM.

2.1.4 Radios
Now let us discuss another important hardware component in a mote: radio
transceiver. First, let us recall a few facts on a mote’s low-power, short-range
transceiver:

 1. It consumes around 15–300 mW of power during sending and receiving.
 2. It needs approximately the same amount of energy when in the receive or the

transmit mode.
 3. Unlike what many people think, as long as the radio is on, whether or not it

is receiving actual data, the energy is consumed.
 4. More energy is consumed in receiving packets than sending packets. In a

sensor, the actual power emitted out of the antenna (when sending data)
only accounts for a small fraction of the transceiver’s energy consumption.
Th erefore, the receiver power consumption dominates the overall cost of radio
communication. Th is fact is often ignored in wireless studies.

 5. If the receiver is never turned off (i.e., it is always on), it will be the component
that consumes the largest energy. Do not think that the reception is free when
no data is received. Th erefore, try to put the transceiver into the sleep state
(i.e., a complete “off ” state) when no data is received.

 6. If we use higher transmission power (i.e., put more energy into a radio signal
to be sent), we could make the signal propagate for a longer distance. Th e
relationship between power consumption and the distance traveled is a
polynomial with an exponent between 3 and 4 (this exponent is called path
loss, which exists due to radio interference). As an example, if we want to

AU9215_C002.indd 36AU9215_C002.indd 36 2/22/2010 4:06:27 PM2/22/2010 4:06:27 PM

Hardware—Sensor Mote Architecture and Design ◾ 37

transmit twice as far through an indoor environment, 8–16 times more
energy must be emitted.

 7. Although the data transmission distance is mainly determined by the trans-
mitter power, other factors could also have an impact on the radio range, such
as the receiving sensitivity of the RF receiver, the antenna gain and effi ciency,
and the channel-encoding mechanism.

 8. In most WSN applications, due to low-cost requirements, we cannot exploit high-
gain, directional antennas because they require special alignment. Th erefore,
most times we assume that omnidirectional antennas are used in most WSNs.

In WSNs, we typically use dBm (instead of dB) to measure both transmission
strength and receiver sensitivity. (Note: Th e dB scale is a logarithmic scale where
a 10 dB increase represents a 10× increase in power. Th e baseline of 0 dBm repre-
sents 1 mW, so 1 W is 30 dBm). Typical receiver sensitivities are between −85 and
−110 dBm [Jason03].

Radio propagation distance can be increased by either (1) increasing the
receiver’s antenna sensitivity or (2) increasing a sender’s transmission power
level. When a sender uses a transmission power of 0 dBm, and a receiver’s sensitivity
is set to −85 dBm, the signal may propagate for an outdoor free space range of
25–50 m, while a sensitivity of −110 dBm (higher sensitivity than 0 dBm case)
will result in a range of 100–200 m. (Note: Th e use of a radio with a sensitiv-
ity of −100 dBm instead of a radio with −85 dBm sensitivity will allow you to
decrease the transmission power by a factor of 30 and achieve the same range
[Jason03].)

A VCO (voltage-controlled oscillator)-based radio architecture is being used in
most of today’s RF transceivers. Th ese transceivers have the ability to communicate
at various carrier frequencies (each carrier frequency is called a channel). Such a multi-
channel communication can eff ectively resist interfering signals. If a channel is found
making high noise, the transceiver can immediately switch to another channel.

A few important technical aspects of RF communications are explained as
follows:

 1. Modulation schemes
 When we talk about RF communications, we encounter an important sub-

topic called digital modulation, which puts sensor data in a high-frequency
RF carrier signal. Without modulation, the data cannot be transmitted to a
long distance. It also cannot resist noise signals well.

 A typical modulation example is that of a cell phone’s voice signal (with
low frequency, <4 kHz) that needs to be put in a high-frequency carrier sig-
nal (900 MHz) to communicate with a base-station tower that may be a few
miles away. A 900 MHz signal can effi ciently resist the environmental noise
(also called wireless interference) from obstacles, weather, etc.

AU9215_C002.indd 37AU9215_C002.indd 37 2/22/2010 4:06:27 PM2/22/2010 4:06:27 PM

38 ◾ Wireless Sensor Networks: Principles and Practice

Most radio communication systems need a modem
(MOdulation and DEModulation device) to put low-
frequency, narrowband digital signals into high-
frequency, wideband carrier signals (such as 2.4 GHz
signals). Th is is because low-frequency signals cannot
resist noise well and cannot reach a long distance.
Here, we will discuss a few popular modulation

schemes. In fact, we have dozens of choices. It will take an entire text-
book to discuss these modulation schemes. Th is book can only cover some
basic ones.

Remember

WSNs

 Amplitude modulation (AM) and frequency modulation (FM) have been
used for a long term. AM does not need a complex circuit. It can easily encode
and decode signals. However, it is highly susceptible to noise because the data
is simply encoded in the amplitude (i.e., strength) of the carrier signal. Any
external noise can change such an amplitude. In contrast, FM is less suscep-
tible to noise because all the data is transmitted at the same amplitude level.

 However, FM is not the strongest alternative to resist noise. Spread spec-
trum transmission techniques can greatly increase the channel’s tolerance to
noise by spreading the signal over a wide range of frequencies. Th ere are two
types of spread spectrum schemes. One is called frequency hopping (FH) and
the other one is called code division multiple access (CDMA).

 In FH, the wideband carrier is divided into many small channels. FH
changes communication channels continually based on a pseudorandom
algorithm. Because an enemy does not know which channel it will switch to,
it is diffi cult to select the right channel to add noise. Dwell times—the dura-
tion for which each channel is used—range from 100’s μs to 10’s ms.

 But FH has some shortcomings when used in WSNs. For instance, it has a
high overhead to maintain channel synchronization and to discover the current
hopping sequence. (Th ink about this: If a sensor defi nes a specifi c channel use
order, it must let other sensors know of this order for correct RF communica-
tions, because all communications must occur under the same channel at a spe-
cifi c time). If a sensor tries to fi nd out what channels its neighbors use, it must
attempt to search all possible channel locations. Th is is a high-overhead opera-
tion and not suitable to low-duty-cycle networks. It can be seen how this leads to
high power consumption in Bluetooth devices.

 CDMA (also called direct-sequencing spread spectrum, i.e., DSSS) does
not divide the wideband signal into small channels. Instead, the signal is
directly spread over a wide frequency band by multiplying the signal by a
higher-rate pseudorandom sequence. During reception, the received signal is
passed through a correlator that reconstructs the original input signal.

AU9215_C002.indd 38AU9215_C002.indd 38 2/22/2010 4:06:27 PM2/22/2010 4:06:27 PM

Hardware—Sensor Mote Architecture and Design ◾ 39

 But for WSNs, CDMA also has too much overhead due to the mainte-
nance of spreading codes and the cost of signal decorrelation. It needs high-bit-rate
communications, which is not realistic in low-bit-rate WSNs.

 Lester [Jason03] illustrates the power consumption of modern low-power
transceivers through two commercial radios, the RF Monolithics TR1000
and the Chipcon CC1000:

 a. TR1000: (1) Transmit: It consumes 21 mW of energy when it transmits at
0.75 mW. (2) Receive: TR1000 consumes 15 mW of energy when using a
receiving sensitivity of −85 dBm.

 b. CC1000: (1) Transmit: It consumes 50 mW to transmit at 3 mW.
(2) Receive: It consumes 20 mW when using a receiving sensitivity of
−105 dBm. When transmitting at the same 0.75 mW as TR1000, CC1000
consumes 31.6 mW.

 c. Communication range: TR1000 provides an outdoor, line-of-sight
communication range of up to 300 ft compared to 900 ft provided by
CC1000.

 d. Lifetime: If CC1000 does not go to sleep, it can transmit for approximately
four days straight or remain in the receive mode for nine days straight. To
last for one year, CC1000 must operate at a duty cycle of approximately
two percent.

 2. Bit rate
 Although the Internet prefers a high data rate (its backbone speed could be

over 30 Gbps), WSN applications do not need such high-speed communica-
tion, as most times the sensors just send out some numerical values. Th at is
why many sensors today only off er around 10–100 kbps of data rate.

 3. Turn-on time
 We have emphasized the importance of a radio’s ability to quickly enter into/

exit from the sleep mode. A 5 ms response time is not acceptable. If we
need to transmit data, we should minimize the time and the energy spent
in confi guring/powering up the radio.

If a WSN needs to detect emergency events within seconds, the radio must be
powered on at least once per second. If a radio’s turn-on time is 50 ms, it is diffi cult
to achieve the required duty cycles of less than one percent.

Another interesting phenomenon is that multichannel radios based on the VCO
frequency synthesizer must stabilize themselves prior to transmission or reception.
A VCO locked to a high-frequency crystal should also stabilize itself. Obviously, we
need to minimize the stability time. Th e CC1000 radio requires 2 ms for the primary
crystal to stabilize. Th e TR1000 radio can be turned on and made ready to receive in
just 300 μs. Th is is why TR1000 can respond to an event more than ten times faster
than CC1000.

Some typical RF chips suitable to WSN communications are summarized in
Table 2.3. Th ese chips can be purchased from many semiconductor companies.

AU9215_C002.indd 39AU9215_C002.indd 39 2/22/2010 4:06:28 PM2/22/2010 4:06:28 PM

40 ◾ Wireless Sensor Networks: Principles and Practice
Ta

bl
e

2.
3

C
ur

re
nt

 R
ad

io
s

Su
it

ab
le

 t
o

W
SN

s
an

d
Th

ei
r

C
ap

ab
ili

ti
es

R
ad

io
 F

ea
tu

re
s

R
ad

io

TR
10

00
R

ad
io

C

C
10

00
R

ad
io

C

C
24

00
R

ad
io

n

R
F2

40
1

R
ad

io
 C

C
24

20
R

ad
io

M

C
13

19
1/

92
R

ad
io

Z

V
40

02

M
ax

 d
at

a
ra

te
 (k

b
p

s)
11

5.
2

76
.8

10
00

10
00

25
0

25
0

72
3.

2

R
X

 p
o

w
er

 (m
A

)
3.

8
9.

6
24

18
(2

5)
19

.7
37

(4
2)

65

TX
 p

o
w

er
 (m

A
/d

B
m

)
12

/1
.5

6.
5/

10
19

/0
13

/0
17

.4
/0

34
(3

0)
/0

65
/0

Po
w

er
-d

o
w

n
 p

o
w

er
 (μ

A
)

1
1

1.
5

0.
4

1
1

14
0

Tu
rn

-o
n

 ti
m

e
(m

s)
0.

02
2

1.
13

3
0.

58
20

a

M
o

d
u

la
ti

o
n

O
O

K
/A

SK
FS

K
FS

K
, G

FS
K

G
FS

K
D

SS
S-

O
-Q

PS
K

D
SS

S-
O

-Q
PS

K
FH

SS
-G

FS
K

Pa
ck

et
 d

et
ec

ti
o

n
N

o
N

o
Pr

o
gr

am
m

ab
le

Ye
s

Ye
s

Ye
s

Ye
s

A
d

d
re

ss
 d

ec
o

d
in

g
N

o
N

o
N

o
Ye

s
Ye

s
Ye

s
Ye

s

En
cr

yp
ti

o
n

 s
u

p
p

o
rt

N
o

N
o

N
o

N
o

12
8

b
it

 A
ES

N
o

12
8

b
it

 S
C

Er
ro

r
d

et
ec

ti
o

n
N

o
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s

Er
ro

r
co

rr
ec

ti
o

n
N

o
N

o
N

o
N

o
Ye

s
Ye

s
Ye

s

A
ck

n
o

w
le

d
gm

en
ts

N
o

N
o

N
o

N
o

Ye
s

Ye
s

Ye
s

Ti
m

e-
sy

n
c

b
it

SF
D

/b
yt

e
SF

D
/p

ac
ke

t
Pa

ck
et

SF
D

SF
D

B
lu

et
o

o
th

Lo
ca

liz
at

io
n

R
SS

I
R

SS
I

R
SS

I
N

o
R

SS
I/

LQ
I

R
SS

I/
LQ

I
R

SS
I

So
u

rc
e:

 A
d

ap
te

d
 f

ro
m

 H
ill

, J
.L

.,
Sy

st
em

 a
rc

h
it

ec
tu

re
 f

o
r

w
ir

el
es

s
se

n
so

r
n

et
w

o
rk

s,
 P

h
D

 d
is

se
rt

at
io

n
, D

ep
ar

tm
en

t
o

f
C

o
m

p
u

te
r

Sc
ie

n
ce

, U
n

iv
er

si
ty

 o
f C

al
if

o
rn

ia
 a

t B
er

ke
le

y,
 B

er
ke

le
y,

 C
A

, S
p

ri
n

g
20

03
; H

o
lla

r,
S.

E.
-A

.,
C

O
TS

 d
u

st
, M

S
th

es
is

, M
ec

h
an

ic
al

En

gi
n

ee
ri

n
g,

 U
n

iv
er

si
ty

 o
f C

al
if

o
rn

ia
 a

t B
er

ke
le

y,
 B

er
ke

le
y,

 C
A

, F
al

l 2
00

0.

a
M

an
u

fa
ct

u
re

r’s
 d

o
cu

m
en

ta
ti

o
n

 d
o

es
 n

o
t i

n
cl

u
d

e
ad

d
it

io
n

al
 in

fo
rm

at
io

n
.

AU9215_C002.indd 40AU9215_C002.indd 40 2/22/2010 4:06:28 PM2/22/2010 4:06:28 PM

Hardware—Sensor Mote Architecture and Design ◾ 41

2.1.5 Power Sources
One of the most important components in a mote is the power source. If we use
batteries, three common battery technologies can be used in WSNs, i.e., alkaline,
lithium, and nickel metal hydride [Jason03]:

 1. Alkaline—If you buy an AA alkaline battery, you will see that its output volt-
age is rated at 1.5 V. In reality, when it operates, the voltage could vary from
1.65 to 0.8 V (when it is used for a longer time, its voltage is lower). Its current
is rated at 2850 mA.
 It is a cheap, high-capacity energy source. But some sensors cannot tolerate
its wide voltage range. Its large physical size is also an issue. Even though no
devices are driven by its power, it can self-discharge itself and becomes useless
after fi ve years (because its voltage would be too low).

 2. Lithium—Lithium batteries have a much smaller physical size than alkaline
ones (the smallest versions are just a few millimeters in diameter). Another
good thing is that they have a constant voltage output. Even when the bat-
tery is almost drained, its voltage does not decay much. Another good thing
is that unlike alkaline batteries, lithium batteries are able to operate at tem-
peratures down to −40°C. CR2032 is the most common lithium battery. It is
rated at 3 V and 255 mAh, and sells for just 16 cents.
 However, these batteries have a big disadvantage—they have very low
nominal discharge currents. Th erefore, these cannot drive most of today’s
motes that need more than 1000 mA of current. For instance, these may be
good to drive Crossbow Mica2Dot (the smallest mote from Crossbow), but
they cannot drive the Mica2 mote.

 3. Nickel metal hydride—Nickel metal hydride batteries can be easily recharged.
Th ese have a few shortcomings: An AA size NiMH battery has approximately
half the energy density of an alkaline battery (however, at approximately fi ve
times the cost). Th ese only produce 1.2 V. But many WSN hardware compo-
nents require 2.7 V or more.

Table 2.4 lists the main features of the above three types of batteries
[Seth00].

Table 2.4 WSN Battery Types

Battery Type Voltage (V)
Energy Density

(mW-hr/g) Maximum Current

Alkaline AA P107-ND 1.5 90 130 mA at 24 g

Nickel-metal hybrid
P014-ND (rechargeable)

1.2 55 >2600 mA at 26 g

Lithium 3.0 285 10 mA at 10.5 g

AU9215_C002.indd 41AU9215_C002.indd 41 2/22/2010 4:06:28 PM2/22/2010 4:06:28 PM

42 ◾ Wireless Sensor Networks: Principles and Practice

If a mote is designed to operate at low voltage, a battery could run for a long time. For
instance, suppose that a mote consumes 250 mW and its components require 2.7 V.
However, if we redesign the mote to make its components operate under a voltage down
to 2.0 V, it would last approximately fi ve times as long off of the same power source
(assuming AA battery is used). Th erefore, a seemingly unimportant CPU parameter
(i.e., hardware voltage requirement) could result in a 5× diff erence in system lifetime.

Almost all batteries have a decaying voltage output as time passes by. Th us voltage
regulation techniques have been proposed to take varying input voltages and
produce a stable, constant output voltage. Standard voltage regulators can only
generate an output voltage that is lower than the input voltage. However, if we use
boost converters, we may get output voltages that are higher than the input voltage.
But voltage regulators also have disadvantages. For instance, for a regulator, its
quiescent current consumption, which is the power consumption when no current
is being output, can be relatively high.

If we use alkaline batteries, as it is diffi cult to build a voltage regulator with-
out quiescent power consumption, it will be highly advantageous to build motes
with components that are tolerant to a wide voltage range. If the mote’s compo-
nents can operate over a range of 2.1–3.3 V, general alkaline batteries will be good
enough.

Besides the above battery-based power sources, energy harvesting, especially
solar energy harvesting, has become increasingly important as a way to improve the
lifetime and the maintenance cost of WSNs. While macro-solar power systems have
been well studied, micro-solar-based solar energy harvesting is more constrained
in energy budget. Table 2.5 lists several micro-solar-powered designs with a spe-
cifi c set of requirements, such as lifetime, simplicity, cost, and so on. Heliomote
[VRaghunathan05] and Trio [PDutta06] are two leading designs of micro-solar
power systems. Th ese have diff erent designs. Heliomote [VRaghunathan05] focuses
on simplicity and uses single-level energy storage and hardware-controlled battery
charging. Trio is concerned more about lifetime and fl exibility. It employs two-level
energy storage and software-controlled battery charging.

Energy, energy, energy.
Do you know one of the hottest R&D topics is renew-

able energy systems? Human beings are facing a great
challenge: We cannot simply depend on gas! Look at the
unlimited power source—solar! Why do we not explore
it for all applications including motes? Easier said than
done. We need you—smart scientists and engineers, to
come up with a feasible, low-cost solution to explore solar,
wind, nuclear, and other renewable energy sources.

Good idea

AU9215_C002.indd 42AU9215_C002.indd 42 2/22/2010 4:06:28 PM2/22/2010 4:06:28 PM

Hardware—Sensor Mote Architecture and Design ◾ 43

2.1.6 Peripheral Support
We have discussed about CPUs (i.e., microcontrollers) and their internal design
principle. A CPU has some pins to specifi cally interact with external devices. It has
the following two types of pins.

 1. Digital I/O pins: Standard digital I/O lines are included on all CPUs as the
baseline interface mechanism. It interfaces with RF transceivers, memory
units, and other components that output digital signals.

 Note: In these digital I/O pins, digital communication protocols are used
to read digital sensors. But some other peripheral chips connect to a CPU
through serial communication protocols over a radio or an RS-232 transceiver.
Overall, digital communication supports three standard communication
protocols: UART (Universal Asynchronous Receiver Transmitter), I2C
(Inter-Integrated Circuit), and SPI (Serial Peripheral Interface). Both I2C and
SPI use synchronous protocols with explicit clock signals. However, UART
uses an asynchronous mechanism.

 2. Analog I/O pins: A CPU also has analog I/O pins to interface directly with analog
sensors. For these pins, the CPU has internal ADCs that allow for precise control
of sample timing and easy access to sample results. If an internal converter is not
present in a CPU, the mote designer should include an external converter.

Table 2.5 Micro-Solar Power System Examples

Micro-Solar
Power System Goal Key Features Source

Prometheus Trio Lifetime,
fl exibility

Two-level storage,
SW charging

[XJiang05,
PDutta06]

Heliomote Simplicity HW charging to
NiMH battery

[VRaghunathan05]

Everlast Lifetime MPP tracking [FSimjee06]

RF beacon Proof of concept No support for
power disruption

[SRoundy03]

Farm monitoring Compactness,
reliability, cost

HW charging to
NiMH battery

[PSikka06]

ZebraNet Compactness SW charging to
Li + battery

[PZhang04]

Source: Adapted from Jeong, J. et al., Design and analysis of MicroSolar power sys-
tems for wireless sensor networks, Technical Report No. UCB/EECS-2007-24,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-24.html.

AU9215_C002.indd 43AU9215_C002.indd 43 2/22/2010 4:06:28 PM2/22/2010 4:06:28 PM

44 ◾ Wireless Sensor Networks: Principles and Practice

2.2 Put Everything Together [Jason03]
2.2.1 Typical Sensor Mote Architecture
After we have learned diff erent hardware components in a mote, it is time to put
them together. In summary, a mote mainly achieves local sensor data computation
and neighboring RF communications.

Th is section investigates the general mote architecture that addresses the needs
of computation and communications. As we target the general architecture here,
we will not emphasize any particular radio or processing technology. Instead, we
emphasize the general WSN hardware design principle, especially the hardware
that achieves computation and communications in a low-power approach.

2.2.1.1 Wireless Communication Requirements

A mote needs to use wireless communications to talk with others. Th e wireless signals
are actually raw electromagnetic-signaling primitives. An RF transmitter should use
digital modulation to modulate the data to the RF carrier. An RF receiver then
performs demodulation and data extraction.

In WSNs, a mote mainly sends out two types of data: (1) sensor data collected
from the environment and (2) control data, such as wireless network protocols. Th ese
data are encapsulated into “packets” from the network protocol viewpoint. Figure 2.2
illustrates the key phases of a packet-based wireless communication protocol. Please
note that many of the operations must be performed in parallel with each other. Th is
is similar to a car-manufacturing company that assembles components in parallel.
Figure 2.2 shows that distinct layers overlap in time to refl ect a “parallel” nature.

As shown in Figure 2.2, encoding is the fi rst step in the communication process.
Th e analog sensor data is encoded into digital signals (i.e., bits, also called codes) for
transmission. Note that the codes should also have some type of error detection/
correction functionalities. For instance, when the wireless interference damages
some bits, the error detection codes should be used to fi nd out such errors.

To shorten the transmission delay, “encoding” is pipelined with the actual
transmission process, that is, once the fi rst byte is encoded, RF transmission
immediately begins. We then keep encoding new bytes as the preceding bytes
are transmitted.

Today, many coding schemes have been proposed. A simple scheme could be a
DC-balancing scheme, such as Manchester encoding. A more advanced but more
complex scheme could be CDMA (we covered its concept before). In all encoding
schemes, data bits (either 0 or 1) are grouped into diff erent units, called symbols. Each
symbol is coded into a collection of radio transmission bits, called chips. In Manchester
encoding, for 1 bit of data, we use two chips per symbol. CDMA schemes often have
15–50 chips per symbol, with each symbol containing 1–4 data bits.

When data is passed to wireless communication protocols and is ready to be
sent to another mote, a MAC protocol needs to be executed fi rst. If you could recall

AU9215_C002.indd 44AU9215_C002.indd 44 2/22/2010 4:06:29 PM2/22/2010 4:06:29 PM

Hardware—Sensor Mote Architecture and Design ◾ 45

MAC defi nitions, its main task is to make sure that neighbors can transmit data
without confl ict. A simple example is carrier sense media access (CSMA). A mote
listens to the communication channel before it sends out data. If the channel is
busy, it waits for a short, random delay, and then reinitiates the transmission.

After the MAC protocol successfully sends out data, the routing layer protocol
will take care of the data from mote to mote. It fi nds out an optimal path (from
the energy-saving viewpoint) to deliver the data to the destination (such as a base
station).

When data continuously fl ows between a sender and a receiver, based on an
accurate time synchronization scheme, the sender precisely controls the timing
of each bit transition so that the receiver can maintain synchronization with
the sender.

When a receiver receives the data, it uses decoding and demodulation to recover
the original data. Noise is removed by some data-cleaning algorithms.

2.2.1.2 Key Issues

Lester [Jason03] has pointed out a few important issues during a mote design:

 1. Concurrency
To speed up data processing, it is important to provide an effi cient architec-
ture to support fi ne-grained concurrency. No matter whether on the sender
or on the receiver side, the RF computations should occur in parallel with
application-level data processing and even with network protocol processing.
When an RF communication is going on, we cannot stop some necessary
operations, such as sensor event detection and data calculation.

 2. Flexibility
Note that WSN applications have very diff erent QoS (quality-of-service)
requirements. Some applications need real-time data transmission, while others
can tolerate some delay. Some applications need localized data compression,
while others just simply send data to a sink. Some need security support, while
others do not consider network attacks.

Th erefore, it is important that the mote design has a fl exible architec-
ture to support a wide range of application scenarios. Although traditional
embedded devices (such as cell phones or Bluetooth devices) may use a fi xed
set of communication protocols that they must adhere to, WSNs should
allow fl exible communication protocol designs to exploit trade-off s between
bandwidth, latency, and in-network processing.

Th e above fl exible protocol design requires a fl exible hardware architec-
ture. Diff erent hardware architectures could lead to very diff erent application
optimizations. For instance, a video sensor network needs larger memory and
a stronger CPU, while an underwater sensor needs acoustic (instead of RF)
communication modems.

AU9215_C002.indd 45AU9215_C002.indd 45 2/22/2010 4:06:29 PM2/22/2010 4:06:29 PM

46 ◾ Wireless Sensor Networks: Principles and Practice

 3. Decoupling between RF and processing speed
A mote should not closely couple the following two operational charac-
teristics: RF transmission rates and CPU processing speed. Th is is because the
CPU and the RF transceiver have very diff erent optimization requirements
as follows: (1) A radio prefers to send out data at its maximum transmis-
sion rate. Th is is because a shorter transmitting time reduces the energy
used. (2) On the other hand, modern studies in low-power CPU design and
dynamic voltage scaling have disclosed a fact—CPUs prefer to spread out
computation in time as much as possible so that they can run at the lowest-
possible voltage.

Th erefore, from an energy-saving perspective, it would be preferred that the
CPU performs all calculations as slowly as possible, and just as the computation
is complete, the radio would burst out the data as quickly as possible.

Now we know that the decoupling between the CPU and the radio is
important, as it allows the above diff erent operation patterns: the CPU slowly
processes data and the radio quickly sends out data. When the speed of the
microcontroller is coupled to the data transmission rate, both components of
the system are forced to operate at nonoptimal points.

2.2.1.3 Traditional Wireless Design [Jason03]

Today, many embedded systems (such as cell phones, 802.11 wireless cards, and
Bluetooth-enabled devices) choose to address the concurrency and decoupling issues by
employing a dedicated CPU to run communication protocols. Th is CPU should run
communication protocols that meet real-time requirements during the following opera-
tions: radio modulating and demodulating, encoding/decoding, and other operations.

As an example, in a Bluetooth device, the host channel interface (HCI) performs a
high-level packet interface over a UART. Such an interface hides the intricacies of com-
munication synchronization, signal-encoding, and MAC protocols. Th e speed of the
CPU is then set to meet the requirements of the RF communication protocols.

Unfortunately, the above CPU operation mode is not suitable to WSN applica-
tions, because it separates radio communication and data calculation in partitioning of
resources. Th is leads to nonoptimal resource utilization. Its chip-to-chip commu-
nication mechanisms are not effi cient.

An alternative to the above approach is to use the mote design ideas in [Jason03].
Instead of using a dedicated CPU, a single execution engine is shared across application
and protocol processing. Th e concurrency requirements of the system are met virtually
(instead of physically) by fi ne-grained interleaving of event processing in TinyOS.

In the following few sections, we cover the main design ideas of some motes
(such as Reno, Mica, and Spec) proposed in [Jason03]. Because these motes repre-
sented a pioneering WSN node design in the last decade, we could learn some basic
hardware design principles on how we could make a mote work well for realistic
WSN applications.

AU9215_C002.indd 46AU9215_C002.indd 46 2/22/2010 4:06:29 PM2/22/2010 4:06:29 PM

Hardware—Sensor Mote Architecture and Design ◾ 47

2.2.1.4 Mote Example: Reno

Reno is a mote proposed in [Jason03] with special-purpose hardware accelerators
for handling the real-time, high-speed requirements of the radio.

Figure 2.3 depicts Reno’s general architecture. Its CPU needs to handle multi-
ple concurrent operations (similar to the “multi-threads” concept in MS Windows).
Context switching needs to be effi ciently supported. Register windows can be used
to decrease the context-switching overhead. Reno’s CPU includes multiple register
sets, which avoid the operation of dumping data from registers to the memory.
Instead, the OS simply switches to a free register set.

As shown in Figure 2.3, a shared bus interconnects memory, I/O ports, ADCs,
system timers, and hardware accelerators. Because of its high-speed, low-latency
interconnect, data can be moved easily between the processor, memory, and periph-
eral devices. Such a bus allows not only direct CPU–peripherals interactions, but
also allows a peripheral device to interact with another peripheral. Note that a
peripheral can use the bus to directly pull data from the memory. It can also easily
push data into a UART peripheral.

Th erefore, Reno can use the shared bus to enhance RF communications as fol-
lows: It allows a data-encoding peripheral to pull data directly from memory and
then push it into a data transmission accelerator, such as a modulation circuit for
RF communications. Th is is diff erent from many computer-operating modes where
the CPU has to be involved into any memory read/write. In Reno, the CPU does
not get involved into communications. Th is frees the CPU from some heavy load,
as the CPU can simply orchestrate the data transmission.

Shared storage
and data

ADC

System timers

Radio timing

Programming

Protocol accelerators

Memory and I/O busses
General-purpose
processing core

RF transceiver

Radio control
system I/O ports

Figure 2.3 Generalized architecture for embedded wireless device. (Adapted
from Hill, J.L., System architecture for wireless sensor networks, PhD disser-
tation, Department of Computer Science, University of California at Berkeley,
Berkeley, CA, Spring 2003.)

AU9215_C002.indd 47AU9215_C002.indd 47 2/22/2010 4:06:29 PM2/22/2010 4:06:29 PM

48 ◾ Wireless Sensor Networks: Principles and Practice

If you could recall “Computer Architecture” or “Assembly Language” courses,
we could use the same addressing schemes to name each memory location and other
devices, that is, a memory address could be a real memory location or just the virtual
location of a device’s data buff er. Th e system uses a wire to link the device’s data
buff er to a real memory location. Reno uses such an addressing scheme. It allows
components that were not originally intended to function together to be combined in
new and interesting ways. Suppose that a data encoder wants to get data from a radio
receiver’s buff er. Because such a buff er is mapped to a memory location, the encoder
can just simply read from memory, transform data, and write to memory.

Finally, remember that one of the dominant features of the Reno mote is that
it consists of special-purpose hardware accelerators, which can implement low-level
operations in a fast, energy-effi cient way. By increasing the effi ciency of these opera-
tions, the overall power consumption of the system can be greatly reduced.

2.3 Mica Mote Design [Jason03]
Th e Mica mote adds key hardware accelerators to Reno to validate the generalized
architecture. Mica supplements the CPU with hardware accelerators to increase the
transmission bit rates and timing accuracy.

Mica hardware components include an Atmega103 microprocessor (i.e., CPU),
an RFM TR1000 radio, external storage, and communication accelerators. Th e
hardware accelerators optionally assist to increase the performance of key phases of
the wireless communication.

Figure 2.4 shows the Mica architecture. It has fi ve major function modules:
CPU, RF communication, power management, I/O expansion, and secondary
storage. On the Web site http://www.tinyos.net, the readers can fi nd a quick survey
of the major modules; a general overview for the system as a whole; and a detailed
bill of materials, device schematic, and datasheet for all hardware components.

Th e Mica mote uses Atmel ATMEGA103L or ATMEGA128 (4 MHz). Th e
Atmel CPU also connects a 128 kB fl ash program memory; a 4 kB static RAM; an
internal eight-channel, 10 bit ADC; three hardware timers; 48 general-purpose I/O
lines; one external UART; and one SPI port. Th e Mica radio module consists of an
RF Monolithics TR1000 transceiver.

Mote ID ◾ : To obtain a unique identifi cation for each mote, Mica uses a Maxim
DS2401 silicon serial number, which is a low-cost ROM device with a mini-
mal electronic interface without power requirements [Dallas08].
Memory ◾ : Mica uses a 4 Mbit Atmel AT45DB041B serial fl ash chip, which has a
small footprint. Th e fl ash memory stores two types of information: (1) sensor data
and (2) application programs. Typically, the fl ash memory should be larger than
the 128 kB program memory to hold a complete program. Th at is why Mica does
not use the electronically erasable, programmable ROM-based memory, which is
used by Reno and is generally smaller than 32 kB.

AU9215_C002.indd 48AU9215_C002.indd 48 2/22/2010 4:06:29 PM2/22/2010 4:06:29 PM

Hardware—Sensor Mote Architecture and Design ◾ 49

Power supply ◾ : Mica can be driven by AA alkaline batteries and boosts their out-
put voltage. Th e radio will not operate, however, without the boost converter
enabled. Mica uses a Maxim1678 DC–DC converter to provide a constant
3.3 V supply. Th e converter accepts an input voltage as low as 1.1 V. Note that
input voltages signifi cantly aff ect the radio transceiver’s (TR1000’s) transmis-
sion strength and receiving sensitivity.

Table 2.6 shows the power consumption levels in diff erent Mica hardware
components. When the mote is in ultra-low-power sleep mode, the power system
is disabled. Th en the entire system runs directly off the unregulated input voltage.
Th is helps to reduce the power consumed by the boost converter and the CPU.
Peripherals ◾ : Mica’s I/O subsystem interface consists of a 51-pin expansion connec-
tor. Th ese pins allow the mote to interface with a variety of sensing and program-
ming boards. Th e 51-pin connector has the following interfaces: eight analog
lines, eight power control lines, three pulse-width-modulated lines, two analog
compare lines, four external interrupt lines, one serial port, a collection of lines
dedicated to the programming of microcontrollers, and some bus interfaces.
Radio ◾ : Mica uses a TR1000 radio to allow the CPU to directly access the signal
strength of the incoming RF transmission. Such a radio interface also allows
the CPU to sample the level of background noise during periods when there is
no active data transmission. In multi-hop networking applications, such infor-
mation (radio signal strength and noise levels) can dramatically improve the
routing effi ciency by selecting links with good signal-to-noise ratios.

Hardware ID

Transmission
power control

Hardware
accelerators

Radio transceiver

Flash MEM

Coprocessor

Program
lines

Microcontroller
(Atmega 103)

I/O expansion connector

Digital I/O Analog I/O

Figure 2.4 Block diagram of Mica architecture. (Adapted from Hill, J.L., System
architecture for wireless sensor networks, PhD dissertation, Department of Computer
Science, University of California at Berkeley, Berkeley, CA, Spring 2003.)

AU9215_C002.indd 49AU9215_C002.indd 49 2/22/2010 4:06:29 PM2/22/2010 4:06:29 PM

50 ◾ Wireless Sensor Networks: Principles and Practice

Mica allows softwares to power the radios on/off quickly and predictably.
Th erefore, a Mica mote can easily enter a low-duty-cycle operation without
a global control.

2.4 Customized Mote—Spec [Jason03]
Although it is a quick and simple way to integrate commercial off -the-shelf (COTS)
components into a mote, from manufacturing cost, energy consumption, and sys-
tem performance viewpoints, it is more effi cient to design a custom-integrated
solution.

If using COTS chips, the chip-to-chip communications can sacrifi ce the sys-
tem delay and power performance due to the interface overhead. Th erefore, Lester
[Jason03] developed a custom ASIC for the mote board, which is called Spec.
By designing the customized silicon, it achieves orders-of-magnitude effi ciency
improvements on the main communication primitives.

Spec is much smaller than most commercial motes. It is just 2.5 mm on a side
in a 0.25 μm CMOS process even though it integrates a microcontroller, SRAM,
communication accelerators, and a 900 MHz multichannel transmitter.

Of course, although its CPU, RF transceiver, and memory are based on a single-
chip design, it still needs some low-cost external components, which include a crystal,
a battery, an inductor, and an antenna, to form a complete WSN mote.

Spec has a general architecture, as shown in Figure 2.5. Th e CPU core is a basic
8 bit RISC core with 16 bit instructions. A bank of six memory blocks (each 512
bytes) is connected to the CPU core. Th e reason of dividing the memory into banks
is to achieve a smooth integration between instruction memory and data memory.
Besides the memory controller, the CPU core is also connected to an ultra-low-power

Table 2.6 Breakdown of Active and Idle
Power Consumption for Mica Hardware at 3 V

Hardware Device Active (mW) Idle (uW)

CPU 16.5 30

Flash drive 45 30

LED 10 0

Radio 21 (TX), 15 (RX) 0

Silicon ID 0.015 0

Source: Adapted from Hill, J.L., System architecture
for wireless sensor networks, PhD disserta-
tion, Department of Computer Science,
University of California at Berkeley, Berkeley,
CA, Spring 2003.

AU9215_C002.indd 50AU9215_C002.indd 50 2/22/2010 4:06:30 PM2/22/2010 4:06:30 PM

Hardware—Sensor Mote Architecture and Design ◾ 51

ADC, an encryption accelerator, general-purpose I/O ports, system timers, a chip-
programming module, and an RF subsystem.

Th e RF subsystem performs the following tasks: it extracts and generates bits with
correct sending/receiving timing control; it performs bit pattern matching to fi nd a
start symbol (thus, the receiver knows the boundaries of diff erent data units); it forms a
stream for data to be transmitted; it takes data into and out of memory; to achieve secu-
rity, it can encrypt and decrypt data automatically; and it performs other tasks as well.

Lester [Jason03] fi rst used the Very High-Speed Hardware Description
Language (VHDL) digital logic tools to synthesize Spec’s behavioral character-
istics. After VHDL simulation, these tools map the high-level VHDL code into
standard cells provided by National Semiconductor using Ambit Build Gates. Th e
layout of this tool was performed with Silicon Ensemble—a tool from Cadence
Design Systems. In addition to VHDL simulation, the functionality of the Spec
core was also verifi ed by downloading it onto a Xilinx FPGA.

Spec’s data-processing speed is much higher than Mica in many applications.
Spec provides signifi cant advantages in power consumption due to its integrated
design and hardware accelerators. Because Spec is a fully integrated chip, it does not
off er the same interface fl exibility as Mica.

Instruction
fetch and decode

Register file

Memory and I/O bus

Encryption
engine

System
timers

Radio
subsystem

and analog RF

I/O ports

ALU

ADC
Address

translation

SPI
programming

module

RISC core

RAM
blocks

Figure 2.5 Block diagram of Spec, the single-chip wireless mote. (Adapted from
Hill, J.L., System architecture for wireless sensor networks, PhD dissertation,
Department of Computer Science, University of California at Berkeley, Berkeley,
CA, Spring 2003.)

AU9215_C002.indd 51AU9215_C002.indd 51 2/22/2010 4:06:30 PM2/22/2010 4:06:30 PM

52 ◾ Wireless Sensor Networks: Principles and Practice

2.5 COTS Dust Systems [Seth00]
In [Seth00], several interesting sensor systems were built. Th eir motes used the Atmel
AT90LS8535 (as the microcontroller) and the RF Monolithics 916 MHz RF trans-
ceiver. Th e mote controls seven diff erent types of analog sensors (temperature, light,
barometric pressure, two axis accelerators, and two axis magnetometers). Regarding
the power source, it uses a single 3 V lithium coin cell battery. It can operate for fi ve
days of continuous operation or for 1.5 years at one percent duty cycling.

It uses a slow CPU, Atmel MCU with 149.475 kHz. It creates 19 instructions to
send and receive raw data bits through the RF system. Each clock cycle only executes
one instruction. Th us, its raw data rate is 149.475 kHz/19 cycles/bit = 7.867 kbps.

In wireless environments, noise/interference can damage packets of data. Hollar
[Seth00] uses a cyclic redundancy check (CRC) to check packet bit errors.

Figure 2.6 shows its single-hop communication protocol, a simple procedure for
sending data from one device to the next through one RF transmission–reception
pair. Its communication protocol is used for two types of motes (see Figure 2.6):
Th e base mote communicates to a computer (which could serve as a base station)
via the serial port, and the fl oating motes communicate to the base mote via RF.
Th e fl oating motes continuously send out data packets that are received by the base
mote, which then displays the information on the computer screen.

Listen for query
100 ms

Listen for sensor
data 100 ms

Base mote protocol

Transmit
query
35 ms

No

Yes

Yes

Yes

No

Query
received?

Transmit data
43 ms

Listen for
stop signal

30 ms
Stop signal
received?

Floating mote protocol

Data
received?

Send data to
computer 1 ms

Figure 2.6 Protocols used for base and fl oating Motes. (Adapted from Hollar,
S.E.-A., COTS dust, MS thesis, Mechanical Engineering, University of California
at Berkeley, Berkeley, CA, Fall 2000.)

AU9215_C002.indd 52AU9215_C002.indd 52 2/22/2010 4:06:30 PM2/22/2010 4:06:30 PM

Hardware—Sensor Mote Architecture and Design ◾ 53

Hollar [Seth00] also used a simple time synchronization protocol between the
two devices. To establish time synchronization, the base mote must fi rst query one of
the fl oating motes. As shown in Figure 2.6, after sending a query command, it listens
for a response. If a response is not heard after 100 ms, it proceeds to send out another
transmit query. Such a query procedure is repeated until a valid message is received.
Once received, the message is sent from the base mote to the computer over the serial
port. Th e base mote then proceeds to listen for the next data packet.

Figure 2.6 also shows that both protocols have listening periods right after transmis-
sion periods. Th is enables the motes to respond to queries right away. A handshaking
protocol enables both motes to communicate with one another as quickly as possible.

Hollar [Seth00] only presents a very basic mote design
without considering many other WSN application
requirements. For instance, it does not support multi-
hop communication well. Its CPU/transceiver design
still has a large space to house a more energy-effi cient
interface design. Th e reason we include this example
here is to show that even for a simple mote prototype
design, there could be many lessons to learn. (Please see
Section 2.5.1 on some lessons learned from [Seth00].)

Case study

2.5.1 Design Advice: Failures and Successes
Th ere are some good lessons summarized in [Seth00] as follows.

 1. On the selection of CPU and RF transceiver: In the beginning, Hollar [Seth00]
used Scenix SX28AC series microprocessor that operates with clock cycles up
to 50 MHz. However, when the fi rst circuit board was populated, there was
trouble getting the RF Monolithics transceiver chipset to work in the pres-
ence of the Scenix microprocessor.

 Hollar [Seth00] found out why the transceiver chipset did not work cor-
rectly. Th e RF transceiver was saturated with the noise generated by the
CPU—because the CPU was clocked at a slow speed of 1 MHz; possibly,
the fast rise and fall times of the CPU contributed to noise in the receiving
band. Th e second possible reason is that the circuit board did not contain
a ground or power plane. Ground and power planes in circuit boards help
to isolate signals from one another and maintain a stable power supply
voltage.

 2. On the choice of power supplies: Th e Scenix CPU operated at 5 V, and the
RFM chips operated at 3 V. A way is needed to generate both power supplies.
A possible way is to use three alkaline batteries that provide 3 and 4.5 V.

AU9215_C002.indd 53AU9215_C002.indd 53 2/22/2010 4:06:30 PM2/22/2010 4:06:30 PM

54 ◾ Wireless Sensor Networks: Principles and Practice

Unfortunately, the batteries could lose voltage over their lifetime. Th e idea
of using two voltage converters for both the MCU and the transceiver
chipset was also unappealing due to the added complexity and increased
component count. To solve this problem, Hollar [Seth00] aimed to use a
single operating voltage, namely, that of a 3 V lithium ion battery. All com-
ponents were designed to operate within the battery range of 2.75–3.25 V.

2.6 Telos Mote [Joseph05]
Th e Telos series mote (such as Telos-B) is a popularly used sensor platform today.
Unlike Spec, which integrates the design into silicon, Telos uses COTS components
with hardware accelerators to build a power-effi cient system that does not sacrifi ce
performance.

Table 2.7 summarizes the main features of diff erent motes.
After comparing the CPU performance from Atmel, Motorola, and Microchip,

Telos developers select the MSP430 CPU due to its following advantages:

 1. It has the lowest power consumption in both sleep and active modes (see
Table 2.7).

 2. It can tolerate a low operation voltage of 1.8 V. A low-voltage operation
could help extract all the energy out of a power source. If we use AA bat-
teries, they have a cutoff voltage of 0.9 V. A Telos mote uses two batteries.
Th en the system cutoff voltage will be 1.8 V, which is exactly the minimum
required voltage for MSP430. If we use other CPUs, say ATmega128 MCU
(Mica family), it can only run down to 2.7 V, leaving almost 50 percent of
the AA batteries unused.

 3. We know that a faster wake-up time helps to conserve energy. Table 2.7 shows
that MSP430 has the fastest wake-up time (it takes <6 μs to transition from
the standby (1 μA) to the active mode).

 4. From the memory viewpoint, Table 2.7 shows that MSP430 has the largest
on-chip RAM buff er (10 kB). It is good for on-chip signal processing. A larger
RAM allows more sophisticated applications.

From the RF communication viewpoint, Telos has the following features:

 1. It uses the IEEE 802.15.4 standard. Such a standardized radio allows Telos to
communicate with many radio devices from other vendors.

 2. It uses the Chipcon CC2420 radio. It uses a 2.4 GHz RF band, a wideband radio
with Off set Quadrature Phase-Shift Keying (O-QPSK) modulation with DSSS
at 250 kbps. Such a high data rate (other motes typically operate under 150 kbps)
shortens the operation time (which helps to reduce energy consumption).

AU9215_C002.indd 54AU9215_C002.indd 54 2/22/2010 4:06:31 PM2/22/2010 4:06:31 PM

Hardware—Sensor Mote Architecture and Design ◾ 55
Ta

bl
e

2.
7

Fa
m

ily
 o

f B
er

ke
le

y
M

ot
es

 P
re

ce
di

ng
 T

el
os

 a
nd

 T
he

ir
 C

ap
ab

ili
ti

es

M
o

te
s

M
o

te
 T

yp
e

W
eC

Re
n

e
Re

n
e2

D
o

t
M

ic
a

M
ic

a2
D

o
t

M
ic

a
2

Te
lo

s

Ye
ar

19
98

19
99

20
00

20
00

20
01

20
02

20
02

20
04

M
ot

e
m

ic
ro

co
nt

ro
lle

r
pr

op
er

ti
es

Ty
p

e
A

T9
0L

S8
53

5
A

T9
0L

S8
53

5
A

Tm
eg

a1
63

A
Tm

eg
a1

63
A

Tm
eg

a1
28

A
Tm

eg
a1

28
A

Tm
eg

a1
28

TI
 M

SP
43

0

Pr
o

gr
am

M

em
o

ry
 (k

B
)

8
8

16
16

12
8

12
8

12
8

48

R
A

M
 (k

B
)

0.
5

0.
5

1
1

4
4

4
10

A
ct

iv
e

p
o

w
er

(m

W
)

15
15

15
15

8
8

33
3

Sl
ee

p
 p

o
w

er

(m
W

)
45

45
45

45
75

75
75

15

W
ak

e-
u

p
 ti

m
e

(μ
W

)
10

00
10

00
36

36
18

0
18

0
18

0
6

M
ot

e
no

nv
ol

at
ile

 s
to

ra
ge

 p
ro

pe
rt

ie
s

C
h

ip
24

LC
25

6
24

LC
25

6
24

LC
25

6
24

LC
25

6
A

T4
5D

B
04

1B
A

T4
5D

B
04

1B
A

T4
5D

B
04

1B
ST

M
25

P8
0

C
o

n
n

ec
ti

o
n

ty

p
e

I2 C
I2 C

I2 C
I2 C

SP
I

SP
I

SP
I

SP
I

Si
ze

 (k
B

)
32

32
32

32
51

2
51

2
51

2
10

24

M
ot

e
co

m
m

un
ic

at
io

n
pr

op
er

ti
es

R
ad

io
TR

10
00

TR
10

00
TR

10
00

TR
10

00
TR

10
00

C
C

10
00

C
C

10
00

C
C

24
20

D
at

e
ra

te
 (k

b
p

s)
10

10
10

10
40

38
.4

38
.4

25
0

(c
o

n
ti

n
u

ed
)

AU9215_C002.indd 55AU9215_C002.indd 55 2/22/2010 4:06:31 PM2/22/2010 4:06:31 PM

56 ◾ Wireless Sensor Networks: Principles and Practice

Ta
bl

e
2.

7
(c

on
ti

nu
ed

)
Fa

m
ily

 o
f B

er
ke

le
y

M
ot

es
 P

re
ce

di
ng

 T
el

os
 a

nd
 T

he
ir

 C
ap

ab
ili

ti
es

M
o

te
s

M
o

te
 T

yp
e

W
eC

Re
n

e
Re

n
e2

D
o

t
M

ic
a

M
ic

a2
D

o
t

M
ic

a
2

Te
lo

s

Ye
ar

19
98

19
99

20
00

20
00

20
01

20
02

20
02

20
04

M
o

d
u

la
ti

o
n

ty

p
e

O
O

K
O

O
K

O
O

K
O

O
K

A
SK

FS
K

FS
K

O
-Q

PS
K

R
ec

ei
ve

 p
o

w
er

(m

W
)

9
9

9
9

12
29

29
38

Tr
an

sm
it

 p
o

w
er

at

 0
 d

B
m

 (m
W

)
36

36
36

36
36

42
42

35

M
ot

e
po

w
er

 c
on

su
m

pt
io

n
pr

op
er

ti
es

M
in

im
u

m

O
p

er
at

io
n

 (V
)

2.
7

2.
7

2.
7

2.
7

2.
7

2.
7

2.
7

1.
8

To
ta

l a
ct

iv
e

p
o

w
er

 (m
W

)
24

24
24

24
27

44
89

41

M
ot

e
pr

og
ra

m
 a

nd
 s

en
so

r
in

te
rf

ac
e

pr
op

er
ti

es

Ex
p

an
si

o
n

N
o

n
e

51
-p

in
51

-p
in

n
o

n
e

51
-p

in
19

-p
in

51
-p

in
16

-p
in

C
o

m
m

u
n

ic
at

io
n

IE
EE

 1
28

4
an

d
 R

S2
32

IE
EE

 1
28

4
an

d
 R

S2
32

IE
EE

 1
28

4
an

d
 R

S2
32

IE
EE

 1
28

4
an

d
 R

S2
32

IE
EE

 1
28

4
an

d
 R

S2
32

IE
EE

 1
28

4
an

d
 R

S2
32

IE
EE

 1
28

4
an

d
 R

S2
32

U
SB

In
te

gr
at

ed

se
n

so
rs

N
o

N
o

N
o

Ye
s

N
o

N
o

N
o

Ye
s

So
u

rc
e:

 P
o

la
st

re
,

J.
et

 a
l.,

 T
el

o
s:

 E
n

ab
lin

g
u

lt
ra

lo
w

 p
o

w
er

 w
ir

el
es

s
re

se
ar

ch
,

Fo
u

rt
h

 I
n

te
rn

at
io

n
al

 S
ym

p
o

si
u

m
 o

n
 I

n
fo

rm
at

io
n

Pr

o
ce

ss
in

g
in

 S
en

so
r N

et
w

o
rk

s
20

05
 (I

PS
N

 2
00

5)
, L

o
s

A
n

ge
le

s,
 C

A
, A

p
ri

l 1
5,

 2
00

5,
 IE

EE
 P

re
ss

 P
is

ca
ta

w
ay

, N
J,

p
p

. 3
64

–3
69

.

AU9215_C002.indd 56AU9215_C002.indd 56 2/22/2010 4:06:31 PM2/22/2010 4:06:31 PM

Hardware—Sensor Mote Architecture and Design ◾ 57

Th e Telos mote can be programmed through an on-board USB that also provides
power. A USB interface is better than an RS232-based serial interface considering
that many people use laptops (that have a few USB ports) to program a mote.

Th e Telos mote has a user button, a reset button, and a 16-pin IDC expansion
header. A programmer can re-task the reset button as a non-maskable interrupt,
thus allowing it to be used as a power button instead. A developer can also export
I2C and UART over the 16-pin IDC expansion header to attach many connections
found on today’s legacy “Mica-style” sensor boards [JPolastre04].

In many cases, we need hardware write protection to protect the good program
images in a memory. Such a write protection also prevents possible write errors
when using over-the-air programming, which is used in some advanced motes.
Telos is the fi rst mote to include hardware write protection for external storage. Th e
write protection is disabled if plugged into a USB interface. When running on batteries
(without a USB), the memory is write protected.

Telos mote has some “sub-circuit” with a separate power-on/power-off switch.
If any failure is detected, we could power-off a sub-circuit instead of the whole
system. Such a power protection is based on the lessons learned from a real-world
WSN application on the Great Duck Island (GDI) [RSzewczyk04]. In the GDI
application, a small part of circuit caused the failure of a sensor. As the failure could
be recognized in the software, the ability to cut power to that section of the board
could have saved the system as a whole.

2.7 CargoNet [Mateusz07]
In [Mateusz07], a mote called CargoNet is designed to bridge the gap between WSNs
and radio frequency identifi cation (RFID). CargoNet originally targeted applications
in environmental monitoring at the crate level for supply-chain management and asset
security. It uses custom-designed circuits to minimize power consumption and cost.

Th e CargoNet nodes use a new concept, called quasi-passive wake-up, to
achieve an asynchronous, multimodal wake-up, which can wake up (from the sleep
mode) to perform extremely low-power operations. CargoNet can be used to
monitor conditions inside a typical shipping crate while consuming <25 μW of
average power.

CargoNet uses external stimuli signals to wake up its sensor mote. Th is idea is
not new, as some other related systems have also explored external wake-up. But
CargoNet consumes much less power than them.

As an example, a similar wake-up strategy for vibration detection and autonomous
crack monitoring was proposed by researchers at the Northwestern University. It
uses a single geophone as the input sensor and wakes up to detect aperiodic shocks
to ensure structural safety of buildings. Although their analog front end consumes
only 16.5 μW on an average, their processing is performed by a Mica2 mote, which
adds a further 105 μW to their average power budget.

AU9215_C002.indd 57AU9215_C002.indd 57 2/22/2010 4:06:31 PM2/22/2010 4:06:31 PM

58 ◾ Wireless Sensor Networks: Principles and Practice

As another example, the T-mote [Tmote06] also has comparators to generate
interrupts upon acoustic or acceleration stimuli, but it needs much energy (in the mil-
liwatt range) due to the use of active accelerometers and microphone amplifi ers.

In the following, let us fi rst understand the general concept of RFID.
RFID is used to replace the traditional bar-code technique to improve tradi-

tional bar codes when used in the transport and distribution of goods. Traditional
bar codes require a line of sight between an interrogator and a tagged object.
Th erefore, human operators must align a tagged object to ensure a successful read.
Th e distance between the interrogator and bar codes is very short (typically, a few
centimeters). Moreover, these bar codes have very short information.

On the other hand, RFID uses a reader to read tags that are attached to prod-
ucts. Th e distance between the reader and tags could be even a few inches to over
10 ft long (its range depends on the used RF). Moreover, the reader can read a tag’s
data through non-line-of-sight signals that propagate widely and permeate through
most nonconductive materials, allowing identifi cation without human involve-
ment. Although the traditional bar code is printed onto a surface and cannot be
changed, we can change the data in RFID tags because they are electronic circuits
that can change state based on external stimuli.

A concept called “active RFID” has been proposed recently. It is actually a spe-
cial sensor device with battery and CPUs to provide better “visibility” into their
supply chains. “Active RFIDs” can accurately collect data about environmental
conditions experienced by goods in transit, better manage risk, and maintain fl ex-
ibility. Th ese RFIDs can detect potentially damaged goods before they reach their
destination.

Th e CargoNet node is such a type of “active RFID”. Its quasi-passive wake-up is
based on the following interesting fact: Th e external stimuli could actually be used
to wake up and even provide energy to the CPU!

CargoNet can desensitize the sensors following repeating stimuli. Th is further
reduces occurrences of redundant wake-up to save power. Quasi-passive wake-up
allows a CargoNet RFID tag to simultaneously and continuously monitor many
sensor modalities for exceptional activity without consuming much power.

Figure 2.7 is a system diagram with the CargoNet “active RFID” tags and an
RFID reader. Its core hardware consists of the MSP430 microcontroller, a real-time
clock (RTC), and a CC2500 2.4 GHz radio. Th e MSP430F135 fl ash-based micro-
controller is manufactured by Texas Instruments (TI). It has a specifi ed standby
current of <0.1 μA when entering the sleep state.

Th e CargoNet tag has an internal fl ash memory with a capacity of 16 kB. It is a
small memory. But it is big enough for most targeted applications due to two reasons:

 1. Its design allows any memory not dedicated to program storage to be used for
data logging. Its OS occupies a very tiny space.

 2. We typically record only extraordinary events (such as extremes of tem-
perature and signifi cant shocks). Th e routine code occupies <8 kB. Suppose

AU9215_C002.indd 58AU9215_C002.indd 58 2/22/2010 4:06:31 PM2/22/2010 4:06:31 PM

Hardware—Sensor Mote Architecture and Design ◾ 59

potentially harmful or notable events occur once per day and require 10 bytes
to log, its fl ash memory will last over two years before it is fi lled!

If a developer needs to test long programs, or, in some cases, we may need to store
more detailed information in the mote, CargoNet allows the attachment of an
external fl ash memory to the tag (for instance, Atmel’s AT45DB081B could be
attached, which has 8 Mbits of storage capacity and current consumption of 2 μA
at standby).

MSP430 has internally a fast-starting, high-frequency clock oscillator. A devel-
oper can certainly use external clocks, such as a low-frequency watch crystal.
CargoNet suggests employing a separate Philips PCF8563 RTC chip, which has a
low timekeeping current (only 0.35 μA). Th e RTC allows an “active RFID” tag to
fi nd out the exact location where the damage occurred by measuring the time from
the last checkpoint. Th e RTC can also issue a once-per-minute polling sequence of
the humidity and temperature sensors.

Th e “active RFID” tags use CC2500 from Chipcon to communicate wirelessly
with RFID readers/interrogators (see Figure 2.7). Unlike traditional RFID systems,
the CC2500 radio is fully bidirectional, such that the “active RFID” tags can also
receive instructions from the RFID readers besides sending tag data to the readers.
Th is feature bridges the gap between “active RFIDs” and WSNs as WSN motes require
bidirectional communications between nodes. Such a bidirectional radio communication

Polled
sensors

Instantaneous
sensors

Flash
storage

Flash
storage

CC2500

CC2500

300 MHz

2.4 GHz

RFID
reader

RF wake-up

RF wake-up

MSP430

MSP430

CargoNet chip

Instantaneous
sensors

Polled
sensors

RFID
reader

UART/USB

μC

μC

Figure 2.7 CargoNet system diagram. (Adapted from Malinowski, M. et al.,
CargoNet: A low-cost MicroPower sensor node exploiting quasi-passive wakeup
for adaptive asychronous monitoring of exceptional events, SenSys ’07, Sydney,
Australia, November 6–9, 2007.)

AU9215_C002.indd 59AU9215_C002.indd 59 2/22/2010 4:06:31 PM2/22/2010 4:06:31 PM

60 ◾ Wireless Sensor Networks: Principles and Practice

capability enables useful applications, such as synchronizing clocks, recording the
identity of neighbors, and qualifying the validity of sensor readings.

When a base station (which is actually an RFID reader/interrogator in Figure
2.7) sends out data query requests to the “active RFID” tags to check signifi cant
events (e.g., temperatures or shocks), request data dumps, or adjust tag parameters,
it uses a radio burst signal. CargoNet motes are able to wake quasi-passively after
receiving such an RF amplitude burst at 300 MHz over a dynamically adjustable
threshold.

Note that a CargoNet “active RFID” tag does not typically poll or amplify
quickly changing environmental stimuli. Th is is for the purpose of saving energy.
Instead, it simply takes environmental stimuli and compares them against a
threshold through “quasi-passive wake-up” technology. Th e above comparator
is based on a Linear Technology product (LTC1540). Because of its nonlin-
ear class-D operation, it typically consumes only 840 nW of quiescent power
[Linear04].

But for some stimuli that do not change quickly enough, they may not be able
to reach the “wake-up threshold.” Such stimuli examples have temperature, humid-
ity, etc. For this case, the “active RFID” tag will poll the stimuli.

An “active RFID” tag uses a 12 bit accuracy sequence to poll the Sensirion
SHT11 temperature/humidity sensors. Th e polling time is around 55 ms. If it polls
the sensors once a minute, this corresponds to a duty cycle of only 0.092 percent
and an average power consumption of 1.5 μW. Such a low-duty-cycle polling does
not dominate the power budget of the tag at all.

If an “active RFID” tag needs to wake up quickly to achieve a very fast response
to a stimulus, say, a temperature event, the quasi-passive wake-up on temperature
can be accommodated via a PTC thermistor or other thermal sensors, which exhibit
a high impedance and a sharp characteristic response.

CargoNet systems also use the following two sensors: an RF wake-up receiver and
a vibration dosimeter. Th ey have linear amplifi ers to boost or integrate weak signals.

Table 2.8 lists CargoNet sensors that assemble a suite of measurements relevant
to the transport of equipment and goods.

Normally people distinguish an RFID from a mote very
clearly. But CargoNet designs a device that can serve
as both an RFID tag and a WSN node. It can collect
data from environment into a “tag,” and then allow an
RFID reader to remotely read such data. Th e reason we
use an “active RFID” here is because CargoNet makes
its RFID tag battery driven and shows good perfor-
mance close to an intelligent sensor node.

Good idea

AU9215_C002.indd 60AU9215_C002.indd 60 2/22/2010 4:06:32 PM2/22/2010 4:06:32 PM

Hardware—Sensor Mote Architecture and Design ◾ 61

Now let us provide more details on CargoNet’s “quasi-passive wake-up” strategy.
Figure 2.8 shows its basic wake-up procedure. After an “active RFID” tag receives a
stimulus signal, it compares the results against a threshold. If the stimulus is strong
enough to warrant interest, the tag wakes up a larger system.

Th e above quasi-passive wake-up scheme needs to be built on the following
conditions:

 1. An always-enabled circuit, that is, the analog front end, should consume
the order of a microwatt or less. With millivolt signal levels, a nanopower
comparator (such as the LTC1540) is needed to boost the stimulus to
logic levels and wake up the “active RFID” tag.

 2. In terms of the wake-up time, the “active RFID” tag must wake up quickly
enough to adequately process the incoming stimulus. MSP430, with a 6 μs
start-up time, is therefore ideal.

 3. Th e tag’s duty cycles must be kept very low. Th is can help reduce the number
of wake-ups and the amount of time spent in the active mode.

Besides the high-frequency, faster, longer-range radio for data communication
with an RFID reader, the CargoNet “active RFID” tag also has a lower-frequency,
shorter-range signaling channel for interrogation and passing of location information.

Table 2.8 CargoNet Sensor Types

Sensor Type Measurement or Application

Shock sensor Potential impact damage

Vibration dosimeter Average low-level vibrations

Tilt switch Package orientation and shaking

Piezo microphone Events causing loud nearby sounds

Light sensor Container breach or box opening

Magnetic switch Package removed or box opened

Temperature sensor Overheating or potential spoilage

Humidity sensor Potential moisture damage

RF wake-up Query from reader or another tag

Source: Adapted from Malinowski, M. et al., CargoNet: A low-
cost MicroPower sensor node exploiting quasi-passive
wakeup for adaptive asychronous monitoring of
exceptional events, SenSys ’07, Sydney, Australia,
November 6 –9, 2007.

AU9215_C002.indd 61AU9215_C002.indd 61 2/22/2010 4:06:32 PM2/22/2010 4:06:32 PM

62 ◾ Wireless Sensor Networks: Principles and Practice

Th is is to make it compliant with other commercial RFID tags that detect the
location information.

Due to the shorter range of the low-frequency radio link, high RF power can be
delivered to the tag to wake it up. Th en, the high-frequency radio is powered on.
It consumes up to 20 mA of current when using CC2500.

Problems and Exercises
2.1 Multi-choice questions:
 1. A sensor mote includes
 a. Analog/digital sensor chips
 b. RF transceiver
 c. CPU/memory
 d. All of the above
 2. Th e diff erences between analog sensors and digital sensors do not include

which of the following aspects?
 a. Analog sensors need standard chip-to-chip communication protocols to

take with the CPU board while digital sensors do not need them.

Sensor

RCL filter
(optional)

Lower power
comparator

Processor and
transceiver

Programming lines
and

reset

Bypass

Figure 2.8 The CargoNet system quasi-passive wake-up scheme. (Adapted from
Malinowski, M. et al., CargoNet: A low-cost MicroPower sensor node exploiting
quasi-passive wakeup for adaptive asychronous monitoring of exceptional events,
SenSys ’07, Sydney, Australia, November 6–9, 2007.)

AU9215_C002.indd 62AU9215_C002.indd 62 2/22/2010 4:06:32 PM2/22/2010 4:06:32 PM

Hardware—Sensor Mote Architecture and Design ◾ 63

 b. Analog sensors need compensation and linearization, but digital sensors
do not need them.

 c. Digital sensors are a better choice than analog sensors from the CPU
interface viewpoint.

 d. No ADC is needed in the digital sensor case.
 3. In a sensor network, most of the sensor mote’s energy is typically consumed in
 a. Analog-sensing part
 b. CPU local calculations on signal processing
 c. Wireless hop-to-hop communications
 d. Wake-up/sleeping transition
 4. On the CPU in the sensor mote, which of the following is not correct?
 a. Th e CPUs used in sensor motes have much weaker capability than those

used in general desktops or laptops. Th e sensor mote CPUs are often
called microprocessors or microcontrollers.

 b. A CPU’s working frequency in a sensor mote is typically below
100 MHz.

 c. When a CPU is in the idle/sleep mode, no energy consumption is
involved.

 d. Th e main duties of a CPU are to execute communication protocols and
locally process the data.

 5. Which of the following is not correct on the sensor mote memory?
 a. Sensor nodes only require small amounts of storage and program

memory.
 b. If data is to be stored for long periods of time, it is more effi cient to use

fl ash instead of SRAM.
 c. Th e program execution occurs in the fl ash memory instead of in

SRAM.
 d. Th e typical SRAM size is <1 MB so far.
 6. Th e radios on the sensor mote have which the following features?
 a. Low-power radios consume more energy in the receive mode than in the

transmit mode.
 b. Th e sending distance of a wireless system is controlled by several key

factors. Th e most intuitive factor is the transmission power.
 c. Most RF transceivers in the market today use a VCO-based radio

architecture and have the ability to communicate at various carrier
frequencies.

 d. AM is the simplest to encode and decode, and it is less susceptible to noise.
 7. On the sender side, which of the following operations is not needed?
 a. Wait for the receiver’s acknowledgment before sending out the next

packet
 b. Encode the data by adding error detection bits
 c. Wait for collision free with the help of MAC protocols
 d. Organize sensor data to diff erent packets

AU9215_C002.indd 63AU9215_C002.indd 63 2/22/2010 4:06:33 PM2/22/2010 4:06:33 PM

64 ◾ Wireless Sensor Networks: Principles and Practice

 8. Th e reason(s) of decoupling between RF and processing speed could be
which among the following?

 a. When the speed of the microcontroller is coupled to the data transmis-
sion rate, both pieces of the system are forced to operate at nonoptimal
points.

 b. A radio is most effi cient when data transmissions occur at its maximum
transmission rate. When coupled with CPU processing, such effi ciency
cannot be achieved.

 c. RF and CPU are totally diff erent chips and need to be decoupled in
most cases.

 d. Both a and b.
 9. Spec is better than Mica due to which of the following reasons?
 a. Th e Mica nodes were constrained by existing inter-chip interfaces. Th e

development of a custom ASIC allows us to tear down the artifi cial
constraints imposed by commercial components.

 b. It is possible to achieve orders-of-magnitude effi ciency improvements
on key communication primitives by using custom silicon.

 c. Both a and b.
 d. Spec can transmit signals for a longer distance than Mica.
 10. Which of the following is not correct on Telos motes?
 a. Telos uses the Bluetooth communication standard (an IEEE 802.15

series), which makes it suitable for short-range radio communications.
 b. Telos uses the MSP430 microcontroller that has the lowest power con-

sumption in sleep and active modes.
 c. Instead of integrating the design into silicon, Telos uses COTS compo-

nents with hardware accelerators to build a power-effi cient system that
does not sacrifi ce performance.

 d. Telos is programmed (either with the bootstrap loader or JTAG)
through an on-board USB that also provides power.

2.2 Do some Web research to fi nd out the characteristics and the design principle
of solar-based batteries.

2.3 What are the diff erences between “sensors” and “sensor motes”?
2.4 Read [Mateusz07] and provide more details on the integration of RFID into

CargoNet sensor motes.
2.5 What advantages does the Telos mote have compared to others (such as Mica)?

AU9215_C002.indd 64AU9215_C002.indd 64 2/22/2010 4:06:33 PM2/22/2010 4:06:33 PM

IIINETWORK
PROTOCOL STACK

AU9215_S003.indd 65AU9215_S003.indd 65 12/17/2009 3:01:58 PM12/17/2009 3:01:58 PM

AU9215_S003.indd 66AU9215_S003.indd 66 12/17/2009 3:01:58 PM12/17/2009 3:01:58 PM

67

3Chapter

Medium Access
Control in Wireless
Sensor Networks

3.1 Introduction
A wireless sensor network (WSN) is a collection of diff erent sensor nodes used to
sense parameters such as vibration, temperature, pressure, sound, and pollutants in
the environment. In WSNs, each sensor node is an autonomous device that consists
of a communicating device, a computing device, a sensing device, and memory. To
eff ectively exchange data among multiple sensor nodes, WSNs employ the medium
access control (MAC) protocol to coordinate the signal transmissions over the shared
wireless radio channel. Otherwise, multiple nodes may try to access the transmission
medium (e.g., the wireless channel) simultaneously, which leads to signal collision,
data loss, retransmission, wastage of energy, delay in data transmission, and so on.

A MAC protocol determines how multiple nodes share
the access to a physical medium (e.g., a wireless channel),
by defi ning communication schedules and rules, such
as (1) which nodes should occupy the channel, (2) when
and how long the nodes can occupy the channel, and
(3) how the nodes use the channel to talk with their
neighbor nodes.

WSNs

Remember

AU9215_C003.indd 67AU9215_C003.indd 67 2/22/2010 4:09:08 PM2/22/2010 4:09:08 PM

68 ◾ Wireless Sensor Networks: Principles and Practice

3.1.1 Medium Access Control In Wireless Networks
MAC protocols play a vital role in many network paradigms, including wired networks,
mobile ad hoc networks (MANETs), and WSNs. Th e design of an effi cient MAC
protocol has to take into account the unique challenges that emerge in the respective
networking paradigm. For example, unlike wired networks such as Ethernet, a
wireless channel in WSNs generally experiences more data loss due to collision,
signal loss, noises, and even link breakage. Signal collision occurring in a wireless
link cannot be detected the same way as that in a wired link. In addition, a WSN
owns very limited resources, such as energy, bandwidth, and computing capability,
which constrains the applicability of the MAC protocols developed in other wireless
networks, including Wi-Fi and MANET.

In general, the MAC schemes developed in other net-
work paradigms cannot be directly applied in WSNs
due to the unique and challenging issues posed by the
wireless medium, the tiny sensor nodes, and various
WSN applications.

Difference

WSNs

3.1.2 MAC Design Is Challenging in WSNs
As a specifi c type of wireless networks, the WSN shares similar challenges faced in
other wireless networking technologies. As elaborated below, such challenges and
many other resource constraints in WSNs have signifi cant impacts on how MAC is
conducted in sensor nodes [AWoo01]:

 1. Resource constraints
 2. Signal loss in the wireless channel
 3. Collision at the receiver’s end
 4. Hidden and exposed terminal problems

3.1.2.1 Resource Constraints

As described in Chapter 2, a wireless sensor node owns limited resources, such as
power, bandwidth, computing capability, and storage space, which must be taken
into account when devising MAC protocols in WSNs. Energy is a key concern in
battery-powered sensor nodes. Once the battery is consumed, it is generally diffi cult
or impractical to charge/replace exhausted batteries. Th at is why, the primary objec-
tive in many WSN MAC protocol designs is maximizing node/network lifetime,

AU9215_C003.indd 68AU9215_C003.indd 68 2/22/2010 4:09:09 PM2/22/2010 4:09:09 PM

Medium Access Control in Wireless Sensor Networks ◾ 69

leaving the other performance metrics as secondary objectives. For example, the
energy could be saved by turning off the devices that are not in use at the particular
period of time.

As the communication of sensor nodes is much more
energy consuming than the computation, minimiz-
ing the communication while achieving the desired
network operation has been one popular and eff ective
approach in designing energy-effi cient WSN MAC
protocols.

Good idea

Th e bandwidth in a WSN is pretty low when compared to that of wired networks,
such as fi ber optical networking. Th e bandwidth constraint and the dynamics of
WSN topology also impose challenging issues to be considered in the MAC design.
Specifi cally, in WSNs, the data is sensed and stored in a distributed fashion and
every sensor node is an autonomous device that is independent of other nodes in the
network. Sensor nodes need to communicate with one another to self-organize as
a network system for data transmission, whereas redundancies should be avoided.
Moreover, the sensor nodes may fail due to the fact that the tiny sensor nodes are
fragile. Th e topology of the network changes when the nodes’ failures occur in the
network. Similarly, power depletion and node movement may also result in net-
work topology change.

3.1.2.2 Signal Loss in Wireless Channel

WSNs employ wireless channels as the transmission media, which suff er signal distor-
tion and loss due to attenuation, refl ection, diff raction, scattering, and so on. Signal
attenuation generally refers to the loss of energy as the transmitted signal travels from
the source node to the destination node through air. Th e transmitted signal can get
refl ected when there are obstacles between the source node and the destination node.
Th e edges of the obstacles can result in multiple signals divided from the original
transmitted signal, and the rough surfaces of the obstacles can cause scattering due
to multiple signal refl ections. A commonly used wireless propagation mode with
an omnidirectional antenna was introduced in [Rappaport96], whereby the signal
power received at node j from the sender node i is given by the following equation:

i
j

ij

PP
d α= β

(3.1)

In Equation 3.1, Pj, Pi, and dij represent the power received at node j, the power sent
out from node i, and the distance between node i and node j, respectively, while α

AU9215_C003.indd 69AU9215_C003.indd 69 2/22/2010 4:09:09 PM2/22/2010 4:09:09 PM

70 ◾ Wireless Sensor Networks: Principles and Practice

and β denote the energy loss constant, typically depending on the wireless transmis-
sion environment. Th is equation also indicates that the longer the wireless signal
propagates in the air, the more the power loss can occur. In fact, a wireless node i
can reach another node j (or a wireless link exists from node i to node j) if and only
if node i transmits at a certain power level. Otherwise, the receiver j cannot properly
decode the signal for the transmitted data information from sender i or node j cannot
hear the signal from node i at all due to the power loss. In other words, each sensor
node has a limited transmission range. For battery-powered WSNs, the transmission
range of a node varies dynamically and the wireless links among nodes are susceptible
to failures/changes, which necessitates diff erent WSN link access control schemes.

3.1.2.3 Collisions Occurring at the Receiver’s End

When two or more sensor nodes send data to other nodes simultaneously through
the same channel, multiple signals might collide at the receiver side, which prevents
the receiver from obtaining meaningful data information. To ensure reliable data
transmission, MAC protocols have to defi ne processes (e.g., retransmission after
random delay) to recover from the collision. Collisions result in wastage of energy,
lower bandwidth utilization, and larger data delivery latency. In wired networking,
such as Ethernet, collisions can be easily detected by comparing the sent signal and
the received signal at the sender side. Accordingly, the sender (e.g., in Ethernet)
concludes that another sender is also sending data and performs some operations
to recover from the collision quickly. However, in WSNs, the signal sent from the
sender is not equal to that received by the receiver due to signal loss or obstacles. For
example, assume that two senders are sending data to the same receiver simultane-
ously. If the two senders are not within each other’s transmission range or there is
an obstacle preventing two senders from hearing each other, the signals from the
two senders collide at the receiver, which cannot be detected by either sender.

3.1.2.4 Hidden Terminal and Exposed
Terminal Problems [AWoo01]

As shown in Figure 3.1, the circle around each node represents the corresponding
transmission range of the node when omnidirectional antennas are employed, and
we assume that all nodes have the same transmission range. Two sensor nodes are
said to be in mutual range (or in the same collision domain) when the transmission
ranges of the two nodes interfere with one another. For example, nodes 1 and 2 are
in mutual range. Similarly, nodes 2 and 3 are in mutual range, while nodes 4 and
3 share the same collision domain. Obviously, when a node is receiving data from
a neighbor, there can be only one valid transmission (or sender) within the node’s
mutual range. Otherwise, multiple signals will collide at the receiver, which results
in data loss and energy wastage. To minimize collisions, carrier sense is widely used
in the design of MAC protocols. With carrier sense, the transmitter listens to the

AU9215_C003.indd 70AU9215_C003.indd 70 2/22/2010 4:09:10 PM2/22/2010 4:09:10 PM

Medium Access Control in Wireless Sensor Networks ◾ 71

transmission channel for a carrier signal to detect if there is an ongoing transmis-
sion from another node before attempting to send data. If a carrier is sensed or there
is an ongoing transmission in the medium, the node can wait for the transmission
in progress to fi nish before initiating its own transmission.

Th e carrier sense scheme serves well in the Ethernet MAC protocol. However, the
signifi cant diff erence between the signal sent from the sender and the signal received
by the receiver makes carrier sense much ineff ective in a wireless environment. For
example, assume that there is no ongoing communications among the nodes in Figure
3.1. At one time, both sensor node 1 and sensor node 3 sense some events and decide
to notify node 2. Before sending data, both node 1 and node 3 sense the channel and
learn that the channel is free. Hence, if node 1 and node 3 start to send data to node
2 simultaneously, this leads to data collision at node 2. Even when there is an ongoing
transmission from node 3 to node 2, node 1 cannot sense the signal from node 3 as
it does not share the mutual range. Subsequently, node 1 may assume that the chan-
nel is unoccupied and is not aware that node 2 is already engaged in a transmission.
Th e signal from node 1 may disrupt the transmission from node 3 to node 2. Th is is
because node 3 is invisible to node 1 even though both can reach node 2. Th is is well
known in wireless networking as the hidden terminal problem.

Th e hidden terminal problem indicates that carrier sense
in wireless networking may fail to avoid collisions. In
addition, carrier sense can result in channel underuti-
lization in wireless networking.WSNs

Remember

Consider that node 2 is transmitting data to node 1 and node 3 also intends to
send data to node 4. Node 3 performs carrier sense and fi nds that the transmission

Node 1 Node 2 Node 3 Node 4

Figure 3.1 Hidden and exposed terminal problems.

AU9215_C003.indd 71AU9215_C003.indd 71 2/22/2010 4:09:10 PM2/22/2010 4:09:10 PM

72 ◾ Wireless Sensor Networks: Principles and Practice

channel is occupied and has to wait for the fi nish of the transmission from node 2 to node
1. However, only the signal interference or collision at the receiver side leads to data
loss, and energy and bandwidth wastage. In fact, node 3 and node 2 can simultane-
ously send data to node 4 and node 1, respectively. Th is is because the interference
between the two transmissions (i.e., node 2 to node 1 and node 3 to node 4) does
not occur at the receiver side. Hence, node 3 is prevented from sending data to node
4 even though both node 4 and node 1 should be able to receive the respective data
properly. Th is is called the exposed terminal problem in wireless networking.

Th ere has been extensive research in the MAC protocol design to resolve
the above challenges and problems in WSNs (e.g., [Ftobagi75, Pkarn90,
Bharghavan93]). Several earlier MAC research results on carrier sense and the
hidden terminal problem in wireless networking are collectively adopted by
the IEEE 802.11 standard [IEEE07], which also serves as the basis for many
MAC protocols proposed for WSNs. Hence, in the rest of this chapter, we fi rst
briefl y go through the IEEE 802.11 project. Th en, we present the classifi cation
of MAC protocols, followed by discussions on several typical sensor MAC pro-
tocols of each category, which include Sensor Medium Access Control (S-MAC)
[Wye02], Timeout Medium Access Control (T-MAC) [Tvdam03], Traffi c
Adaptive Medium Access (TRAMA) [Vrajendran06], Sift Medium Access
Control [Kjamieson03], Zebra MAC (Z-MAC) [Irhee08], and Berkeley MAC
(B-MAC) [Jpolastre04].

3.2 Overview of Project IEEE 802.11
Figure 3.2 shows the layered architecture of the IEEE 802.11 project. Th e physi-
cal layer in IEEE 802.11 contains direct-sequencing spread spectrum (DSSS),

Logical link control

Contention free service

802.11
2.4 GHz DSSS

802.11
2.4 GHz FHSS

802.11
Infrared

802.11a
5 GHz

802.11b
2.4 GHz

DSSS

802.11g
2.4 GHz

DSSS OFDM

Contention algorithm

Position coordination function (PCF)

Distributed coordination function (DCF)

Figure 3.2 IEEE 802.11 protocol architecture. (Adapted from Stallings, W., IT
Prof., 6, 32, September–October, 2004.)

AU9215_C003.indd 72AU9215_C003.indd 72 2/22/2010 4:09:10 PM2/22/2010 4:09:10 PM

Medium Access Control in Wireless Sensor Networks ◾ 73

frequency-hopping spread spectrum (FHSS), infrared, 802.11a, 802.11b, and
802.11g. Th e DSSS defi nes the physical medium in the frequency of 2.4 GHz or
5 GHz ISM band, at the data rates of 1–54 Mbps. Th e FHSS employs the physical
media of the same frequency and the same data rates as those of the DSSS. But the
basic diff erence between them is the number of channels. Th e number of chan-
nels depends on the network regulatory agencies in every country. For the DSSS,
it varies between 13 in European nations and 1 in Japan. While for the FHSS, it
varies between 70 in the United States and 23 in Japan. Similarly, the infrared has
the same data rates as that of the FHSS and the DSSS. But the infrared uses the
wavelengths in the range of 850–950 nm.

Th e data link layer includes logical link control and MAC, which defi nes
two access methods: the distributed coordination function (DCF) and the point
coordination function (PCF).

3.2.1 Point Coordination Function
Th e 802.11 MAC defi nes the point coordination access scheme called PCF to pro-
vide contention-free service, which is available only in the infrastructure mode,
as shown in Figure 3.3. In the infrastructure mode, stations are connected to the

Node 1

Node 2

Node 3 Node 4

Node 5

Node 6

Access point

Figure 3.3 IEEE 802.11 infrastructure mode. (Adapted from Stallings, W., IT Prof.,
6, 32, September–October, 2004.)

AU9215_C003.indd 73AU9215_C003.indd 73 2/22/2010 4:09:10 PM2/22/2010 4:09:10 PM

74 ◾ Wireless Sensor Networks: Principles and Practice

network through an access point (AP), which employs a centralized MAC algorithm.
Th is mode can conveniently support high traffi c priority.

3.2.2 Distributed Coordination Function
Th e DCF is defi ned to share the medium between multiple stations in an ad
hoc mode, as shown in Figure 3.4. Th e DCF enables the stations to exchange
data asynchronously by applying Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) and the IEEE 802.11 RTS/CTS to share the medium
between stations [Pkarn90, Bharghavan93]. In CSMA/CA, a station has to fi rst
listen to the channel for a predetermined amount of time so as to check whether
the channel is free before sending data. If the channel is sensed busy before
transmission, then the transmission is deferred for a “random” interval to avoid
collisions. Note that, as mentioned earlier, collision detection is not feasible due to
the nature of the wireless channel and the hidden terminal problem. Hence, the
scheme of exchanging the request-to-send (RTS) packet and the clear-to-
send (CTS) packet is introduced in IEEE 802.11 to alert all nodes within the
range of the sender, the receiver, or both, to keep quiet during the main data
transmission.

Node 6

Node 1

Node 2
Node 3

Node 4

Node 5

Figure 3.4 IEEE 802.11 ad hoc mode. (Adapted from Stallings, W., IT Prof., 6, 32,
September–October, 2004.)

AU9215_C003.indd 74AU9215_C003.indd 74 2/22/2010 4:09:11 PM2/22/2010 4:09:11 PM

Medium Access Control in Wireless Sensor Networks ◾ 75

As shown in Figure 3.5, the source node (or sender) sends an RTS packet to the
destination (or the receiver) if the sender wants to send data to the receiver. Th e
destination node replies with a CTS packet. Any other node receiving the RTS or
the CTS packet should refrain from sending data for a given time to avoid collisions
(or solve the hidden node problem). Th e amount of time for which the node should
wait before trying to get access to the wireless medium is included in both the RTS
and the CTS packet. Th e primary fi elds of the RTS and the CTS packet are shown
in Figures 3.6 and 3.7, respectively.

Th ere are fi ve fi elds in the RTS packet format, which are

 1. Frame control (2 bytes): Th is fi eld contains the information about the version
of the protocol used, power management, whether there are more fragments
of the data, and whether or not the packet is protected.

 2. Duration (2 bytes): It is the time remaining for transmitting the data or manage-
ment information plus one CTS frame and one ACK (acknowledgment) frame.

 3. Receiver Address (RA) (6 bytes): It is the address of the intended destination.
 4. Transmitter Address (TA) (6 bytes): It is the address of the source that initiated

the data transfer.

Source Destination

RTS

CTS

DATA

DATA

DATA

ACK

Ti
m

e

Figure 3.5 Data transfer using RTS/CTS mechanism.

AU9215_C003.indd 75AU9215_C003.indd 75 2/22/2010 4:09:11 PM2/22/2010 4:09:11 PM

76 ◾ Wireless Sensor Networks: Principles and Practice

 5. Frame Check Sequence (FCS) (4 bytes): It is used to check for errors in data
transmission. It is a cyclic redundancy code (CRC) of a length of 32 bits. It is cal-
culated for all the fi elds, including the header, using a 32 degree polynomial.

Th ere are four fi elds in the CTS packet format, which are

 1. Frame control (2 bytes): Th is fi eld contains the information about the version
of the protocol used, power management, whether there are more fragments
of the data, and whether or not the packet is protected.

 2. Duration (2 bytes): It is the diff erence between the duration fi eld received
from the source and the time in the CTS frame.

 3. RA (6 bytes): It is the address of the intended destination, which is copied
from the TA fi eld in the RTS packet format. If the CTS packet is the fi rst
packet that the destination is transmitting, then RA is the transmitter’s MAC
address.

 4. FCS (4 bytes): It is used to check for errors in data transmission. It is a CRC
of a length of 32 bits. It is calculated for all the fi elds, including the header,
using a 32 degree polynomial.

Upon receiving the CTS packet, the sender can initiate data transmission to the
receiver. If the data is successfully received by the receiver, then the receiver sends
an ACK to the sender, as shown in Figure 3.5.

Bytes 2 2 6 6 4

Frame control Duration RA TA FCS

Figure 3.6 RTS packet format. (Adapted from IEEE Standard for Information
technology—Telecommunications and information exchange between systems—
Local and Metropolitan area networks—Specifi c requirements, Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi cations,
pp. 120–121, July 2007.)

Bytes 2 2 6 4

Frame control Duration RA FCS

Figure 3.7 CTS packet format. (Adapted from IEEE Standard for Information
technology—Telecommunications and information exchange between systems—
Local and Metropolitan area networks—Specifi c requirements, Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifi cations,
pp. 120–121, July 2007.)

AU9215_C003.indd 76AU9215_C003.indd 76 2/22/2010 4:09:11 PM2/22/2010 4:09:11 PM

Medium Access Control in Wireless Sensor Networks ◾ 77

3.3 Classifi cation of MAC Protocols
Traditionally, there are four diff erent channel access schemes: time division mul-
tiple access (TDMA), frequency division multiple access (FDMA), code division
multiple access (CDMA), and space division multiple access (SDMA) [Keoliver05].
In TDMA, all the nodes use the same frequency channel and each node is assigned
with a designated time slot(s) for data transmission. Th e nodes transmit in rapid
succession, one after the other, each using its own time slot. Time synchronization
among the nodes accessing the shared medium is required for the success of the TDMA
scheme. Th e technique that FDMA uses is similar to that of TDMA. Th e only
diff erence is that instead of dividing the time, FDMA allocates diff erent frequen-
cies to each node. CDMA employs the spread spectrum technology and a special
coding scheme to allow multiple users to share the same physical channel where
each node is assigned a unique code. SDMA, on the other hand, uses the spatial
separation of the nodes for multiple channel access through spatial multiplexing or
diversity. In general, diff erent networking technologies may share access via dif-
ferent methods or a combination of multiple methods, such as TDMA, FDMA,
CDMA, or SDMA.

In wireless networks, the medium access scheme can be distributed and cen-
tralized [Achandra00]. Based on the mode of operation, wireless MAC proto-
cols can also be broadly classifi ed as random access protocol, guaranteed access
protocol, and hybrid access protocol. In the random access MAC protocol, each
node tries to access the transmission medium in a random manner, while in the
guaranteed access MAC protocol, nodes access the transmission medium in a
systematic manner by employing a master–slave procedure or sharing the token
to take their turn. Hybrid protocols use a blend of guaranteed access and random
access for accessing the transmission medium. Similarly, for resolving the chal-
lenges such as the hidden terminal problem, resource constraints, and application
requirements, researchers in the literature have investigated a number of MAC
protocols specifi cally for WSNs through either extension of existing MAC pro-
tocols or proposing new medium access concepts. Based on the method used for
contention avoidance, MAC protocols in WSNs can be roughly classifi ed into
three categories as follows:

 1. Contention-based MAC protocols
 2. Schedule-based MAC protocols
 3. Hybrid and event-based MAC protocols

3.3.1 Contention-Based MAC Protocols
Contention-based MAC protocols allow multiple nodes to access the medium at the
same time. Collisions may then occur, but are handled with diff erent contention
resolutions, such as random backoff , RTS/CTS exchange, and collision avoidance

AU9215_C003.indd 77AU9215_C003.indd 77 2/22/2010 4:09:11 PM2/22/2010 4:09:11 PM

78 ◾ Wireless Sensor Networks: Principles and Practice

techniques. A classic example is Carrier Sense Multiple Access (CSMA), in which a
node senses the medium for ongoing communication before attempting a message
transmission. If the node fi nds that the medium is busy, it will back off and retry
later. When the medium is sensed to be clear, the node waits for a random period,
the contention period, before transmitting. Th e contention period decreases the
probability of two nodes beginning to transmit at the same moment and, therefore,
reducing data collision. Th e scheme of RTS/CTS message exchange in IEEE 802.11
DCF and time-out are often combined with the unique features of WSN applica-
tions in contention-based MAC protocols to optimize the network performance in
terms of energy consumption, lifetime, latency, or throughput. Examples of con-
tention-based MAC protocols in WSNs are S-MAC [Wye02], T-MAC [Tvdam03],
WiseMAC [Aelhoiydi04], DMAC [Glu04], DSMAC [Plin04], AC-MAC [Fli06,
Jai04], and so on. In the following text, we introduce the basic protocol designs of
S-MAC and T-MAC protocols.

3.3.1.1 Sensor Medium Access Control [Wye02]

It is observed that energy in WSNs is wasted in multiple
processes, including idle listening, data collisions, over-
hearing, and control overhead.

WSNs

Remember

Idle listening is a state where the sensor node waits for another node to possibly
transmit the data to it. In many sensor network applications, if nothing is sensed,
nodes are in the idle mode for most of the time. However, traditional MAC proto-
cols, such as IEEE 802.11 and CDMA, require nodes to listen to the channel for
possible transmission. Studies show that idle listening consumes 50 percent to 100
percent of the energy required for receiving [Stemm97]. In many WSN applica-
tions, the nodes stay in the idle state far longer than in the communication state,
which in fact consumes a signifi cant portion of the nodes’ energy. Data collisions lead
to the corruption of data in the transmitted packet that has to be discarded, and the
follow-on retransmissions increase energy consumption as well as network latency.
Similarly, overhearing transmissions among other nodes and the control overhead
can contribute to the energy wastage within WSN nodes.

Th e S-MAC protocol tends to reduce the aforementioned energy wastage
using periodic sleep and a listen cycle, while introducing some penalty on the
per-hop latency of data transmission. Th e S-MAC protocol assumes that all the
nodes are used for one application or a set of applications. As the sensor nodes

AU9215_C003.indd 78AU9215_C003.indd 78 2/22/2010 4:09:11 PM2/22/2010 4:09:11 PM

Medium Access Control in Wireless Sensor Networks ◾ 79

have one common application goal and there might be a situation where one node
holds more information than the other nodes, S-MAC applies the concept of
message passing to allow the node holding more data to access the channel lon-
ger, which in fact preserves the more important application-level fairness rather
than per-hop fairness.

3.3.1.1.1 Periodic Listen and Sleep

As sensor nodes stay in the idle state quite often in many WSN applications, the S-MAC
protocol introduces a set of sleep and wake-up states to reduce the energy wasted in idle
listening. In the sleep state, the nodes turn off their communication devices (which
contribute the most to the energy consumption) and keep other components on. By
following a schedule, the nodes move from the sleep state to the wake-up state, after a
certain time interval. Th is time interval depends on the application for which the nodes
are being used. In the wake-up state, the nodes turn on their communication devices
and participate in the necessary communication with other nodes.

To follow the schedule for sleep/wake-up and communicate with neighbors in
time, the nodes in the S-MAC protocol require periodic synchronization among
their neighbors. To avoid time synchronization errors, S-MAC uses two tech-
niques. First, all the time stamps used for synchronization are not absolute but
relative. Second, the listen period is longer than the clock drift. In the S-MAC
protocol, the nodes are free to choose the listen/sleep schedules, but it is preferred
that the neighboring nodes should synchronize with each other to reduce the
control overhead because a node can communicate with another node only if
both are in the wake-up state. In other words, it is ideal for the neighborhood
nodes to listen at the same time and go to sleep at the same time. However, in a
multi-hop network, as shown in Figure 3.8, not all neighboring nodes can syn-
chronize together to follow the same listen/sleep schedule. For example, sensor
nodes A and B follow the same listen/sleep schedule. Similarly, sensor nodes C
and D follow the same listen/sleep schedule, which might be diff erent from the
schedule followed by sensor nodes A and B. A node exchanges its schedule by

broadcasting it to all its immediate neighbors. Th is
ensures that all neighboring nodes can talk to each
other even if they have diff erent schedules.

In the S-MAC protocol, if a node wants to talk
to a neighbor, the node must wait until the neigh-
bor listens (or is in the wake-up state). If more than
one neighbor wants to talk with a node, the neigh-
bors have to contend to access the medium when the
node is in the wake-up state. For this contention, the
scheme of RTS/CTS exchange is adopted. Th e node
which fi rst sends out the RTS packet owns the right
to access the medium, and the receiver replies with a

A B C D

Figure 3.8 An example
of a four-node network.
(Adapted from Ye, W. et al.,
An energy-effi cient MAC
protocol for wireless sen-
sor networks, Proceedings
of IEEE INFOCOM, New
York, June 2002, Vol. 3,
1567–1576.

AU9215_C003.indd 79AU9215_C003.indd 79 2/22/2010 4:09:12 PM2/22/2010 4:09:12 PM

80 ◾ Wireless Sensor Networks: Principles and Practice

CTS packet. Upon receiving the CTS packet, the node can fi nish the data trans-
mission and follow the sleep or the listen schedule.

3.3.1.1.2 Choosing and Maintaining Schedules

Each node should choose a schedule, before the periodic listen and sleep, and
exchange the schedule with its neighbors. Th e schedule is stored in a table that
contains the schedules of the neighboring nodes. Th e selection of the schedule and
the insertion of schedules of its neighbors are performed as follows.

 1. Every node listens to the transmission channel for a certain period of time.
If the node does not receive a schedule advertisement, the node randomly
selects its own listen/sleep schedule and broadcasts the schedule in a SYNC
packet to its neighbors specifying that it moves into the sleep state after t
seconds. In the absence of a neighbor’s schedule to follow, this node chooses
its schedule independently, and is called a synchronizer.

 2. During the listen period, if a node receives a SYNC packet from its neighbor
prior to randomly selecting its own schedule, the node will follow the sched-
ule specifi ed in the SYNC packet it received from the neighbor node. Such a
node is called a follower. Assume that the follower recognizes that the sender
of the SYNC packet will move into the sleep state in t seconds. After waiting
for a random delay of td seconds to avoid potential collision from other fol-
lowers, the follower rebroadcasts the schedule and specifi es that it moves into
the sleep state after t − td seconds.

 3. If a node selects a schedule and then receives a diff erent schedule from its
neighbor, then the node stays in the wake-up state by following both the
received schedule from its neighbor and its original schedule.

3.3.1.1.3 Maintaining Synchronization

Synchronization among the nodes in WSNs is maintained by sending SYNC pack-
ets. SYNC packets contain the address of the source node and the time of its next
sleep. To remove clock synchronization errors, the time of the next sleep is not
absolute but is relative to the time of transmission of the SYNC packet, which is
approximately equal to the time of reception of the packet by the destination. Th e
destination node will start the timer immediately after receiving the SYNC packet.
When the timer expires, the node moves into the sleep state. To send data packets
and SYNC packets, the wake-up period is divided into two parts. In the fi rst part,
the nodes receive the SYNC packets, and the second part is for receiving the RTS
packets. Each part is further divided into slots for carrier sense prior to the channel
access of SYNC or data packet transmission.

Each node periodically broadcasts its schedule in SYNC packets to its neigh-
bors such that the newly joined nodes can follow the same schedule. For the

AU9215_C003.indd 80AU9215_C003.indd 80 2/22/2010 4:09:12 PM2/22/2010 4:09:12 PM

Medium Access Control in Wireless Sensor Networks ◾ 81

newly joined nodes, the schedule selection process is the same as that described
above. Before identifying itself as a synchronizer, the newly joined node will set
the initial listen period long enough to increase the probability of picking up a
neighbor’s schedule.

3.3.1.1.4 Collision and Overhearing Avoidance

To avoid multiple neighbors sending data to a node simultaneously, S-MAC adopts
the RTS/CTS exchange as well as the virtual and physical carrier sense mechanisms,
which is proven to be an eff ective approach to address the hidden terminal problem
[Pkarn90, Bharghavan93, IEEE07]. All the nodes initially should sense the carrier
before initiating a data transmission. If the source node senses the channel and con-
cludes that the channel is busy, it moves into the sleep state. Th e source node wakes
up again when the destination node is in the wake-up state. S-MAC sends the broad-
cast packets, such as SYNC packets, directly without employing RTS/CTS exchange.
For unicast packets, the source and destination nodes follow the RTS/CTS/data/
ACK sequence during the data transmission process. In addition, every data packet
contains a fi eld that indicates the remaining transmission time it needs. Th is is similar
to the concept of network allocation vector (NAV) in IEEE 802.11. Hence, a node
knows how long it has to keep silent or move back to the sleep state (prior to accessing
the channel) after receiving a packet destined to another node.

Th e S-MAC protocol reduces the energy that is wasted in overhearing. S-MAC
moves any node into the sleep state whenever the node hears an RTS or a CTS
packet. Th is is due to the fact that subsequent data and ACK transmission will
normally take much longer time. For example, in Figure 3.9, node C is sending the
data to node D. It is clear that node D and node C should not be in the sleep state.
As the collisions occur on the receiver’s end, node E cannot send data and should
be in the sleep state to avoid collisions at node D. Node B theoretically can send
data to node A while it is in the wake-up state, because node D is not in node B’s
transmission range. However, node B cannot receive any reply from node A, and
node B’s transmission could cause collisions at node C when node C tries to receive
the ACK. Similarly, node E cannot participate in the data transmission when node
C is talking with node D. Hence, all immediate neighbors of both the sender and
the receiver should sleep after they hear the RTS or the CTS packet. In other words,
based on the NAV information carried in the RTS/CTS packet, the node can sleep
to avoid overhearing until the current transmission is over.

A B C D E F

Figure 3.9 An example of overhearing avoidance. (Adapted from Ye, W. et al.,
An energy-effi cient MAC protocol for wireless sensor network, Proceedings of
IEEE INFOCOM, New York, June 2002, Vol. 3, 1567–1576.)

AU9215_C003.indd 81AU9215_C003.indd 81 2/22/2010 4:09:12 PM2/22/2010 4:09:12 PM

82 ◾ Wireless Sensor Networks: Principles and Practice

3.3.1.1.5 Message Passing

A message is a collection of meaningful data that can be one large packet or a series
of small packets. On the one hand, when a long message embedded in one packet
is a corrupted message, the retransmission is costly in terms of energy consump-
tion, latency, and bandwidth utilization. On the other hand, the transmission
of a long message by using multiple short and independent packets results in
signifi cant control overhead, such as the RTS/CTS exchange. Hence, the S-MAC
protocol breaks up the long message into many small fragments and transmits
them in burst. Only one RTS/CTS exchange is employed for the whole burst
to reserve the medium for transmitting all the fragments. Th e transmission of
a data fragment is assumed to be successful only if the sender receives the ACK
from the receiver. If the sender does not receive the ACK packet, it will extend
the reserved transmission time for one more fragment and retransmit the current
fragment immediately. Th e ACK packet is used after receiving each data fragment
to overcome the hidden terminal problem. Th e NAV information of the current
transmission is also present in the ACK and data packets. In this way, a node in
the path could know about the remaining duration for the ongoing data transmis-
sion even when there are corrupted packets or the node wakes up in the middle of
the data transmission.

3.3.1.1.6 Energy Saving versus Increased Latency

To analyze the delay penalty introduced by S-MAC, let us fi rst take a look at the
delays that are inherent to contention-based MAC protocols (e.g., IEEE 802.11
DCF) in a multi-hop network. Th e delays include carrier sense delay, backoff
delay, transmission delay, propagation delay, processing delay, and queuing delay.
However, S-MAC introduces an extra delay, called sleep delay, which is experienced
by the source when it fi nds the intended destination in the sleep state. In this case,
the source node needs to wait until the destination node moves into the wake-up
state. Assume that a frame is defi ned as a complete cycle of listen and sleep. Th en,
the average sleep delay will be as given by Equation 3.2 when the data packet arrives
with equal probability during a frame:

frame

s 2
TD =

(3.2)

where
Ds denotes the sleep delay
Tframe denotes the time frame and is a sum of Tlisten, denoting the time period of

the listen state, and Tsleep, denoting the time period of the sleep state, as given
by Equation 3.3

AU9215_C003.indd 82AU9215_C003.indd 82 2/22/2010 4:09:12 PM2/22/2010 4:09:12 PM

Medium Access Control in Wireless Sensor Networks ◾ 83

 frame sleep listenT T T= + (3.3)

Th e relative energy saving from S-MAC is given by Equation 3.4, where the last
item is the duty cycle of the node. It can be seen that the smaller the listen period,
the shorter is the average sleep delay.

sleep frame listen listen
s

frame frame frame
1

T T T TE
T T T

−= = = −

(3.4)

Th e S-MAC protocol reduces the energy consumption
of the nodes, thereby increasing the lifetime of the entire
network. But S-MAC introduces some delay to lessen
the energy consumption. Th us, it may not be a good idea
to apply S-MAC for MAC in a WSN that is used for
time-critical applications.

WSNs

Remember

3.3.1.1.7 Evaluating Performance of S-MAC Protocol

Experiments in [Wye02] show that S-MAC has very good energy-conserving prop-
erties as compared to those of IEEE 802.11 DCF. On a source node, an IEEE
802.11-like MAC consumes two to six times more energy than S-MAC for traffi c
load with messages sent every 1–10 s. To reduce the latency in S-MAC, a new tech-
nique called adaptive listen is introduced in [Wye04]. Th e basic idea is to switch the
nodes from the low-duty-cycle mode to a more active mode. Specifi cally, adaptive
listen lets the node that overhears its neighbor’s transmissions (ideally, only RTS or
CTS) wake up for a short period of time at the end of the ongoing transmission.
Rather than waiting for the scheduled listen time, the wake-up node can immedi-
ately receive data from the neighbor if it is the next-hop node. Otherwise, the node
will go back to sleep until its next scheduled listen time.

3.3.1.2 Timeout MAC [Tvdam03]

To further resolve the problem of idle listening in a WSN, T-MAC is proposed as
another contention-based MAC protocol to reduce energy consumption by turning
off the radio components of the nodes when they are not needed [Tvdam03]. Th e
basic idea of T-MAC is to turn on the radio components of the node at a synchro-
nized time and turn them off after a certain time-out when no communication
occurs for some time. Unlike its predecessor, S-MAC, which turns on the radio
according to a predefi ned schedule, T-MAC dynamically adapts a listen/sleep duty

AU9215_C003.indd 83AU9215_C003.indd 83 2/22/2010 4:09:12 PM2/22/2010 4:09:12 PM

84 ◾ Wireless Sensor Networks: Principles and Practice

cycle in a diff erent way through fi ne-grained time-outs. As a result, the T-MAC pro-
tocol can save more energy than S-MAC in a network where message rates vary.

3.3.1.2.1 Protocol Design

Similar to the S-MAC protocol, the T-MAC protocol also uses the periodic sleep
and wake-up states to save energy in WSNs. In the sleep state, the node has the
sensing devices turned on and the data sensed is put into the queues. Th e node in
the sleep state also accepts new messages from the neighboring nodes, and these
messages are queued. In the active or the wake-up state, the nodes keep listening
and transmitting data as needed. For data transmission in the active state, T-MAC
adopts the RTS/CTS/data/ACK scheme, to provide collision avoidance and reli-
able transmission. A node transits from the active state to the sleep state when no
activation event occurs within a time span of TA. An activation event is defi ned as
one of the following:

 1. Th e expiration of a periodic frame timer
 2. Th e reception of any data on the radio
 3. Th e sensing of communication on the radio
 4. Th e end of transmission of a node’s own data or ACK packet
 5. Th e knowledge (obtained through overhearing prior to RTS and CTS pack-

ets) that a data exchange of a neighbor has ended

Th e minimal amount of idle listening per frame is determined by the value of TA.
As messages received in the sleep state must be buff ered, the maximum frame time
is bounded by the buff er capacity.

3.3.1.2.1.1 Clustering and Synchronization — Synchronization in the
T-MAC protocol is done using a technique called virtual clustering [Wye02]. In
virtual clustering, nodes with the same schedule form clusters, without enforc-
ing the same schedule to all nodes in the network. Virtual clustering allows
a node to broadcast the schedule and anticipates that the node maintains the
schedules of its neighboring nodes. Initially, every node starts its operation by
listening and waiting. If a node receives nothing after listening and waiting for
a certain period of time, it chooses a frame schedule and broadcasts its SYNC
packet to the neighbors. On the other hand, if the node receives a SYNC packet
from any one of the neighbors, then it follows the same schedule in the SYNC
packet it received. Furthermore, if the node receives a SYNC packet after broad-
casting its own SYNC packet, then it follows both schedules and notifi es the
sender of the SYNC packet that there exists more than one schedule. Nodes
broadcast their schedules once in a while. At irregular intervals, the nodes listen
for complete time frames, so that the nodes could detect diff erent schedules
that exist in the same cluster. Th e nodes should transmit the data at the start of

AU9215_C003.indd 84AU9215_C003.indd 84 2/22/2010 4:09:12 PM2/22/2010 4:09:12 PM

Medium Access Control in Wireless Sensor Networks ◾ 85

the active state, as the neighbor nodes within the virtual cluster (with the same
schedule) and the neighbors that have adopted the schedule as extra are awaken
in the active state.

3.3.1.2.1.2 Contention Resolution — In T-MAC, a frame consists of an
active state and a sleep state. In the sleep state, the sensed data is queued to be
transmitted. Hence, at the beginning of the active state in a frame, each node
may have buff ered a large amount of data in the form of data burst (to be sent
out). Th is results in higher contention for the medium access at the beginning
of the active state. RTS/CTS exchange is employed in T-MAC for the channel
contention. A node keeps sensing the medium for a random time with a fi xed
contention interval before sending an RTS packet. After sending an RTS packet,
the sender may not receive a CTS reply if the receiver is in the sleep state. Even
in the active state, the receiver may not be able to send a CTS reply if the RTS
packet is lost due to collision or the receiver is prohibited from replying due to an
overheard RTS or CTS. Because the receiver could be in the active state, it makes
sense for the sender to retry the RTS transmission. Th e sender will go to sleep if
there is still no CTS reply after two retires.

As mentioned earlier, the active state ends when no activation has occurred for
a period of TA, which means the sender will automatically transit to the sleep state
if it does not receive the CTS packet in time. Th erefore, the value of TA must be
selected such that the sender is able to receive the CTS reply [Tvdam03]. For a third
neighbor node that overhears the RTS or the CTS packet, unlike S-MAC, which
requires the node to go to the sleep state, T-MAC keeps overhearing as an option.
Th e argument is that the overhearing avoidance could dramatically decrease the
throughput of WSNs, as it is very possible that the node that overhears RTS/CTS
is the receiver of a subsequent message.

3.3.1.2.1.3 Early Sleeping in T-MAC — Th e research in [Tvdam03] found
that T-MAC does not perform well when all the nodes send the data to a data
sink. For example, assume that there are four sensor nodes, A, B, C, and, D,
and the messages fl ow only in one direction: A→ B→ C→ D, as shown in
Figure 3.10.

To communicate with node D, node C has to contend for the transmission
channel. Node C may lose the contention of the transmission channel to node
A or node B. If node C loses the contention due to an RTS packet from node B,
node C shall send a CTS reply to node B, which will be overheard by node D.
Accordingly, node D can anticipate itself as the subsequent receiver and wake up
when the communication between node C and node B is over. However, node C
must remain silent if it loses the contention due to overhearing the CTS packet
from node B to node A. In this case, node D, which is totally blind to the com-
munication between node A and node B, will go to sleep after the expiration of
the TA timer. Hence, in the next contention round, although node C wins the

AU9215_C003.indd 85AU9215_C003.indd 85 2/22/2010 4:09:12 PM2/22/2010 4:09:12 PM

86 ◾ Wireless Sensor Networks: Principles and Practice

contention, it cannot talk with node D who is in the sleep state. Th is observed
behavior is called the early-sleeping problem, as a node moves to the sleep state
even though a neighbor intends to communicate with it. Th ere are two possible
solutions for the early-sleeping problem: future request to send (FRTS) and taking
priority on full buff ers.

3.3.1.2.1.4 Future Request to Send — Th e basic idea of FRTS is to inform
another node that there will be a message for it even though the transmission
medium is not available at the current time. Th e operation of FRTS is shown in
Figure 3.11. Once node C overhears the CTS packet from node B to node A, node
C can immediately transmit a special packet called the FRTS packet to node D if
node C has data for node D. Th e FRTS packet contains its own destination as well

Node D

Node C

Node B

Node A Contend

Contend

Active Sleep

RTS

RTS

CTS Data ACK

Figure 3.10 Early-sleeping problem. (Adapted from van Dam, T. and Langendoen, K.,
An adaptive energy-effi cient MAC protocol for wireless sensor networks, Proceedings
of the First International Conference on Embedded Networked Sensor Systems,
Los Angeles, CA, November 2003, ACM, New York, 171–180.)

Node D

Node C

Node B

Node A Contend

Contend

Active ActiveSleep

RTS

RTSFRTS

CTS DS
Data ACK

Figure 3.11 FRTS. (Adapted from van Dam, T. and Langendoen, K., An adaptive
energy-effi cient MAC protocol for wireless sensor networks, Proceedings of
the First International Conference on Embedded Networked Sensor Systems, Los
Angeles, CA, November 2003, ACM, New York, 171–180.)

AU9215_C003.indd 86AU9215_C003.indd 86 2/22/2010 4:09:12 PM2/22/2010 4:09:12 PM

Medium Access Control in Wireless Sensor Networks ◾ 87

as the information of the length of the ongoing data transmission, which prevents
node C sending data to node D. A node should not send the FRTS packet if it is
prohibited from data transmission.

Th e destination node of the FRTS packet must be in the active or the wake-up
state to receive data from the sender of the FRTS packet when the ongoing commu-
nication is performed. Th e destination node gets this information from the FRTS
packet. To prevent another node from occupying the transmission medium, the
winner of the previous contention (i.e., node A) sends a small dummy data-send
(DS) packet prior to sending a burst of data. Th e DS packet contains no useful
information. Hence, the collision between the DS packet and the FRTS packet
does not aff ect the following data transmission.

3.3.1.2.1.5 Taking Priority on Full Buffers — Th e second solution is based on
the observation that a node may prefer sending to receiving when its transmit/rout-
ing buff ers are almost full. As shown in Figure 3.12, assume that node B sends the
RTS packet to node C, whose buff ers are almost full. Instead of sending a CTS
reply to node B, node C initiates a data transfer with node D by sending an RTS
packet to node D.

However, with this scheme, the node that is the intended receiver of the prior
contention winner has higher probability of controlling the transmission medium.
In this example, node C loses the contention with node B. But luckily, node C is the
winner’s receiver and node C (not node B) actually owns the transmission medium
now. Obviously, node D will not have the early-sleeping problem in this case. In
addition, the full-buff er priority scheme introduces a limited form of fl ow control
into the network, which actually is useful for many nodes-to-sink communication
scenarios in WSNs.

Node D

Node C

Node B

Node A Contend

Contend

Active ACKRTS CTS Data

Figure 3.12 Taking priority on full buffers. (Adapted from van Dam, T. and
Langendoen, K., An adaptive energy-effi cient MAC protocol for wireless sensor net-
works, Proceedings of the First International Conference on Embedded Networked
Sensor Systems, Los Angeles, CA, November 2003, ACM, New York, 171–180.)

AU9215_C003.indd 87AU9215_C003.indd 87 2/22/2010 4:09:14 PM2/22/2010 4:09:14 PM

88 ◾ Wireless Sensor Networks: Principles and Practice

However, when the high-load traffi c is not fl owed in a nodes-to-sink communi-
cation pattern, the data fl ow must be applied carefully. Th e probability of collisions
increases rapidly when the nodes in a random communication pattern start taking
priority. Th ese collisions reduce the overall performance of the WSN. Th erefore,
T-MAC uses a threshold to limit nodes taking priority on full buff ers.

3.3.1.2.2 Evaluating T-MAC Protocol

T-MAC introduces the concept of turning off the radio when a certain time-out
occurs, which presents an eff ective way to address the idle-listening problem and
decreases the energy consumption in a volatile environment where the message
rate fl uctuates, either in time or in location [Tvdam03]. Simulations show that
the T-MAC protocol can save as much as 96 percent of the energy compared to
a traditional CSMA-based protocol, by using the radios for as little as 2.5 per-
cent under a very low traffi c load. With a high traffi c load, the T-MAC protocol
does not increase the latency and ensures a high throughput by not entering the
sleep state. Under homogeneous traffi c load, T-MAC and S-MAC achieve similar
reductions in energy consumption (up to 98 percent) compared to the CSMA
protocol. However, in a network where message rates vary, the T-MAC protocol
saves more energy than its predecessor, S-MAC, which only turns on the node
radio for a fi xed period.

Th e T-MAC protocol reduces the energy consumption
of the nodes, thereby increasing the lifetime of the
network without introducing any latency. It reduces
the time required for the transmission of data from the
source node to the destination node. It also solves the
early-sleeping problem by introducing FRTS and tak-
ing priority on the buff ers.

WSNs

Remember

3.3.2 Schedule-Based MAC Protocols
In schedule-based medium access, each node uses the shared transmission media
based on a schedule. Similar to TDMA-based protocols, time normally is divided
into so-called time slots of fi xed length. Th e schedule determines the assignment
of the time slots in a way such that confl icts do not exist and each node gets an
opportunity to use the medium. Often, these schedules are repeated after a certain
period and the nodes form a cluster. As each node can access the shared medium
only in the dedicated time slot, schedule-based MAC protocols generally can avoid
contentions, collisions, and idle listening. Without additional overhead, the sched-
ule can also easily transit a node into the sleep state for energy saving. In addition,

AU9215_C003.indd 88AU9215_C003.indd 88 2/22/2010 4:09:14 PM2/22/2010 4:09:14 PM

Medium Access Control in Wireless Sensor Networks ◾ 89

QoS and priority support can be conveniently achieved with schedule-based MAC
protocols. However, a number of challenging issues arise when designing schedule-
based medium access schemes for resource-constrained WSNs, as follows:

 1. High-quality clock synchronization among the nodes is not easy to achieve.
 2. Th e dynamics of WSNs, including nodes addition, nodes failure, and mobil-

ity, make eff ective slot assignment diffi cult.
 3. Slot assignment in multi-hop WSNs is challenging.
 4. Poor scalability and complexity in the schedule maintenance may signifi -

cantly degrade the network performance.

In the literature, a number of studies have been conducted to design effi cient
schedule-based medium access schemes while resolving the aforementioned chal-
lenges. Examples of schedule-based MAC protocols are TRAMA [Vrajendran06],
LEACH (low-Energy Adaptive Clustering Hierarchy) [Heinzelman02], Self-
Organizing Medium Access Control for Sensor Networks (SMACS) [Ksohrabi00],
FLAMA (Flow-Aware Medium Access) [Vrajendran05], SPARE MAC (Slot Periodic
Assignment of Reception) [Lcampelli07], μ-MAC [Abarroso05], VTS-MAC (Virtual
Time Division Medium Access) [Eelopez06], ER-MAC [Rkannan03], and BMA
MAC (Bitmap-Assisted MAC) [Jli04]. Th e LEACH protocol introduces the concept
of hierarchy into WSNs for transferring data from the sensor nodes to the base sta-
tion, while the FLAMA protocol uses distributed election, by using the information
of the fl ow, the two-hop neighborhood, and the simple traffi c adaptive scheme for
energy-effi cient channel access. In the SPARE MAC protocol, the nodes, which are
receivers at a particular instance of time, receive the reception schedule and propagate
the information of the reception schedule to all the neighbors. Th e μ-MAC protocol
divides the transmission channel into contention and contention-free periods and
relies on the information provided by upper layers. Th e VTS-MAC protocol divides
the nodes into clusters. In VTS-MAC, the time line is divided into time slots such
that the number of nodes in the network is equal to the number of time slots. On the
other hand, the BMA MAC protocol proposes an intra-cluster MAC protocol, which
divides the nodes in the network into clusters. Th e nodes in the cluster can commu-
nicate to the cluster only when there is an occurrence of signifi cant events.

In the rest of this section, we particularly introduce the basic idea of the
TRAMA protocol [Vrajendran06].

3.3.2.1 Traffi c Adaptive Medium Access Protocol [Vrajendran06]

Th e TRAMA protocol is a schedule-based MAC protocol for WSNs, which saves
energy by making sure that there will be no collisions in the data transmission
and by making the nodes enter a low-power state whenever the nodes are not the
intended receivers or transmitters. Th is protocol uses an adaptive selection for elect-
ing the nodes that transmit at a particular period of time and allows nodes to

AU9215_C003.indd 89AU9215_C003.indd 89 2/22/2010 4:09:14 PM2/22/2010 4:09:14 PM

90 ◾ Wireless Sensor Networks: Principles and Practice

determine when they can transit into the sleep mode. With traffi c information,
TRAMA can avoid assigning time slots to nodes having no traffi c to send.

Th e time line of the TRAMA protocol is shown in Figure 3.13, which includes
random access and scheduled access slots. Th e random access slots are called the signal-
ing period, and the scheduled access slots are called the transmission period. During
the signaling period, the nodes broadcast the one-hop neighborhood information
among neighboring nodes such that each node can obtain a two-hop topology
information around itself. During the transmission access slots, the nodes trans-
mit the data and propagate the schedule for contention-free data exchange. Th e
schedule information consists of a set of receivers for the traffi c originating at the
node, and TRAMA assumes that clock synchronization was done previously. In
the contention-free period, time is divided into small time slots and the schedule is
fi xed. When the contention-free period is over, the nodes fall back to the random
access period. Th e lengths of the signaling time slots and the transmission time slots
depend on the type of application. Th e signaling time slot occurs more often for the
dynamic scenarios, where the nodes move from one location in the network to other
locations. On the other hand, for the static scenarios, where the nodes do not have
mobility, the signaling time slot is shorter. Because, in WSNs, the sensor node does
not move very often from one location to another, the signaling time slot is shorter.

TRAMA consists of three components, which are

 1. Neighbor protocol
 2. Adaptive election algorithm
 3. Schedule exchange protocol

3.3.2.1.1 Neighbor Protocol

Th e TRAMA protocol starts its operation in the signaling period. In the signaling
period, every node chooses a random time slot and broadcasts the one-hop neighborhood

Scheduled access

Scheduled access Random
access

Random access Switching period

Figure 3.13 Time line of the TRAMA protocol. (Adapted from Rajendran, V.
et al., Energy-effi cient, collision-free medium access control for wireless sensor
networks, Proceedings of the First International Conference on Embedded Sensor
Systems (SenSys ’03), Los Angeles, CA, February 2006, ACM, New York, Vol. 12,
No. 1, 63–78.)

AU9215_C003.indd 90AU9215_C003.indd 90 2/22/2010 4:09:14 PM2/22/2010 4:09:14 PM

Medium Access Control in Wireless Sensor Networks ◾ 91

information among neighboring nodes. At the end of the signaling period, it is expected
that all the nodes are able to discover their neighbors. Hence, the main purpose of the
signaling period is to permit node additions and deletions such that the changes in the
topology can be discovered. Th e connectivity information in the network is found by
these signaling packets. Figure 3.14 shows the format of the header of the signaling
packets. Signaling packets carry incremental neighborhood updates, and if there are no
updates, signaling packets are sent as “keep-alive” beacons. Otherwise, if a node is not
heard for a certain period of time, the node is assumed to have been disconnected from
the network. Th e incremental updates from a node include the one-hop neighborhood
information of this node in terms of added and deleted neighbors.

Once all the one-hop neighbors of a node, say node B, send the corresponding
one-hop information to node B, it can earn all its neighbors’ neighbors. In other
words, node B eventually will have all the information of its two-hop neighbor
nodes and can construct a two-hop local topology around itself.

Note that during the random access period, signaling packets may be lost due
to collisions, which can result in inconsistent neighborhood information across the
network. To ensure consistent neighborhood information, the length of the random
access period and the number of retransmissions of the signaling packets should be
set according to the real network or the application scenario.

3.3.2.1.2 Adaptive Election Algorithm

After discovering the neighbors, the TRAMA protocol employs the adaptive
election algorithm to establish a schedule. Nodes locally compute which one is the
absolute winner among the two-hop neighbors in a certain time slot by calculating
the priority function as in Equation 3.5:

 = ⊕prio(,) hash()u t u t
(3.5)

where
u is the node identifi cation
t is the slot number
hash (…) is a networkwide known hash function

Type
Source
address

Destination
address

Delete
number

Add
number

Deleted
node ID’s

Added node
ID’s

Figure 3.14 Signal header. (Adapted from Rajendran, V. et al., Energy-effi cient,
collision-free medium access control for wireless sensor networks, Proceedings
of the First International Conference on Embedded Sensor Systems (SenSys ’03),
Los Angeles, CA, February 2006, ACM, New York, Vol. 12, No. 1, 63–78.)

AU9215_C003.indd 91AU9215_C003.indd 91 2/22/2010 4:09:14 PM2/22/2010 4:09:14 PM

92 ◾ Wireless Sensor Networks: Principles and Practice

Based upon the results of the priority function, time slots are reserved to the winner
(i.e., the node with the highest priority). For energy effi ciency, TRAMA switches
nodes to the sleep state whenever possible and reuses slots that are not used by the
winner. For example, the winner may give up its transmission slot if it does not have
any data to send, and the slot could be used by another node.

At any given time slot, t, during the transmission period, the state of a node, u,
is determined according to the two-hop neighborhood information and the sched-
ules announced by u’s one-hop neighbors. Each node has three possible states:

 1. Sleep state
 2. Receive state
 3. Transmit state

A node is in the transmit state if it has data to send and is the winner, i.e., has the
highest priority based on the result calculated from Equation 3.5. When a node is
the intended receiver of the current sender, the node is in the receive state. Otherwise,
the communication system of the node can be switched off , and it moves into the
sleep state, as it does not participate in any data exchange.

3.3.2.1.3 Schedule Exchange Protocol

Th e traffi c-based schedule information is established and maintained by the schedule
exchange protocol, which is further broadcasted among the neighboring nodes
periodically during the transmission slots. Th e schedule is generated as follows.

Step 1: Each node computes the number of time slots required to transmit the
data through the transmission channel, SCHEDULE_INTERVAL, based
on the rate at which packets are generated at this node.

Step 2: Th e node then precomputes the number of slots in the interval
[t, t + SCHEDULE_INTERVAL], for which the node will be selected as the
transmitter. In other words, during this interval, the node has the highest priority
among its two-hop neighbors and is assumed to be the winner of this interval.

Step 3: Th e node informs the intended receivers of these slots to avoid the col-
lisions, because all the neighboring nodes of the present node will have the
information about the transmission schedule of the present node.

However, if the node does not have data to send, it marks the slots as VACANT
and sends the information to the neighboring nodes so that other nodes can make
use of the vacant slots. Th e last time slot in the winning interval is used for broad-
casting the node’s schedule for the next interval.

Th e nodes announce the schedule information by using schedule packets, as shown
in Figure 3.15. A schedule packet includes fi elds such as source address, time-out, width,
number of slots, and bitmap. Th e source address identifi es which node is announcing

AU9215_C003.indd 92AU9215_C003.indd 92 2/22/2010 4:09:14 PM2/22/2010 4:09:14 PM

Medium Access Control in Wireless Sensor Networks ◾ 93

the schedule, the time-out indicates how long this schedule is valid, the width is the
number of bits in the bitmap, the number of slots is the total number of winning slots,
and the bitmap identifi es the intended receivers. As the data from the MAC layer
is targeting only one-hop neighbors of the sender and the neighboring information is
already provided by the neighboring protocol, there is no need to specify the receiver’s
address in the schedule packet. Instead, TRAMA adopts a bitmap scheme to identify
the intended receivers. Th e length of the bitmap is equal to the number of one-hop
neighbors. Each bit in the bitmap represents a particular one-hop neighbor, and the
order is based on the IDs of the neighbor nodes. If the sender wants to send the data to
a particular neighboring node, the sender will set the corresponding bit in the bitmap
to 1. Otherwise, the corresponding bit is set 0 if the node is not the intended receiver.
Hence, when all the bits in the bitmap are set to l, the schedule packet is a broadcast-
ing packet, because all the one-hop neighbors are the intended receivers. Similarly,
multicast can be easily supported only by setting the multicast group of bits to 1.

Th e summary of a node’s schedule is also sent with every data packet to mini-
mize the impact of loss in the schedule dissemination. Nodes maintain the schedule
information for all the one-hop neighbors. Th e information is consulted when a
node needs to decide where to transmit or giving up the slot. Th e updated schedule
based on this decision will be carried by the summary within the data packet.

3.3.2.1.4 Performance Evaluation of TRAMA

TRAMA assumes that time is slotted and uses a distributed election scheme based
on the information about traffi c at each node to determine which node can access
the channel for transmission at any particular time slot. With the traffi c informa-
tion, TRAMA avoids assigning time slots to nodes having no traffi c to send and also
allows nodes to determine when they can switch to the sleep mode. Th e TRAMA
protocol ensures that a distance of three hops or more can concurrently transmit
data. Th e performance of TRAMA depends mainly on the traffi c pattern, while the
performance of S-MAC depends on the duty cycle. Simulations in [Vrajendran06]
show that TRAMA outperforms contention-based protocols (CSMA, 802.11, and
S-MAC) in terms of energy consumption and throughput. However, TRAMA expe-
riences a higher delay than the static scheduled access protocols (e.g., [Bao01]) due to

Bits 32 8 8 8

Source
address

Timeout Width
Number
of slots

Bitmap …

Figure 3.15 Schedule packet format. (Adapted from Rajendran, V. et al., Energy-
effi cient, collision-free medium access control for wireless sensor networks,
Proceedings of the First International Conference on Embedded Sensor Systems
(SenSys ’03), Los Angeles, CA, February 2006, ACM, New York, Vol. 12, No. 1, 63–78.)

AU9215_C003.indd 93AU9215_C003.indd 93 2/22/2010 4:09:14 PM2/22/2010 4:09:14 PM

94 ◾ Wireless Sensor Networks: Principles and Practice

the scheduling overhead. Similar to TDMA-based protocols, TRAMA is well suited
for sensor applications like periodic data collection and monitoring, which are not
delay sensitive but require high delivery guarantees and energy effi ciency.

3.3.3 Hybrid and Event-Based MAC Protocols
Th ere are also a number of MAC protocols that are neither based solely on sched-
ule nor on contention (e.g., [Ksarvakar08, Ngajaweera08, Kjamieson03, Szhou07,
Jpolastre04, Irhee08]), which are developed for WSNs in the literature. Some MAC
protocols use a hybrid of contention-based and schedule-based concepts and some are
event-based. Examples of hybrid and event-based MAC protocols are Zebra MAC
[Irhee08], Sift MAC [Kjamieson03], FAMA/TDMA (Floor Acquisition Multiple
Access/Time Division Multiple Access) Hybrid MAC [Ngajaweera08], EZ-MAC
(Utilized ZigBee MAC) [Ksarvakar08], and A2-MAC (Application Adaptive Medium
Access Control) [Szhou07]. Particularly, the FAMA/TDMA.

Hybrid protocol combines both FAMA and TDMA for providing medium access
to all the nodes in a network. Initially, the nodes in a network contend for gaining
access to the transmission by sending RTS packets to the base station. Th e node with
the fi rst successful RTS packet is given absolute access to the transmission channel
to transmit the sensed data. In the EZ-MAC protocol, the data is sent with a low
service access delay, keeping the access blocking ratio low by an optimized structural
sequence. It also uses the scheduling scheme for WSNs. A2-MAC is a data collec-
tion protocol. It is a hybrid, slotted CSMA/TDMA protocol. In the following, we
introduce examples of event-based protocols, followed by a hybrid MAC protocol
developed for WSNs.

3.3.3.1 Sift Medium Access Control [Kjamieson03]

In many WSN applications, the purpose of the sensor nodes is to detect events and
report to a specifi c node called the base station. Whenever an event occurs, all the
nodes that sense the event will start transmitting the details of the event to the base
station. As multiple nodes that detect an event are quite possibly within a short dis-
tance, they share the same transmission medium. When all the nodes report at the
same time, there will be contention in the transmission channel. Such a situation
is known as spatially correlated contention. However, as multiple nodes detect the
same event and may report similar sensed data to the base station, it is not neces-
sary that all the sensor nodes report the event that has been detected. Th e event
would be reported to the base station even if only a subset of the sensor nodes in the
event’s neighborhood actually reports the event. On the other hand, sensor nodes in
WSNs may fail or die due to battery or other causes, and the density of the sensor
nodes in a particular geographical area varies. Th us, it is desirable that the MAC
protocols for such WSNs eff ectively handle the correlated contention along with the
time-varying density, which is the goal of the Sift MAC protocol [Kjamieson03].

AU9215_C003.indd 94AU9215_C003.indd 94 2/22/2010 4:09:15 PM2/22/2010 4:09:15 PM

Medium Access Control in Wireless Sensor Networks ◾ 95

3.3.3.1.1 Protocol Design

Similar to the traditional CSMA protocols, Sift MAC uses a contention window
of fi xed size of a length of 32 slots. Th e diff erence between the CSMA protocols
and Sift MAC is that the probability of picking a slot in Sift MAC in a given
interval is not uniform. In Sift MAC, nodes compete to transmit the data in
slot r ∈ [1, CW], where CW is the length of the contention window. Th e nodes
compete for a particular slot based on the shared belief on the size of the current
living population, N, which changes after every slot in which no transmission
occurs. Th e believed population starts off at some large value, indicating a cor-
respondingly small per-node probability of winning the channel access. If no
node transmits in the fi rst slot, then each node sensing the medium reduces the
believed number of competing nodes by multiplicatively increasing its transmis-
sion probability for the next slot. Th is process is repeated to enable the winner to
be chosen rapidly across a wide range of potential population sizes without incur-
ring long latency due to collisions.

For example, if only one node competes for the transmission medium, it then
gains the access in a particular slot of the contention window to transmit the data.
After the completion of data transmission, all the nodes compete for the new slots
to transmit the data and estimate the values of N.

3.3.3.1.2 Backoff Probability Distribution in Sift MAC

Assume that every node picks up a slot r ∈ [1, CW] using a nonuniform probability
function, pr. A slot r ∈ [1, CW] in the contention window is said to be silent if no node
chooses to transmit the data in that slot. Similarly, it is said that a slot r ∈ [1, CW] has
a collision if more than one node chooses the same slot. A sensor node can win a slot
in the contention window only if one node chooses slot r for data transmission, which
means slot r is the fi rst non-silent slot in the contention window. We call it a success if
some sensor nodes win some slots. Sift MAC uses an increasing and truncated geomet-
ric distribution, as in Equation 3.6, for the nonuniform probability process, pr :

−− α α α= ∈
− α

CW

CW
(1) for [1,CW]

1

r

rp r

(3.6)

In Equation 3.6, α is a distribution parameter in the range of (0,1), which results in
an exponential increase of pr. Th is means the later slots in the contention windows
have higher probabilities.

Each station’s choice of which slot to pick can be viewed as a decision procedure
having CW stages. A sensor node starts at stage 1 by estimating the value of the
current living population, N, as N1, and then chooses slot 1 in the contention win-
dow with the same probability. If no node chooses slot 1, then each node assumes

AU9215_C003.indd 95AU9215_C003.indd 95 2/22/2010 4:09:15 PM2/22/2010 4:09:15 PM

96 ◾ Wireless Sensor Networks: Principles and Practice

that the estimation was not correct and modifi es the estimated value by decreasing
it from N1 to N2. And then the node chooses slot 2 with certain probability. If slot
2 turns out to be another silent slot, then the estimated value is further reduced to
N3 and the above process is continued. Let Nr be one of the estimated values of N,
which is the updated belief after having r − 1 number of silent slots in the contention
window (Figure 3.16).

As the current living population N ∈ [1, N1], the probability of success should
be kept constantly high during the decision process. Th us, the following two properties
should be held [Kjamieson03]:

 1. Th e probability of success should be high when N = N1
 2. Th e probability of success should be constant

Assume that there are r silent slots in the contention window. Let 1
rp be the prob-

ability of a node choosing a slot r, while there are r − 1 silent slots. Th en, the
probability that slot r + 1 is a success slot is given by Equation 3.7:

 − −− ≈
11 1 1 1 1(1) (for large and small)r r rN N p

r r r r r r rN p p N p e N p (3.7)

Node 1 Node 2 Node 3 Node 4 Node 5

Figure 3.16 Time line of fi ve nodes running the Sift MAC protocol. Shaded bars
indicate packet transmission times. When the medium becomes idle, stations backoff
at random according to the Sift distribution before transmitting. (Adapted from
Jamieson, K. et al., Sift: A MAC protocol for event-driven wireless sensor networks,
Proceedings of the Third European Workshop on Wireless Sensor Networks, Zurich,
Switzerland, Lecture Notes in Computer Science, Vol. 3868, 260–275, Springer,
New York, May 2003.)

AU9215_C003.indd 96AU9215_C003.indd 96 2/22/2010 4:09:15 PM2/22/2010 4:09:15 PM

Medium Access Control in Wireless Sensor Networks ◾ 97

Th us, property (2) holds good only when 1
r rN p remains almost constant, so that

the probability of success,
11 r rN p

r rN p e− , does not vary signifi cantly along with time.
To identify a distribution that yields a constant 1

r rN p , an exponential scheme is
chosen, as in Equation 3.8, for covering a large N, while only a small number of slots
in the contention window exist, by which the belief of the population reduces:

1r

r

N
N

+β =

(3.8)

In Equation 3.8, β is constant and is given by 0 < β < 1. Assume that there will be
no collisions or no two sensor nodes will choose the same slot in the contention
window; then, for sensor node S,

1

1 2 1

(chooses | silence in earlier slots)

(chooses | did not choose earlier slots)

(chooses)
(did not choose earlier slots)

1 ()

r r

r

r

r

r

r

p P S r

P S r S

P S r
P S

p
p p p −

=

=

=

=
− + + +�

(3.9)

CW

CW 1
(1)
1

r

r

−

− +
− α α=
− α

(3.10)

−
−

− +
+

− α α= α ≈ α α
− α

1 CW
CW

1 CW 1
1

(1) (for small)
1

r
r r

r
r

p
p

(3.11)

If the values of α and β are equated, then Equations 3.8 and 3.11 can be equated,
which results in

1 1
1 1r r r rN p N p+ + ≈

Th is proves that the probability of success should be constant even when the value
of N changes from N1 to 1. As in property (1), the probability of success is high if
N = N1. Equation 3.10 also implies that 1

CW 1p = ; so, if all the slots in the conten-
tion window are silent, the last slot must be chosen by a node. Th erefore, α should
be chosen such that a node in stage CW believes that it is the only active node. Th is
can be further illustrated by setting the value of the current living population as 1,
which implies that N = 1.

AU9215_C003.indd 97AU9215_C003.indd 97 2/22/2010 4:09:15 PM2/22/2010 4:09:15 PM

98 ◾ Wireless Sensor Networks: Principles and Practice

From Equation 3.9, if α = β and 1 = NCW = αCW − 1N1, the value of α will thus

be given by
−

−α =
1

CW 1
1N .

3.3.3.1.3 Protocol Specifi cation

In Sift MAC, every node has four states as follows:

 1. Idle state: in which a node waits for the data that is sent from other nodes
 2. Contend state: in which a node contends for the transmission channel and

tries to gain access to the transmission medium
 3. Receive state: in which a node receives the data that is sent from another node
 4. AckWait state: in which a node waits for the ACK from another node after

sending data to the node

Th e pseudocode for the transitions between the states is given in Figure 3.17. In this
fi gure, the function pickslot() is used for picking up a slot for transmitting the data
using the Sift distribution specifi ed in Equation 3.6. Th e directive moveto(state)
changes the state of a particular node from the present state to the given state. Th e
directive wait(time) waits for the period of time that is specifi ed in the parameter.

tslot is the minimal time separation such that if two nodes transmit more than
tslot seconds apart, the two nodes will hear the onset of each others’ transmission.
tsifs is the period of time delayed at the beginning of a data ACK packet for turning
around from transmitting the packet to receiving the ACK. tdifs is the quantity of
time delay added at the beginning of a new data transmission. Th us, tdifs + slot * tslot
is the time taken for one complete data transmission and the subsequent transmis-
sion of the ACK. tACKtime-out is the time for which a node waits to receive the ACK.

3.3.3.1.4 Request-to-Send and Clear-to-Send Mechanisms

For avoiding collisions, all the nodes in the sensor networks that implement the Sift
MAC protocol employ the RTS/CTS exchange scheme. Similar to the way the
Sift backoff distribution is used to compete on data packets, it can also be used to
compete on sending the RTS packet. Hence, one can just replace “frame” with “RTS”
and “ACK” with “CTS” in the pseudocode to achieve the RTS competition.

3.3.3.1.5 Performance Evaluation of Sift MAC

Th e basic idea of Sift MAC is to use an increasing, nonuniform probability dis-
tribution within a fi xed-size contention window, instead of using a time-varying
contention window, from which a node randomly picks a transmission slot, as in
traditional contention-based MAC protocols. Th e Sift MAC protocol is tuned for
sensor networks, where every node does not have to report every detected event.

AU9215_C003.indd 98AU9215_C003.indd 98 2/22/2010 4:09:16 PM2/22/2010 4:09:16 PM

Medium Access Control in Wireless Sensor Networks ◾ 99

Simulation studies show that the Sift MAC protocol performs well when a spatially
correlated contention occurs and adapts well to changes in the active-population
size. In specifi c, results show that the Sift MAC protocol improves over 802.11 in
terms of report latency up to a factor of 7 as the number of nodes reporting an event
scales up to 512.

Idle State

wait (channel idle)

if (recv frame for self)

moveto Receive

end if

if (xmit queue not empty)

moveto Contend

end if

Contend state

slot _ pickslot ()

wait tdifs+ slot*tslot

if (channel busy)

moveto Idle

end if

Transmit frame

moveto AckWait

Receive state

Check frame CRC

wait tsifs

Send ACK

moveto Idle

AckWait state

Wait tACK timeout

if (recv an ACK for self)

discard frame

moveto Idle

end if

Retransmit frame

moveto AckWait

Figure 3.17 Pseudocode for state transition in Sift MAC. (From Jamieson, K. et al.,
Sift: A MAC protocol for event-driven wireless sensor networks, Proceedings of the
Third European Workshop on Wireless Sensor Networks, Zurich, Switzerland, Lecture
Notes in Computer Science, Vol. 3868, 260–275, Springer, New York, May 2003.)

AU9215_C003.indd 99AU9215_C003.indd 99 2/22/2010 4:09:16 PM2/22/2010 4:09:16 PM

100 ◾ Wireless Sensor Networks: Principles and Practice

3.3.3.2 Berkeley Medium Access Control [Jpolastre04]

To meet the requirements of WSN deployments and monitoring applications, the
B-MAC protocol is designed to achieve the following goals:

 1. Low-power listening (LPL)
 2. Eff ective collision avoidance
 3. Simple implementation, and small code and RAM sizes
 4. Eff ective channel utilization at low and high data rates
 5. Reconfi gurable by the network protocols
 6. Tolerant to changes in radio frequencies and network topology
 7. Scalable to large number of nodes

Th e B-MAC protocol provides certain interfaces for achieving these goals. Th ese
interfaces are listed in Figure 3.18. For sensing the transmission channel, the
B-MAC protocol uses clear channel assessment (CCA) and packet backoff s.

3.3.3.2.1 Protocol Design

In B-MAC, signal strength is sampled when it is assumed that the transmission
channel is free. For example, the transmission channel is free when the ongoing

interface MacControl {
command result _ t EnableCCA();
command result _ t EnableCCA();
command result _ t DisableCCA();
command result _ t EnableAck();
command result _ t DisableAck();
command void* HaltTx();
}
interface MacBackoff {
event uintl6 _ t initialBackoff(void* msg);
event uintl6 _ t congestionBackoff(void* msg);
}
interface LowPowerListening {
command result _ t SetListeningMode(uint8 _ t mode);
command uint8 _ t GetListeningMode();
command result _ t SetTransmitMode(uint8 _ t mode);
command uint8 _ t GetTransmitMode();
command result _ t SetPreambleLength(uintl6 _ t bytes);
command uintl6 _ t GetPreambleLength();
command result _ t SetCheckInterval(uintl6 _ t ms);
command uintl6 _ t GetCheckInterval();
}

Figure 3.18 Interfaces of B-MAC protocol. (Adapted from Polastre, J., Interfacing
Telos to 51-pin sensorboards, http://www.tinyos.net/hardware/telos/telos-legacy-
adapter.pdf, October 2004.)

AU9215_C003.indd 100AU9215_C003.indd 100 2/22/2010 4:09:16 PM2/22/2010 4:09:16 PM

Medium Access Control in Wireless Sensor Networks ◾ 101

transmission is completed or when the communication device is not receiving any
data. Th e sampled data is entered into a queue. Th e median of the sampled data
is found and is added to an exponentially weighted moving average with decay, α.
Th e median is used for adding robustness to the noise fl oor estimate. After the noise
fl oor is estimated, the request for monitoring the received signal strength starts
monitoring the transmission channel. Th e B-MAC protocol searches for outliers
in the received signal strength. For instance, if a node senses an outlier, it declares
that the channel is unoccupied, as a valid packet could never have an outlier below
the noise fl oor. If there is no outlier found in the samples, then it is concluded that the
channel is busy.

Using the MacControl interface in Figure 3.18, nodes in the B-MAC protocol
can turn the CCA on or off . If the CCA is disabled, the scheduling protocol is
implemented in the B-MAC protocol. Th is protocol uses packet backoff when the
CCA is enabled. For packet backoff , instead of setting a backoff time, B-MAC uses
an event-driven approach, which may return the backoff time or ignore the event.
If the event is ignored, a small backoff time is set. After the initial backoff time, the
CCA outlier algorithm is run. If the channel is not clear, the service for the conges-
tion of the backoff time is signaled by the event.

Th e B-MAC protocol also provides a link-layer ACK support. If the applica-
tion requires an ACK, then the ACK is sent to the source node from the receiver
node. After receiving the ACK, the source node sets a bit in the sender’s transmis-
sion message buff er. B-MAC uses LPL for periodic transmission channel sampling.
Every node in the B-MAC protocol senses for activity in the transmission channel.
If it senses an ongoing data transmission, then it waits for the completion of the
transmission. After the data transmission, the node moves into the sleep state. If
no packet is received, then a timer pushes the node into the sleep state. Th e interval
between two LPL samples is maximized to minimize the time spent in sampling
the transmission channel.

3.3.3.2.2 Performance Evaluation of B-MAC

Th e B-MAC protocol performs better as compared to S-MAC and T-MAC in terms of
throughput and energy consumption. Th e performance of S-MAC and T-MAC proto-
cols is dependent on the length of the duty cycle. B-MAC provides a fl exible interface to
obtain ultralow power operation, eff ective collision avoidance, and high channel utiliza-
tion in WSNs. B-MAC eff ectively performs clear channel estimation. While support-
ing on-the-fl y reconfi guration and providing bidirectional interfaces for system services,
B-MAC employs an adaptive preamble sampling scheme to reduce the duty cycle, min-
imize idle listening, and achieve low-power operation. B-MAC may be confi gured to
run at extremely low duty cycles and does not force applications to incur overheads of
synchronization and state maintenance like other MAC protocols. Experimental stud-
ies show that B-MAC’s fl exibility results in better packet-delivery rates, throughput,
latency, and energy consumption than those of S-MAC [Jpolastre04].

AU9215_C003.indd 101AU9215_C003.indd 101 2/22/2010 4:09:16 PM2/22/2010 4:09:16 PM

102 ◾ Wireless Sensor Networks: Principles and Practice

3.3.3.3 Zebra Medium Access Control [Irhee08]

Th e Z-MAC protocol is a hybrid protocol that combines the merits of TDMA and
CSMA while off setting the demerits of both the schemes. Z-MAC uses CSMA at
the base, but follows TDMA depending on the contention level. Th e overhead of
the Z-MAC protocol is incurred at the setup phase, which occurs at the beginning.
In the setup phase, the nodes are assigned the time slots for data transmission. Th e
nodes use the assigned time slots for the transmission of the sensed data in a par-
ticular period of time known as a frame. A node is called the owner of a time slot
if it wins the access to the transmission medium; otherwise, the node is known as a
nonowner. Th e nonowners of the time slot have lower priority to transmit the data
when compared to that of the owners of the time slot. Th e priority is set using the
contention window size. If, at a particular point of time, the owners do not transmit
the data, then the nonowners of the time slot may transmit the data by using the
time slot that is left unused by the owners of the time slot. Th e Z-MAC protocol
performs similar to TDMA when the level of contention is low (or the traffi c load
is low), and it performs similar to CSMA when the level of contention is high (or the
traffi c load is high).

3.3.3.3.1 Z-MAC Setup Phase

Initially, the Z-MAC protocol runs the setup phase, which consists of the following
steps:

 1. Neighbor discovery
 2. Slot assignment
 3. Local frame exchange
 4. Global time synchronization

3.3.3.3.1.1 Neighbor Discovery — In the neighbor discovery step, every node in
the network fi nds the one-hop neighborhood by sending ping messages, containing
the current list of one-hop neighbors, to its one-hop neighbors. Th e two-hop neigh-
borhood information can then be found by combining all the received one-hop
neighborhood information of its neighbors.

3.3.3.3.1.2 Slot Assignment — In the slot assignment step, Z-MAC uses the
distributed RAND (DRAND) [Irhee06] algorithm to assign the time slots for
data transmission. Th is algorithm is the distributed implementation of the RAND
algorithm [Rramanathan97]. Th e RAND algorithm is a centralized algorithm for
assignment of time slots. Th e DRAND algorithm runs in rounds. Th ere are four
states in DRAND, which are IDLE state, REQUEST state, RELEASE state, and
GRANT state. Th e state diagram of DRAND is shown in Figure 3.19. Initially,

AU9215_C003.indd 102AU9215_C003.indd 102 2/22/2010 4:09:16 PM2/22/2010 4:09:16 PM

Medium Access Control in Wireless Sensor Networks ◾ 103

every node is in the IDLE state. During the IDLE state, the node tosses the coin for
which the probability of getting a head or a tail is 1/2. If the result is a head, then it
runs a lottery. If it loses the lottery, then it remains in the same state. If it wins the
lottery, it moves into the REQUEST state, where the node broadcasts a request mes-
sage to all its one-hop neighbors.

Consider node B, which is a one-hop neighbor to node A. If node B receives a
REQUEST message from node A when node B is in the IDLE state or the RELEASE
state, then it responds with a grant message and moves to the GRANT state. If node
B is in the REQUEST state or the GRANT state, then it responds with a reject mes-
sage to node A. If node A does not receive a grant message or a reject message within
the specifi ed period of time, it sends the same request message again.

Receive a request

Send a grant

Send a two hop release

Send a reject

Send a grant

Send a two hop release

Receive a release or fail
and it has decided on its won slot

Receive a request

Lose lottery

T_A time passed

Won lottery

Send a request

Send a fail

Send a reject

Receive a request

Send a request

Receive grants from all one hop
and two hop neighborhood

RELEASE

GRANT

IDLE

REQUEST

Receive a release or fail
and it has decided on its won slot

Receive
a request

Receive a reject

Figure 3.19 DRAND state diagram. (Adapted from Rhee, I. et al., DRAND:
Distributed randomized TDMA scheduling for wireless ad-hoc networks,
Proceedings of the IEEE MobiHoc, Florence, Italy, May 2006, 190–201.)

AU9215_C003.indd 103AU9215_C003.indd 103 2/22/2010 4:09:17 PM2/22/2010 4:09:17 PM

104 ◾ Wireless Sensor Networks: Principles and Practice

3.3.3.3.1.3 Local Framing — After slot assignment, every node in the network
receives a time slot for transmitting its data to its intended destination. Th en, the
node needs to decide on the period in which it can use the time slot for transmit-
ting the data to the intended destination. Th is period is called the time frame of the
node. After the node decides the period for transmitting its data, the node should
propagate the maximum slot number (MSN) to the entire network and adapt to
local time slot changes. If there is any addition of new nodes in the network, then
DRAND will assign the new time slots for the newly added nodes. Th e change in
the MSN should also be propagated to all nodes in the network.

Under high-contention conditions, Z-MAC requires clock synchronization.
Th e Z-MAC protocol uses the Real-Time Transport Protocol (RTP/RCTP)
[Hschulzrinne96] for clock synchronization under high-contention conditions.
In RTP/RCTP, every node in the network sends the control message at a rate
that is limited to a small fraction of session bandwidth and every node in the
session adjusts its bandwidth according to the allocated session bandwidth.
In the Z-MAC protocol, every node limits the data-sending rate to a prede-
termined data-sending rate, which is determined based on the energy and the
bandwidth.

3.3.3.3.1.4 Global Time Synchronization — Local framing assumes that
all the nodes are synchronized initially at time slot 0. Th is could be achieved
by fi xing a predetermined time to synchronize the time slot 0. All the nodes
are synchronized at slot 0 using the Timing-sync protocol for WSNs (TPSN)
[SGaneriwal03]. TPSN assumes that every node has a 16 bit register that acts
as a clock that is triggered by the crystal oscillator. TPSN runs in two steps. In
the fi rst step, the nodes in the network construct a hierarchical structure. Every
node k belongs to a level i. Th e nodes in level i can communicate with the nodes
in level i − 1. Only one node will be at level zero. Th is is called the root level. In
the second step, which is the synchronization step, all the nodes at level i synchro-
nize with the nodes at level i − 1. Th us, every node in the network synchronizes
with the root level. Th us, all the nodes in the network get synchronized at slot 0.
After global time synchronization, each node in the network performs local time
synchronization.

3.3.3.3.2 Transmission Control of Z-MAC Protocol

Every node in the Z-MAC protocol can be in any one of the following two modes:

 1. Low-contention level (LCL)
 2. High-contention level (HCL)

Every node will be in an LCL until it receives an explicit contention notifi cation
(ECN) message from a two-hop neighbor node. A node sends an ECN message

AU9215_C003.indd 104AU9215_C003.indd 104 2/22/2010 4:09:17 PM2/22/2010 4:09:17 PM

Medium Access Control in Wireless Sensor Networks ◾ 105

if it experiences high contention. Once an ECN message is received, the node tran-
sits to the HCL mode.

Explicit Contention Notifi cation Message
ECN messages intend to notify the two-hop neighbors of the current owner of
the time slot not to act as hidden terminals when the contention level is high. In
the Z-MAC protocol, every node needs to decide the contention level based on the
estimate of the contention level. Th e nodes can estimate the contention level using
the following two methods.

 1. To measure the packet loss in the ACKs
 As two-hop contention may result in collision and hence data loss, the source

node could measure the contention level by measuring the packet loss in the
transmission. Based on the received ACK packets, a node could calculate the
packet loss percentage and decide the contention level. However, this tech-
nique requires the receiver to send the ACK back to the sender, and incurs
extra overhead and decreases channel utilization.

 2. To measure the noise level of the channel
 Whenever the contention level is high, the noise level in the transmission

channel increases. Measuring the noise level in the transmission chan-
nel does not require any extra overhead. For measuring the noise in the
transmission channel, the nodes calculate the number of noise backoff s.
A noise backoff is a backoff transmitted by the source node when it senses
the transmission channel using clear channel assessment (CCA). With
CCA, a node in the network can transmit only when the node senses the
channel to be clear. When the node experiences the contention, it takes
the backoff message. When more than one destination take the backoff
message, the node sends the one-hop ECN message to the node indicating
an HCL. If node j receives the ECN message sent by node i, node j fi rst
checks whether it is the destination of the ECN message. If it is not the
destination node, it simply discards the message. If it is the destination
node, node j broadcasts the ECN message to its one-hop neighbors. Once
a node receives the ECN message from a node in a two-hop neighbor-
hood, it sets the HCL fl ag.

3.3.3.3.3 Transmission Rule

When a node in a network needs to transmit data, it fi rst checks whether it is the
owner of the time slot. If the node fi nds that it is the owner of the time slot, then
it checks whether the transmission channel is unoccupied. If the node fi nds that the
transmission channel is unoccupied, then it transmits the data to the intended destina-
tion. Otherwise, it sets a timer and waits for a period of T0. When the timer expires, it
runs the CCA, and if the transmission channel is clear, it transmits the data. Otherwise,

AU9215_C003.indd 105AU9215_C003.indd 105 2/22/2010 4:09:17 PM2/22/2010 4:09:17 PM

106 ◾ Wireless Sensor Networks: Principles and Practice

it waits for random time and repeats the same process. If a node is in an HCL and is
the nonowner of the time slot, it postpones the transmission for time T0, and then
performs random backoff within the contention window, [T0, Tn0]. When the backoff
timer expires, the node senses the transmission channel, and if the channel is unoccu-
pied, then the node transmits the data. Otherwise, the node waits until the channel is
clear and repeats the above process.

3.3.3.3.4 Receiving Schedule of Z-MAC Protocol

Th e Z-MAC protocol relies on the B-MAC [Jpolastre04] protocol for receiving
a schedule. Z-MAC uses the LPL mode, wherein each node maintains a listen-
ing duty cycle separated by a check period and each transmission is preceded by a
preamble as large as the check period. Th erefore, under low duty cycles, the energy
consumption of Z-MAC in idle listening is comparable to that of B-MAC. Th e
check period is one of the important factors in the receiving schedule because
the check period must allow one complete transmission of the data packet. Th us,
the size of the slot must be larger than the sum of check period, T0, Tn0, CCA
period, and time required for the propagation of one data packet.

3.3.3.3.5 Performance of Z-MAC Protocol

Th e Z-MAC protocol can dynamically adjust the behavior of medium access
between CSMA and TDMA depending on the level of contention in the network.
Th e protocol takes advantage of the two-hop neighbor topology information and
loosely synchronized clocks to improve MAC performance under high contention.
Like TDMA, Z-MAC achieves high channel utilization under high contention and
reduces collision among two-hop neighbors at low cost. Under low contention, the
protocol behaves like CSMA and achieves high channel utilization and low latency.
A unique feature of Z-MAC is that its performance is robust to synchronization
errors, slot assignment failures, and time-varying channel conditions. In the worst
case, its performance always falls back to that of CSMA. Compared to B-MAC
[Jpolastre04], Z-MAC has an advantage under medium to high contention and is
competitive under low contention (especially in terms of energy effi ciency).

Sift MAC [Kjamieson03] shows high performance
under one-hop contention, but under two-hop conten-
tion, it needs to rely on RTS/CTS and incurs high over-
head. Z-MAC can be favorably adopted in applications
where expected data rates and two-hop contention are
medium to high.Difference

WSNs

AU9215_C003.indd 106AU9215_C003.indd 106 2/22/2010 4:09:17 PM2/22/2010 4:09:17 PM

Medium Access Control in Wireless Sensor Networks ◾ 107

3.4 Conclusion
In this chapter, we have gone through the challenges of MAC design in WSNs.
To resolve these challenges, much research in the literature has been conducted
on the design of eff ective MAC protocols suitable for diff erent WSN appli-
cations. Hence, this chapter also briefl y introduced several classical MAC
protocols, including contention-based S-MAC and T-MAC, schedule-based
TRAMA, as well as hybrid and event-based MAC like Sift MAC, Z-MAC, and
B-MAC protocols.

Problems and Exercises
3.1 Multi-choice questions:

1. Which of the following is not a state in the TRAMA protocol?
a. Sleep state
b. Receive state
c. Transmit state
d. Wake-up state

2. Th e size of the contention window in Sift MAC protocol is
a. 16
b. 32
c. 512
d. None of the above

3. Th e Z-MAC protocol combines two traditional protocols for MAC. Which
two?
a. CDMA and TDMA
b. FDMA and CSMA
c. CDMA and SDMA
d. CSMA and TDMA

3.2 Why is energy an important concern in the design of medium access protocols
in WSNs?

3.3 Does the performance of the Sift MAC protocol depend on the number of the
nodes in a WSN? What is the reason for the variation in performance when
the number of nodes in the network increases?

3.4 What are the major diff erences between the S-MAC and the T-MAC
protocol?

3.5 What are the diff erent states for the nodes in WSNs using the TRAMA
protocol? Explain the operation of diff erent states for the nodes in WSNs using
TRAMA.

3.6 Explain the operation of each state for nodes using the Z-MAC protocol.
3.7 Explain the importance of LPL and clear channel assessment in the B-MAC

protocol.

AU9215_C003.indd 107AU9215_C003.indd 107 2/22/2010 4:09:17 PM2/22/2010 4:09:17 PM

108 ◾ Wireless Sensor Networks: Principles and Practice

3.8 Explain the early-sleeping problem in the T-MAC protocol and also how to
resolve it.

3.9 Explain how the nodes in WSNs using the S-MAC protocol choose and
exchange their schedules.

3.10 Explain the hidden and the exposed terminal problems in WSNs. Give
examples on how to handle these problems in WSNs.

AU9215_C003.indd 108AU9215_C003.indd 108 2/22/2010 4:09:17 PM2/22/2010 4:09:17 PM

109

4Chapter

Routing in Wireless
Sensor Networks

4.1 Introduction
A wireless sensor network (WSN) is a distributed wireless ad hoc network com-
prising of a number of sensor nodes that are used for sensing the environment
to track climatic changes, seismic activities, movement of enemy troops in a war
zone, industrial monitoring and control, etc. In WSNs, the transmission range
of a tiny sensor node is limited. However, the sensed information from such a
sensor node normally has to be transmitted to and processed at the base station
(BS) or at a control center (also called sink), which could be far away from the
sensor node and out of the transmission range of the sensor node. In other words,
the data may have to travel multiple hops before reaching the sink. Similarly,
the query commands issued by users or the sink may have to travel multiple
hops through the network to obtain some particular information, collected by
diff erent sensor nodes at diff erent locations. Th erefore, it is essential to deploy
an effi cient scheme in the WSN to select paths going through multiple hops and
forward data from the source to the destination, which is a major function of the
routing process.

Routing plays an important role in wired networks, wireless networks,
and mobile ad hoc networks (MANETs), which attracted a large number of
studies in the past. However, due to the unique constraints and application
requirements in WSNs, the routing schemes developed for the Internet and
the MANET are often not feasible or cannot deliver promising performance
as needed in WSNs. For example, most Internet routing protocols assume

AU9215_C004.indd 109AU9215_C004.indd 109 2/22/2010 4:11:02 PM2/22/2010 4:11:02 PM

110 ◾ Wireless Sensor Networks: Principles and Practice

highly reliable wired links with very low bit error rates, while MANET rout-
ing solutions are normally optimized for highly mobile nodes with symmetric
links between neighbors. However, these assumptions are not true for WSNs.
While facing the challenges arisen from the wireless environment and links
such as MANETs or wireless LANs, routing schemes in WSNs also have to
consider unique issues, including limited resources (such as energy, bandwidth,
and computing), lossy wireless links and fault tolerance, data aggregation and
data reporting, node deployment, scalability, coverage, network dynamics, and
node/link heterogeneity [Njamal04].

4.1.1 Limited Resources in WSNs
As the sensor nodes are normally powered by batteries, which are not easy
to replace or recharge, the energy of each network node in WSNs is limited.
Energy-effi cient routing is one of the critical design criteria for WSNs, because
power failure of a sensor node not only aff ects the node itself but also its ability
to forward packets on behalf of others and, thus, the overall network lifetime.
In addition, if the data is lost due to a failure in the routing scheme or subop-
timal route selection, the retransmission consumes extra energy and results in
additional delay to the network, which also wastes the limited available band-
width in the sensor network.

Energy effi ciency is one of the most common concerns to
be eff ectively addressed in the design of routing schemes
for WSNs. Many research eff orts have been devoted to
developing energy-aware routing protocols for WSNs.
However, in general, energy consumption is not a con-
cern at all in traditional Internet routing protocols.

WSNs

Difference

Similarly, the limited resources, such as bandwidth, memory, and computing,
deserve careful consideration in the design of WSN routing protocols. For example,
with limited memory space, a sensor node cannot store the whole topology infor-
mation of a large-scale network for a routing decision. Neither is a large routing
table feasible in the sensor node.

4.1.2 Fault Tolerance
Unlike the traditional wired networks, the nodes and the links in sensor networks
are more prone to errors or failure. Th e sensor node may not work due to lack of
power or physical damage. Th e wireless link can be broken by the failure of sensor

AU9215_C004.indd 110AU9215_C004.indd 110 2/22/2010 4:11:03 PM2/22/2010 4:11:03 PM

Routing in Wireless Sensor Networks ◾ 111

nodes, or by environmental interference or obstacles. Th us, the routing procedures
in WSNs should function eff ectively even when there are node or link failures in
the network. To achieve this, routing schemes in WSNs may have to fi nd alternative
paths dynamically or take advantage of the redundancy in the network to tolerate
the unpredictable failures in the sensor networks.

4.1.3 Data Reporting and Aggregation
Th e data sensed by the sensor nodes in WSNs needs to be reported to the users
of the system by transmitting the data to the BS. Data reporting can be performed
through diff erent approaches, such as time driven, event driven, query driven,
and the hybrid of all these three methods. In the time-driven approach, the nodes
periodically report the data after a certain interval of time. In the event-driven
approach, whenever an event occurs in the environment, the nodes report the infor-
mation associated with that event to the BS. In the query-driven approach, the BS
issues a query to some nodes in the network and expects the corresponding nodes
to collect the necessary information delivered to the BS. Th ese diff erent data-
reporting approaches have diff erent advantages and disadvantages, which requires
diff erent routing schemes to address the needs.

In addition, sensor nodes in WSNs may produce a signifi cant amount of
redundant data. For example, multiple sensors may report the same information
or diff erent aspects of the same events occurring in the vicinity of a particular
location. To reduce the number of transmissions and related resources’ consump-
tion, aggregating similar packets from multiple nodes based on certain criteria
should be considered. Aggregation techniques include duplicate suppression, signal
processing, data fusion, and so on.

4.1.4 Node Deployment
Node deployment in WSNs can be done in two ways: randomly and manually.
When node deployment is done in a random fashion, the nodes in the network
form a wireless ad hoc structure. Th us, the routing protocols deployed in the net-
work have to self-learn the topology information and dynamically forward data
through energy-effi cient operation. When node deployment is done manually, the
routes for transmitting data can be calculated optimally to achieve some goals using
an off -line algorithm. In other words, the routes can be predefi ned. However, in
case of the topology changes due to node/link failures, dynamical routing schemes
are still necessary in manually deployed WSNs.

4.1.5 Scalability and Coverage
In many WSN applications, the number of deployed nodes in the physical area to be
monitored can be signifi cantly large. Th e routing scheme employed in WSNs should

AU9215_C004.indd 111AU9215_C004.indd 111 2/22/2010 4:11:03 PM2/22/2010 4:11:03 PM

112 ◾ Wireless Sensor Networks: Principles and Practice

be scalable and working toward a similar effi ciency even though the network size is
large. Th e number of events or the data information to be delivered in WSNs can be
enormous at a particular instance of time, which also requires high scalability from
the routing process in the network.

Th e transmission and sense range of sensor nodes in WSNs are constrained by the
physical size and capability of the nodes, which are normally small compared with
the physical area covered by the network. Effi cient routing schemes have to consider
the particular requirements of the specifi c applications to maintain necessary network
connectivity and coverage.

4.1.6 Network Dynamics and Heterogeneity
Some nodes in WSNs may contain the devices that make the nodes move from one
position to another. Due to the movement of the nodes in the network, the network
topology and connectivity change. Th e number of the nodes in the network and
network connectivity may also change from time to time due to node/link failures.
Such network dynamics have to be considered together with the dynamic events in
the design of routing protocols for WSNs.

In many WSN applications, the nodes and the link between any two nodes are
assumed to be homogenous. But, in reality, these are not always homogenous. Th e
amounts of energy, transmission range (i.e., the maximum distance to which the node
can directly transmit the data), memory, and processing capability may vary among
the nodes and during the lifetime of the nodes. For example, symmetric link is the
default feature for wired networks, such as Ethernet or optical networking. However,
this symmetric link feature does not hold true for the wireless links in sensor networks,
which necessitates the discovery of diff erent routing processes for sensor networks.

Sensor nodes have constraints due to limited resources
such as energy, bandwidth, memory, and computing
capability. Such constraints combined with the afore-
mentioned challenging issues necessitate the invention
and development of new routing solutions for WSNs.

Remember

WSNs

4.2 Layout for the Chapter
With the challenging issues in mind, we fi rst introduce some general concepts
adopted in the design of routing protocols for sensor networks. Th ese concepts
include fl ooding, gossiping, and ideal dissemination. Next, the classifi cation of
routing schemes developed in the literature is described. Th en, this chapter highlights

AU9215_C004.indd 112AU9215_C004.indd 112 2/22/2010 4:11:03 PM2/22/2010 4:11:03 PM

Routing in Wireless Sensor Networks ◾ 113

several typical routing protocols, including Sensor Protocols for Information
via Negotiation (SPIN), Directed Diff usion, Low-Energy Adaptive Clustering
Hierarchy routing protocol (LEACH), Th reshold-Sensitive Energy-Effi cient Sensor
Network (TEEN), Geographical and Energy-Aware Routing (GEAR), and multi-
path routing, in sensor networks.

4.3 Classifi cation of Routing Protocols
in WSNs [Njamal04]

Routing in sensor networks is very challenging and diff erent from contemporary wired/
wireless networks, such as Ethernet and MANETs [Rwheinzelman99, Jkulik02]. Th e
popular IP-based protocols cannot be applied to sensor networks because it is infea-
sible to build a global addressing scheme for the deployment and maintenance of
thousands of tiny sensor nodes having limited resources. Many new algorithms have
hence been developed for routing and forwarding data in sensor networks.

4.3.1 Proactive and Reactive Routing
Routing protocols can be proactive, reactive, or hybrid depending on how the route
is found. Proactive protocols attempt to continuously evaluate the routes within
the network so that all routes are computed before they are needed. In other words,
when a packet needs to be forwarded, the route is already available and can be
immediately adopted. Reactive protocols, on the other hand, invoke a route deter-
mination procedure only on demand. Hence, some sort of search procedure has to
be employed to identify a route prior to data forwarding. Hybrid routing protocols
attempt to integrate the above two ideas to take the advantages of both.

Th e advantage of proactive schemes is that there is little or no delay in determining
a route whenever a route is needed. On the other hand, reactive protocols have to start
a route discovery process to identify proper path information when a route is needed,
which means that the time for determining a route can be quite signifi cant. Th is leads
to increased latency for packet delivery, and may not be applicable to real-time com-
munication. However, proactive schemes are likewise not appropriate for the ad hoc
networking environment whereas network topology changes fast and constantly. Such
network dynamics may result in continuous route evaluation and maintenance, which
use a large portion of the network resources. Particularly, when the changes are more
frequent than the route requests, the routing information from the continuous evalua-
tion process may not be necessary and never be used.

4.3.2 Flat and Hierarchical Routing
Based on the network structure, routing protocols in WSNs can also be broadly
divided into fl at routing and hierarchical routing. In fl at routing schemes, equal

AU9215_C004.indd 113AU9215_C004.indd 113 2/22/2010 4:11:03 PM2/22/2010 4:11:03 PM

114 ◾ Wireless Sensor Networks: Principles and Practice

roles and functionality are typically assigned to each node. Flat routing protocols
distribute information as needed to any node that can be reached, or receive infor-
mation. Hierarchical routing protocols often group nodes together by function into
a hierarchy or cluster. By assigning diff erent roles to diff erent type of nodes or
performing traffi c aggregation to reduce redundancy, a hierarchical protocol allows
WSNs to make best use of the heterogeneous nodes’ capability. In many hierarchical
routing protocols, each cluster designates a cluster-head (CH) node to aggregate
and relay intercluster traffi c. Th ese CH nodes may become the bottleneck, potentially
resulting in network congestion and single point of failure. In addition, maintaining
the hierarchy or cluster can be costly in terms of energy or bandwidth consumption
for small- to moderate-sized WSNs, which indicates that fl at schemes are favorable in
this case. On the other hand, hierarchical routing protocols are often better suited
to large WSNs due to their scalability.

In fact, there are many other ways to classify routing protocols based on diff erent
criteria, such as protocol operation, network fl ow, energy, and QoS awareness. In the
remaining part of this chapter, we will focus on four typical categories: data-centric
protocols, hierarchical routing protocols, location-based routing protocols, and
multipath routing in WSNs.

4.4 Data-Centric Routing Protocols in WSNs
In many applications of WSNs, the physical area covered by the sensors and the
number of deployed sensor nodes can be enormous. Typically, the meaningful data
traffi c is generated due to the sensors’ response to a query from the users (e.g., sink
or BS) or actively reporting a detected event. In either case, multiple sensors having
the data of interest will initiate the data transmission, which may result in signifi cant
redundancy and resource wastage. Certainly, if sensor nodes are as reliable as the
IP routers and globally addressable, the redundancy issue will be trivial to resolve.
However, it is infeasible (if not impossible) to assign a unique identifi er to each
sensor node and make each sensor node globally addressable like the IP router in
the Internet. Accordingly, data-centric routing protocols are proposed for WSNs.
In the data-centric routing scheme, the sink sends queries to specifi c regions and
waits for answers from these regions. Th ese queries are described in a high-level
language. As data is being requested through queries, attribute-based naming is
necessary to specify the properties of the data of interest.

SPIN and Directed Diff usion are among the earliest data-centric protocols
[Jkulik02, Rwheinzelman99, CIntanagonwiwat00], which consider data negotia-
tion between nodes to eliminate redundant data and save energy. Th ese two proto-
cols motivated the design of many other protocols that followed similar concepts.
Examples of such data-centric routing protocols are Rumor Routing [Bdavid02],
Minimum Cost Forwarding Algorithm (MCFA) [Fye01], Gradient-Based Routing
(GBR) [Cschurgers01], COUGAR [Yyao02], Energy-Aware Routing [Rcshah02], etc.

AU9215_C004.indd 114AU9215_C004.indd 114 2/22/2010 4:11:03 PM2/22/2010 4:11:03 PM

Routing in Wireless Sensor Networks ◾ 115

Rumor Routing is mainly intended for contexts in which geographic routing cri-
teria is not applicable. Th e Rumor Routing protocol uses a set of long-lived agents
to create paths that are directed toward the events they encounter. MCFA uses
the information about the direction of routing. It gets rid of the unique ID and
routing table; instead each node in MCFA maintains the least-cost estimate from
the node itself to the BS. COUGAR considers the whole network as a distributed
database system and uses declarative queries for query processing from network
layer functions. It also utilizes in-network data aggregation for more energy saving.
Energy-Aware Routing uses a set of suboptimal paths occasionally to increase the
lifetime of the network. Th ese paths are chosen by means of a probability function,
which depends on the energy consumption of each path.

In the rest of this section, we describe three typical data dissemination schemes—
fl ooding/gossiping, SPIN, and Directed Diff usion—in detail with a focus on their
key ideas and performance issues.

4.4.1 Flooding and Gossiping
Flooding is a classical and straightforward mechanism to disseminate data in
WSNs, which takes advantage of the broadcasting nature of the wireless medium.
To deliver a particular packet from the source to the destination node with fl ood-
ing, the source node broadcasts the data to all the neighbors. Upon receiving
the packet, each neighbor will broadcast a copy of the packet to its neighbors.
Th is process continues until the packet arrives at the destination or the packet
is dropped. Flooding is very easy to implement, but it has a major drawback
of increasing the network load with redundant traffi c. In classical fl ooding, a

node may blindly broadcast whatever it receives,
regardless of whether or not the neighbor has
already received a copy from another source. Th is
leads to the implosion problem [Rwheinzelman99,
Jkulik02]. Figure 4.1 shows the implosion prob-
lem where the same message goes to node C,
from nodes A and B, thereby creating redundancy
[Rwheinzelman99]. In Figure 4.1, a WSN with
four nodes, A, B, C, and D, is shown. Assume that
the data needs to be sent from node D to node C
using fl ooding. Node D broadcasts the data (a) to
its neighbors, which are nodes A and B. Th e nodes
A and B forward the same data (a) to node C. Here
the issue is that node C receives the same data
twice. Th is implosion results in multiple copies of
the same data packet fl oating around the network,
and a node may receive multiple copies of the data
information.

A

D

B

C

(a)

(a) (a)

(a)

Figure 4.1 Implosion prob-
lem. (From Heidemann, R.W.
et al., Adaptive protocols for
information dissemination in
wireless sensor networks,
ACM Mobicom '99, Seattle,
WA, August 1999, 174–185;
Joanna, K. et al., Wireless
Netw., ACM, 8(2/3), 169,
March–May 2002.)

AU9215_C004.indd 115AU9215_C004.indd 115 2/22/2010 4:11:03 PM2/22/2010 4:11:03 PM

116 ◾ Wireless Sensor Networks: Principles and Practice

Sensor nodes often cover overlapping geographic areas and gather overlap-
ping pieces of event data. Th e sensed data received by the neighbors of the nodes
would contain some part of the data that is redundant, which is known as overlap
[Rwheinzelman99, Jkulik02]. Figure 4.2 shows an example of the overlapping
issue. Node A in Figure 4.2 senses the data in the regions q and r. Similarly,
node B senses the data in the regions r and s. Assume that the data sensed in the
regions q and r is (q, r) and the data sensed in the regions r and s is (r, s). After
sensing the data, the nodes A and B send the data (q, r) and (r, s) to node C.
Obviously, the redundant copy of data (r) received at the destination node C is
unnecessary.

Th e implosion and overlap issues lead to additional traffi c in the network, which
is unnecessary. Th e limited resources, such as energy and bandwidth, in WSNs will
be wasted by this naïve fl ooding process. Hence, many studies have brought up
techniques such as probability and packet ID to control the redundancies generated
from the fl ooding process. For example, after assigning a unique ID for the packet,
a sensor node can remember the IDs for the packets it broadcasted earlier. Th en,
the node can ignore the broadcast requests when it sees the same packet ID again.
Similarly, a node may ignore a broadcast request according to a certain probability
distribution. However, such techniques still cannot totally eliminate the fl ooding
redundancies and may have considerable negative impacts on the network perfor-
mance. To avoid the problem of fl ooding redundancy, gossiping takes a step further
by just selecting one random node to forward the packet rather than broadcasting.
In other words, in gossiping, the receiving node sends the packet to a randomly
selected neighbor. Th e received packet is forwarded to another next-hop neighbor,
which is also picked randomly to forward the packet and so on. However, the ran-
dom selection of next-hop neighbors can cause delays in the propagation of data
through the network.

Overlap region
r sq

(q, r) (r,
s)

A B

C

Figure 4.2 Example of overlap region. (From Heidemann, R.W. et al., Adaptive
protocols for information dissemination in wireless sensor networks, ACM
Mobicom '99, Seattle, WA, August 1999, 174–185; Joanna, K. et al., Wireless
Netw., ACM, 8(2/3), 169, March–May 2002.)

AU9215_C004.indd 116AU9215_C004.indd 116 2/22/2010 4:11:04 PM2/22/2010 4:11:04 PM

Routing in Wireless Sensor Networks ◾ 117

Gossiping can suppress the implosion issues in the
fl ooding scheme. However, both fl ooding and gossip-
ing routing schemes actually do nothing in reducing the
redundant reports and packets in the overlap scenario,
where an event is detected by all the sensors in the region
or multiple sensors in the region reply with similar infor-
mation on a particular query.

Difference

WSNs

4.4.1.1 Ideal Dissemination

To disseminate data in WSNs, ideally, sensor nodes send observed data along the optimal
routing path (taking into consideration the number of hops, time to transmit the data,
energy consumption) and the intended nodes receive each piece of distinct data only
once. Th is phenomenon is called ideal dissemination in [Rwheinzelman99, Jkulik02].
For example, assume that node A initially possesses data (a,c) and node B only possesses
data (c), as shown in Figure 4.3. To effi ciently disseminate the data throughout the net-
work, node D, in Figure 4.3, uses the ideal dissemination scheme and will only transmit
the data in the order shown in the boxed number. First, node D delivers data (a,c) and
(a) to node A and B, respectively, while node B sends data (c) to node D. Th en, either
node B or node C sends data (a) to node D. Ideal dissemination does not waste energy
on transmitting and receiving useless data. Of course, in a real distributed ad hoc sensor
network, it is extremely challenging (if not impossible) to achieve ideal dissemination.

4.4.2 Sensor Protocols for Information via
Negotiation [Jkulik02, Rwheinzelman99]

To overcome the aforementioned implosion and overlap issues, a family of adap-
tive protocols, called SPIN, was proposed to use negotiations for diff using data in

A

D
(a,c)

B
(c)

C

(a,c)
1

1

1

2
(a) (c)

(a)

Figure 4.3 Example of ideal dissemination. (From Heidemann, R.W. et al.,
Adaptive protocols for information dissemination in wireless sensor networks,
ACM Mobicom '99, Seattle, WA, August 1999, 174–185; Joanna, K. et al., Wireless
Netw., ACM, 8(2/3), 169, March–May 2002.)

AU9215_C004.indd 117AU9215_C004.indd 117 2/22/2010 4:11:04 PM2/22/2010 4:11:04 PM

118 ◾ Wireless Sensor Networks: Principles and Practice

WSNs [Jkulik02, Rwheinzelman99]. SPIN uses metadata for describing the sensed
data. Th e metadata is exchanged among sensors via data advertisement. Upon
obtaining new data, each node advertises the availability of new data information
to its neighbors. Th e interested neighbor node, who also would like to possess the
new data, can send a request message to the advertiser. Th en the advertiser will
reply with the data to the requested nodes. Unlike the classical fl ooding and gos-
siping protocols, which are blind to the resources’ consumption in the network,
SPIN uses a resource manager to become resource aware and resource adaptive in
the process of data dissemination. Th e major goal of SPIN’s metadata negotiation
is to resolve the classical fl ooding problems, such as redundant information pass-
ing, overlapping of sensing areas, and resource blindness, and, thus, achieve better
energy effi ciency.

4.4.2.1 Design of SPIN

Th e design of SPIN is motivated by application-level framing (ALF) [Ddclark90].
Using ALF, the network protocols choose transmission units that are meaning-
ful to applications. In other words, the packetization is best done in terms
of application data units. Hence, SPIN designs metadata to ensure common
naming data in both the transmission protocol and the application. Instead
of sending the actual data, sensor nodes send metadata to interested neigh-
bors in the form of an advertisement. Th e metadata must be smaller than the
actual data for SPIN to be energy effi cient. If the actual data is distinguishable,
then the corresponding metadata should also be distinguishable. Similarly, two
pieces of data that happen to be indistinguishable should have the same meta-
data. Generally, the format of metadata depends on the particular application
[Rwheinzelman99].

Another important aspect of SPIN is that it uses a resource manager to monitor
the available resources in the node and make the corresponding decision whether
or not to participate in a particular data dissemination. Applications probe the
resource manager before transmitting or processing data. Th e nodes using SPIN
calculate the energy and resources available by means of polling the resource
system. Hence, the routing decisions in SPIN are made by combining the knowledge
of not only topology information but also application data layout and the status of
resources available at each node.

Th ere are three diff erent types of messages in SPIN, which are new data adver-
tisement (ADV), data request (REQ), and DATA message. When a node has a
DATA message to share, the node can advertise this fact by transmitting an ADV
packet containing the metadata of the message. A node that is interested in the
details of the message based on the received metadata packet can send an REQ
packet to the advertiser. Th en, the requesting node will receive the DATA mes-
sage containing actual details of the message with a metadata header from the
advertiser.

AU9215_C004.indd 118AU9215_C004.indd 118 2/22/2010 4:11:04 PM2/22/2010 4:11:04 PM

Routing in Wireless Sensor Networks ◾ 119

4.4.2.2 Different Types of SPIN

Th e above SPIN philosophy is tuned to accommodate diff erent WSN application
and network scenarios. Four SPIN protocols are proposed in [Rwheinzelman99]:
SPIN-PP, SPIN-BC, SPIN-EC, and SPIN-RL:

SPIN-PP—for point-to-point transmission media. Assume that there is ◾
plentiful energy and packets are never lost in the network.
SPIN-BC—for broadcast transmission media. Assume that there is plentiful ◾
energy and packets are never lost in the network.
SPIN-EC—an energy-conserving version of SPIN-PP. ◾
SPIN-RL—a reliable version of SPIN-BC. ◾

4.4.2.2.1 SPIN-PP

SPIN-PP employs three stages of message exchange for networks using point-to-point
transmission media, which allow nodes A and B to communicate exclusively with
each other without interfering with other nodes. Th e three stages correspond to the
three messages described above. Th e protocol starts with a node sending an ADV
message to its neighbors to advertise the data it intends to disseminate. In the next
stage, the neighbors check whether they are interested in the advertised data after
receiving the ADV packet. If a node determines to possess a copy of the data, the
node sends back an REQ message to the node that sent the ADV message. Th en, in
the fi nal stage, the actual data in the form of DATA message is delivered from the
advertiser to the requester. Based on the received new DATA message and its own
data in the memory, a node could perform some aggregation or redundancy-reducing
processes prior to re-advertising the aggregated metadata to the neighbors.

4.4.2.2.2 SPIN-EC

SPIN-EC adds an energy-conserving scheme to the SPIN-PP protocol. When a node
receives a new data, it will consult the resource manager before initiating the SPIN
protocol and advertising the new metadata. Th e SPIN protocol will be started if and
only if it turns out that the node has enough energy to complete all the stages of the
protocol. Otherwise, it simply refrains from participating in the protocol. Similarly,
upon receiving an advertisement, a node does not send out a request if it does not have
enough energy to transmit the request and receive the corresponding data.

4.4.2.2.3 SPIN-BC

SPIN-BC is developed for broadcast transmission media. In SPIN-BC, the nodes
use a single channel to broadcast the data to all the nodes in the receiving range.
SPIN-BC employs the one-to-many communication scheme for delivering the same

AU9215_C004.indd 119AU9215_C004.indd 119 2/22/2010 4:11:04 PM2/22/2010 4:11:04 PM

120 ◾ Wireless Sensor Networks: Principles and Practice

data to multiple sensor nodes in one transmission. Similar to SPIN-PP, SPIN-BC
also operates in three stages. Th ere are three primary aspects in which SPIN-BC is
diff erent from SPIN-PP.

 1. In SPIN-PP, one transmission can only target one specifi c node. Hence, a node
has to send the advertised metadata to every neighbor in a separate transmis-
sion. However, taking advantage of the broadcast transmission media, every
node within the transmission range could receive the same data in SPIN-BC.

 2. Unlike SPIN-PP, SPIN-BC does not allow nodes to respond to the ADV
packets immediately. In SPIN-BC, upon receiving the ADV packet, the
nodes check whether they already possess the data advertised. If a node does
not possess the data, the node sets a random timer. When the timer expires,
the node broadcasts an REQ message to the original advertiser if the node
does not receive the advertised data yet. Th en the node advertising the meta-
data will respond to the REQ with the DATA message. When nodes other
than the original advertiser receive the REQ, they cancel their own request
timers to avoid redundant copies of the same request.

 3. SPIN-BC will broadcast the DATA message only once and will not respond
to multiple requests for the same data.

4.4.2.2.4 SPIN-RL

To handle the lossy link in WSNs, the SPIN-RL protocol makes two adjustments
on SPIN-BC for reliable transmission. First, nodes employing the SPIN-RL protocol
keep track of all the advertisements that are received. If a node does not receive the
data within a particular period of time after sending out the request, the node con-
sults the track of all advertisements received and sends another request to a randomly
selected advertiser with the same piece of data. Second, nodes in SPIN-RL limit the
frequency with which they will resend data to the neighbors. After a node sends
the requested data, say (a), to other nodes, the node waits for some period of time
before responding to any further requests demanding the same piece of data (a).

4.4.2.3 Evaluating SPIN Protocols [Rwheinzelman99, Jkulik02]

Using metadata names, nodes in SPIN negotiate with each other about the neces-
sary data exchange. Th ese negotiations ensure that nodes only transmit data when
necessary and energy is not wasted on useless or redundant transmissions. With the
resource manager, each node is aware of the available resources and is able to cut
back on the activities to expand the lifetime of the network.

Table 4.1 shows the related parameters in the simulation with a randomly
generated 25-node network [Jkulik02]. Each node in the network is initialized with
3 data items, randomly chosen from a set of 25 possible data items. No network loss
and queuing delay is considered.

AU9215_C004.indd 120AU9215_C004.indd 120 2/22/2010 4:11:04 PM2/22/2010 4:11:04 PM

Routing in Wireless Sensor Networks ◾ 121

Table 4.2 shows the simulation results from SPIN-PP in which the ideal dissemi-
nation scheme is used as the baseline. Comparing the fl ooding and gossiping schemes,
SPIN-PP consumes much less energy; it uses energy less by approximately a factor of 3.5
than fl ooding. Th is is partially due to the fact that fl ooding and gossiping schemes intro-
duce much redundant data. As shown in Table 4.2, simulation shows that 77 percent of
the transmitted DATA messages are redundant in the fl ooding scheme and 96 per-
cent of them are redundant in the gossiping scheme. Note that SPIN-PP also introduces
limited overhead traffi c, such as the ADV and REQ packets, to the network.

Th e convergence time is defi ned as the time it takes to ensure that all the nodes in
the network receive the intended data. SPIN-PP takes 80 ms longer to converge than
fl ooding, whereas fl ooding takes only 10 ms longer to converge than the ideal dissemina-
tion scheme. Although it appears that SPIN-PP performs much worse than the fl ooding
scheme in terms of the convergence time, this increase is actually a constant amount,
regardless of the length of the simulation. Th us, for longer simulations, the increase in
the convergence time for the SPIN-PP protocol will be negligible [Rwheinzelman99].

Other simulation and analysis results also indicate that SPIN-EC distributes
60 percent more data per unit energy than the fl ooding scheme. SPIN-PP and
SPIN-EC outperform the gossiping scheme and come close to the ideal dissemination

Table 4.1 Simulation Test Bed for SPIN

Nodes 25

Edges 59

Average degree 4.7 neighbors

Diameter 8 hops

Average shortest path 3.2 hops

Antenna reach 10 m

Radio propagation speed 3 × 8 m/s

Processing delay 5–10 ms

Radio speed 1 Mbps

Transmit cost 600 mW

Receive cost 200 mW

Data size 500 bytes

Metadata size 16 bytes

Source: Adapted from Joanna, K. et al.,
Wireless Netw., ACM, 8(2/3), 169,
March–May 2002.

AU9215_C004.indd 121AU9215_C004.indd 121 2/22/2010 4:11:04 PM2/22/2010 4:11:04 PM

122 ◾ Wireless Sensor Networks: Principles and Practice

protocol. In addition, SPIN-BC and SPIN-RL are able to use one-to-many com-
munications exclusively, while still acquiring data faster and using less energy than
the fl ooding scheme. SPIN-RL can effi ciently handle packet loss and dissipate twice
the amount of data per unit energy as the fl ooding scheme.

4.4.3 Directed Diffusion [CIntanagonwiwat00]
Directed Diff usion diff ers from SPIN in terms of the way data transmission is initi-
ated. Th e basic idea of Directed Diff usion is to diff use data through sensor nodes by
using a naming scheme for the data. With the naming scheme, the sink can issue
a query to the sensor nodes regarding the data the sink is interested in. Th en the
corresponding sensor nodes reply with the necessary information to the sink. To
achieve this, Direct Diff usion assigns attribute-value pairs to the data and queries
on an on-demand basis. To issue a query indicating the type of data the sink is
looking for, an interest is defi ned using the attribute-value pairs, such as name of
objects, geographical area, duration, interval, etc. Th e sink disseminates the interest
through its neighbors. Th e interest is cached in the sensor nodes. Whenever a node
receives data, the node can compare the received data with the values of the interest.
If there is a match, the node will establish paths to the sink from which the node
receives the interest. Th ese paths are known as events. Th en, the sink can choose
paths to resend the interest and expect the sensor node to reply with the data back
to the sink.

Directed diff usion consists of several elements:

Data ◾ is named using attribute-value pairs.
Interest ◾ is a sensing task for named data.

Table 4.2 Results for Simulations of the SPIN-PP Protocol

Performance Relative to Ideal SPIN Flooding Gossiping

Increase in energy dissipation 0.45 J 6.3 J 44.1 J

Increase in convergence time 90 ms 10 ms 3025 ms

Slope of energy Dissipation
versus node degree
correlation line

1.25x 5x 25x

Percent of total data
messages that are redundant

0 77 percent 96 percent

Source: Adapted from Heidemann, R.W. et al., Adaptive protocols
for information dissemination in wireless sensor networks,
ACM Mobicom '99, Seattle, WA, August 1999, 174 –185.

AU9215_C004.indd 122AU9215_C004.indd 122 2/22/2010 4:11:05 PM2/22/2010 4:11:05 PM

Routing in Wireless Sensor Networks ◾ 123

Gradient ◾ is a reply link to a neighbor from which the interest is received.
Events ◾ start fl owing toward the originators of interests along multiple paths.
Reinforcement ◾ is a mechanism for the sink to select paths receiving the sensed
data.

4.4.3.1 Naming

Th e task descriptions in Directed Diff usion are named by several attribute-value
pairs that identify the specifi c task. For example, a task of tracing animals may be
described as follows:

Type = animal //detect animals
Interval=0.5 s //send back events every

0.5 s
Timestamp = 02:02:19 //interest-generated time
ExpiresAt = 02:12:19 //not interested in this

afterward
RECT= [−100, 100, 200, 400] //sensors within the spec-

ified region perform the
task

A task description is called an interest, which specifi es an interest in a particular
kind of data, which matches the attributes in the task description; similarly, the
data sent in response to the interest is also named using attribute-value pairs. For
example, a sensor that detects animals in the specifi ed region may create a return
data message (or reply) as follows:

Type = animal //detect animals
Instance = cow //instance type
Location = [122, 210] //node location
Confidence = 0.90 //confidence in the match
Timestamp = 02:02:20 //event-occurring time

How to choose the naming schemes, such as attributes and value ranges, heavily
depends on the applications the sensor networks are deployed for. Th e choice of the
naming scheme has to be done carefully, as it can aff ect the expressivity of tasks and
may impact performance of the network.

4.4.3.2 Interest Propagation and Gradient Establishment

An interest message is a query that specifi es what the sink wants the sensors to
report. Assume that there are fi ve fi elds in an interest, as in the previous exam-
ple: Type, Interval, Timestamp, ExpiresAt, and RECT. Th e sink periodically
broadcasts the interest message to its neighbors. Initially, this interest message

AU9215_C004.indd 123AU9215_C004.indd 123 2/22/2010 4:11:05 PM2/22/2010 4:11:05 PM

124 ◾ Wireless Sensor Networks: Principles and Practice

serves as an exploratory method to see if there are sensors that detect animals in
the specifi ed region. Hence, the initial interest just specifi es the node to return
the event information at a lower rate. In our example, the sink expects an event
report every half second. Later on, when the sink can revise the interest and
adopt the reinforcement scheme (described later) to ask for event reports at a
higher data rate.

Figure 4.4 shows an example of how the interest is propagated in WSNs.
Basically, upon receiving the sensing task from the end user (e.g., an application
residing in the sink), the sink broadcasts the interest message to all its neighboring
nodes. Th e neighboring nodes of the sink then further forward the message to the
network. Th ere are several possible options for the node to re-send the interest to
some subset of its neighbors, as shown in Table 4.3.

Each node maintains a cache for the interests where each entry is unique. When
a node receives a particular interest, it is compared with all the entries in the cache.
If the particular entry is not present in the cache, the entry is entered into the cache
and a gradient is set up toward the neighbor node, which sends the interest packet.
Figure 4.5 shows that the gradients are established from the source node to the sink
node in the opposite direction of the interests’ propagation, as in Figure 4.4. Each
gradient contains data rate and expiration time, which are derived from the interest
packet. On the other hand, if there is an interest entry in the cache, aggregation on
the interests and updation of the gradient fi elds can be performed by the node. Th e
interest entry is removed from the cache when all the gradients associated with the
interest entry have expired.

Event

Source

Interests

Sink

Figure 4.4 Interest propagation in the network. (Adapted from Intanagonwiwat, C.
et al., Directed diffusion: A scalable and robust communication paradigm for
sensor networks, Proceedings of the Sixth Annual International Conference on
Mobile Computing and Networking (MobiCOM '00), Boston, MA, August 2000,
ACM Press, New York, 56–67.)

AU9215_C004.indd 124AU9215_C004.indd 124 2/22/2010 4:11:05 PM2/22/2010 4:11:05 PM

Routing in Wireless Sensor Networks ◾ 125

4.4.3.3 Data Propagation

When a sensor node detects a target corresponding to one interest entry in its interest
cache, the node computes the highest requested rate among all its outgoing gradients.
After generating the corresponding reply (or return data message), the source node sends
the reply to each neighbor for whom it has a gradient. Upon receiving the data mes-
sage, the intermediate node checks its cache to see whether there is a match. If a match
is found, the node checks the data cache associated with the matched interest entry to
decide whether to drop the redundant message, or update the cache and resend the new
data message to its neighbors according to the gradients’ settings. On the other hand, if no
interest match is identifi ed, the data message is simply dropped. As shown in Table 4.3, in
the process of data propagation, each node can prevent a loop by using the data cache and
can down-convert to the appropriate gradient with lower data rates when necessary.

Table 4.3 Design Options for Diffusion

Diffusion Element Potential Choices

Interest propagation Flooding

Constrained or directional fl ooding based on
location

Directional propagation based on previously
cached data

Data propagation Reinforcement to single-path delivery

Multipath delivery with selective quality
along different paths

Multipath delivery with probabilistic
forwarding

Data caching and aggregation For robust data delivery in the face of node
failure

For coordinated sensing and data reduction

For directing interests

Reinforcement Rules for how many neighbors to reinforce

Rules for deciding when to reinforce

Negative reinforcement mechanisms and
rules

Source: Adapted from Intanagonwiwat, C. et al., Directed diffusion: A scalable
and robust communication paradigm for sensor networks, Proceedings of
the Sixth Annual International Conference on Mobile Computing and
Networking (MobiCOM ’00), Boston, MA, August 2000, ACM Press,
New York, 56–67.

AU9215_C004.indd 125AU9215_C004.indd 125 2/22/2010 4:11:05 PM2/22/2010 4:11:05 PM

126 ◾ Wireless Sensor Networks: Principles and Practice

4.4.3.4 Reinforcement

Initially, the sink node disseminates the interest message at a low rate. Th e source
sensors that have data matching the interest also reply with data at a low rate, possi-
bly along multiple paths toward the sink. When the sink receives the low-rate data,
it chooses one particular neighbor node and sends a reinforcement packet to request
for a higher-rate data report. Th e reinforcement packet is similar to the original
interest message, but with a smaller interval or a higher data rate, as follows:

Type = animal //detect animals
Interval=10 ms //send back events every 10 ms
Timestamp = 03:02:19 //interest-generated time
ExpiresAt = 03:12:19 //not interested in this

afterward
RECT= [−100, 100, 200, 400] //sensors within the speci-

fied region perform the task

When the specifi c node receives this reinforcement, the node notices that a gradient
toward the neighbor already exists and a higher rate is requested. If the new data rate
is higher than that of any existing gradients, the node must also forward the reinforce-
ment to at least one neighbor node. As shown in Table 4.3, diff erent techniques can be
applied to choose the neighbor node to which the reinforcement will be sent. In general,
whenever one path delivers an event faster than other paths, the sink tends to use this
path to request high-quality data. Th rough this sequence of reinforcement, paths with
corresponding data rates are established from the source node to the sink node.

Event

Source

Gradient

Sink

Figure 4.5 Gradient establishment in the network. (Adapted from Intan-
agonwiwat, C. et al., Directed diffusion: A scalable and robust communication
paradigm for sensor networks, Proceedings of the Sixth Annual International
Conference on Mobile Computing and Networking (MobiCOM '00), Boston, MA,
August 2000, ACM Press, New York, 56–67.)

AU9215_C004.indd 126AU9215_C004.indd 126 2/22/2010 4:11:05 PM2/22/2010 4:11:05 PM

Routing in Wireless Sensor Networks ◾ 127

However, the above process may result in more than one path being reinforced.
Assume that two paths, P1 and P2, are used for delivering data as a result of the
above reinforcement. Now, if the sink prefers the path P2 over P1, the sink can use
the above scheme to continuously send reinforcement through path P2, but it also
needs the scheme of negative reinforcement to degrade the necessary rate through
path P1. Two approaches can be adopted for negative reinforcement. One approach
is to time out the high-data-rate gradients in the network unless they are explicitly
reinforced. Hence, the sink can just keep reinforcing path P2, and eventually path
P1 will degrade to a lower data rate. Another approach is to explicitly degrade the
path P1 by resending the interest with a lower data rate.

In fact, in networks with multiple sources or multiple sinks, the schemes we
described above can also be eff ectively applied. In addition, in Directed Diff usion,
the intermediate nodes on a previously reinforced path can also initiate the rein-
forcement process when local repairs of failed or degraded paths are identifi ed.
Causes of failure or degradation include node-energy depletion, environmental
interference, raid fade, and so on.

Th e data dissemination with Directed Diff usion is dif-
ferent from traditional networking in several aspects:

All communication in Directed Diff usion is neigh-
bor to neighbor, not end to end.

Directed Diff usion in WSNs is suitable for task-ori-
ented applications.

No globally unique identifi er or address is needed.
Difference

WSNs

4.4.3.5 Evaluating Directed Diffusion

One of the motivations of the Directed Diff usion scheme is the physical systems (e.g.,
ant colonies) that build up transmission paths strictly using local communication
well and are extraordinarily robust. Another reason behind using such a scheme is to
get rid of unnecessary and complicated operations of network layer routing for energy
saving. Hence, interest and gradients are defi ned and utilized in Directed Diff usion to
establish paths between the sink and sources for data transmission.

Studies have shown that Directed Diff usion has the potential for signifi cant
energy saving and outperforms the idealized traditional data dissemination scheme:
omniscient multicast [CIntanagonwiwat00]. In addition, Directed Diff usion owns
features such as data-centric dissemination, reinforcement-based adaptation to the
empirically best path, and in-network data aggregation and caching. Because it is data
centric, all communication is neighbor to neighbor with no need either for a global
addressing mechanism or for maintaining global network topology. Aggregation

AU9215_C004.indd 127AU9215_C004.indd 127 2/22/2010 4:11:05 PM2/22/2010 4:11:05 PM

128 ◾ Wireless Sensor Networks: Principles and Practice

and caching off ers better network performance in terms of energy effi ciency and
delay. However, Directed Diff usion cannot be applied to all sorts of sensor network
applications, because it is based on a query-driven data-delivery model. Th e applica-
tions that require continuous data delivery to the sink may not work effi ciently with
a query-driven on-demand model, such as Directed Diff usion [Njamal04].

4.5 Hierarchical Routing Protocols in WSNs
Scalability is one of the major design concerns of sensor networks, particularly for
many applications with a large number of sensor nodes deployed to cover a pretty
large physical area. A single-tier or fl at network operation in such large-scale sensor
networks can cause

Large convergence time for many algorithms and protocols ◾
Overload with increase in sensor density ◾
Large memory space required for storing the network information ◾
Increased latency, complexity, and instability in communication ◾
Inadequate tracking of events ◾

Because the tiny sensors with limited resources are typically not capable of per-
forming long-haul communication, the concept of clustering or hierarchical network
routing has been pursued in many routing approaches to allow the system to cover a
large area of interest without degrading the service. A cluster is generally a collection
of nodes with similar missions, within similar vicinity, or having similar functionalities/
resources. A hierarchical routing protocol can be viewed as a set of fl at routing pro-
tocols, each operating at diff erent levels of granularity. For example, in a two-tier
hierarchical routing protocol, the intercluster component is essentially a fl at rout-
ing protocol that computes the routes between clusters. Likewise, the intra-cluster
component is a fl at routing protocol, which generates routes between nodes in each
cluster. Hierarchical routing protocols provide global routes to the network clusters,
rather than individual nodes, which can simplify many aforementioned scalability
issues in the network and are often better suited to very large networks compared
to fl at routing protocols. In addition, data aggregation and fusion can be performed
within the cluster to decrease the number of messages transmitted to the sink, which
can enhance the network performance in terms of energy effi ciency.

Examples of hierarchical network routing protocols include LEACH
[Heinzelman02], TEEN [AManjeshwar01], Adaptive Periodic Th reshold-Sensitive
Energy-Effi cient Sensor Network protocol (APTEEN) [Marati02], Power-Effi cient
Gathering in Sensor Information Systems (PEGASIS) [Slindsay02], Hierarchical-
PEGASIS [ASavvides01], Minimum Energy Consumption Network (MECN)
[Vrodoplu99], Small Minimum Energy Consumption Network (SMECN) [Lli01],
Self-Organizing Protocol (SOP) [Lsubramanian00], Sensor Aggregate Routing

AU9215_C004.indd 128AU9215_C004.indd 128 2/22/2010 4:11:05 PM2/22/2010 4:11:05 PM

Routing in Wireless Sensor Networks ◾ 129

[Qfang03], Virtual Grid Architecture Routing [JNal-karaki04], Hierarchical
Power-Aware Routing [Qli01], and Two-Tier Data Dimension (TTDD) [FYe02].

LEACH forms clusters of the sensor nodes based on the received signal strength
and uses the local CHs as the gateway to the BS. TEEN is a hierarchical protocol
designed to be responsive to sudden and drastic changes in the sensed attributes, such
as temperature, pressure, and rainfall. APTEEN aims at both capturing periodic
data collections and reacting to time-critical events. PEGASIS forms chains of sen-
sor nodes so that each node transmits and receives from a neighbor and only one
node is selected from that chain to transmit to the BS rather than forming multiple
clusters. Hierarchical-PEGASIS, an extension of PEGASIS, aims at decreasing the
delay incurred for packets during transmission to the BS. MECN fi nds a subnetwork
of the WSN with less number of nodes and also fi nds the minimum global energy
required for data transfer. SMECN, an extension of MECN, considers the obstacles
in data transmission while relaxing the assumption in MECN that every node in the
network can transmit to each other node. Sensor Aggregate Routing comprises of the
sensor nodes with a grouping predicate for a collaborative, cooperative processing task.
Th e parameters of the predicate depend on the task and the resource requirements.
Virtual Grid Architecture Routing uses data processing and in-network processing to
maximize the network lifetime. Th e network is divided into zones based on the global
positioning system (GPS) information. Data aggregation is performed at two levels:
local aggregation and global aggregation. Each zone has a local aggregator and master
aggregator. In Hierarchical Power-Aware Routing, the network is divided into groups
based on geographical proximity and each group is allowed to decide how to route the
data such that the energy consumed for routing will be minimum. In TTDD, each
source node builds a grid structure for disseminating the data to the mobile sinks. Th e
nodes that sense an event process the signal, and one of the nodes in the group that
sensed the event becomes the source of the sensed data. Th e source node then builds a
grid structure to route the data to the other nodes in the network.

4.5.1 Low-Energy Adaptive Clustering Hierarchy
Protocol [Heinzelman02]

Th e LEACH protocol is a self-organizing, adaptive clustering protocol that uses
randomization to distribute the energy consumption evenly among the sensor
nodes in the network. Th e LEACH protocol aims at increasing the system lifetime
and reducing the latency for transferring the data. Th e LEACH protocol uses the
following techniques to achieve its goals [Heinzelman02]:

 1. Localized control for data transfers
 2. Low-energy medium access control
 3. Self-confi guring, randomized, and adaptive cluster formation
 4. Application-specifi c data processing, like data compression and data

aggregation

AU9215_C004.indd 129AU9215_C004.indd 129 2/22/2010 4:11:05 PM2/22/2010 4:11:05 PM

130 ◾ Wireless Sensor Networks: Principles and Practice

Th e LEACH routing protocol divides the sensor nodes in the network into groups
called clusters. Th e clusters have special types of nodes, called CH nodes. Th ese
nodes are used for transmission of the data to the BS. Th ese nodes are also responsible
for the medium access among the nodes in the cluster.

Th e CH nodes in the cluster consume more energy as compared to the non-CH
nodes. To make the energy consumption uniform among the nodes in the network,
the LEACH protocol uses randomized rotation for the selection of CHs among the
other nodes in the network. LEACH uses the CH nodes for the transmission of
data from the non-CH nodes to the BS. Th e data sensed by the nodes is sent to the
CH nodes initially, and then the CH nodes transmit the data to the BS.

4.5.1.1 Protocol Design

As described in early chapters and sections, in sensor networks deployed for
environment monitoring or surveillance applications, the overlap in the sensing
range and application-specifi c requirements makes the sensed data in a specifi c
region redundant and strongly correlated. Th e basic idea of LEACH is to form
sensor nodes into clusters and locally process the correlated data such that the
useless or redundant transmissions in the network are reduced.

In LEACH, the sensor nodes in the network organize themselves into groups,
also called clusters. Th en LEACH randomly selects a few nodes as CHs and
rotates this role to evenly distribute the energy load among all the sensors in the
network. All non-CH nodes will collect sensed data and send the data to the CH.
Th e CH aggregates and compresses the data arriving from nodes that belong to
the respective cluster before it sends the aggregated packet to the sink (or BS).

Th e operation of LEACH is divided into rounds. Each
round consists of two phases: the setup phase and the steady
state phase. Each round starts with a setup phase when the
clusters are organized and CHs are selected. What is fol-
lowed is the steady state phase when the CHs collect and
process the data from the nodes within their clusters before
the aggregated data is transferred to the sink.Remember

WSNs

4.5.1.2 Setup Phase: Cluster Formation and
Cluster- Head Selection

In LEACH, sensor nodes are organized into clusters by using a distributed algorithm
where nodes make autonomous decisions without any centralized control. Th e goal
is to maintain k clusters during each round and evenly distribute the load among all
the nodes such that no node is overloaded or runs out of energy before the others. Th e
LEACH protocol assumes that every node is initialized with equal power and can

AU9215_C004.indd 130AU9215_C004.indd 130 2/22/2010 4:11:06 PM2/22/2010 4:11:06 PM

Routing in Wireless Sensor Networks ◾ 131

apply power control to vary transmission power. LEACH assumes that every node
in the network can reach the sink with enough power. Intuitively, the CH will suff er
more energy consumption than other nodes in the cluster due to its responsibility to
process data aggregation and deliver data to the remote sink. To avoid quick energy
depletion in the CH, LEACH incorporates randomized rotation of the CH role among
the high-energy sensors [Hwendi00].

At the beginning of the setup phase, each node decides whether or not to act as
a CH of the current round. Th is decision is based on the predetermined percentage
of CHs in the network and the number of times the node has been a CH so far.
More specifi cally, a sensor node n chooses a random number between 0 and 1. If
this number is less than a threshold value, T(n), the node becomes a CH for the
current round. Th e threshold value is calculated as in Equation 4.1:

()

⎧ ∈⎪ −= ⎨
⎪⎩

if
1 mod (1/)*
0 otherwise

()
p

n G
p r pT n

(4.1)

where
p is the desired percentage of CHs (e.g., 5 percent)
r is the current round
G is the set of nodes that have not been CHs in the last 1/p rounds

As we can see from Equation 4.1, each node has a probability p of becoming a CH
in round 0 (i.e., r = 0). After that, the CH nodes in round 0 cannot be elected as CHs for
the next 1/p rounds. Hence, the probability that another node in G is elected as the CH
increases, as there are fewer nodes that are eligible to become CHs. Eventually, the thresh-
old in Equation 4.1 will ensure a node to be a CH at some point within 1/p rounds.

After electing itself as the CH, the node broadcasts an advertisement message
to the network indicating that a cluster is created and the advertiser is the CH.
All the non-CH nodes, after receiving this advertisement, decide on the cluster to
which they want to join. Th is decision is based on the received signal strength of the
advertisement from the CHs. A non-CH node then sends a join-request message
to the appropriate CH. After receiving all the join-request messages, the CH node
sets up a TDMA schedule and assigns each node a time slot when it can transmit.
Th is schedule is broadcast to all the nodes in the cluster. As shown in the fl owchart
of the distributed cluster formation scheme in Figure 4.6, the setup phase ends with
the reception of the TDMA schedule by all nodes in the cluster.

4.5.1.3 Steady State Phase

After the non-CH nodes receive the TDMA schedule created by their CH nodes, the
nodes start transmitting data depending on the TDMA schedule. To synchronize
and start the steady state phase at the same time, the sink can issue the corresponding

AU9215_C004.indd 131AU9215_C004.indd 131 2/22/2010 4:11:06 PM2/22/2010 4:11:06 PM

132 ◾ Wireless Sensor Networks: Principles and Practice

synchronization pulses to all the nodes. As shown in Figure 4.7, the steady state phase
is further divided into frames. During the assigned frame, the sensor node can trans-
mit the data to the CH node. Th e duration of each frame slot is constant and depends
on the number of nodes in the cluster.

As the CH is normally nearby, each non-CH node can apply a power control
scheme to set the minimal amount of energy (based on the received signal strength
of the CH advertisement) required for data transmission to the CH. To further
improve the energy effi ciency in the network, the radio of each non-CH node is
turned off (sleep) until its allocated transmission time. However, the CH node must
keep its receiver on to receive all the data from the nodes in the cluster. When the
data from all the nodes in the cluster has been received, the CH node performs
aggregation and signal-processing functions to compress the data. Th en the CH

Create TDMA schedule and send to
cluster members,

t = 0

Steady state operation for t = Tround
seconds

Announce cluster status

Wait for join-request messages

Wait for schedule from CH, t = 0

Send join-request messages to chosen
CH

Wait for CH announcements

Node i
CH?Yes No

Figure 4.6 Flowchart of the formation of clusters in the LEACH protocol.
(Adapted from Heinzelman, W. et al., IEEE Trans. Wireless Commun., 1(4), 660,
October 2002.)

Cluster formed

Frame

Slot for node i Slot for node (i +1)
Time

Figure 4.7 Time line for the LEACH protocol. (From Heinzelman, W. et al.,
IEEE Trans. Wireless Commun., 1(4), 660, October 2002.)

AU9215_C004.indd 132AU9215_C004.indd 132 2/22/2010 4:11:06 PM2/22/2010 4:11:06 PM

Routing in Wireless Sensor Networks ◾ 133

node sets the necessary power level and sends the aggregated data to the sink. After
a certain time, which is determined a priori, the network goes into the next round
to start the setup and steady state phases again. Th e duration of the steady state phase
is longer than the duration of the setup phase to minimize the overhead.

4.5.1.4 LEACH-Centralized

Th e previous approach provides certain advantages in forming a cluster using the pre-
ceding algorithm. But the previous algorithm has many disadvantages, such as the
LEACH protocol off ers no guarantee about the number of clusters in a particular area
and the placement of the clusters. LEACH-C uses a centralized algorithm for clusters’
formation and produces better results as compared to those of the LEACH protocol.
In the LEACH-C protocol, each node scans the current location using GPS during
the setup phase and transmits its current location as well as energy level to the sink.
Based on the energy level and location information of all the nodes in the network,
the sink can select the CHs and form the clusters optimally in terms of minimizing
the amount of energy consumed for data transmission. Th en the sink broadcasts the
information of the cluster formation to the network. If a node is not assigned as a CH
in this round, the node can go to sleep based on its TDMA transmission schedule.
However, the CH node has to receive, aggregate, and forward data to the sink.

4.5.1.5 Evaluating LEACH Protocol

In hierarchical routing protocols, each cluster designates a single CH node to relay
intercluster traffi c. To prevent the CH node from becoming the traffi c/energy “hot
spot,” potentially resulting in network congestion and single point of failure, LEACH
adopts a distributed scheme to rotate CH roles to evenly distribute the load among
all the nodes in the network. In addition, LEACH employs dynamic clustering,
in-network data processing, power-controlled transmission, and collision avoidance
schemes to increase the network lifetime. Studies in [Heinzelman02] show that
LEACH can achieve over a factor of 7 reductions in energy dissipation compared to
direct communication and a factor of 4–8 compared to the minimum transmission
energy routing protocol. In addition, the LEACH-C protocol can further improve
the network performance by forming better clusters using the global knowledge of
the location and energy levels of each node in the network.

However, restricting nodes accessing through CHs can lead to suboptimal routes
and data transmission, as potential neighbors in diff erent clusters are prohibited
from communicating directly. Th e idea of dynamic clustering incurs extra overhead
for the cluster formation/maintenance, which may diminish the gain in energy
consumption. Moreover, LEACH assumes that each node can transmit directly to
the CH and the sink, which may be not applicable for networks deployed in large
regions. Hence, LEACH has been extended to account for heterogeneous sensor
nodes, better scalability, and energy effi ciency in the literature.

AU9215_C004.indd 133AU9215_C004.indd 133 2/22/2010 4:11:06 PM2/22/2010 4:11:06 PM

134 ◾ Wireless Sensor Networks: Principles and Practice

4.5.2 Threshold-Sensitive Energy-Effi cient Sensor
Network Protocol [AManjeshwar01]

SPIN, LEACH, and Directed Diffusion protocols have been developed for
applications requiring periodic environment monitoring or querying a snapshot
of the relevant parameters at certain intervals. On the other hand, two hierarchical
routing protocols called TEEN and APTEEN are proposed in [AManjeshwar01,
Marati02] for time-critical applications, where responsiveness to changes in the
sensed attributes is important. TEEN pursues a hierarchical approach along with
the use of a data-centric mechanism to provide the end user with the ability
to control the trade-off between energy effi ciency, accuracy, and response time
dynamically.

4.5.2.1 Sensor Network Model in TEEN

In TEEN, the sink or BS can transmit data to all the nodes in the network at any
point of time. However, the sensor node cannot always reach the sink directly
due to the constraints of power and transmission range. Unlike LEACH with
only one-tier hierarchy, the network architecture in TEEN is based on multilevel
hierarchical grouping, as shown in Figure 4.8, where closer nodes form clusters
and this process takes place for the multiple levels (or tiers). Th e CH in each
cluster collects data from its cluster members, aggregates the data, and sends the
data to an upper-level CH or the BS. Figure 4.8 shows an example of multi-tier
clustering. Nodes 1.1.1, 1.1.2, 1.1.3, 1.1.4, and 1.1.5 form a low-level cluster with
node 1.1 as the CH. Similarly, nodes 1.2 and 1 serve as the CHs for the respective
low-level clusters. Th e CHs 1.1, 1.2, and 1 from the low-level clusters, in turn,
form a cluster with node 1 as the CH. Hence, node 1 also becomes the CH of
the second-level cluster. Th is hierarchy pattern is repeated through the network
to form multilevel hierarchies. Th e uppermost-level cluster nodes will be able to
send data directly to the BS, which acts as the root of the uppermost hierarchy
and supervises the entire network.

With this network architecture, TEEN allows the nodes to communicate with
their immediate CH. Hence, a node does not have to reach the BS directly (as
required in LEACH). Th e data from low-level clusters may travel through multiple
CHs before reaching the BS. Th e CHs at each level will perform necessary data
processing, such as aggregation and compression, to conserve energy for the trans-
mission. To evenly distribute the energy consumption, the nodes take turns to serve
as CHs, which is similar to LEACH.

4.5.2.2 Operation of TEEN Protocol

Figure 4.9 shows the time line of the TEEN operation. After the clusters are formed,
the CH broadcasts two thresholds to the nodes: hard threshold and soft threshold.

AU9215_C004.indd 134AU9215_C004.indd 134 2/22/2010 4:11:06 PM2/22/2010 4:11:06 PM

Routing in Wireless Sensor Networks ◾ 135

Base station

1.2.3

1.2.4
1.2.5

1.2.1
1.1.2

1.1.3

1.03

1.02

1.01

1

Base
station

3

3.1
3.23.32

2.3
2.22.1

1.1.5
1.1.4

1.1

1.1.1

1.2.2

1.2

Second-level
CH
First-level
CH
Simple
sensor node

Figure 4.8 An example of network hierarchies in TEEN. (From Manjeshwar, A.
and Agarwal, D.P., TEEN: A routing protocol for enhanced effi ciency in wireless
sensor networks, Proceedings of 15th IEEE International Parallel and Distributed
Processing Symposium, San Francisco, CA, April 2001, 2009–2015.)

Cluster
change time

Parameters

Attribute >
threshold

CH
receives messageCluster

formation

Time

Figure 4.9 Operation of the TEEN protocol. (From Manjeshwar, A. and
Agarwal, D.P., TEEN: A routing protocol for enhanced effi ciency in wireless
sensor networks, Proceedings of 15th IEEE International Parallel and Distributed
Processing Symposium, San Francisco, CA, April 2001, 2009–2015.)

AU9215_C004.indd 135AU9215_C004.indd 135 2/22/2010 4:11:07 PM2/22/2010 4:11:07 PM

136 ◾ Wireless Sensor Networks: Principles and Practice

Hard threshold
 Hard threshold is the threshold value of the attribute beyond which the sensing node

must switch on its transmitter and report the value to its CH. Th erefore, the hard
threshold allows the nodes to transmit only when the sensed attribute is in the range
of interest, which may result in signifi cant reduction in the number of transmissions.

Soft threshold
 Soft threshold is the small change in the value of the sensed attribute, which trig-

gers the node to switch on its transmitter and to transmit the sensed data to the
BS. In other words, once a node senses a value at or beyond the hard threshold, it
transmits data only when the value of that attribute changes by an amount equal
to or greater than the soft threshold. As a consequence, the soft threshold will fur-
ther reduce the number of transmissions that might otherwise occur when there is
little or no change in the sensed attribute.

One can adjust both hard and soft threshold values to control the number of
data transmissions. A smaller value of the soft threshold gives a more accurate pic-
ture of the network, at the expense of increased data transmission and, thus, energy
consumption. Th is indicates that the end user can control the trade-off between
energy effi ciency and data accuracy by adjusting the values of the threshold. In fact,
TEEN allows the user to assign new threshold values and broadcast them to the
network when CHs are to change (as shown in Figure 4.9).

As shown in Figure 4.9, the TEEN protocol initially forms the clusters and the
parameters are sent to the nodes in the network. Th e nodes continuously monitor their
environment. Th e fi rst time the value of an attribute reaches its hard threshold value, the
node switches on its transmitter and transmits the sensed data to the CH. Th e sensed
data is also stored in an internal variable of the node, called the sensed value (SV), which
is also updated whenever a node transmits data. Th e nodes will transmit data in any
cluster period, only when both the following conditions are true [AManjeshwar01]:

 1. Th e current value of the sensed attribute has to be greater than the hard threshold
 2. Th e current value of the sensed attribute diff ers from the SV by an amount

equal to or greater than the soft threshold

4.5.2.3 Evaluating TEEN Protocol

Th e important features of the TEEN protocol include its suitability for time-
critical sensing applications. A sudden or drastic change in the value of a sensed
attribute in these applications will reach the sink or user almost instantaneously.
Also, as message transmission consumes much more energy than data sensing,
TEEN can reduce unnecessary transmission, and hence the energy consumption
in this scheme can potentially be much less when compared to that in the proactive
network. By adjusting the threshold values according to the criticality of the sensed

AU9215_C004.indd 136AU9215_C004.indd 136 2/22/2010 4:11:07 PM2/22/2010 4:11:07 PM

Routing in Wireless Sensor Networks ◾ 137

attribute and the target application, TEEN can quickly adapt to the network’s real
condition and the user’s specifi c requirements.

Th e simulation has been performed on a network of 100 nodes with a fi xed
BS in [AManjeshwar01]. Th e nodes are placed in a random fashion with an initial
energy of 2 J in each node. Cluster formation is done as in the LEACH protocol.
Th e energy consumption of the node is modeled as idle-time power dissipation
(equal to the radio electronics energy) and sensing power dissipation (equal to 10 percent
of the radio electronics energy). Two performance metrics are used to analyze and
evaluate the protocols: average energy dissipated and total number of nodes alive.
Th e average energy dissipated is defi ned as the average dissipation of energy per node
over time in the network (as it performs various functions, such as transmitting, receiv-
ing, sensing, and aggregation of data). Th e total number of nodes alive indicates the
overall lifetime of the network. Simulation results show that TEEN performs better
than LEACH-C and LEACH.

However, TEEN is not suitable for applications where periodic reports are
needed, because the user may not get any data at all whether or not the thresholds
are reached. Th us, the user may not get any data and will never be able to know
whether there are any nodes in the network that are alive.

4.5.2.4 Adaptive Periodic Threshold-Sensitive
Energy- Effi cient Network Protocol [Marati02]

As an extension to TEEN, the APTEEN protocol, on the other hand, is a hybrid
protocol that changes the periodicity or threshold values used in the TEEN proto-
col according to user needs and the application type. APTEEN aims at proactively
capturing periodic data collections and reactively responding to time-critical events.
Its network-clustering architecture is the same as in TEEN. When the BS forms
the clusters, the CH nodes broadcast the attributes, the threshold values, and the
transmission schedule to all the nodes.

Attributes ◾ are a set of physical parameters that need to be sensed in the network.
Th resholds ◾ include soft and hard thresholds, which are the same as the thresholds
in the TEEN protocol and serve the same purposes as in the TEEN protocol.
Count time ◾ (CT) is the period of time after which the sensed data needs to be
sent to the CHs.
Schedule ◾ refers to the time division multiple access schedule, which is used for
sharing the transmission medium among the sensor nodes in the network.

Similar to TEEN, the node in APTEEN senses the environment continuously,
and only those nodes that sense a data value at or beyond the thresholds report the
data to CHs. If a node does not send data for a time period equal to CT, APTEEN
forces the node to sense and transmit the data. APTEEN supports three diff erent
query types:

AU9215_C004.indd 137AU9215_C004.indd 137 2/22/2010 4:11:07 PM2/22/2010 4:11:07 PM

138 ◾ Wireless Sensor Networks: Principles and Practice

Historical: ◾ To analyze past data
One time: ◾ To take a snapshot view of the network
Persistent: ◾ To monitor an event for a period of time

A TDMA schedule is used, and each node in the cluster is assigned a transmission
slot. APTEEN also allows the user to set the CT interval and the threshold values
for energy effi ciency. Simulations show that APTEEN’s performance is somewhere
between LEACH and TEEN in terms of energy dissipation and network lifetime.
TEEN gives the best performance because it decreases the number of transmissions
more signifi cantly than APTEEN does. Th e drawbacks of TEEN and APTEEN,
are the overhead and complexity associated with forming clusters at multiple levels,
threshold-based functions, managing counter time and schedule, as well as dealing
with attribute-based naming of queries.

4.6 Location-Based Routing Protocols in WSNs
With advances in sensor technologies, many applications densely deploy a large
number of sensor nodes carrying a global positioning system (GPS) or a ranging
device to facilitate the monitoring, tracing, or surveillance tasks. In the absence of
a GPS unit, the location of nodes can be estimated through intelligent localization
methods based on techniques such as coarse-grained connectivity, trilateration prin-
ciple, robust quadrilaterals, and acoustic and multimodal sensing [Bulusu00, Ward97,
Moore04, Girod01]. Th e location information of the sensors can be used to calculate
the distance between the source and the destinations so that the energy consump-
tion can be estimated or the transmission power level can be properly adjusted. In
addition, recall the routing scheme called Directed Diff usion described earlier in this
chapter; the location information can facilitate the sink to issue the query specifying
the region in the interest message. Accordingly, location-based protocols are proposed
to utilize position information to relay the data to the desired regions. Instead of
diff using the data to the whole network, nodes can target the data on a particular
region or direction with the help of the geographical information, which potentially
reduces the number of transmissions signifi cantly, hence improving the network per-
formance. Examples of location-based routing protocols are Geographic Adaptive
Fidelity (GAF) [Yxu01], GEAR [Yyan01], Greedy Other Adaptive Face Routing
(GOAFR) [Fkuhn03], and SPAN [Bchen02].

More specifi cally, GAF is an energy-aware location-based routing algorithm,
designed primarily for MANETs, but may be applicable to sensor networks as well.
GAF conducts routing based on the location of the node, which is associated with a
point in the virtual grid formed for the covered area. GEAR uses energy-aware and
geographically informed neighbor selection heuristics to route a packet toward the
target region. Th e protocol suggests the use of geographical information while dissem-
inating queries to appropriate regions, because data queries often include geographic

AU9215_C004.indd 138AU9215_C004.indd 138 2/22/2010 4:11:07 PM2/22/2010 4:11:07 PM

Routing in Wireless Sensor Networks ◾ 139

attributes. GOAFR routes the data by picking up the nearest neighbor to the node to
be the next hop in the routing process. SPAN identifi es some nodes as coordinators
based on their positions to form a backbone network for data transmission.

4.6.1 Geographical and Energy-Aware
Routing Protocol [Yyan01]

Unlike unicast communication, the GEAR protocol attempts to deliver data to
all the nodes inside a target region, which is a common primitive in data-centric
WSN applications. GEAR uses energy-aware and geographically informed neigh-
bor selection heuristics to route data toward the specifi ed region. Each node keeps
an estimated cost and a learned cost of reaching the destination region through
each neighbor. Th e estimated cost is a combination of residual energy and distance
to the destination region, while the learned cost is a refi nement of the estimated
cost that accounts for routing around holes in the network. Based on the cost infor-
mation, GEAR picks the next-hop neighbors intelligently to route the data to the
destination region in an energy-effi cient way. Once the data reaches the region,
GEAR employs a recursive geographic forwarding technique to disseminate the
packet within the region.

In fact, GEAR complements Directed Diff usion by restricting the number of
interests’ dissemination to a certain region rather than sending the interests to the
whole network, thus conserving more energy.

4.6.1.1 Phases of GEAR

GEAR employs two phases in the process of forwarding data to all the nodes in
the target region:

 1. Forwarding the packet toward the target region
 2. Disseminating the packet within the region

In the fi rst phase, GEAR routes the data toward the target region. To forward
the data toward the target region in an energy-effi cient way, GEAR takes advan-
tage of the geographical and energy information of sensor nodes to make routing
decisions.

In the second phase, GEAR disseminates the data in the target region by using
either recursive geographical forwarding or restricted fl ooding schemes. When the
density in the target region is high, the region is further divided into four subregions.
Four copies of the data are created and delivered to the subregions. Th is splitting
and forwarding process continues until all the nodes in the target region are covered.
On the other hand, when the density in the target region is low, restricted fl ooding
is a better fi t to save energy.

AU9215_C004.indd 139AU9215_C004.indd 139 2/22/2010 4:11:07 PM2/22/2010 4:11:07 PM

140 ◾ Wireless Sensor Networks: Principles and Practice

4.6.1.2 Energy-Aware Neighbor Computation

Assume that node N is forwarding the packet P to the target region R, where D is
the centroid. When receiving the packet P, node N progressively routes the packet
P to the target region while trying to balance the energy consumption among all
N’s neighbors. To achieve this, GEAR introduces the concepts of estimated cost and
learned cost to facilitate the routing decision.

Each node, say N, maintains a state h(Ni, R) called the learned cost of region
R. If a node does not maintain the learned cost of region R, h(Ni, R), then an esti-
mated cost, c(Ni, R), is computed as the default value of h(Ni, R), which is defi ned
in Equation 4.2:

 = α + − α(N ,R) (N ,R) (1) (N)i i ic d e (4.2)

where
α is the tunable coeffi cient
d(Ni, R) is the distance from Ni to the centroid D of region R, normalized by the

largest such distance among all neighbors of N
e(Ni) is the energy consumed at node Ni, normalized by the largest-consumed

energy among neighbors of N

When a node picks a next-hop neighbor, Nmin, to forward the packet, the learned
cost of region R is updated as in Equation 4.3:

 = +min min(N,R) (N ,R) (N,N)h h C (4.3)

where C(N, Nmin) is the cost of transmitting a packet from N to Nmin, and can also
be a combination function of both the remaining energy levels of N, Nmin and the
distance between these two nodes

Once node N has a learned cost or an estimated cost for each neighbor, node
N has to determine which neighbor should be the next-hop node for the following
two scenarios:

 1. Th ere is at least one neighbor of node N who is closer to D than N
 2. All N’s neighbors are further away from D than N

 1. Closer neighbor exists
When there are neighbor nodes closer to the destination, GEAR uses a greedy
technique to forward the data to the destination. In specifi c, node N picks
the next-hop node among the neighbors that are closer to the destination,
minimizing the learned-cost value, h(Ni, R), at the same time. According to
Equations 4.2 and 4.3, we make three observations:

AU9215_C004.indd 140AU9215_C004.indd 140 2/22/2010 4:11:07 PM2/22/2010 4:11:07 PM

Routing in Wireless Sensor Networks ◾ 141

 a. If all N’s neighbors are equal in terms of energy consumption, node N will
choose the neighbor who has the shortest distance to D

 b. If all N’s neighbors have the same distance to D, node N will split the load
among neighbors

 c. Otherwise, node N selects the next-hop node based on the trade-off
between routing toward the neighbor nearest to the destination and bal-
ancing energy consumption.

 2. All the nodes are further away from the node N
When there are no neighbor nodes closer to the destination, that is, all
neighbors are farther away from the destination, we say a hole is identi-
fi ed. In other words, a hole occurs when a node does not have any neigh-
bor closer to the target region than itself. In this scenario, the learned cost
will be combined with an update rule to forward the packets circumvent-
ing the holes.

For example, assume that nodes G, H, and I have their energy depleted com-
pletely, as shown in Figure 4.10, which is a grid topology with a distance of 1
between two neighbors in the same row or column. Th us, these nodes cannot not
forward the data. For simplicity purposes, we set the coeffi cient α in Equation

k L T

H I J

ED

GF

BA C

S

Hole Initial path for
data transmission
Updated path resulted
from the update using
learned cost and update rule

Destination

Source

Figure 4.10 Example of learning routes when holes are present. (Adapted from
Yan, Y. et al., Geographical and energy aware routing: A recursive data dis-
semination protocol for wireless sensor networks, Technical Report UCLA-CSD
TR-010023, August 2001.)

AU9215_C004.indd 141AU9215_C004.indd 141 2/22/2010 4:11:07 PM2/22/2010 4:11:07 PM

142 ◾ Wireless Sensor Networks: Principles and Practice

4.2 as 1 and use the distance instead of the normalized distance mentioned earlier.
Initially, node S assumes that the neighbor nodes B, C, and D are closer to T based
on the learned costs in the following equations:

() ()

() ()

() ()

B,T B,T 5

C,T C,T 2

D,T D,T 5

h c

h c

h c

= =

= =

= =

(4.4)

Hence, to route a packet to T, node S will choose C (which has the lowest learned
cost) as the next-hop node and forward the packet to C. However, node C will fi nd
itself in a hole, because all C’s neighbors are further away from T than itself. Th en,
node C will perform two operations:

Node C will forward the packet to a neighbor with minimal ◾ learned cost. Ties
are broken based on some predefi ned ordering (e.g., node ID). In this case,
node B will receive the packet forwarded by node C.
Node C updates its own ◾ learned cost as h(C, T) = h(B, T) + C(C, G), where
(B,T)= 5h and C(C, B) = 1 (assume that one-hop transmission cost is 1),

and sends the learned cost back to node S.

Next time, upon receiving a packet destined to T, the learned-cost values of its
neighbors are given by the following equations:

(B,T) 5

(C,T) 5 1

(D,T) 5

h

h

h

=

= +

=

(4.5)

At node S, instead of delivering the packet to node C (which will forward the
packet to node B, causing two transmissions from node S to node B), node S will
forward the packet to node B directly to circumvent the hole.

Hence, the learned cost is propagated one hop back every time a packet reaches
the destination, so that the route setup for the next packet will be adjusted. By
propagating the learned-cost values upstream through the update rule, GEAR
will enable the packet to have an earlier chance to avoid holes (i.e., more eff ec-
tively circumnavigate holes) and, at the same time, avoid depleting the nodes
surrounding the holes. In addition, as the cost is a combination of the normalized
distance and energy consumption, the coeffi cient α in Equation 4.2 can be tuned
to emphasize minimizing the path length to the destination or balancing energy
consumption.

AU9215_C004.indd 142AU9215_C004.indd 142 2/22/2010 4:11:08 PM2/22/2010 4:11:08 PM

Routing in Wireless Sensor Networks ◾ 143

4.6.1.3 Recursive Geographic Forwarding

When the query packet destined to all nodes in region R reaches the target region,
a simple fl ooding scheme with duplicate suppression (or restricted fl ooding scheme
[Finn87]) can be adopted to disseminate the packet inside the region, particu-
larly, in low-density scenarios. Restricted fl ooding exploits the broadcast medium
of the wireless channel; it only sends one broadcast message to all its neighbors,
but every node in its transmission range receives this broadcast message.

However, fl ooding is expensive in terms of energy consumption, due to the fact
that a signifi cant number of redundant and useless transmissions may be intro-
duced by the fl ooding. Th e redundant transmission can be especially expensive in
high-density networks, which is the case for some WSN applications, where nodes
are densely and redundantly deployed for robustness. Hence, recursive geographic
forwarding is proposed to disseminate the packet inside the target region when the
node density is high. As shown in Figure 4.11, assume that the big rectangle is
the target region, R, and a particular node, Ni, receives a data packet, P, for this
region, R. Th e node Ni fi nds that the packet, P, is sent to the region where it resides.
Th en, node Ni creates four new copies of the packet, P, and forwards it to four subregions

Ni

Data packet

Source of the data

Nodes in the region

Figure 4.11 Recursive forwarding and splitting process. (Adapted from Yan, Y.
et al., Geographical and energy aware routing: A recursive data dissemination
protocol for wireless sensor networks, Technical Report UCLA-CSD TR-010023,
August 2001.)

AU9215_C004.indd 143AU9215_C004.indd 143 2/22/2010 4:11:08 PM2/22/2010 4:11:08 PM

144 ◾ Wireless Sensor Networks: Principles and Practice

of region R. Th is recursive splitting and forwarding procedure continues until the
current node fi nds itself as the only member in the subregion.

In the case of low node density, the recursive geographic forwarding is sub-
ject to nonterminated and useless packet transmission. In recursive geographic
forwarding, packet forwarding and splitting terminates if the subregion is found
empty. However, the transmission range of a sensor node is small compared to
the subregion size. Hence, the node that is close to the subregion cannot reach
the other end of the subregion and has no idea whether the region is empty or
not. As a result, recursive geographic forwarding still searches for routes to get into
the empty subregion. Th is search will not terminate until the packet is dropped
because the number of hops it traversed exceeds the limit (e.g., time to live, or
TTL). Th is kind of daunted search process can heavily drain the node around
the subregion, particularly, in networks with low density, in which the probabil-
ity that the target region is empty is high. In addition, unicast communication
in recursive geographic forwarding cannot take advantage of the broadcast nature of
the wireless medium and requires multiple transmissions in this scenario, which
could result in suboptimal energy usage. For these reasons, in the case of low
node density, restricted fl ooding is employed by GEAR, replacing recursive geo-
graphic forwarding [Yyan01].

GEAR proposes to use the degree of a node for diff erentiating low density with
respect to high density. When the packet reaches the fi rst node, N, in a region,
whether to use restricted fl ooding or recursive geographic forwarding depends on the
number of neighbors of node N. If the number is below a threshold, then the
packet is fl ooded inside the region; otherwise, recursive geographic forwarding will
be triggered.

4.6.1.4 Evaluating GEAR Protocol

GEAR use energy-aware metrics together with geographical information to
make energy-effi cient routing decisions. While balancing the energy consump-
tion and thereby increasing the network lifetime, GEAR progressively forwards
data to the target region based on the proposed cost function and update rule.
Within a region, it uses a restricted fl ooding or a recursive geographic forwarding
technique to disseminate the data. GEAR is compared to a similar non-energy-
aware routing protocol, greedy perimeter stateless routing (GPSR) [Bkrap00], in
which the packets follow the perimeter of the planar graph to fi nd their route.
GEAR not only reduces the energy consumption for the route setup, but also
outperforms GPSR in terms of packet delivery. Th e simulation results show that
for an uneven traffi c distribution, GEAR delivers 70 percent to 80 percent more
packets than GPSR. For uniform traffi c pairs, GEAR delivers 25 percent to 35
percent more packets than GPSR. Moreover, in both cases, GEAR achieves
better connectivity after the initial partition [Yyan01].

AU9215_C004.indd 144AU9215_C004.indd 144 2/22/2010 4:11:08 PM2/22/2010 4:11:08 PM

Routing in Wireless Sensor Networks ◾ 145

4.7 Multipath and QoS-Based Routing
To maintain network reliability, enhance the throughput, or balance the traffi c,
the techniques using multipath routing are often employed. Multipath routing can
provide route resilience through redundant packets delivering over multiple paths
or fast route recovery from network disruption. As the bandwidth may be limited in
a sensor network, routing along a single path may not provide enough bandwidth for
some applications, such as camera or video capture. If multiple paths are employed
simultaneously to route the data, a larger aggregated bandwidth and a smaller
end-to-end delay may be achieved. Similarly, load balancing can be achieved by
spreading the traffi c along multiple routes, which can alleviate congestion and
bottlenecks in the network.

Th erefore, we can see that diff erent strategies to use multiple paths can result in
enhancements in diff erent network performance metrics, which actually occurs
in many QoS-based routing protocols. In the remaining part of this chapter, we intro-
duce some basic principles of multipath routing, followed by QoS-based routing
schemes in sensor networks.

4.7.1 Multipath Routing
In multipath routing, there are multiple, say k, paths between the source and des-
tination nodes. Th e k paths are link-disjoint if they have no common links. Th e k
paths are node-disjoint if they have no common intermediate nodes. We call two
or more paths non-disjoint (or braided) if they share some links or intermediate
nodes (i.e., the node/link disjointedness constraint is relaxed). Multipath routing
has been explored for several important reasons. Th e fi rst is to increase the likeli-
hood of reliable data delivery. Sending multiple copies of data along diff erent paths
simultaneously off ers resilience to failure of a certain number of paths [Ganesan01].
Duplicate data transmission along multipaths can result in more accurate deliv-
ery and better data quality for WSNs, at the possible expense of increased traffi c
redundancy and energy consumption. Th e second is to enhance the throughput
from a source to a destination. In these approaches, data for the same source–
destination pair is sent out through multiple paths, which create multiple data fl ows
and, hence, potentially increase the throughput from the source to the destination.
Th ese multiple fl ows are better considered together with the wireless interferences
among the nodes in the MAC layer to achieve optimized performance. Another
major benefi t of multipath routing is load balancing. In this case, the source and
the destination use only one path for routing the data, which is called the primary
path. Multiple-path candidates alternatively serve as the primary path for routing
data from the same source–destination pair, which can spread energy consumption
across nodes on multipaths in the network. Th is approach can avoid depleting the
energy resources of some nodes through constant usage of the same route, poten-
tially resulting in longer network lifetime. Moreover, if there are node failures in

AU9215_C004.indd 145AU9215_C004.indd 145 2/22/2010 4:11:08 PM2/22/2010 4:11:08 PM

146 ◾ Wireless Sensor Networks: Principles and Practice

the primary path, multipath routing can immediately employ the alternate paths,
which are constructed along with the primary path to continuously deliver data
from the source node to the destination node.

Generally, in routing, when there are node failures in
the primary path, then the nodes in this path use fl ood-
ing for routing the data in the network, to reconstruct
the path and recover from the failure. However, the
multipath routing scheme can quickly recover from the
failure by selecting the alternate paths that are already
constructed along with the primary path (without any
cost for searching for another one).

Difference

WSNs

For example, the authors in [Chang04] assume that the transmitter power level can
be adjusted to use the minimum energy required to reach the intended next-hop
receiver. Hence, the energy consumption rate per unit information transmission
heavily depends on the choice of the next-hop node, i.e., the routing decision. Th e
routing problem is formulated as a linear programming problem with the objective
of maximizing the network lifetime. A routing algorithm is also proposed to route
data through shortest-cost-path routing whose link cost is a combination of transmis-
sion and reception energy consumption and the residual energy levels at the two end
nodes. An alternative path is employed whenever a better path is discovered. Two
diff erent models are considered for the information-generation processes: constant
rate and arbitrary. Simulation results with both information-generation process mod-
els show that the proposed routing algorithm can achieve network lifetime that is
very close to the optimal performance obtained by solving the linear programming
formulations [Chang04]. Another example of multipath routing is demonstrated in
[Dulman03], whereas the techniques of multipath routing are used to enhance the
reliability of WSNs. As mentioned earlier, network reliability can be increased by
providing several paths from the source to the destination and sending the same
packet on multiple paths, which may result in signifi cant traffi c redundancy. Hence,
there is a trade-off between the amount of traffi c redundancy and the reliability of the
network. Th is trade-off is investigated in [Dulman03] using a redundancy function
that is dependent on the multipath degree and failing probabilities of the available
paths. Th e proposed idea is to split the original data packet into subpackets, which
are sent through the multiple paths. As a result, even if some of these subpackets are
lost, the original message can still be reconstructed due to the redundancy added into
the data transmission process. In addition, Directed Diff usion [CIntanagonwiwat00]
is also a good example employing robust multipath routing and delivery. Based on
the Directed Diff usion paradigm, the authors in [Ganesan01] investigate how to
construct a small number of multipaths in WSNs such that failures on the primary

AU9215_C004.indd 146AU9215_C004.indd 146 2/22/2010 4:11:08 PM2/22/2010 4:11:08 PM

Routing in Wireless Sensor Networks ◾ 147

path can be recovered without invoking networkwide fl ooding for path discovery
(thus enhancing network energy performance). Two typical multipath designs—
node-disjoint multipath and braided multipath (which consists of partially disjoint/
overlapped alternate paths) schemes—are evaluated in terms of the energy/resilience
trade-off s under independent and geographically correlated failures. Th e study has
found that for a disjoint multipath confi guration whose patterned failure resilience
is comparable to that of braided multipaths, the braided multipaths have about 50
percent higher resilience to isolated failures and a third of the overhead for alternate
path maintenance [Ganesan01]. Th erefore, the braided multipaths are a viable alter-
native for energy-effi cient recovery from isolated and patterned failures with lower
maintenance cost in WSNs.

4.7.2 QoS-Based Routing Protocols in WSNs [Ksohrabi00]
For diff erent WSN applications, the constraints and the QoS metrics (delay,
energy, priority, bandwidth, fairness, robustness, etc.) to be optimized can be dif-
ferent. Many principles for QoS in the traditional networks can fi nd a counterpart
in sensor networks. Some of the QoS metrics are still important and challenging
under the constraints of WSNs, and others are not as signifi cant as they are in the
Internet. For example, delay, robustness, bandwidth, and energy are paramount and
optimized goals in many WSN applications. However, in many cases, the sensors
are designed to collectively and cooperatively carry out a task, which diminishes the
importance of the QoS metrics, such as fairness. Examples of QoS-based and mul-
tipath routing include SPEED [Th e03] and Sequential Assignment Routing (SAR)
[Ksohrabi00]. SPEED is a routing protocol for sensor networks that provides soft
real-time end-to-end guarantees, requires each node to maintain information about
its neighbors, and uses geographic forwarding to fi nd the paths.

Demand-driven routing protocols are those that fi nd the route between the
source and destination systems after a request or demand is issued. Th ese protocols
eliminate the overhead associated with table or neighbor update in high-mobility
scenarios. However, demand-driven protocols may take a longer time and energy
to fi nd the route in a reactive way. SAR, on the other hand, is a table-driven mul-
tipath approach, striving to achieve energy effi ciency and fault tolerance. Based
on the observation that the possibility of protection on the failures in WSNs is
tightly related to the degree of disjointedness (i.e., the number of paths with no
common branches) in the network, the SAR protocol creates trees rooted at one-
hop neighbors of the sink by taking the QoS metrics, the energy resources on each
path, and the priority level of each packet into consideration. By using the trees,
multiple paths from the sink to sensors are formed. One of these paths is selected
according to the energy resources, the QoS on each path, and the priority level
of a packet. Failure recovery is performed by enforcing routing table consistency
between upstream and downstream nodes on each path, which is done using a

AU9215_C004.indd 147AU9215_C004.indd 147 2/22/2010 4:11:08 PM2/22/2010 4:11:08 PM

148 ◾ Wireless Sensor Networks: Principles and Practice

handshaking procedure. Any local failure is taken care of, by an automatic path res-
toration procedure, which is done locally. Th e simulation studies in [Ksohrabi00]
show that SAR can achieve energy effi ciency while taking packet priorities into
account. Th e multiple paths maintained by SAR ensure that the system is fault
tolerant and easily recoverable. However, the overhead of table maintenance at each
sensor node makes SAR infeasible for very-large-scale WSNs.

4.8 Conclusion
In this chapter, we have gone through the challenges and concerns in designing
routing protocols for WSNs. Th e classifi cation of the routing protocols proposed
in the literature and several typical routing schemes, such as SPIN, Directed
Diff usion, LEACH, TEEN, GEAR, SAR, and multipath routing schemes, are
elaborated.

Problems and Exercises
4.1 Multi-choice questions:
 1. Out of the following protocols, which is an example of a data-centric

protocol?
 a. Rumor Routing
 b. MCFA
 c. SPEED
 d. GBR
 2. Which of the following is not a choice for data diff usion?
 a. Flooding
 b. Gossiping
 c. Directional propagation
 d. None of the above
 3. SPIN does not have which one of these data packets?
 a. ADV
 b. REQ
 c. ACK
 d. Data
4.2 Explain three challenges for data routing in sensor networks?
4.3 Explain the diff erences between SPIN-PP and SPIN-BC. Explain the use of

the resource manager in the SPIN protocol.
4.4 Explain how the gradient in Directed Diff usion is created.
4.5 Explain how the clusters are formed in the LEACH protocol. How are the

CHs determined in LEACH and LEACH-C?

AU9215_C004.indd 148AU9215_C004.indd 148 2/22/2010 4:11:08 PM2/22/2010 4:11:08 PM

Routing in Wireless Sensor Networks ◾ 149

4.6 Explain the purposes of hard threshold and soft threshold in TEEN.
4.7 Explain the diff erent phases in GEAR. Explain why restricted fl ooding and

recursive geographic forwarding are used in GEAR.
4.8 Explain the diff erences between disjoint multipath routing and braided multipath

routing schemes.

AU9215_C004.indd 149AU9215_C004.indd 149 2/22/2010 4:11:08 PM2/22/2010 4:11:08 PM

AU9215_C004.indd 150AU9215_C004.indd 150 2/22/2010 4:11:09 PM2/22/2010 4:11:09 PM

151

5Chapter

Transport Layer in
Wireless Sensor Networks

As we recall from the general network layers concept, the major tasks of the transport
layer are (1) to guarantee reliable transmission of network packets through end-to-end
retransmissions or other strategies and (2) to reduce or avoid network congestion due to
too heavy traffi c fl ow in the routers or other relay points. TCP is used in the Internet.
However, we cannot use TCP in the WSN transport layer design. Th is chapter explains
WSN transport layer design requirements and some good protocol examples.

When you design a transport layer protocol for any network,
it typically consists of two tasks: (1) It is responsible for an
end-to-end reliable transmission (i.e., no packet loss) instead of
a hop-to-hop reliable transmission (which is a MAC [Medium
Access Control] layer task). However, you could use hop-to-
hop strategies to achieve end-to-end reliability. For instance,
later on, we will discuss some WSN transport schemes that
use hop-to-hop packet loss recovery to achieve end-to-end

reliability. (2) A transport layer protocol should also take care of network conges-
tion issues, such as how to detect the congestion places and how to avoid those
congestion events. Although the above two tasks are supposed to be implemented
in the same transport protocol, some transport schemes only focus on one of them
(either reliability or congestion issues). Th is is acceptable. However, we point out
that it is not a complete transport protocol if only one of them is achieved.

WSNs

Remember

AU9215_C005.indd 151AU9215_C005.indd 151 2/22/2010 4:13:34 PM2/22/2010 4:13:34 PM

152 ◾ Wireless Sensor Networks: Principles and Practice

5.1 Introduction
We can summarize the requirements of a transport layer protocol for sensor net-
works as follows [YIyer05]:

 1. Generic design: Th e WSN transport layer protocol should be independent of
the application, network, and MAC layer protocols. If a transport layer heav-
ily depends on network topology assumptions (such as a tree-based architec-
ture), it may not be suitable to some applications that use a fl at topology.

 2. Heterogeneous data fl ow support: A transport protocol should support both
continuous and event-driven fl ows in the same network. Continuous (i.e.,
streaming) data needs to use fast response rate control algorithms to limit
the stream-fl ow speed to reduce congestion. An event-driven fl ow has lesser
requirements on the rate control sensibility. But it requires a highly reliable
event capture (i.e., no data loss).

 3. Controlled variable reliability: Th e reliability could be complete (i.e., no packet
loss) or incomplete (i.e., some packet loss may be tolerated). In some WSN
applications, we can conserve energy at the nodes by achieving incomplete
reliability. For instance, if the system does not need a 100 percent packet
arrival rate, we may not invoke a packet retransmission scheme.

 4. Congestion detection and avoidance: Th is is perhaps the fi rst task in a transport
protocol. Congestion detection is not so easy in WSNs because congestion exists
only in some specifi c “hot spots,” where the amount of traffi c is signifi cantly
higher than in other places. But how do we quickly detect these “hot spots”?

 5. Localized or centralized congestion control: Although we should distribute
computation-intensive tasks at the base station; however, if we could dis-
tribute some congestion detection and avoidance tasks in sensors, we could
obtain a better congestion avoidance eff ect, because it is the sensors that need
to reduce their sending rates to reduce the traffi c.

 6. Scalability: A WSN may have thousands of nodes. Hence, the protocol
should be scalable. Unfortunately, it is not easy to fi nd all sensors with buff er
overfl ow.

 7. Leaving space for extension: Th e protocol design should leave space for
future optimizations to improve network performance and support new
applications.

5.2 Pump Slowly, Fetch Quickly [Chieh-Yih05]
5.2.1 Why Does TCP Not Work Well in WSNs?
Why do we need a transport protocol in WSNs? Th is is because WSNs also have
the following two requirements as does the Internet:

AU9215_C005.indd 152AU9215_C005.indd 152 2/22/2010 4:13:36 PM2/22/2010 4:13:36 PM

Transport Layer in Wireless Sensor Networks ◾ 153

 1. Reliable end-to-end data transmission: Th e data should be transmitted with no
or very few losses between the two ends (a sensor and a base station).

Typically, the sensor data is transmitted from a sensor to a base station.
Th e new detected event is important. We may need a 100 percent reliability
for it, that is, no transmission errors or loss at all. If it is general sensor data
without urgent processing requirements, we may tolerate certain loss, that
is, the reliability could be less than 100 percent. As an example, consider-
ing temperature monitoring or animal-location tracking, the system could
tolerate the occasional loss of sensor readings. Th erefore, we do not need the
complex protocol that would ensure reliable delivery of data.
On the other hand, from a base station to a sensor, typically, the transmitted
data includes important data query or sensor control commands. Such data
needs a 100 percent reliability (i.e., no error or loss). In [Chieh-Yih05], the
authors proposed an application that needs base station-to-sensor transport
layer control, which requires the reprogramming of groups of sensors over
the air. Today, WSNs are typically hard-wired to perform a specifi c task effi -
ciently at low cost. We need to build more powerful hardware and software
capable of reprogramming sensors to do diff erent things. When we dissemi-
nate a program image to sensor nodes, we cannot tolerate the loss of a single
message associated with the code segment or the script, as a loss would render
the image useless and the reprogramming operation a failure.

 2. Congestion detection and avoidance : In a WSN, when many sensors send out
data simultaneously, some sensors that help to relay data get congested. It
is important to identify these congested sensors and to use effi cient ways to
avoid congestion events.

Th e most popular transport protocol, TCP, has been successfully used
in the Internet for a few decades. Th e TCP protocol stack uses a three-way
 handshake protocol to establish a communication pipe fi rst. Th en, a window-
based streaming protocol keeps running to control the sending rate. When it
detects timer-out or three duplicate acknowledgment (ACK) packets, it assumes
packet loss and retransmits the data. It aims to achieve a 100 percent reliability.

TCP uses a 20 byte header to hold some congestion control and other
information. Th e overhead from headers can consume a lot of resources, espe-
cially with small packets. In WSNs, the sensor data is composed of typically
some numerical values. It only needs a few bytes to represent such data. Th en
the TCP overhead is relatively large.

TCP is designed to make the base station (most times it is the receiver
side) as simple as possible. Th e base station simply acknowledges the sender’s
packet (if the data is correct, it sends out an ACK; otherwise, it sends nothing
back). Th e sender needs to perform a series of complex rate control operations.
However, in WSNs, the sender (sensors) have very constrained resources and
the base station has unlimited energy. It is better to put more load on the
base-station side.

AU9215_C005.indd 153AU9215_C005.indd 153 2/22/2010 4:13:36 PM2/22/2010 4:13:36 PM

154 ◾ Wireless Sensor Networks: Principles and Practice

 Moreover, TCP provides 100 percent reliability, that is, it does not allow
any packet loss. As mentioned before, complete reliability is not required in
many WSN applications.

In the Internet, TCP always achieves a 100 percent reli-
ability, that is, no packet is lost. (By the way, we see packet
errors as packet loss, because a receiver will not accept any
packets with bit errors.) In a WSN, we allow less than 100
percent reliability in the upstream direction (sensors →
sink) due to the existence of some redundant sensor data.
But the downstream direction (sink → sensors) should

have a 100 percent reliability, because a sink always sends out important data
(such as a sensor query or sensor control commands).

Difference

WSNs

In this section, we focus on the fi rst function of the transport protocol—reli-
ability. We will defer congestion issues to future discussions. We answer a question
as follows: How do we design a WSN transport protocol to achieve reliable data
transmission? Such a transport protocol should have low complexity and energy
effi ciency to be realized on low-end sensor nodes (such as the Berkeley mote series
of sensors), and can isolate applications from the unreliable nature of wireless sensor
networks in an effi cient and robust manner.

A WSN transport protocol, called pump slowly, fetch quickly (PSFQ), is pro-
posed in [Chieh-Yih05]. It aims to make the WSN transport layer less complex,
robust, scalable, and customizable to the needs of diff erent applications.

PSFQ has minimum requirements on the routing infrastructure (as opposed to
IP multicast routing requirements). It also uses minimum signaling (signaling means
protocol message exchanges among sensors), which helps to reduce the commu-
nication cost for data reliability. PSFQ is responsive to high error rates in wireless
communications, which allows successful operations even under highly error-prone
conditions.

5.2.2 Key Ideas
How do we achieve minimum packet loss/errors? PSFQ uses the following interest-
ing, straightforward idea: when sending data to a sensor, it should be done at a rela-
tively slow speed (i.e., “pump slowly”). Th is is because pumping data too fast increases
wireless loss rate. On the other hand, if a sensor experiences data loss, that sensor
should fetch (i.e., recover) any missing segments from its upstream neighbor very aggres-
sively to perform local recovery. Th is is called “ fetch quickly.” Note that it is important
to use such a quick, local data recovery to minimize the lost recovery cost. If not

AU9215_C005.indd 154AU9215_C005.indd 154 2/22/2010 4:13:36 PM2/22/2010 4:13:36 PM

Transport Layer in Wireless Sensor Networks ◾ 155

local, we need to resort the sender to retransmit the data, which is painful when
considering multi-hop, unreliable wireless links.

 1. Using hop-to-hop (i.e., local) error recovery: Let us take a look at traditional
end-to-end error recovery mechanisms, in which only the fi nal destina-
tion node is responsible for detecting loss and requesting retransmission.
Why does end-to-end error recovery not work well in WSNs? In many appli-
cations, we drop lots of inexpensive sensors (from a plane) in a large area with
irregular terrain and harsh radio environments. Due to the long distance
between an event area and the base station, a WSN needs to rely on multi-
hop forwarding techniques to exchange messages.

Based on the probability theory, if one hop has an error rate of 0 < p < 1,
each hop keeps dropping packets (all erroneous packets will be dropped by a
relay sensor), and errors accumulate exponentially over multiple hops. After
we pass many hops, the fi nal destination will have little chance of receiving a
high percentage of good packets.

Using a simple math model, assume that the packet error rate of a wireless
channel is p; then, the chances of exchanging a message successfully across n
hops decreases quickly to (1 − p)n.

Figure 5.1 [Chieh-Yih05] numerically shows such a phenomenon. Its
y-axis plots packet success arrival rate. Th e x-axis plots the network size in

y-axis: Success rate
0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
4 6 8 10 12

Network size (number of hops)

1 percent
 error

10 percent
 error

Only shows the trends here.
We can see that the wireless link error

rate can dramatically change the
network reliability (packet success

arrival rate).

30 percent
error

142

Figure 5.1 Probability of successful delivery of a message using an end-to-end
model across a multi-hop network. (Adapted from Wan, C.-Y. et al., IEEE J. Sel.
Areas Commun., 23(4), 862, April 2005.)

AU9215_C005.indd 155AU9215_C005.indd 155 2/22/2010 4:13:36 PM2/22/2010 4:13:36 PM

156 ◾ Wireless Sensor Networks: Principles and Practice

number of hops. Based on this fi gure, we can see that in larger WSNs (where
hops >14) it is very diffi cult to deliver a single message using an end-to-end
error recovery approach when the error rate is larger than 10 percent. Th is is
because so many packets get lost after passing so many hops, and it becomes
very ineffi cient to recover more than 80 percent of lost packets.

Let us use an analogy: If a student failed one course, he or she may retake
it and catch the four-year graduation time. But if he or she failed ten courses,
there is no way for him or her to participate in the graduation ceremony,
because he or she may need fi ve years to fi nish all courses (including the
retaking of all courses which he or she failed).

Always remember this “snowball” eff ect: If the loss can-
not be overcome in one wireless link, the next link will
make the situation worse. In the traditional Internet, we
normally do not have this loss accumulation issue, as the
Internet backbone is built on highly reliable fi ber optics.
But WSNs use radio links among low-cost, energy-
constrained sensors. High bit error rate is unavoidable.

WSNs

Remember

Another bad news is that [JZhao03] shows that the error rates of a WSN
are typically around 10 percent or above. We can imagine that the error rate
could be even higher in certain harsh environments, such as military applica-
tions, industrial process monitoring, and disaster recovery activities.

All of the above observations tell us that we should not wait till the end
to recover the erroneous data, that is, end-to-end error recovery is not a good
candidate for reliable transport in WSNs. Th erefore, PSFQ proposes to use
hop-to-hop error recovery, in which intermediate sensors also take the respon-
sibility of loss detection and recovery. In other words, reliable data exchange
is achieved on a hop-to-hop basis, rather than on an end-to-end basis.

Such a hop-to-hop error recovery approach effi ciently eliminates wire-
less error accumulation, because it divides multi-hop forwarding opera-
tions into a series of single-hop transmission processes. Such a hop-to-hop
approach uses local data processing to scale better and become more toler-
able to wireless errors, while reducing the likelihood of packet reordering in
comparison to end-to-end approaches.

 2. Multiple retransmissions for the same lost packet: In WSNs, to handle an erroneous
packet, retransmission should occur. Sometimes multiple packet retransmissions
can occur in each hop. Th erefore, the data delivery latency would be dependent
on the expected number of retransmissions for successful delivery.

Th e receiver uses a queue (i.e., a memory buff er) to hold all failed packets.
It will not clear the queue until these packets are retransmitted and successfully

AU9215_C005.indd 156AU9215_C005.indd 156 2/22/2010 4:13:37 PM2/22/2010 4:13:37 PM

Transport Layer in Wireless Sensor Networks ◾ 157

received. To reduce the latency, it is essential to maximize the probability of
successful delivery of a packet within a “controllable time frame.”

We may use multiple retransmissions of the same packet i (thus increasing
the chances of successful delivery) before the next packet i + 1 arrives. Th is
is called “fetch quickly”; in other words, we use multiple retransmissions to
quickly recover a lost packet, which quickly clears the queue at a receiver (e.g.,
an intermediate sensor) before new packets arrive to keep the queue length
small, and, hence, reduce the entire communication delay.

Wan and Campbell [Chieh-Yih05] have analyzed the optimal number of
retransmissions that trade off the success rate (i.e., the probability of success-
ful delivery of a packet within a time limit) against energy consumption on
retransmissions. Using strict math models, the authors found out the relation-
ship between packet success arrival rate and packet loss rate under diff erent
retransmission scenarios. As shown in Figure 5.2, substantial improvements
in the success rate can be gained when the channel error rate is less than
60 percent. However, the additional benefi t of allowing more retransmissions
diminishes quickly and becomes negligible when the number of retransmis-
sions (for the same packet) is larger than fi ve. Th is is why PSFQ sets up the ratio
between the timers associated with the pump and fetch operations to fi ve.

 3. Recover data in the earliest time: If a packet is not timely recovered, will we
get incomplete data in a downstream sensor? But how does a downstream
sensor know that a packet is lost? It knows this using sequence numbers!
Each packet has a sequence ID in its header. If a downstream sensor receives
packets 3 and 5, it knows that packet 4 is missing (i.e., lost).

1

0.9

0.9

0.8

0.7

0.6

0.6

0.5

0.4

0.3

0.3

0.2

0.1
0.01 0.1

Allow 1 retransmission

Packet loss rate (log scale)

Allow 5 retransmissions

Allow 3 retransmissions

y-axis: Packet success
arrival rate

We can see that when the RF link condition is
too poor, retransmissions cannot solve the

reliability issues well.

Allow 7 retransmissions

Figure 5.2 Probability of successful delivery of a message over one hop when the
mechanism allows multiple retransmissions before the next packet arrival. (Adapted
from Wan, C.-Y. et al., IEEE J. Sel. Areas Commun., 23(4), 862, April 2005.)

AU9215_C005.indd 157AU9215_C005.indd 157 2/22/2010 4:13:37 PM2/22/2010 4:13:37 PM

158 ◾ Wireless Sensor Networks: Principles and Practice

Now, we face a choice: Suppose that a packet (ID = 99) is lost between sensors
1 and 2. But sensor 1 is a little “lazy” and does not want to timely recover
such a packet using retransmissions. It may expect that one of its downstream
sensors will recover the data. Is this a good idea? No, we cannot do this. Why
not? Th is is because only sensor 1 has packet #99, and its downstream sen-
sors do not have packet #99 in their buff er for retransmission even when they
want to recover such a packet. Th erefore, eventually, a downstream sensor,
say sensor 12, still needs sensor 1’s help to retransmit packet #99. If this
is the story, why does a sensor not recover a lost packet at the fi rst time? Th is
is because sensor 2 will feedback to sensor 1 (through a negative acknowledg-
ment [NACK] packet) to tell it to retransmit packet #99.

If any missing packet is immediately recovered in that corresponding hop,
any future (downstream) sensors would not see any broken packet sequence
IDs. Th erefore, we could add a rule to each sensor: All intermediate nodes only
relay messages with continuous sequence numbers. To ensure in-sequence data
forwarding and the complete recovery for any fetch operations from down-
stream nodes, we need a data cache (i.e., a buff er) in each sensor. Note that
the cache size should be determined.

Transmission using in-order packet sequence numbers
is an important idea in many networks. For example,
the Internet TCP protocol uses a window-based packet-
sending scheme. All packets have the in-order sequence
IDs. A window of packets with higher IDs will not be
fl ushed out if the previous window (with lower IDs)
has unrecovered data. If you use out-of-order packets,

you could make the transport protocol much more complex, as you need to
remember all ID “gaps” (i.e., broken ID chains due to packet loss).

Good idea

5.2.3 Protocol Description
From the network implementation viewpoint, a PSFQ protocol actually comprises
three sub-protocol functions:

Message relaying (pump operation) ◾ : A source node (could be a sensor in an event area
or a base station) injects messages into the network, and intermediate nodes buf-
fer and relay messages with the proper schedule to achieve loose delay bounds.
Relay-initiated error recovery (fetch operation) ◾ : A relay sensor maintains a data
cache and uses cached information to detect data loss (by checking sequence
number gaps). It also initiates error recovery operations by sending ACK or
NACK back to its upstream sensor.

AU9215_C005.indd 158AU9215_C005.indd 158 2/22/2010 4:13:38 PM2/22/2010 4:13:38 PM

Transport Layer in Wireless Sensor Networks ◾ 159

Selective status reporting (report operation) ◾ : Th e source (i.e., the sender) needs
to obtain the statistics (such as error rate) of the dissemination status in the
network, and it uses such statistical data as a basis for subsequent decision
making, such as adjusting the pump rate. Th erefore, a feedback and reporting
mechanism is needed; such a reporting protocol should be fl exible (i.e., adaptive
to the environment) and scalable (i.e., minimize the overhead).

Th e following text will provide more details on the above three protocols (i.e.,
pump, fetch, and report).

Pump slowly, fetch quickly: Th is idea is not diffi cult to
understand. In WSNs with high bit error rates, we really
should not insert data into the network too quickly, as
sensors need time to “digest” previous packets—Just
think that you could not put too many cars in a slow,
single-lane road. On the other hand, if packet loss really
happens, can you wait to recover the loss slowly? No
way! Packet loss can result in the “snowball” eff ect (men-

tioned before). Just like in the above car example, we should quickly clear a
slow, single-lane road if a car accident occurs, as all following cars are waiting
for the jam to be cleared!

Good idea

5.2.3.1 Pump Operation

Although PSFQ uses error recovery in individual hop, it is not a routing solution, but a
transport scheme. PSFQ operates on top of the existing routing schemes to support reli-
able data transport. It will not search a routing path. To enable local loss recovery and
in-sequence data delivery, a data cache is created and maintained at intermediate nodes.

Th is section focuses on pump operation. Th e pump operation slowly “pumps”
data to the network (from a sender). Slow pumping helps to avoid congestion, which
is one of the concerns in the transport layer.

Th e pump operation uses a simple packet-sending scheduling scheme. Th e
scheduling is based on the concept of pump timers (Tmin and Tmax). Th e basic pump
procedure is as follows:

A sender sends a packet to its downstream sensor every Tmin. A sensor that
receives this packet will check against its local data cache. If the packet sequence
number is the same as an existing packet, it will discard such a duplicate. If this is
a new message, PSFQ will buff er the packet.

For any received packet, the receiver tries to detect a gap in the sequence num-
bers. If a gap really exists, it will move to the “fetch” operation to perform error
recovery (see the next section). Otherwise, it will continue the pump operation
(see the next step).

AU9215_C005.indd 159AU9215_C005.indd 159 2/22/2010 4:13:38 PM2/22/2010 4:13:38 PM

160 ◾ Wireless Sensor Networks: Principles and Practice

Th e receiver intentionally delays the packet for a random period between Tmin
and Tmax, and then relays to its downstream neighbor. Such a random delay before
forwarding a packet is necessary to avoid potential transmission collisions.

Now we explain the roles of pump timers (Tmin and Tmax).
Tmin is an important parameter. Th ere is need to provide a time buff er for local

packet recovery. PSFQ requires the recovery of lost packets quickly within a con-
trollable time frame. Tmin could be used for such a purpose. Th is is because a node
has an opportunity to recover any missing segment before the next segment comes
from its upstream neighbors, as a node must wait at least Tmin anyway before for-
warding a packet as part of the pump operation.

Tmax is used to provide a loose statistical delay bound for the last hop to success-
fully receive the last segment of a complete fi le (e.g., a program image or script).
Assuming that any missing data is recovered within one interval using the aggres-
sive fetch operation (described in the next section), the relationship between the
delay bound, D(n), and Tmax is as follows:

 = × ×max() number of hopsD n T n

where n is the number of fragments of a fi le.

5.2.3.2 Fetch Operation

As mentioned before, a sensor enters the “fetch” mode once a sequence number
gap among received packets is detected. A fetch operation invokes a retransmission
from an upstream sensor once loss is detected at a receiving node.

Interestingly, PSFQ uses the concept of “loss aggregation” whenever loss is
detected; that is, it can batch up all message losses in a single fetch operation when-
ever possible.

 1. Loss aggregation: Researchers have found out that data loss in a wireless
environment often occurs in a “bursty” way due to the strong correlation
of radio fading models; that is, if a wireless link does not work well, such
a poor communication condition can last for a little while and damage a
batch of data. Th e radio noise is not an even distribution. It may work well
for a long time and then work poorly for a short period. As a result, packet
loss usually occurs in batches (called bursty loss). PSFQ aggregates loss such
that the fetch operation deals with a “window” of lost packets instead of a
single-packet loss.
Because of bursty loss, it is not unusual to have multiple gaps in the sequence
number of packets received by a sensor. Aggregating multiple loss windows in
the fetch operation increases the likelihood of successful recovery.

 2. Fetch timer: We have mentioned “pump timers” in the last section. In the
fetch mode, we also need to defi ne a timer. Typically, when a sensor fi nds out

AU9215_C005.indd 160AU9215_C005.indd 160 2/22/2010 4:13:38 PM2/22/2010 4:13:38 PM

Transport Layer in Wireless Sensor Networks ◾ 161

packet loss (by looking at the sequence number gap), it aggressively sends out
NACK messages to its upstream sensor to request for missing segments.

If no retransmission occurs or only a partial set of missing segments in
a loss aggregation window are recovered within a fetch timer, Tr (Tr < Tmax)
then the receiver will resend the NACK every Tr interval (note: here, we can
add a little randomization to this interval to avoid absolute synchronization
between neighbors) until all the missing segments are recovered or the number
of retries exceed a preset threshold, thereby ending the fetch operation.

PSFQ schedules the fi rst NACK to be sent out within a short delay cho-
sen between 0 and Δ. (Note: Δ << Tr.) It cancels the fi rst NACK to keep the
number of duplicates low when a NACK for the same missing segments is
overheard by another node before the NACK is sent. As Δ is small, the chance
of this happening is relatively small. In general, retransmissions in response
to a NACK coming from other nodes are not guaranteed to be overheard by
the node that canceled its fi rst NACK.

NACK messages do not propagate to avoid network congestion. In other
words, an upstream sensor that receives a NACK (from a downstream sensor)
will not relay the NACK message back to one more level toward the upstream
direction.

Of course, there is an exception. For instance, if the number of times
it receives the same NACK exceeds a predefi ned threshold, and the miss-
ing packets requested by the NACK message are no longer retained in a
node’s data cache, then the NACK could be relayed once, which, in eff ect,
broadens the NACK scope to one more hop to increase the chances of error
recovery.

 3. Proactive fetch: We could notice a “blind spot” in the above fetch operation:
Th e fetch operation is a reactive loss recovery scheme, that is, a loss is detected
only when a packet with a higher sequence number is received.

However, how do we deal with the case where the last segment of a fi le is
lost? We cannot ask the receiving node to detect this loss, because no packet
with a higher sequence number will be sent. In addition, if the fi le has a small
size (e.g., a script instead of a binary code), a bursty loss could cause the loss
of all subsequent segments up to the last segment. In this case, the loss is also
undetectable, and, thus, not recoverable with such a reactive loss detection
scheme.

To solve the “last loss” problem, PSFQ proposes a timer-based “proactive
fetch” (diff erent from the reactive fetch) operation as follows: If the last segment
has not been received and no new packet is delivered after a period of time,
TPro, a sensor can also enter the fetch mode proactively and send a NACK
message for the next segment or the remaining segments.

How do we determine the value of a proactive fetch timer, TPro? Obviously,
if the proactive fetch is triggered too early, then extra control messaging
might be wasted, as upstream nodes may still be relaying the last message.

AU9215_C005.indd 161AU9215_C005.indd 161 2/22/2010 4:13:38 PM2/22/2010 4:13:38 PM

162 ◾ Wireless Sensor Networks: Principles and Practice

In contrast, if the fetch mode is triggered too late, then the target node might
wait too long for the last segment of a fi le, signifi cantly increasing the overall
delivery latency of a fi le transfer.

PSFQ makes a good choice of TPro: It makes TPro proportional to the gap
between the last-highest sequence number (Slast) among the received packets
and the largest sequence number (Smax) of the fi le (the diff erence is equal to
the number of the remaining segments associated with the fi le), that is,
TPro = α(Smax − Slast)Tmax (α ≥ 1), where α is a scaling factor to adjust the delay
in triggering the proactive fetch and should be set to 1 for most operational
cases. Th erefore, TPro ensures that a sensor starts the proactive fetch earlier
when it is closer to the end of a fi le, and waits longer when it is farther from
completion.

It is not an easy task to design a network protocol.
It is not like just writing some C codes. We need to
consider many, many details. For example, the above
“timer” concept is a diffi cult issue to handle. Th is is
because we cannot set the timer expiration too early
or too late.

WSNs

Remember

 4. Signal-strength-based fetch: When a sensor detects a gap in the sequence number
upon receiving a packet, it only responds and sends out a NACK if this packet
comes from an upstream sensor with the strongest average signal quality mea-
surement. Th is eff ectively suppresses unnecessary NACK messages triggered by
the reception of the packets that come from the upstream sensors that are mul-
tiple hops away. Similarly, when a node transmits a NACK message, it includes
the preferred parent with the strongest average signal in the message.

5.2.3.3 Report Operation

Report operation is designed to feedback the data delivery status to the sender in a
simple and scalable manner. A node enters the report mode when it receives a data
message with the “report bit” set in the message header.

Each node along the routing path toward the source node will piggyback its
report message by adding its status information into the report, and then propagate
the aggregated report toward the user node. Each node will ignore the report if it
fi nds its own ID in the report, to avoid looping.

Sometimes, we have many hops between the source and the destination,
and a long report is needed. A node that receives a report message may have no

AU9215_C005.indd 162AU9215_C005.indd 162 2/22/2010 4:13:38 PM2/22/2010 4:13:38 PM

Transport Layer in Wireless Sensor Networks ◾ 163

space to append its own state information. To solve this problem, a node will
create a new report message and send it prior to relaying the previously received
report. Th is makes other nodes in the route to report messages rather than create
new reports.

5.3 Another WSN Transport Protocol—ESRT [Akan05]
ESRT (event-to-sink reliable transport) [Akan05] has been designed for WSN
applications that need imperfect reliability. But it is not for guaranteed end-to-end
data delivery services.

ESRT has considered the fact that the sink (i.e., the base station) typically is only
interested in a reliable detection of event features from the collective information
provided by numerous sensor nodes and not in their individual reports. Th erefore,
it is called “event-to-sink” reliability. Th is makes ESRT diff erent from other exist-
ing transport layer models that focus on end-to-end reliability. For instance, the
above PSFQ is more suitable to a sink-to-event reliability control, which is actually a
downstream (i.e., from the base station to sensors) communication issue.

We have mentioned the diff erent directions in a WSN
(upstream: from sensors to sink; downstream: from
sink to sensors). Th ese two directions have diff erent
reliability requirements and communication character-
istics. Th erefore, ESRT only focuses on one direction—
upstream. Later on, we will discuss the downstream
reliability scheme (called GARUDA, in Section 5.7).

WSNs

Remember

5.3.1 Reliable Transport Problem
Akan and Akyildiz [Akan05] have formally defi ned the reliable transport problem
in WSNs. Many WSN applications require the reliable detection and estimation
of event features based on the collective reports of sensors in the event area. Let us
assume that for reliable temporal tracking, the sink must decide on the event fea-
tures every τ time units. Here, τ represents the duration of a decision interval, and
its setup depends on diff erent application requirements. A WSN sink derives an
event reliability indicator at the end of the decision interval. It should be noted that
it must be calculated only using parameters available at the sink. Hence, notions
of high throughput, which are based on the number of source packets sent out, are
inappropriate in the event reliability calculation here.

ESRT uses a simple way to measure the reliable transport of event features
from source nodes to the sink: the number of received data packets. It then defi nes
observed and desired event reliabilities as follows.

AU9215_C005.indd 163AU9215_C005.indd 163 2/22/2010 4:13:39 PM2/22/2010 4:13:39 PM

164 ◾ Wireless Sensor Networks: Principles and Practice

Defi nition 5.1: Th e observed (i.e., actual) event reliability, ri, is the number of
received data packets in decision interval i at the sink.

Defi nition 5.2: Th e desired (i.e., targeted) event reliability, R, is the number of
data packets required for reliable event detection. Th is value depends on diff erent
applications.

We require that the observed event reliability, ri, is greater than the desired event
reliability, R. In this case, the event is deemed to be reliably detected. Otherwise,
we need to use the ESRT scheme to achieve the desired event reliability, R.

A WSN can assign diff erent IDs to diff erent types of events detected by the
sensors that keep sending event information to a sink. Th en, a sink can compute
the observed reliability, ri, based on data packets with an event ID. It increments
the received packet count at the sink each time the ID in a packet is detected. Th e
sink does not care which sensor sends the data.

A sensor can report event information more frequently to make the sink calculate
the reliability more accurately from a statistical viewpoint. ESRT thus defi nes the
reporting rate, f, of sensor nodes, as follows:

Defi nition 5.3: Th e reporting frequency rate, f, of a sensor node is the number of
packets sent out per unit time by that node.

Defi nition 5.4: Th e transport layer problem (from the reliability viewpoint, not
from the congestion control viewpoint) in a WSN is to confi gure the reporting rate,
f, of source nodes so as to achieve the required event detection reliability, R, at the
sink with minimum resource utilization.

A source sensor can adjust the reporting frequency, f, by adjusting the sampling rate,
the number of quantization levels, the number of sensing modalities, etc. Th e reporting
frequency rate, f, actually controls the amount of traffi c injected into the sensor fi eld.

5.3.2 Relationship between Normalized Event
Reliability and Report Frequency

To fi nd out how the observed event reliability (r) at the sink changes with the reporting
frequency rate (f) of sensor nodes, Akan and Akyildiz [Akan05] used simulations based
on ns-2 tools to construct a WSN using 200 sensor nodes that were randomly positioned
in a 100 × 100 sensor fi eld. Assume that the randomly created topology does not vary.

Th e desired event reliability, R, varies with diff erent applications. Akan and
Akyildiz [Akan05] use a better parameter to measure event reliability, that is,
η = r/R. Here, η denotes the normalized event reliability at the end of each deci-
sion interval i.

AU9215_C005.indd 164AU9215_C005.indd 164 2/22/2010 4:13:39 PM2/22/2010 4:13:39 PM

Transport Layer in Wireless Sensor Networks ◾ 165

Such a normalized reliability, η, is better than the observed reliability, r,
because the former refl ects the weight (importance) of r in the desired reliability
R. Our aim is to reach a system status with η = 1. Note: η could be larger than
1, that is, the actual reliability is larger than the desired reliability. Th is case
looks “attractive.” However, it is not what we want, as higher reliability con-
sumes more energy and accumulates more data in the network (which can cause
congestion).

Interestingly, the simulation results in [Akan05] show that the relationship
between η and f can be seen from some characteristic regions, that is, in diff erent
f ranges, we have diff erent η trends.

Our aim is to operate as close to η = 1 as possible no matter whether η > 1 or
η < 1. Suppose that when f = f *, we have η = 1. We call f * as the optimal operating
point (OOP), marked as P1 in Figure 5.3.

From this fi gure, we can see that the η = 1 line intersects the event reliability
curve at two distinct points, P1 and P2. It looks like both P1 and P2 are OOPs.
Although the event can be reliably detected at P2, the network is somewhat
congested because the reporting frequency, f, goes beyond the peak point, fmax
(see Figure 5.3), and some source data packets are lost. Th erefore, we do not call
P2 as an OOP.

Reporting frequency (f)

N
or

m
al

iz
ed

 re
lia

bi
lit

y (
η)

10–1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Optimal operating
point

Peak point,
f = fmax

Required reliability
1+ε

(N
C

, H
R)

(NC, LR)

(C, LR)

OOR

(C
, H

R)

1–ε

P1=(1, f *)

P2

100 101 102 103

fmax

Figure 5.3 Five characteristic regions in the normalized event reliability, 𝛈, versus
reporting frequency, f, behavior. (Adapted from Akan, Ö.B. and Akyildiz, I.F.,
IEEE/ACM Trans. Netw., 13(5), 1003, October 2005.)

AU9215_C005.indd 165AU9215_C005.indd 165 2/22/2010 4:13:39 PM2/22/2010 4:13:39 PM

166 ◾ Wireless Sensor Networks: Principles and Practice

What a good research methodology! Normally, research-
ers conduct research in this way: First, they defi ne some
challenging unsolved issues. Th en, they try to use the-
oretical models to get some quantitative results. Th ese
math analysis results are important, because all practical
engineering design is based on certain theories. Next,
they use software simulations or practical hardware

experiments to verify the correctness of their math analysis. However, here,
ESRT uses a diff erent research strategy: It uses simulations to fi nd out an
interesting, fi ve-region reliability–frequency relationship! Th en, the research-
ers move to theory models and algorithm designs.

Good idea

We defi ne a tolerance zone with a width 2ε around P1, as shown in Figure 5.3.
Here, ε is a protocol parameter. In the fi gure, we can then see fi ve characteristic
regions (bounded by dotted lines) with the following decision boundaries (η: nor-
malized reliability indicator):

Region 1: (NC, LR), which means no congestion, low reliability

 < η < 1− εmax ,f f

Th is region is not good enough because it has low reliability.
Region 2: (NC, HR), which means no congestion, high reliability

 ≤ η > + εmax , 1f f

This region is good because it has high reliability and does not cause
network congestion (because its event-reporting frequency is not so
high, i.e., f < fmax).

Region 3: (OOR), which means optimal operating region

 < − ε ≤ η ≤ + εmax , 1f f 1

Th is is the best region. All other regions should get closer to this region by
changing f.

Region 4: (C, HR), which means congestion, high reliability

 > η>max , 1f f

AU9215_C005.indd 166AU9215_C005.indd 166 2/22/2010 4:13:40 PM2/22/2010 4:13:40 PM

Transport Layer in Wireless Sensor Networks ◾ 167

Th is region is not so good, as it has network congestion issues (because
f > fmax). Th e good thing is that it still has satisfactory reliability.

Region 5: (C, LR), which means congestion, low reliability

 > η≤max , 1f f

Th is is the worst region, because it has both low reliability and network con-
gestion issues.

As analyzed above, we need to know two time-varying parameters (reporting
frequency, f, and normalized reliability, η) and two fi xed parameters (peak point
frequency, fmax, and tolerance zone parameter, ε) before we tell in which of the fi ve
regions the system is now.

Let Si denote the network state variable at the end of decision interval i. Th en,

 ∈{(NC,LR),(NC,HR),(C,HR),(C,LR),OOR}iS

We can see that the above fi ve states are determined by two things: What is the
current event reliability? Does it cause network congestion? Th erefore, in practical
network implementations, ESRT identifi es the current state, Si, from two aspects:
(1) the reliability indicator, ηi, computed by the sink in each decision interval, i;
and (2) a congestion detection mechanism.

Note that a sink gets to know the actual values of f and η in each decision
period, say, every 5 s is a decision period. Suppose that a sink knows fi and ηi in
decision period i. Now its task is to calculate a new value of reporting frequency, fi + 1, in
decision period i + 1 based on a certain state transition algorithm. Such an algorithm
makes sure that all states get to the OOR state. We will discuss the algorithm later.
Figure 5.4 shows the basic state transition principle.

Finite state machine (FSM)—Th is is a basic research
approach to solve some system control problems.
Although we could use any advanced, complex control
models or math algorithms to control a system, eventu-
ally, we need to use an FSM to defi ne all system “states”
and corresponding “actions” to transit from one state to
another. As a matter of fact, all network “protocols” are

written based on FSM models. Th ink about an interesting problem: How do
you defi ne humans as an FSM model? Possibly you could say that a human is
in the “sleep” state, “eat,” “study,” “love,” “sick,” and many other states. And
you can defi ne the state transition conditions/actions. For instance, to get
into the “eat” state, we need at least one “condition,” called “hungry.” Th en,
the “action” is “open your mouth and grab the food.”

Good idea

AU9215_C005.indd 167AU9215_C005.indd 167 2/22/2010 4:13:40 PM2/22/2010 4:13:40 PM

168 ◾ Wireless Sensor Networks: Principles and Practice

Th e state transition algorithm includes the following fi ve aspects.

 1. (NC, LR): In this state, we do not have network congestion. But we do not
even achieve the desired reliability. In Figure 5.3, we can see that η<1–ε
and f < fmax. Th e reason of getting into this state could be due to failure/
power-down of intermediate routing nodes, packet errors due to strong wire-
less interference, etc. Th e following text explains these two reasons in more
detail.
If the reason is the failure/power-down of intermediate nodes, the packets
that need to be routed through these nodes are dropped. It causes a decrease
in reliability even if enough source information is sent out. However, fault-
tolerant routing/rerouting in WSNs is provided by several existing algorithms
[Cintanagonwiwat00]. ESRT can work with any of these schemes.

 If the congestion is because of packet loss due to RF interference, the
number of lost packets is expected to scale proportionally with the reporting
frequency rate, f. In most cases, we could assume that the net eff ect of RF
channel conditions on packet losses does not deviate considerably in suc-
cessive decision intervals. Th is is a reasonable assumption with static sensor
nodes, and slowly time-varying [EShih01] and spatially separated channels
for communication from the event to the sink in WSN applications. Hence,
even in the presence of packet losses due to link errors, the initial reliability
increase is expected to be linear.

 Anyway, when the system gets to the (NC, LR) state, the sink needs to
tell the source node to aggressively increase the reporting frequency rate, f,

No congestion,
high reliability

Slowly decrease
frequency

Increase frequency
quickly

No congestion,
low reliability

Decrease frequency
quickly

Optimal
operating

region

Congestion,
low reliability

Decrease frequency

Congestion,
high reliability

Figure 5.4 ESRT protocol state model and transitions. (Adapted from Akan, Ö.B.
and Akyildiz, I.F., IEEE/ACM Trans. Netw., 13(5), 1003, October 2005.)

AU9215_C005.indd 168AU9215_C005.indd 168 2/22/2010 4:13:40 PM2/22/2010 4:13:40 PM

Transport Layer in Wireless Sensor Networks ◾ 169

to attain the required reliability as soon as possible. We can achieve such an
aggressive increase by invoking the fact that the r–f relationship in the absence
of congestion, that is, for the range of f < fmax (see Figure 5.3), is linear. Th is
prompts the use of the following multiplicative increase strategy to calculate
the reporting frequency rate in a new decision space, fi +1, as follows:

 + =
η1

i
i

i

ff

 where ηi is the reliability observed at the sink in the decision interval i.
 2. (NC, HR): In this state, the required reliability level is exceeded and there is

no congestion in the network, that is,

 η> − ε ≤ max1 and f f

 Th is is not a bad state, as no congestion occurs and reliability is achieved. But
because source nodes report more frequently than required, it wastes exces-
sive energy in sensor nodes. Th erefore, the reporting frequency should be
reduced to conserve energy.

 But we should not reduce the frequency aggressively (as in the last case), as
it is very close to the OOP. Hence, the sink reduces the reporting frequency
rate, f, in a controlled manner with half the slope. Th e updated reporting
frequency rate can be expressed as

+

⎛ ⎞
= +⎜ ⎟η⎝ ⎠

1
11

2
i

i
i

ff

 3. (C, HR): In this state, the reliability is higher than required and congestion
is experienced, that is,

 η > 1 > maxand f f

 Th is is not a good state. First, we do not want to see congestion happening.
And higher reliability (which makes η even higher than 1) is not necessary
(we just need to keep the normalized reliability η = 1).

 But, as no congestion occurs, it means that the frequency is not so high. We
should decrease the frequency carefully (i.e., not so aggressively) such that the
event-to-sink reliability is always maintained. However, the network operating
in the state (C, HR) is farther from the OOP than the network operating in
the state (NC,HR). Th erefore, we should relieve congestion in an aggressive
approach and enter the state (NC,HR) as soon as possible. ESRT uses a multi-
plicative decrease as follows:

AU9215_C005.indd 169AU9215_C005.indd 169 2/22/2010 4:13:41 PM2/22/2010 4:13:41 PM

170 ◾ Wireless Sensor Networks: Principles and Practice

 + =
η1

i
i

i

ff

 4. (C, LR): Here, the reliability is inadequate and congestion also exists, that
is, η ≤ 1 and f > fmax. Th is is perhaps the worst state, as we have both reliabil-
ity and congestion issues. Th erefore, ESRT reduces the reporting frequency
aggressively to bring the network to the OOR state as soon as possible.

An aggressive way to reduce the frequency is to exponentially decrease it,
as follows:

η⎛ ⎞

⎜ ⎟⎝ ⎠
+ =1

i

k
i if f

 where k denotes the number of successive decision periods for which the network
has remained in the (C, LR) state, including the current decision interval,
that is, k ≥ 1. Th e aim is to decrease the reporting frequency with greater
aggression if a state transition is not detected. Such a policy also ensures
convergence to η = 1 in the (C, LR) state.

 5. OOR: Th is is the best state. Th e network is operating within the tolerance of
the optimal point, where the required reliability is attained with minimum
energy expenditure. Hence, the reporting frequency rate is left unchanged for
the next decision interval:

 + =1i if f

If you want to slowly approach a point, you could use
“log” or “linear” speed. But, for a fast approach, “mul-
tiplicative” speed could be a good idea. Of course,
“exponential” speed typically gives a fast-enough
approach.

Good idea

5.3.3 Congestion Detection
Although ESRT’s main purpose is to guarantee an optimized reliability, it also has
certain impacts on network congestion. Th is can be seen from the above fi ve states.
On the other hand, to determine the current network state in ESRT, the sink must
be able to detect congestion in the network. Now, the question is “how does a sink
know that congestion occurs?”

Because TCP is not used here, we cannot use the traditional approach to deter-
mine congestion levels. Hence, ESRT uses a local buff er-level monitoring scheme

AU9215_C005.indd 170AU9215_C005.indd 170 2/22/2010 4:13:41 PM2/22/2010 4:13:41 PM

Transport Layer in Wireless Sensor Networks ◾ 171

in individual sensor nodes to fi nd out a congestion event. Basically, a sensor will
inform the sink of the congestion as long as its routing buff er overfl ows due to exces-
sive incoming packets. Th e details of this mechanism are as follows.

We denote bk and bk − 1 as the buff er fullness levels at the end of kth and (k − 1)th
decision intervals, respectively, and b as the buff er size, as in Figure 5.5. For a given
sensor node, let Δb be the buff er length increment observed at the end of the last
reporting period, that is,

 −Δ = − 1k kb b b

Th us, if the sum of the current buff er level at the end of the ith reporting interval
and the last experienced buff er length increment exceeds the buff er size, that is,
bk + Δb > B, the sensor node infers that it is going to experience congestion in the
next reporting interval.

Checking a node’s local buff er size is a typical way to
fi nd out the congestion level. TCP is based on this principle.
But it does this in the source node only.

Good idea

5.4 E2SRT: Enhanced ESRT Performance [Sunil08]
Although the above algorithms could make diff erent states go to the OOR state,
in [Sunil08], their simulation results, shown in Figure 5.6, have revealed that when
the desired reliability (R) is set up beyond the capability of current network settings

Change between node 1 and node 2

Node 1 Node 2

Buffer

Figure 5.5 Illustration of buffer-level monitoring in sensor nodes. (Adapted from
Akan, Ö.B. and Akyildiz, I.F., IEEE/ACM Trans. Netw., 13(5), 1003, October 2005.)

AU9215_C005.indd 171AU9215_C005.indd 171 2/22/2010 4:13:42 PM2/22/2010 4:13:42 PM

172 ◾ Wireless Sensor Networks: Principles and Practice

(such as the network’s sensor deployment strategy, sensor resources, and network scale),
the network will never be able to converge to the OOR state.

Th eir simulation results also show that the original ESRT scheme (such as
the above-described buff er-level monitoring scheme) cannot detect this situ-
ation by itself. When we use the original ESRT algorithm to generate a new
reporting frequency (for the next decision period) according to this desired
reliability value, these values either lead to tremendous network congestion or
make the network operate at a very low frequency rate, thus wasting most of
the bandwidth. As a result, the network oscillates between the (C, LR) state
and the (NC, LR) state.

Th e actual reliability (r) reached with this oscillation is far below the desired
reliability (R). Apparently, it is also not the maximum reliability we could have
obtained with current network settings. Th is generally means that the system was
running in a very expensive and ineffi cient mode: Th e network is always trying to
touch reliability far beyond its capability, which leads to more congestion, more
collision, and a longer delay. Subsequently, the network throughput and overall
reliability are signifi cantly compromised.

Th e extensive simulations of Feng et al. [Sunil08] show that there is a threshold
for this reliability demand that is decided by the current network settings, such as
network size, radio type, underlying infrastructures, and protocol choices. When
the desired reliability is lower than the threshold, the ESRT algorithm can always
converge to the OOR mode in several control loops. However, when this requirement
is above the threshold, the network soon falls into oscillation.

When the network cannot support the desired event reliability, only two network
states, (NC, LR) and (C, LR), exist (see Figure 5.7).

1
0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6 7 8 9 10
Time (τ)

N
or

m
al

iz
ed

 re
lia

bi
lit

y (
η)

11 12 13 14 15 16 17 18 19 20 21

Figure 5.6 Normalized reliability fl uctuates in the ESRT scheme in case of
over-demanding desired reliability requirements. (Adapted from Feng, Z. et al.,
Wireless Commun. Mob. Comput., November 2008. Accessible online.)

AU9215_C005.indd 172AU9215_C005.indd 172 2/22/2010 4:13:42 PM2/22/2010 4:13:42 PM

Transport Layer in Wireless Sensor Networks ◾ 173

As an example, suppose that the desired reliability is to successfully receive
4000 packets at a sink in each ten second interval. However, the network can only
handle around 3500 packets per ten second interval in our simulation settings.
Obviously, the reliability requirement is beyond the network capability; no OOR
state exists. ESRT does not take this situation into account, and the network would
fl uctuate between (NC, LR) and (C, LR) states.

5.4.1 The Proposed Scheme—E2SRT
Before discussing the solution proposed in [Sunil08], which is called the enhanced
event-to-sink reliability transport (E2SRT), we formally defi ne the over-demanding
desired reliability problem in ESRT in this section.

Th e over-demanding desired event reliability problem in E2SRT represents a
situation where the desired reliability, R, is suffi ciently larger than Rmax, so that
(Rmax/R) < 1 − ε. When the desired event reliability is over demanding, we call the
network is in the OR (over-demanding reliability) state. We shall represent this
desired reliability situation as Rod.

We use the following mathematical analysis to demonstrate that when the
desired event reliability is over demanding, ESRT does not converge to the OOR
state, and fl uctuates between two low-reliability states, (NC, LR) and (C, LR).

Lemma 5.1: In the OR state, the normalized reliability, η = r/R, will never fall into
the region of [1 − ε, ∞).

Proof: As Rmax is the maximum reliability that the network can reach with the cur-
rent network settings, it follows that the observed event reliability ri ≤ Rmax. Th en,

 η = ≤ < − εmax/ / 1i ir R R R

We conclude that ηi ∈ (0,1 − ε).

Lemma 5.2: In the OR state, the network only has two possible working states,
namely, (NC, LR) and (C, LR).

(NC, LR) (C, LR)

f max < f ; η < 1 – ε
fmax < f ; η < 1 – ε

f < fmax ; η < 1 – ε

f < fmax ; η < 1–ε

Figure 5.7 ESRT protocol state model and transitions when desired reliability is
over demanding. (Adapted from Feng, Z. et al., Wireless Commun. Mob. Comput.,
November 2008. Accessible online.)

AU9215_C005.indd 173AU9215_C005.indd 173 2/22/2010 4:13:42 PM2/22/2010 4:13:42 PM

174 ◾ Wireless Sensor Networks: Principles and Practice

Lemma 5.2 is a straightforward extension of Lemma 5.1. However, it reveals
the most distinct characteristic of the OR state, which is the base for the operations
of E2SRT.

Note that these results are obtained for the situation where the desired reli-
ability is beyond the capability of the sensor network, which implies the following
assumptions:

 η < − ε, <max max1 R R

Only two states, (NC, LR) and (C, LR), are available.

Lemma 5.3: In and only in the OR state, starting from Si = (NC, LR), and with a
linear reliability behavior when the network is not congested, the network state will
transit to Si +1 = (C, LR).

Proof: From Si = (NC, LR), ESRT aggressively increments fi as follows:

 + =
η1

i
i

i

ff

Hence,

+ = = ηη ⋅ η
η

1

max
max

i i
i

ii

f ff

As

 = ⋅ < − εmax
max max and / 1i

i

Rf f R R
r

it follows that

+ = = = ⋅ > ⋅

η − ε⋅
1 max max

max max

max

1
1

i i
i

ii

f f Rf f fr R R
R R

To address this issue, Feng et al. [Sunil08] have divided the problem into the following
two subproblems:

 a. How to detect the over-demanding desired event reliability situation?
 b. If the above situation exists, how to quickly converge to the maximum reli-

ability the network can reach without requiring the full knowledge of the
network conditions?

AU9215_C005.indd 174AU9215_C005.indd 174 2/22/2010 4:13:43 PM2/22/2010 4:13:43 PM

Transport Layer in Wireless Sensor Networks ◾ 175

Th e major design consideration is how to push the network to approach the maxi-
mum reliability point (MRP) (fmax, ηmax) for a given network setting. Similar to
the ESRT scheme, we also allow a tolerance zone of width ε around the MRP. If,
at the end of a decision interval i, the normalized reliability, ηi, is within [ηmax − ε,
ηmax] and no congestion is detected in the network, the network is in the maximum
operating region (MOR).

Here, we follow the defi nition of tolerance zone of ESRT. It is a protocol parameter
decided by the user based on the requirement. A smaller ε will generally provide greater
proximity to the MRP, while it may take longer convergence time.

If the MRP is known, the sink can reduce the desired reliability such that the
network can converge to the OOR as in ESRT. However, it is diffi cult to calculate
the exact value of the MRP (fmax, ηmax) due to the following reasons:

Initial deployment ◾
Nodes moving or dying, or other reasons that cause the network topology to ◾
change
Relocation of events ◾
Radio interference ◾

Consequently, algorithms that assume a priori of a constant MOR are not feasible.
More advanced algorithms should be adaptable to the changing network environ-
ment. Th ey should be able to read feedback from the sensor network and predict
the MRP in a recursive manner.

Th e proposed new algorithm in E2SRT inherits all the major features of ESRT,
such as communication model and network modes defi nitions. It is sink based,
energy effi cient, and has fast convergence time. As an enhanced version, E2SRT is
more resilient to abrupt network changes and resource constraints due to its opera-
tions in OR states.

In the following section, we will describe how E2SRT can approach the MOR
and how E2SRT operates in each of the three OR states, in detail.

In each decision interval, the sink calculates the normalized reliability, ηi. In
conjunction with congestion reports, the current network state, Si, will be deter-
mined. Using the decision boundaries defi ned in ESRT, with the knowledge of
state Si, and the values of fi and ηi, E2SRT will request the sink to update the event-
reporting frequency to fi+1, and the sink will broadcast the new frequency value to
the sensor nodes. On receiving this updated frequency, the relevant sensor nodes
will report to the sink according to the new frequency in the next decision interval.
Th is process will repeat until the MOR state is reached. Th e state transition graph
is shown in Figure 5.8.

E2SRT introduces a recursive algorithm that converges to the MOR in a few
rounds of estimation of the MRP. As observed from Figure 5.9, the network shows
some linear and symmetry properties around the MOR in the curve of normalized
reliability as a function of the reporting frequency (in a logarithm format). And as we

AU9215_C005.indd 175AU9215_C005.indd 175 2/22/2010 4:13:43 PM2/22/2010 4:13:43 PM

176 ◾ Wireless Sensor Networks: Principles and Practice

previously discussed, the network fl uctuates between only two states, (NC, LR)
and (C, LR).

Obviously, (NC, LR) is always on the left of the MRP, while (C, LR) is
always on the right of the MRP. Th us, the MRP is always somewhere between
a (NC, LR) state and a (C, LR) state. We will record the reporting frequency of

(NC, LR) (C, LR)
fmax< f ; η < 1 – ε

fmax < f ; η < 1 – ε

f < fmax ; η < 1 – ε

ηmax – ε <= η <= ηmax
ηmax <= η <= ηmax + ε

ηmax – ε <= η <= ηmax + ε

fmax , ηmax

f < fmax ; η < 1 – ε

Figure 5.8 E2SRT protocol state model and transitions when desired reliability
is over demanding.

Frequency

(NC,LR)

(NC, LR)

(NC, LR)

(NC, LR)

Peak of reliability

(C, LR)

(C, LR)

(C, LR)

Re
lia

bi
lit

y

10–1
0

0.2

0.4

0.6

0.8

max

1

100 101 102 103

Figure 5.9 Recursive convergence of E2SRT. Starting from (NC, LR)1, the
network bounces in the cone area of the curve and, fi nally, falls into the MOR.

AU9215_C005.indd 176AU9215_C005.indd 176 2/22/2010 4:13:43 PM2/22/2010 4:13:43 PM

Transport Layer in Wireless Sensor Networks ◾ 177

the last (C, LR) state as f(C,LR) and the frequency of the last (NC, LR) state as
f(NC,LR). Th e x-axis of the graph is based on logarithm.

We estimate the frequency of the MRP as

+

+ =
(NC, LR) (C,LR)log log

2
1 10

f f

if

With the above formula, starting from any of the two states, the network may stay in
either (NC, LR) state or (C, LR) state for more than one consecutive decision periods.
Th is is because the last (NC, LR)/(C, LR) state point is too far apart from the MRP
compared with the last (C, LR)/(NC, LR) state. In the case of (C, LR), which means
that the last (C, LR) operating point is too far away from the MRP, we can add a
multiplying factor to give more importance to the last (NC, LR) operating point as

+

+ +
+ =

(NC,LR) (C,LR)
1

log log
1 1

1 10
k

f f
k k

if

In the case of (NC, LR), we have the following formula:

+

+ +
+ =

(NC,LR) (C,LR)
1

log log
1 1

1 10
k

f f
k k

if

A detailed description of the E2SRT operation in each of the three available states
is presented below.

 1. (NC, LR): Because the OOR state is not feasible, the goal of the updating
policy is to drive the network to the MOR instead of the OOR. As pointed
out by lemma 3, using the ESRT algorithm, the network would inevitably
jump into the most undesirable (C, LR) state. Here, we already know that the
network is in the OR state, as it has jumped at least once into the (C, LR)
state and then fell back into the (NC, R) state.

We record the frequency of the last (C, LR) state as f(C,LR) and the fre-
quency of the last (NC, LR) state as f(NC,LR). As observed in the basic ESRT
scheme, the network would show some linear and symmetry properties
around the MOR region in the curve of normalized reliability as a function
of the reporting frequency (in a logarithm format). Th is prompts us to update
the reporting frequency as follows:

+

+ +
+ =

(NC,LR) (C,LR)
1

log log
1 1

1 10
k

f f
k k

if

 2. (C, LR): In this state, we either detect a transition from the (NC, LR) state (so
that we know the network is now in the OR state), or we transit from (C, LR)
state itself (which means the frequency has to be further reduced). We use

AU9215_C005.indd 177AU9215_C005.indd 177 2/22/2010 4:13:44 PM2/22/2010 4:13:44 PM

178 ◾ Wireless Sensor Networks: Principles and Practice

a parameter k to count the time intervals for which the network has succes-
sively remained in (C, LR). As k increases, it generally means f(NC,LR) is closer
to the MOR than f(C,LR). We, therefore, assign a higher frequency than f(C,LR).
Putting together all these considerations, we update the reporting frequency
based on the following formula:

 +
+ +

+ =
(NC,LR) (C,LR)

1
log log

1 1
1 10

k
f f

k k
if

 3. MOR: In this state, the network is operating within ε tolerance of the maximum
operating point, where the network is making its best eff ort to fulfi ll the reliabil-
ity requirement with minimum energy consumption. Th e reporting frequency
remains unchanged for the next decision interval as

 + =1i if f

Th e entire E2SRT protocol algorithm is summarized in the pseudocode in
Figure 5.10.

Many students keep asking a question: “How do I
conduct some research?” Take a look at this E2SRT
example. It starts from an existing scheme (ESRT),
tries to fi nd the “hidden” drawbacks or any unsolved
issues, and fi nally thinks of a good way to overcome
those issues. “Improving” is a good way to start your
research. But eventually, you need to reach a high-level

research—defi ne an interesting, important research issue by yourself; then
use a brand-new way (which other people did not fi nd) to solve it! Look at
those professors. Th ey are trying to do the same thing—“fi nding a new prob-
lem; thinking of a new solution.”

Good idea

5.5 CODA: Congestion Detection and
Avoidance in Sensor Networks [Wan03]

Th e above-discussed transport schemes have achieved the fi rst goal of a WSN trans-
port layer—reliability. In this section, we discuss a solution to achieve the second
goal, that is, congestion control.

To illustrate the congestion problem, Wan et al. [Wan03] have used simulation
results (see Figure 5.11) to show the impact of congestion on data dissemination in
a WSN for a moderate number of active sources with varying reporting rates.

Figure 5.11 shows an interesting conclusion: Th ere exists a water boiling point,
that is, when the source rate increases beyond a certain network capacity threshold

AU9215_C005.indd 178AU9215_C005.indd 178 2/22/2010 4:13:44 PM2/22/2010 4:13:44 PM

Transport Layer in Wireless Sensor Networks ◾ 179

(ten events/s in this network), congestion occurs more frequently and the total
number of packets dropped at the sink increases rapidly. It also shows that conges-
tion could occur even with low to moderate source event rates. Dropped packets
can include MAC signaling, data event packets themselves, and diff usion messag-
ing packets.

Th e drop rates shown in Figure 5.11 represent not only signifi cant packet losses
in the sensor network, they also indicate the existence of network congestion. More
importantly, a lot of energy is wasted by the failed packet transmissions! In WSNs,
we care about energy resources so much!

Diff erent WSN applications can bring either occasional or more frequent data-rate
“bursts” (i.e., suddenly generate a large amount of event data). Some applications
(such as lighting monitoring) may only generate light traffi c from small regions of
the network, while other applications (such as image sensor networks) may generate
large waves of impulses potentially across the whole sensing area, which causes high
loss, as shown in Figure 5.11.

k = 1,
ESRT=1;
/* ESRT=1 indicates that the network is in normal ESRT operation*/
E^2SRT()
/* Probe the network state*/
If Si-1=(NC, LR) and Si=(C, LR)
ESRT=0 /* OR state is detected*/
End;
If (ESRT)
/* ESRT operations takes action*/
…
end;
else if (ESRT = 0)
 if Si=(NC, LR) and \ni-1–ni\<= ε/2
 /*network is in MOR states*/
 /*keep f toward frequency used in last state */
 fi+1 = fi
 end;
 If (C, LR) /*state=(C, LR)*/
 /* decrease f toward frequency used in last (NC, LR) state */
 = +i

k
f f f

k k
+1 (NC,LR) (C,LR)

1
10 log log

+1 +1
 K = k+1;

 end;
 else if(NC, LR) and \ni-1–ni\ > ε/2
 /* state=(C, LR)*/
 /* increase f toward frequency used in last (C, LR) state */

=i

f f
f

(NC,LR) (C,LR)
+1

log +log
10

2

k=1

 end;

end;

Figure 5.10 Algorithm of the E2SRT protocol operation.

AU9215_C005.indd 179AU9215_C005.indd 179 2/22/2010 4:13:45 PM2/22/2010 4:13:45 PM

180 ◾ Wireless Sensor Networks: Principles and Practice

WSN congestion control mechanisms must be capable of maintaining accept-
able fi delity (i.e., rate of events) of the delivered signal at the sink during periods of
transient and more persistent congestion. Here, we focus on three distinct congestion
scenarios.

Densely deployed sensors: Persistent hot spots proportional to the impulse rate of
source sensors could occur within the fi rst few hops from the source. In this scenario,
the congestion control should be localized (around the source), fast, and capable of pro-
viding backpressure from the points of congestion back to the sources, to be eff ective.

Sparsely deployed sensors with low data rates: Transient hot spots could occur
anywhere in the sensor fi eld but likely farther from the sources, toward the sink. In
this case, a fast scheme that combines localized backpressure (between nodes identi-
fi ed in a hot-spot region) and packet-dropping techniques would be more eff ective.
Because of the transient nature of congestion, source nodes may not be involved in
the backpressure.

Sparsely deployed sensors generating high-data-rate events: In this scenario,
both transient and persistent hot spots are distributed throughout the sensor fi eld.
To control congestion, we need a fast scheme to resolve localized transient hot
spots, and to perform a closed-loop rate regulation of all source nodes that contrib-
ute toward creating persistent hot spots.

1 2 4
Data received

Only shows the trend here; for details,
please refer to original source.

Note: Error interval in which a
packet loss might occur is

contained within
D

ro
p

ra
te

10 20 50 1000.5
0

1

2

3

4

5

6

Figure 5.11 Total number of packets dropped by the WSN at the sink (drop
rate) as a function of the source rate. The x-axis is plotted on a log scale to high-
light data points with low reporting rates. (Adapted from Wan, C. et al., CODA:
Congestion detection and avoidance in sensor networks, Proceedings of the First
International Conference on Embedded Networked Sensor Systems (SenSys '03),
Los Angeles, CA, November 5–7, 2003, ACM, New York, pp. 266–279.)

AU9215_C005.indd 180AU9215_C005.indd 180 2/22/2010 4:13:45 PM2/22/2010 4:13:45 PM

Transport Layer in Wireless Sensor Networks ◾ 181

Wan et al. [Wan03] proposed an energy-effi cient congestion control scheme for
sensor networks, called CODA (congestion detection and avoidance), that comprises
three mechanisms.

Congestion detection ◾ . Th e fi rst step toward congestion control is to accurately
and effi ciently detect congestion; that is, we need to fi nd out whether or not
congestion occurs in the network. If it does, where does it occur? Congestion
detection is based on the observations by each sensor: What are the present
and past communication channel traffi c conditions in the current sensor?
What is the current buff er occupancy in the sensor? We must know the state
of the communication channel, because neighboring sensors may simultane-
ously use such a channel to transmit data. However, we cannot persistently
listen to the channel to measure local loading, as it could cause high energy
costs. Th erefore, CODA uses a sampling scheme that only activates local
channel monitoring at a certain time. Once congestion is detected, nodes
signal their upstream neighbors via a backpressure mechanism.
Open-loop, hop-to-hop backpressure ◾ . If a node detects congestion, it propa-
gates backpressure signals one-hop upstream toward the source. If a node
receives backpressure signals, it throttles its sending rates, or it may drop
packets based on the local congestion policy (e.g., packet drop). When an
upstream node (toward the source) receives a backpressure message, it checks
its own local network conditions. If it also detects congestion, it will further
propagate the backpressure upstream.
Closed-loop, multisource regulation ◾ . Closed-loop rate regulation operates over a
slower time scale than the above open-loop control. But it is capable of asserting
congestion control over multiple source nodes from a single sink in the event of
persistent congestion. Each source node compares its data rate to some fraction
of the maximum theoretical throughput of the channel (refer to [Wan03] for
more details). If its data rate is less than this fractional throughput, it simply
regulates its rate. However, when its rate is higher than the throughput, it could
make a contribution to network congestion. Under this circumstance, the
closed-loop congestion control is triggered. And the source enters sink regula-
tion, that is, it uses feedback (e.g., ACK) from the sink to maintain its rate. Th e
reception of ACKs in a source node serves as a self-clocking mechanism to help
the source maintain its current event rate. However, if a source fails to receive
ACKs, it will force itself to reduce its own rate.

Th e relationship between open-loop and closed-loop control is as follows: Because
hot spots (i.e., congestion locations) can occur in diff erent regions of a sensor fi eld
due to the above diff erent scenarios, CODA needs both open-loop, hop-to-hop
backpressure and closed-loop, multisource regulation mechanisms. Th ese two
control mechanisms can be used separately. But it is more effi cient to use them
together, as they complement each other well.

AU9215_C005.indd 181AU9215_C005.indd 181 2/22/2010 4:13:45 PM2/22/2010 4:13:45 PM

182 ◾ Wireless Sensor Networks: Principles and Practice

From the above description, we can also see that the rate control scheme per-
forms diff erent operations in source nodes, the sink, or intermediate nodes. Sources
know the properties of the sending traffi c, while intermediate nodes do not. A sink
has the best understanding of the fi delity rate for the received signal, and, in some
applications, sinks are powerful nodes that are capable of performing complicated
heuristics. Th e goal of CODA is to do nothing during no-congestion conditions,
but be responsive enough to quickly mitigate congestion around hot spots once
congestion is detected.

Open-loop and closed-loop control: Th ese have been
used in many system control applications. Open-loop
control is simpler and easier to implement. But closed-
loop control uses output feedback to adjust the input,
which typically brings more accurate, stable system
control.Good idea

5.5.1 Open-Loop, Hop-to-Hop Backpressure
Th e above discussions have briefl y described fast/slow time-scale congestion control.
Backpressure belongs to the fast time-scale control mechanism. If a sensor detects
congestion, it broadcasts a suppression message to its one-hop upstream neighbors.
It knows where the upstream nodes are located, by checking the routing protocol,
which is located below the transport layer protocol in the WSN protocol stack.

When an upstream node (toward the source) receives a backpressure message,
a node may keep propagating backpressure signals if it fi nds serious congestion.
But it may not send back backpressure signals, and just simply drops its incom-
ing data packets upon receiving a backpressure message to prevent its queue from
building up.

Th e above discussion is concerned with open-loop control. For closed-loop con-
gestion control, it is required to deal with any persistent congestion locally, instead
of propagating the backpressure signal.

CODA defi nes depth of congestion as the number of hops that the backpressure
message has traversed before a non-congested node is encountered. Th e depth of
congestion can be used by the routing protocol as follows.

Select a better route path: If the depth of congestion is too high, a routing pro-
tocol may give up the current path and fi nd a new one. Th is can reduce traffi c over
the paths suff ering deep congestion.

Intentionally drop command messages to reduce congestion: Th e nodes can
silently suppress or drop important signaling (i.e., command) messages associated
with routing or data dissemination protocols. Such actions would help to push data
fl ows out of congested regions and away from hot spots in a more transparent way.

AU9215_C005.indd 182AU9215_C005.indd 182 2/22/2010 4:13:45 PM2/22/2010 4:13:45 PM

Transport Layer in Wireless Sensor Networks ◾ 183

5.5.2 Congestion Detection
To detect congestion, there are some easy ways, such as checking whether or not
a queue in the sensor is full, or measuring the current communication channel
traffi c load—if the load is approaching the upper bound, it is an indication of
congestion.

Th e fi rst detection approach, monitoring queue size, has low execution overhead.
But it may not provide accurate congestion detection, as the queue can overfl ow
due to many local conditions. Th e second approach, listening to the communica-
tion channel shared among neighbors, can tell us the channel loading or even give
us protocol-signaling information on the collision detection eff ect. Th erefore, we
prefer the second approach. However, because listening to channels continuously
can incur high energy cost, we should use it only at an appropriate time to minimize
system cost.

So, what is the preferred time to activate channel monitoring? Let us utilize
a trick in MAC protocols. As we know, typically a sensor listens to the channels
before sending packets. Such a channel-listening procedure is called “carrier sense”
in MAC protocols. If the channel is clear during this period, then the radio switches
into the transmission mode and sends out a packet.

Th erefore, the best time to perform channel monitoring is when “carrier sense”
occurs. Th is is because there will be no extra cost to listen and measure channel
loading when a node wants to transmit a packet, as carrier sense is required anyway
before a packet transmission.

In Figure 5.12, we can see a typical scenario with hot spots or congestion areas.
In this example, node 1 sends data to node 3 and node 4 sends data to node 5. Both
data fl ows pass through node 2.

As we can see from the “channel load” of Figure 5.12, node 2 has high buff er
occupancy. Th en node 2 activates the channel-loading measurement. Th e channel-
loading measurement will stop naturally when the buff er is cleared, which indicates
with high probability that any congestion is mitigated and data fl ows smoothly
around the neighborhood.

5.5.3 Listening to Channel Based on Sampling
Let us defi ne epoch time as a time period of transmitting multiple packets. When
a node listens to the channel, we require it to listen for at least 1 epoch time to
measure the channel load. During an epoch period, if a node continuously listens
to the channel, it would incur high energy cost. Th erefore, CODA only performs
periodic sampling (i.e., listening to the channel once for a while), so that the radio
can be turned off if sampling is not being performed.

We use a simple sampling scheme as follows: We measure the channel load for
N consecutive epoch times of length E. In each epoch time, a predefi ned sampling

AU9215_C005.indd 183AU9215_C005.indd 183 2/22/2010 4:13:45 PM2/22/2010 4:13:45 PM

184 ◾ Wireless Sensor Networks: Principles and Practice

rate is used to obtain channel state information, that is, we count the number of
times that the channel state is busy or idle within a single sensing epoch.

We then calculate the sensed channel load, Φ, as the exponential average of Φn
(the measured channel load during epoch n) with parameter α (0 < α < 1) over
the previous N consecutive sensing epochs, as shown in the equation below.

 +Φ = αΦ + − α Φ ∈ Φ = Φ…1 1 1(1) , ({1,2, , },)n n n n N

If the send buff er is cleared before n counts to N, then the average value is
ignored and n is reset to 1. Note: Th e tuple (N, E, α) can be used to tune the sam-
pling scheme to accurately measure the channel load for specifi c radio and system
architectures.

Based on the above equation, we obtain the time-varying sensed channel load.
When such a load exceeds a threshold, it means network congestion. In this case,
a node broadcasts a suppression message as a backpressure signal and, at the same
time, exercises the local congestion policy. A node will continue broadcasting this
message up to a certain maximum number of times with minimum separation as
long as congestion persists.

Th e suppression message provides the basis for the open-loop backpressure
mechanism.

Node 4 Node 2

Node 1

Node 5

Node 3

Channel load
Queue length

Figure 5.12 Wireless network illustrating receiver-based congestion detection.
(Adapted from Wan, C. et al., CODA: Congestion detection and avoidance in sen-
sor networks, in Proceedings of the First International Conference on Embedded
Networked Sensor Systems (SenSys ’03), Los Angeles, CA, November 5–7, 2003,
ACM, New York, pp. 266–279.)

AU9215_C005.indd 184AU9215_C005.indd 184 2/22/2010 4:13:46 PM2/22/2010 4:13:46 PM

Transport Layer in Wireless Sensor Networks ◾ 185

5.6 STCP: A Generic Transport Layer
Protocol for WSNs [YIyer05]

STCP [YIyer05] provides a generic, scalable, and reliable transport layer paradigm
for sensor networks. Th e WSN base station implements the majority of STCP func-
tionalities, as it has unlimited resources compared to sensors.

5.6.1 Data Transmission Sequence in STCP
Similar to the principle of the TCP three-way handshake protocol that aims to
establish an end-to-end TCP connection, before transmitting packets, a sensor
node establishes an association (similar to TCP’s connection concept) with the base
station via a session initiation packet.

Th e session initiation packet conveys the base station the following infor-
mation: the number of fl ows originating from the node, the type of data fl ow,
transmission rate, and required reliability. When the session initiation packet
arrives at the base station, it stores all the information, sets the timers and other
parameters for each fl ow, and acknowledges (ACK) this packet. In the reverse
path, the base station transmits an ACK or NACK depending on the type of
data fl ow.

5.6.2 STCP Packet Formats
Figure 5.13 shows the format of a session initiation packet. A source node transmits
packets associated with each data fl ow independently, as the transmission char-
acteristics may be diff erent in diff erent fl ows. In Figure 5.13, the fi rst fi eld is the
sequence number (16 bit long). It is set to zero for the session initiation packet. Th e

Sequence number (16) Flows (8) Options (8)

Clock (32)

Flow ID #1 (8) Flow bit (8) Trans. rate (8) Reliability (8)

Flow ID #2 (8) Flow bit (8) Trans. rate (8) Reliability (8)

Flow ID #N (8) Flow bit (8) Trans. rate (8) Reliability (8)

Figure 5.13 Session initiation packet. (Adapted from Iyer, Y. et al., STCP: A
generic transport layer protocol for sensor networks, Proceedings of the 14th IEEE
International Conference on Computer Communications and Networks, San
Diego, CA, October 2005.)

AU9215_C005.indd 185AU9215_C005.indd 185 2/22/2010 4:13:46 PM2/22/2010 4:13:46 PM

186 ◾ Wireless Sensor Networks: Principles and Practice

second fi eld (Flows, 8 bit long) indicates the number of fl ows originating at the
node. Th e “clock” fi eld indicates the local clock value at the time of transmission.
Th e Flow ID is used to diff erentiate packets from diff erent fl ows. Th e Flow Bit
fi eld specifi es whether the fl ow is continuous (i.e., the data fl ow does not stop) or
event driven (i.e., only sends out packets when an event is detected). For continu-
ous fl ows, the Transmission Rate fi eld indicates the rate at which a packet will be
transmitted by the source node.

Th e Reliability fi eld directly relates to WSN transport layer tasks. Again, it
means the packet arrival success rate. Here, this fi eld gives the expected reliability
required by the fl ow.

An STCP data packet header is shown in Figure 5.14. It is similar to the ses-
sion initiation packet header. Th e Sequence number for a data packet is a nonzero
positive integer (for a session initiation packet, it is zero). Th e Flow ID indicates the
fl ow type, which helps the base station identify the characteristics of the packet for
that node.

Th e packet header includes an important fi eld that is related to congestion con-
trol, called Congestion Notifi cation (CN). As it is a 1 bit fi eld, when it is 1, it means
that congestion occurs. Th e Clock fi eld gives the local time at which the packet was
transmitted. Th e base station uses the clock value to calculate the estimated trip time
(ETT) for that node and the Flow ID.

Th e ACK packet format is shown in Figure 5.15. All fi elds are as explained
before. Th e ACK/NACK fi eld tells that it is a positive or negative acknowledgment.
STCP uses the 32 bit clock fi eld in conjunction with the sequence number fi eld
to avoid issues related to wraparound. Th e Options fi eld is for future extension
purposes.

Sequence number (16) Flow ID (8) CN (1) Options (7) Clock (32)

Figure 5.14 STCP data packet header. (Adapted from Iyer, Y. et al., STCP: A
generic transport layer protocol for sensor networks, Proceedings of the 14th
IEEE International Conference on Computer Communications and Networks, San
Diego, CA, October 2005.)

Sequence number (16) Flow ID (8) CN (1) ACK/NACK (1) Options (6)

Figure 5.15 STCP acknowledgment packets. (Adapted from Iyer, Y. et al., STCP:
A generic transport layer protocol for sensor networks, Proceedings of the 14th
IEEE International Conference on Computer Communications and Networks, San
Diego, CA, October 2005.)

AU9215_C005.indd 186AU9215_C005.indd 186 2/22/2010 4:13:46 PM2/22/2010 4:13:46 PM

Transport Layer in Wireless Sensor Networks ◾ 187

On packet format: When you design a network pro-
tocol, you should know the packet format fi rst. Th is is
because protocol operations are diff erent when the fi eld
content in a packet header is diff erent. Sometimes we
do not have a standardized packet format to use. In this
case, you need to defi ne a packet format by yourself. Try
to minimize the fi eld length—if you could use 3 bits to
cover fi ve cases, why should you use 4 bits in that fi eld?

WSNs

Remember

5.6.3 Continuous Flows
Th is section focuses on the “continuous fl ow” case. Th e next section describes
the “event-based fl ow” case. Note that the base station can use a session initiation
packet to get to know the sending rate of the source. Th us, it can estimate the
expected arrival time for the next packet. Th e base station maintains a timer and
sends a NACK if it does not receive a packet within the expected time.

When the base station receives a packet from a sensor node, it calculates the ETT
for the next packet to reach the base station by one of the following methods.

 1. Th e time-out value is determined by (T + α × ETT), where T is the time
between two successive transmissions and alpha (α) is a positive integer that
varies with ETT. Th e base station constantly checks to see if it has received a
packet within (T + α × ETT) time units for each sensor node. If a packet has
been received within time, it decreases alpha (α) by 0.5. If a packet is lost (i.e.,
time-out occurs), or if the base station receives a packet after transmitting a
NACK for it, it increases alpha (α) by 0.5.

 2. Th e second approach is to use the Jacobson/Karels algorithm [VJacobson88],
which considers the variance of the round trip time (RTT). Here, we use the
ETT instead of the RTT. In this approach, we can modify the Jacobson/
Karels algorithm by considering the ETT. Th e base station dynamically varies
the values of delta (δ), mu (μ), and phi (ϕ) in the following expressions:

 Sample ETT = base station clock − packet clock value
 Diff erence = Sample ETT − EstimatedETT
 Estimated ETT = Estimated ETT + (δ × Diff erence)
 Deviation = Deviation + δ (|Diff erence| − Deviation)
 Time-Out = μ × ETT + ϕ × Deviation

A source node retransmits packets after it receives a NACK. Otherwise, the packet
must have reached the base station. But, sometimes, maybe the NACK is lost.
Th erefore, the base station maintains a record of all packets for which it has sent

AU9215_C005.indd 187AU9215_C005.indd 187 2/22/2010 4:13:46 PM2/22/2010 4:13:46 PM

188 ◾ Wireless Sensor Networks: Principles and Practice

a NACK. If a packet that has been NACKed successfully arrives, the base station
clears the corresponding entry from the record. Th e base station periodically checks
this record, and, if it fi nds an entry, it retransmits a NACK.

5.6.4 Event-Driven Flows
Th e previous case used NACK, as it is preferred for “continuous” fl ow. We assume
that not many packets are lost; thus, NACK is sent back occasionally. If we used
ACK (positive acknowledgment) in that case, we would have too many ACKs, as
continuous data fl ows have heavy traffi c.

In this section, we move to “event-driven” fl ows. In this case, the fl ow data is
much less than in the former case, because the data transmission is triggered only
when a new event occurs. Th e positive acknowledgments are used to let a source
node know if a packet has reached the base station. Because the data is received
occasionally, there could be big gaps between two packet arrivals. Th us, the base
station cannot estimate the arrival times of the next data packet.

Similar to the TCP principle, the source node buff ers each transmitted packet
and also invokes a timer. When an ACK is received, the corresponding packet is
deleted from the buff er. When the timer fi res before an ACK is received, packets in
the buff er are assumed to be lost and are retransmitted.

5.6.5 Reliability
We mentioned before that a sensor node can specify the required reliability for each
fl ow in the session initiation packet. For continuous fl ows, the base station calculates
a running average of the reliability. We know that reliability can be measured by
the percentage of packets successfully received.

However, the base station will not send a NACK back if the current reliability
satisfi es the required reliability. Th e base station transmits NACKs only when the
reliability goes below the required level.

5.6.6 Congestion Detection and Avoidance
How does STCP achieve the fi nal goal—congestion detection and avoidance? We
may refer to some of the traditional schemes. Th e random early detection (RED)
mechanism designed by Floyd and Jacobson [SFloyd93] simply asks an intermedi-
ate node to drop a packet when it sees congestion. Such a packet drop can cause
time-out or NACK in the source side. Because dropping of packets is detrimental
to sensor networks, STCP does not adopt this approach.

In the scheme proposed in [KRamakrishnan90], intermediate nodes monitor the
traffi c load and explicitly notify the end nodes by setting a binary congestion bit in the
packets. STCP adopts this method of explicit CN with some modifi cation.

Each STCP data packet has a CN bit in its header. Every sensor node maintains
two thresholds in its buff er: thlower and thhigher. When the buff er reaches thlower, the

AU9215_C005.indd 188AU9215_C005.indd 188 2/22/2010 4:13:47 PM2/22/2010 4:13:47 PM

Transport Layer in Wireless Sensor Networks ◾ 189

congestion bit is set with a certain probability. Th e value of this probability can be
determined by an approach similar to that employed in RED. When the buff er
reaches thhigher, it means the congestion is serious; then the node will set the CN bit
in every packet it forwards.

After receiving this packet with the CN fi eld, the base station informs the
source of the congested path by setting the congestion bit in the ACK packet.
When receiving such a special CN, the source will either route successive packets
along a diff erent path or slow down the transmission rate. Note that the nodes rely
on the routing layer algorithm to fi nd alternate routes.

5.6.7 Data-Centric Applications
In data-centric applications, we typically are only interested in collective network-
wide information, instead of an individual sensor node’s data. A few examples
are monitoring of seismic activity and fi nding the maximum temperature in the
network. In such applications, a sensor could aggregate the correlated data, which
is called data aggregation. Due to data aggregation from a large number of source
nodes, we should not ask a base station to acknowledge all the source nodes by an
ACK or a NACK, because this can deplete network resources and energy.

Hence, for data-centric applications, STCP does not provide any acknowledg-
ment scheme. Th is is similar to the UDP case in the Internet. STCP assumes that
data from diff erent sensors are correlated and loss tolerant to the extent that events
are very likely sent to the base station in a collective and reliable way. Th is view is
supported by the authors in ESRT.

5.7 GARUDA: Achieving Effective Reliability for
Downstream Communication [Seung-Jong08]

ESRT takes care of event-to-sink (upstream) reliability issues. In this section, we
consider the problem of reliable downstream point-to-multipoint data delivery, from
a sink to multiple sensors. Especially, we will discuss GARUDA (a mythological bird
that reliably transported gods) proposed in [Seung-Jong08], which can effi ciently
achieve such a downstream reliability.

Because a sink typically sends out important data (such as data query com-
mands) to sensors, we require that any message from the sink has to reach the
sensors reliably. Consider an image sensor network application. Th e sink may send
one of the following three classes of messages, all of which have to be delivered
reliably to the sensors: (1) Over-the-air programming codes: Suppose that the WSN
has reconfi gurable sensors that can be reprogrammed. A sink may want to send an
upgraded image detection/image-processing software to the sensors. (2) Data query
data: A sink may send data query commands to the sensors. (3) Data collection com-
mands: Finally, the sink requests data results from sensors.

AU9215_C005.indd 189AU9215_C005.indd 189 2/22/2010 4:13:47 PM2/22/2010 4:13:47 PM

190 ◾ Wireless Sensor Networks: Principles and Practice

5.7.1 Challenges to the Downstream Reliability of WSNs

5.7.1.1 Environment Constraints

To implement downstream reliability, we need to overcome some challenges. One of
them is to consider the limited network bandwidth and energy sources in a WSN. We
need to minimize the number of retransmission overheads to ensure reliability, because
this can reduce both bandwidth and energy consumption of the message overheads.

We should also realize that node failures (due to power draining) lead to
dynamic network topology. Th e downstream reliability should be adaptive to such
a dynamic topology, that is, it should not use a statically constructed mechanism
(say, a broadcast tree) that does not account for the dynamics of the network.

Another challenge occurs due to the scale of the sensor network. A WSN has
thousands of nodes, and the diameter of the network could be large. Th erefore,
there could be a tremendous amount of spatial reuse possible in the network that
could be utilized to reduce delay. However, the specifi c loss recovery mechanism
used may severely limit such spatial reuse, as we will elaborate later.

5.7.1.2 Acknowledgment (ACK)/NACK Paradox

Should a receiver use an ACK or a NACK to notify the sender of the packet arrival
situation? Th is depends on diff erent conditions. For instance, if the packet loss rate
is very low, a NACK-based approach can save more bandwidth, as there will be few
NACKs sent back to the sender. But for a high-packet-loss environment, an ACK-
based approach can save more message overhead.

In addition, if we use a NACK-based approach, we need to handle the last-
packet-loss issue. Th is issue was discussed before. Th e NACK-based loss recovery
scheme will inherently require in-sequence forwarding of data by nodes in the network
to prevent a NACK implosion [CYWan02]. Th is will clearly limit the spatial reuse
achieved in the network.

5.7.1.3 Reliability Semantics

In WSNs, we need to consider sensor data location dependency and redundancy.

Location dependency ◾ : In many cases, we need to fi nd where the event is exactly
located. A data query command (sent from a base station) can be location
dependent, such as “Send temperature readings from rooms X, Y, and Z.”
Location redundancy ◾ : Due to large sensor density in most WSN applications, it is
not necessary for all sensors in the same event area to reliably deliver their locally
sensed data to the sink. Such upstream (event-to-sink) “partial reliability” can
save network bandwidth. GARUDA is a downstream (sink-to-event) reliability
scheme, which also uses “partial reliability,” that is, the sink only guarantees
reliable communications with part of the sensors in a neighborhood area.

AU9215_C005.indd 190AU9215_C005.indd 190 2/22/2010 4:13:47 PM2/22/2010 4:13:47 PM

Transport Layer in Wireless Sensor Networks ◾ 191

GARUDA defi nes the “reliability semantics” that are required in WSNs based on
the above characteristics. It classifi es the reliability semantics into four categories:

Delivery to the entire fi eld (i.e., the whole WSN), which is the default semantics ◾
Delivery to sensors in a subregion of the fi eld (which is called location-based ◾
delivery)
Delivery to sensors such that the entire sensing fi eld is covered (which is ◾
called redundancy-aware delivery)
Delivery to a ◾ probabilistic subset of sensors (this strategy is used in WSN
resolution scoping)

5.7.2 GARUDA Design Basics
Let us fi rst obtain an overview of GARUDA’s design. Th e centerpiece of GARUDA’s
design is an instantaneously constructible loss recovery infrastructure called the core.
Th e core can be seen as an approximation of the minimum dominating set (MDS) of
the network topology. Th e dominating set is a set of nodes through which we could
reach all other nodes easily (such as using at most one-hop communication from
one of the dominating-set nodes).

MDS is not a new concept for solving networking problems [RSivakumar99].
But GARUDA makes a new contribution to establishing an optimal core for the
loss recovery process. It constructs the core during the course of a single packet
fl ood and uses a two-phase loss recovery strategy. Its loss recovery uses out-of-
sequence forwarding and is tailored to satisfy the goal of minimizing the retrans-
mission overheads and the delay. It also uses a candidacy-based approach for the
core construction to support multiple reliability semantics (Figure 5.16).

Figure 5.16a through d illustrates categories 1 through 4, respectively.
GARUDA is a pulsing-based approach, which means that it can deliver a single

packet reliably to all network nodes. It can ensure the reliable delivery of the fi rst
packet of messages of any size. It has the advantages of NACK-based schemes, but,
at the same time, avoids any pitfalls that consequently arise.

In the following GARUDA overview, we discuss its core infrastructure based
on the assumption that the fi rst packet is reliably delivered. Th en, we see how it can
achieve reliable delivery of the fi rst packet.

5.7.2.1 Loss Recovery Servers: Core

GARUDA calls its core a set of local designated loss recovery servers (here, servers are
not machines; they simply refer to nodes providing loss recovery services). We need to
solve two problems when using an algorithm to construct such a core: (1) How does
the algorithm choose the core nodes for the purpose of minimizing the retransmission
overheads? (2) How does the core construction algorithm adapt to the dynamic
network topology change due to node failures (or other reasons)?

AU9215_C005.indd 191AU9215_C005.indd 191 2/22/2010 4:13:47 PM2/22/2010 4:13:47 PM

192 ◾ Wireless Sensor Networks: Principles and Practice

Believe it or not, GARUDA fi nishes the core construction during the fi rst packet
delivery. As long as the fi rst packet is reliably delivered, we could determine the hop
count of each node, which is the distance of a node from the sink. Any node with a hop
count that is a multiple of three (such as 3, 6, and 9) will elect itself as a core node if it has
not heard from any other core nodes. Th e reason we select a node at a 3i hop distance as
a core node is because it can cover the other nodes at 3i + 1 or 3i − 1 hop distances, so
that it can behave like one of the MDS in the direction from a sink to sensors.

In summary, the instantaneous construction of the core nodes during the fi rst
packet delivery of every new message effi ciently addresses any vulnerability in the
network in terms of node failures.

5.7.2.2 Loss Recovery Process

5.7.2.2.1 Out-of-Sequence Packet Forwarding

In a traditional transport protocol, such as TCP in the Internet, we deliver all pack-
ets with in-order sequence IDs; that is, a sender will not move to higher sequence
IDs if lower ones are not ACKed by the receiver side. Sometimes the network can
lose a packet. Th en we need to retransmit these lost packets before we send the
packets with higher sequence IDs. Th e main drawback of the in-sequence forward-
ing strategy is that precious downstream (sink-to-event) network resources can be
left underutilized when the forwarding of higher-sequence-number packets is sup-
pressed in the event of a loss.

(a) (b)

(d)

s

s s

s

(c)

s

s s

s

Figure 5.16 Types of reliability semantics. (a) Reliable delivery to all sensors.
(b) Reliable delivery to a subregion. (c) Reliable delivery to minimal sensors to
cover the sensing fi eld. (d) Probabilistic reliable delivery to 80 percent of the
sensors. (Adapted from Park, S.-J. et al., IEEE Trans. Mobile Comput., 7(2), 214,
February 2008.)

AU9215_C005.indd 192AU9215_C005.indd 192 2/22/2010 4:13:47 PM2/22/2010 4:13:47 PM

Transport Layer in Wireless Sensor Networks ◾ 193

Th erefore, GARUDA uses an out-of-sequence packet-forwarding strategy that
can overcome the above drawback, as nodes that have lost a packet can continue to
forward any higher (or lower)-sequence-number packets.

5.7.2.2.2 Two-Stage Loss Recovery

Once the core is constructed, a two-stage loss recovery is used: (1) Th e core
nodes recover all lost packets; (2) then the non-core nodes recover the lost
packets.

Because we only select nodes with a hop count of 3i as core nodes, the number
of non-core nodes will be a substantial portion of the total number of nodes in the
network. Th erefore, we ask core nodes to recover the lost packets fi rst, which can
preclude any contention from lots of non-core nodes.

Th e second phase of the loss recovery will not start until a non-core node over-
hears a message from the core node indicating that it has received all the packets.
Hence, the second phase does not overlap with the fi rst phase in each local area,
preventing any contention with the fi rst phase recovery.

5.7.3 GARUDA Framework
To observe more details on the GARUDA scheme, let us assume a network topol-
ogy as shown in Figure 5.17. As mentioned before, the fi rst-packet delivery pro-
cedure can fi nd core nodes with a hop count of 3i. We call all nodes with the
same hop count from the sink a “band.” Th e band ID (bID) is the same as the
hop count.

We consider all nodes with the same bID (i.e., in the same “band”). Obviously,
the bands can be viewed as concentric circles around the sink. Moreover, every core
node should have a (bID) of 3, 6, 9, etc.

5.7.3.1 Core Construction Procedure

In the sink (i.e., the base station): ◾
When the sink sends the fi rst packet, it stamps the packet with a bID of 0.
When a node receives the fi rst packet, it increments its bID by 1 and sets the
resulting value as its own bID.
In the nodes in 3 ◾ i bands:
All nodes in 3i bands can possibly become core nodes. When a node with a
bID of 3i forwards the packet (after a random waiting delay from the time it
received the packet), it will fi rst see if it has heard from any other core node in
the same band. If it has not heard of any other nodes that claim themselves to
be core nodes, it will claim itself to be a core node. Th e reason of doing this is
to reduce the communication confl ict between any two core nodes (and thus
minimize the number of core nodes).

AU9215_C005.indd 193AU9215_C005.indd 193 2/22/2010 4:13:47 PM2/22/2010 4:13:47 PM

194 ◾ Wireless Sensor Networks: Principles and Practice

If any node in the core band (3i) has not selected itself to be a core yet,
when it receives a core solicitation message explicitly, it chooses itself as a core
node at that stage.

To maintain band-to-band communications, every core node in the
3(i + 1) band should also know of at least one core node in the (3i) band. If it
receives the fi rst packet through a core node in the (3i) band, it can determine
this information implicitly, as every packet carries the previously visited core
node’s identifi er bID.
Nodes in 3 ◾ i + 1 bands:
When a node A with a bID of (3i + 1) receives the fi rst packet, it fi rst checks
to see if the packet arrived from a core node or from a non-core node. If the
source S0 was a core node, node A sets its core node as S0. Otherwise, it sets S0
as a candidate core node and starts a core election timer that is set to a value
larger than that of the retransmission timer for the fi rst-packet delivery. If S1
hears from a core node ′0S before the core election timer expires, it sets its core
node to ′0S .

However, if the core election timer expires before hearing from any other
core node, it sets S0 as its core node and sends a one-to-one (unicast) message
to S0 informing it of the decision.
Nodes in 3 ◾ i + 2 bands:
When a node A with a bID of the form (3i + 2) receives the fi rst packet, at
that point, it does not know any 3(i + 1) nodes. Hence, it invokes its core
election timer. If it hears back from a core node in the 3(i + 1) band before the
timer expires, it chooses that core node as its core node. If it does not hear
from the 3(i + 1) band, it sends an anycast core solicitation message with the
target bID set to 3(i + 1). Any 3(i + 1) band nodes that receive the anycast

Core node
Sink

Sensor node

1. First-packet
delivery

2. Determination of
band ID

3. Determination of
 core node status

Nodes that
received all

packets

Figure 5.17 Instantaneous core construction in GARUDA. (Adapted from Park, S.-J.
et al., IEEE Trans. Mobile Comput., 7(2), 214, February 2008.)

AU9215_C005.indd 194AU9215_C005.indd 194 2/22/2010 4:13:48 PM2/22/2010 4:13:48 PM

Transport Layer in Wireless Sensor Networks ◾ 195

message are allowed to respond after a random waiting delay. Th e delay is set
to a smaller value for core nodes to facilitate the reuse of an already elected
core node.

5.7.3.2 Two-Phase Loss Recovery

 a. Loss detection. When a core node receives an out-of-sequence packet, the core node
infers a loss, and it sends a request to an upstream (closer to the sink) core node
only if it is notifi ed that the missing packet is available at the upstream core node.

 b. Loss recovery. When an upstream core node receives a retransmission request from
a downstream core node, it performs a retransmission for the lost packet. Figure
5.18 shows the loss detection and the loss recovery principles between core
nodes at the (3i) band and core nodes at the 3(i + 1) band. If any of the non-
core nodes overhears the requested packet, it retransmits the requested packet.

GARUDA uses “bands” to defi ne WSN core and non-
core nodes. Th is is an interesting idea. A researcher has
used the “throwing a stone in water” phenomenon to
fi nd an interesting way to defi ne network topology—
“ripples.” Th at is, he tries to generate “ripples” when a
sender broadcasts a message. Th e “ripple” concept is sim-
ilar to the “band” concept here. But defi ning the band/

ripple generation procedure is not an easy task, as we need to consider many
details, such as broadcasting time, hop count, and neighbors’ communica-
tion confl icts.

Good idea

4. Core recovery
from upstream core

Unicast
transimissions

PiggybackedbitmapData
Request

Figure 5.18 Loss recovery for core nodes in GARUDA. (Adapted from Park, S.-J.
et al., IEEE Trans. Mobile Comput., 7(2), 214, February 2008.)

AU9215_C005.indd 195AU9215_C005.indd 195 2/22/2010 4:13:48 PM2/22/2010 4:13:48 PM

196 ◾ Wireless Sensor Networks: Principles and Practice

Problems and Exercises
5.1 Multi-choice questions
 1. Which of the following is not one of the tasks of the transport layer?
 a. Reliable source-to-destination transmission
 b. Network congestion detection
 c. Network congestion avoidance
 d. Buff er management
 2. Why does TCP not work in WSNs?
 a. TCP incurs too much overhead when used in sensors.
 b. Th e errors accumulate in each wireless hop.
 c. TCP leads to large power consumption.
 d. Both A and B.
 3. Which of the following belong(s) to PSFQ’s features?
 a. Send out data slowly
 b. Recover data quickly
 c. Hop-to-hop error recovery
 d. All of the above
 4. If a single hop incurs a wireless loss rate of 10 percent, fi ve-hop links will

cause a loss rate of
 a. 40 percent
 b. 5 percent
 c. 10−5
 d. 0.2
 5. Th e PSFQ protocol does not have which of the following functions?
 a. Data pump
 b. Error recovery (fetch)
 c. End-to-end retransmission and timer setup
 d. Status reporting
 6. ESRT does not have which of the following features?
 a. It can achieve sink-to-sensors reliability.
 b. It adjusts the sensor’s reporting frequency based on the reliability requirement.
 c. It aims to reach the OOR state.
 d. If in (C, LR), it needs to quickly decrease the reporting frequency.
 7. E2SRT improves ESRT in which of the following aspect(s)?
 a. When the desired reliability is beyond the capability of current network

settings, the network will never be able to converge to the OOR state
where the normalized reliability equals to 1.

 b. Th e network oscillates between the (C, LR) state with a fairly high
reporting rate and the (NC, LR) state with a very low reporting rate.

 c. It greatly saves the sending power consumption during approaching to
OOR.

 d. Both a and b.

AU9215_C005.indd 196AU9215_C005.indd 196 2/22/2010 4:13:49 PM2/22/2010 4:13:49 PM

Transport Layer in Wireless Sensor Networks ◾ 197

 8. CODA has which of the following features?
 a. CODA is to achieve reliability.
 b. CODA achieves congestion reduction.
 c. CODA achieves both reliability and congestion avoidance.
 d. None of the above.
 9. STCP does not have which of the following features?
 a. STCP protocols are implemented in the sensor nodes.
 b. STCP is a generic, scalable, and reliable transport layer paradigm for

WSNs.
 c. STCP provides both reliability and congestion control.
 d. STCP protocols mostly run in the base station.
 10. GARUDA follows which of the following procedure(s)?
 a. It achieves reliable sink-to-sensors transmission.
 b. It uses the concept of dominant set to build the core.
 c. It recovers data in diff erent ways for core and non-core nodes.
 d. All of the above.
5.2 Explain why TCP does not work well in WSNs.
5.3 Explain how PSFQ sets up a retransmission timer in each node for the packet

loss case.
5.4 Why does ESRT propose the concept of states and use OOR as the aim?
5.5 Besides the formula that ESRT uses when approaching to OOR, can you think

of other good functions that can also achieve a similar approaching speed?
5.6 How does ESRT detect congestion?
5.7 How does E2SRT improve ESRT?
5.8 Explain how GARUDA forms the core nodes.

AU9215_C005.indd 197AU9215_C005.indd 197 2/22/2010 4:13:49 PM2/22/2010 4:13:49 PM

AU9215_C005.indd 198AU9215_C005.indd 198 2/22/2010 4:13:49 PM2/22/2010 4:13:49 PM

IVCOMPUTER
SCIENCE
PRINCIPLES

AU9215_S004.indd 199AU9215_S004.indd 199 12/17/2009 3:13:14 PM12/17/2009 3:13:14 PM

AU9215_S004.indd 200AU9215_S004.indd 200 12/17/2009 3:13:14 PM12/17/2009 3:13:14 PM

201

6Chapter

Operating System
in Sensors

Although operating system (OS) is a typical computer science (CS) topic, WSN
engineers who design sensor hardware should also understand WSN OS charac-
teristics, as a successful WSN system needs a tight integration of hardware and
software. For instance, if a WSN OS has a set of interrupt commands, how do we
design these interrupt wires between a microcontroller and analog sensors? If an
OS has a wake-up command, how do we design a wake-up circuit to trigger a radio
transceiver if there is data to send? Th is chapter introduces some most popular
WSN OSs, such as TinyOS.

6.1 TinyOS [Levis06]
Due to serious resource constraints in sensors, TinyOS [Levis06] is designed to
be a tiny (smaller than 400 bytes), fl exible OS with a set of reusable components.
Th ese components could be programmed and assembled into application-specifi c
systems. TinyOS is an event-driven OS, that is, it defi nes a set of functions to be
triggered by asynchronous sensor network events, such as fi re event. TinyOS is
implemented in the NesC language [TinyOS07], which has a similar syntax as that
of the regular C language.

AU9215_C006.indd 201AU9215_C006.indd 201 2/12/2010 2:40:09 PM2/12/2010 2:40:09 PM

202 ◾ Wireless Sensor Networks: Principles and Practice

As TinyOS is still an OS, it needs to have the common
functionalities of an OS. For instance, it needs to man-
age fi les, allocate memory for applications, and recycle
unused CPU resources. However, diff erent from other
OSs, TinyOS should fi t in a WSN’s tiny memory and
slow CPU features. It also needs to minimize energy
consumption to elongate sensors’ battery lifetime.

WSNs

Remember

6.1.1 Overview
Any TinyOS program can be represented as a graph of software components. Each
component is an independent computational entity. Th ere are interfaces among
diff erent components to ensure that they can refer to each other.

Components have three computational abstractions: commands, events, and tasks.
Commands and events are mechanisms for inter-component (i.e., between components)
communication, while tasks are used to express intra-component (inside one compo-
nent) concurrency.

A command is sent out by one component to request another component to
execute operations (i.e., services). For instance, a software entity may request the
sensor to report current readings.

An event is a special software entity that is generated from three sources:
(1) When a command is executed, an event message is generated to signal the com-
pletion of that service. (2) When the sensor hardware has some special event (such
as the wake-up of a radio transceiver), a hardware interrupt may be generated to
signal such a new event. (3) Events may also be signaled asynchronously due to the
network message arrival in a sensor or a base station.

From a traditional OS’s viewpoint, commands are analogous to “downcalls”
and events are like “upcalls.” Commands and events cannot block each other. Th ey
may be carried out in diff erent time phases. For instance, TinyOS uses a phase to
issue the request for service (i.e., sending out the command) and uses another phase
to send out the completion signal (i.e., generating the corresponding event). Th ese
two phases are decoupled. Th e command returns immediately; however, the event
signals could be completed at a later time.

Why do we use tasks? In many cases, we cannot fi nish all operations in a com-
mand/event handler immediately, especially if these operations need to use multiple
sensor hardware resources (such as radio transceiver, analog sensor, and fl ash mem-
ory). Th us, commands and event handlers may post a task, a function to be executed
by the TinyOS scheduler at a later time. By executing the tasks at a later time,
we make commands and events “look” very responsive, that is, they return results
immediately. However, internally we defer any extensive computation to the tasks.

AU9215_C006.indd 202AU9215_C006.indd 202 2/12/2010 2:40:10 PM2/12/2010 2:40:10 PM

Operating System in Sensors ◾ 203

Although we could use tasks to perform signifi cant computation, a task cannot
run indefi nitely, that is, run to completion is its basic execution model. Tasks repre-
sent internal concurrency within a component and may only access the state within
that component (i.e., a task cannot access two components during its execution). Th e
standard TinyOS task scheduler uses a non-preemptive, FIFO (fi rst-in, fi rst-out)
scheduling policy.

On components: In TinyOS, all hardware resources are represented as compo-
nents. For example, after a component receives the getData() command, later on
it will signal a dataReady() event as long as a hardware interrupt fi res.

TinyOS has defi ned many components for WSN programmers. An application
developer writes components to compose an application. Th en, these components
are wired to TinyOS components to provide implementations of the required ser-
vices. In the following text, we further look into the component model.

6.1.2 Component Model
Components encapsulate a specifi c set of services that are specifi ed by interfaces. Not
only does each WSN program consist of a series of components, TinyOS itself con-
sists of a set of reusable system components along with a task scheduler.

A wiring specifi cation can be used to connect an application to a series of com-
ponents. And the wiring specifi cation defi nes the complete set of components that
the application uses. Th e concrete component implementations are independent of
the wiring specifi cation.

A TinyOS compiler can eliminate some unnecessary components after an anal-
ysis and inlining of the entire program. Th e procedure of inlining can operate across
diff erent component boundaries to improve both program size and effi ciency.

On the concept of “interfaces”: As shown in Figure 6.1, any component can have
two types of interfaces: (1) the interfaces it provides and (2) the interfaces it uses.

StdControl

TimerM

Timer

Clock

module TimerM

provides {
interface StdControl;

interface Timer [uint8_t id];

uses interface Clock;

implementation

... a dialect of C ...

{

{

{

{

{

Figure 6.1 Specifi cation and graphical depiction of the TimerM component.
(Adapted from Levis, P. et al., TinyOS: An operating system for sensor network,
Ambient Intelligence, Weber, W. et al., Eds., Springer-Verlag, New York, 2004.)

AU9215_C006.indd 203AU9215_C006.indd 203 2/12/2010 2:40:10 PM2/12/2010 2:40:10 PM

204 ◾ Wireless Sensor Networks: Principles and Practice

Th rough these interfaces, a component can directly interact with other components.
A component can provide or use the same interface type several times as long as it
gives each instance a separate name.

A component uses an interface to represent a specifi c service (e.g., sending a
message). In Figure 6.1, a component called TimerM has in total three interfaces:
(1) It provides the StdControl and Timer interfaces and (2) uses a Clock inter-
face. In Figure 6.1, the provided interfaces are shown above the TimerM component
and the used interfaces are shown below. Bidirectional arrows depict commands
and events. Th e lightning depicts commands.

All interface details are shown in Figure 6.2.
As shown in Figure 6.2, interfaces are bidirectional and contain both commands

and events. Th e providers of an interface implement the function of a command,
while the users of an interface implement the function of an event. For instance, the
Timer interface (Figure 6.2) defi nes two commands that are “start” and “stop,”
and an event is called “fi re.”
Note: In this example, we do not use two separate interfaces (one for its com-
mands and another for its events) to represent the interaction between the timer
and its client. Th is is because combining them in the same interface makes the
specifi cation much simpler and helps to reduce bugs when wiring components
together.

TinyOS is implemented in the NesC language. Components written in NesC
consist of two types: modules and confi gurations.

interface StdControl {
command result _ t init();
command result _ t start();
command result _ t stop();
 }
interface Timer {
command result _ t start(char type, uint32 _ t interval);
command result _ t stop();
event result _ t fired();
 }
interface Clock {
command result _ t setRate(char interval, char scale);
event result _ t fire();
 }
interface SendMsg {
command result _ t send(uintl6 _ t address, uint8 _ t length, TOS _ MsgPtr
msg);
event result _ t sendDone(TOS _ MsgPtr msg, result _ t success);
 }

Figure 6.2 Sample TinyOS interface types. (Adapted from Levis, P. et al.,
TinyOS: An operating system for sensor networks, Ambient Intelligence, Weber, W.
et al., Eds., Springer-Verlag, New York, 2004.)

AU9215_C006.indd 204AU9215_C006.indd 204 2/12/2010 2:40:11 PM2/12/2010 2:40:11 PM

Operating System in Sensors ◾ 205

Modules can be used to call or execute commands and events. A module can
declare private state variables and data buff ers.

Confi gurations use interfaces to wire other components together. Figure 6.3
defi nes the TinyOS timer service. Its implementation is based on a confi gura-
tion (called TimerC), which wires the timer module (TimerM) to the hardware
clock component (HWClock). Confi gurations allow multiple components to be
aggregated together into a single macro component that exposes a single set of
interfaces.

A component uses its interfaces (called interface namespace) to refer to the
commands and events that it uses. A confi guration wires interfaces together by
connecting the local names of diff erent interfaces together, that is, a component
invokes an interface without referring explicitly to its implementation. Th is makes
it easy to introduce a new component in the component graph that uses the same
interface.

An interface can be wired to other interfaces multiple times. Figure 6.4 illus-
trates an example. Th e StdControl interface of Main is wired to Photo,
TimerC, and Multihop.

Parameterized interface: In a component, parameterized interface can be used
to export many instances of the same interface, parameterized by an identifi er
(typically a small integer). For example, in Figure 6.1, the Timer interface is a
parameterized interface that uses an 8 bit id, which is an extra parameter. Such a
parameterized interface allows the single Timer component to implement multi-
ple, separate timer interfaces, one for each client component. Because the selection

TimerC

TimerM
Timer

Timer

StdControl

StdControl

HWClock
Clock

Clock

configuration TimerC {

provides {

interface StdControl;

interface Timer[uint8_tid];

implementation {

components TimerM, HWClock;

StdControl = TimerM.StdControl;

Timer = TimerM.Timer;

TimerM.Clk -> HWClock.Clock;

}

}

}

Figure 6.3 TinyOS’s timer service: the TimerC confi guration. (Adapted from
Levis, P. et al., TinyOS: An operating system for sensor networks, Ambient
Intelligence, Weber, W. et al., Eds., Springer-Verlag, New York, 2004.)

AU9215_C006.indd 205AU9215_C006.indd 205 2/12/2010 2:40:11 PM2/12/2010 2:40:11 PM

206 ◾ Wireless Sensor Networks: Principles and Practice

of IDs should be unique, a special unique keyword is used each time a unique
identifi er is needed.

Now, we can see how a TinyOS application is built by NesC: First, we can
use NesC to build a top-level confi guration. Th en, we defi ne diff erent interfaces
in that confi guration to wire all needed components together. Figure 6.4 shows
an application called SurgeC. It consists of the following components: Main,
Photo, TimerC, Multihop, LedsC, and SurgeM. Such an application periodically
(TimerC) acquires light sensor readings (Photo) and sends them back to a base
station using multi-hop routing (Multihop).

NesC is based on the C syntax and executions. However, it is diff erent from C in
the following two aspects: (1) NesC does not use function pointers. Its compiler knows
the precise call graph of a program. Such a call graph enables cross-component optimi-
zations, which can remove the overhead of cross-module calls. (2) Dynamic memory
allocation is not supported in NesC. It statically declares all of a program’s state. Th is
scheme can prevent memory fragmentation as well as runtime allocation failures.

6.1.3 Execution Model and Concurrency
A WSN can generate many events, such as abnormal sensor data detection, low-battery
alert, and sensor sleep/wake-up. Th e event-centric domain of WSNs requires fi ne-grained
concurrency. And these events can arrive at any time. How do we handle these events?

Main

Photo
StdCon StdCon StdCon

Multihop

StdCon

SendMsg

SendMsg

Leds

Leds
LedsC

StdCon

SurgeC

SurgeM

ADC

Timer

Timer

TimerC
ADC

Figure 6.4 The top-level confi guration for the Surge application. (Adapted
from Levis, P. et al., TinyOS: An operating system for sensor networks, Ambient
Intelligence, Weber, W. et al., Eds., Springer-Verlag, New York, 2004.)

AU9215_C006.indd 206AU9215_C006.indd 206 2/12/2010 2:40:11 PM2/12/2010 2:40:11 PM

Operating System in Sensors ◾ 207

Th ere could be two approaches: using traditional OS approaches, such as Windows,
which atomically enqueues incoming events and runs them at an appropriate time; and
executing an event handler immediately in the style of active messages (AMs).

Because many of these events are important to WSN applications (e.g., a
detected event needs immediate attention), the second approach is more suitable to
WSNs. While the core of the TinyOS execution model consists of run-to-completion
tasks that represent the ongoing computation, the event handlers are signaled asyn-
chronously by the hardware.

Tasks are defi ned as explicit entities. When the program is executed, tasks are sent
to the task scheduler for execution in any time order (such as FIFO). Th e execution
must obey the run-to-completion rule, that is, once it picks up a task to execute, it
must complete the execution. We can use “atomicity” to represent the run-to-completion
nature of a task. However, tasks are not atomic if an interrupt handler comes, or if
the program needs to respond to commands and events that an interrupt invokes.

TinyOS defi nes the synchronous code (SC) and the asynchronous code (AC) as fol-
lows: (1) SC—It can only be reached through tasks. (2) AC—It is reachable through at
least one interrupt handler. Components often have a mix of the SC and the AC. TinyOS
allows programmers to build responsive, concurrent data structures that can safely share
data between the AC and the SC. TinyOS uses non-preemption to eliminate races (i.e.,
competitions of CPU resources) among tasks. Unfortunately, there are still potential
races between the SC and the AC, as well as between the AC and the SC.

Typically, when there is any update to the shared state that is reachable from
the AC, a data race could possibly occur. Th en how do we ensure “atomicity” in
such cases? We have two options to avoid the races: (1) We could convert all of the
confl icting codes to tasks (here, the codes are for the SC only) or (2) we could use
atomic sections to update the shared state. Here, the atomic section is a small code
sequence that is guaranteed to run atomically. For an atomic section, we cannot use
any loops inside it and we cannot turn on any interrupts.

In summary, we need to ensure a race-free program execution using the following
approach.

Race-free invariant: Any update to the shared state is either SC-only or
occurs in an atomic section. NesC makes sure that the above race-free
invariant is met during compile time, that is, the NesC compiler can
prevent nearly all data races.

Th e data race should be avoided in any program due to the following reasons.

Th e data race can cause a class of very painful nondeterministic program bugs.
If it is race free, the composition can essentially ignore concurrency, that
is, it will not care which components generate concurrency or how those
components are wired together, because the compiler will catch any sharing
violations during the compile time.

AU9215_C006.indd 207AU9215_C006.indd 207 2/12/2010 2:40:11 PM2/12/2010 2:40:11 PM

208 ◾ Wireless Sensor Networks: Principles and Practice

A wide variety of concurrent data structures and synchronization primitives
could be enabled by a strong compile-time analysis. NesC has several varia-
tions of concurrent queues and state machines to easily handle time-critical
actions directly in an event handler, even when they update the shared state.
For example, NesC always handles radio events that are in the interrupt
handler until a whole packet has arrived, at which point the handler posts
a task.

6.1.4 Active Messages
An important issue is: How does TinyOS handle wireless communications
among sensors? A concept, called active messages (AMs), becomes the core
TinyOS communication abstraction [TVon92]. An AM is a small (only 36 bytes
long) packet associated with a 1 byte handler ID. When a sensor receives an
AM, it immediately dispatches the message (using an event) to one or more
handlers. And these handlers are registered to receive such AMs. Such handler
registration is accomplished through static wiring and a parameterized interface,
as described above.

TinyOS uses AM interfaces to achieve an unreliable, single-hop datagram pro-
tocol. AM interfaces also provide a unifi ed communication interface to both the
radio unit and the built-in serial port (for wired nodes, such as base stations).

Multi-hop, reliable communications could be achieved by higher-level proto-
cols above the AM interfaces. Th e exchange of AMs is also event driven. AMs also
tightly couple the local CPU computations and radio communications.

6.1.5 Implementation Status
So far, TinyOS has been used in a wide range of hardware platforms. It is suitable to
many companies’ sensor products. People have extended the TinyOS environment
by adding visualization, debugging, and support tools, as well as a fi ne-grained
simulation environment.

By installing TinyOS in both sensors and other machines, such as desktops, we
could build proxies between sensor networks and the Internet, allowing WSNs to
integrate with server side tools implemented in Java, C, or MATLAB®. TinyOS also
allows us to build software interfaces to database engines, such as PostgreSQL.

6.1.6 Main Features
Absolute size: Surprisingly, TinyOS is really a tiny operating system because a

base TinyOS environment only needs around 400 bytes. If it includes associ-
ated C runtime primitives (such as fl oating-point libraries), TinyOS can fi t in

AU9215_C006.indd 208AU9215_C006.indd 208 2/12/2010 2:40:11 PM2/12/2010 2:40:11 PM

Operating System in Sensors ◾ 209

just over 1 kB. If it needs to add some NesC-based applications, in most cases,
they fi t in less than 16 kB. But, for some extra-large TinyOS applications,
such as TinyDB, they still fi t in less than 64 kB so far.

Footprint optimization: Besides using standard techniques (such as stripping the
symbol table) to reduce the code size, TinyOS also uses a whole-program
compilation to prune a dead code. Cross-component optimizations are used
to get rid of redundant operations and module-crossing overhead.

As a matter of fact, NesC uses a whole-program analysis to remove many
of these boundary crossings and optimize the entire call paths through
extensive cross-component optimizations. (Such optimizations include
constant propagation and common sub-expression elimination.) Such
whole-program optimizations make NesC programs smaller and faster
than unoptimized codes and the original handwritten C code that predates
the NesC language.

Hardware/software transparency: TinyOS uses fl exible component models to
easily shift the hardware and software boundary. For instance, components
can generate two types of events: software upcalls and hardware interrupts.

6.1.7 Low-Power Optimizations
TinyOS possesses a series of features to reduce energy consumption. For example,
TinyOS uses split-phase operations and an event-driven execution model to reduce
power usage, because these operations avoid spinlocks and heavyweight concur-
rency (e.g., threads). A TinyOS scheduler can command the microprocessor into a
low-power sleep mode whenever the task queue is empty. Such a sleep mode further
reduces power consumption.

6.2 LA-TinyOS—A Locality-Aware Operating
System for WSNs [Huang07]

LA-TinyOS [Huang07] proposes a new WSN OS that uses locality to improve event
detection performance and, at the same time, to reduce energy consumption. A WSN
locality includes two types: temporal and spatial. Th ese are defi ned as follows.

Temporal locality: When an event occurs, if it is really a WSN system anomaly,
it could be observed again for a limited period of time during its fi rst appear-
ance. Th is is called temporal locality.

Spatial locality: If an anomaly is caused by a mobile object passing through a
WSN, such an anomaly is likely to be observed again by neighboring nodes.
Th is phenomenon is known as spatial locality.

AU9215_C006.indd 209AU9215_C006.indd 209 2/12/2010 2:40:11 PM2/12/2010 2:40:11 PM

210 ◾ Wireless Sensor Networks: Principles and Practice

If you could remember the Computer Architecture course,
the design of caches also uses the same principle: (1) Based
on temporal locality, if an instruction is used in one time,
it is likely to be used again in a near future. (2) Based on
spatial locality, if an instruction is selected to be executed,
its neighboring instructions are likely to be executed too.
Th erefore, the caches could be used to store such locality-
aware instructions to speed up CPU execution.

Good idea

Sometimes, both temporal and spatial locality could occur in the same anomaly,
for instance, in an environmental surveillance application, when a sensor detects an
intruder. Such an intrusion event is likely to be continuously raised by the same node for
some time, that is, temporal locality occurs. If the intruder moves around, the intruder
may be detected by the neighboring nodes shortly, that is, spatial locality occurs.

Typically, a sensor uses a task manager to sense an event. Th e task manager is
activated periodically to sense the event. Th e detection period could be very long,
because the task manager usually senses nothing out of the ordinary.

Th e longer the detection period, the less the energy consumed by a sensor. However,
when an anomalous event occurs, due to temporal and spatial locality, a shorter period
is favored, as we need to increase the activation frequency of the task manager to
observe the anomaly more closely.

It would be good if a task manager is locality aware, that is, if it could adjust its
period automatically, based on the principle of temporal and spatial locality.

Unfortunately, most of WSN OSs do not provide kernel-level support to facilitate
the development of locality-aware tasks. Th erefore, most WSN applications perform
no locality-aware tasks, or construct such tasks in a user mode (i.e., not implemented
in the OS). Such a user mode tends to be error prone, less effi cient, and redundant.

LA-TinyOS improves TinyOS by considering locality-aware task imple-
mentation. It achieves this by adding the LocalityM component to TinyOS.
LocalityM provides an interface called LocalityControl for programmers
to confi gure their locality elements. A data structure, as shown in Table 6.1, is
maintained by LocalityM. Such a data structure can be used to record all locality
confi gurations. Th is table is called the locality confi guration table.

registerEvent(string EventName);
configureLocality (event table entry T e,
uint 8 TimerID,
uint 32 GracefulLength,
uint 8 HopCount,
(void _) FuncEnter,
(void _) FuncLeave);
triggerEvent (string EventName);

AU9215_C006.indd 210AU9215_C006.indd 210 2/12/2010 2:40:11 PM2/12/2010 2:40:11 PM

Operating System in Sensors ◾ 211

In the above three commands, registerEvent registers a new entry in the
locality confi guration table, configureLocality specifi es locality confi gura-
tions, and triggerEvent is called when an anomalous event is detected to enter
its locality.

An example code that uses a locality confi guration data structure and commands
is shown in Figure 6.5. It is a locality-aware Oscilloscope in LA-TinyOS.

In Line 8, we can see that an event named “A” is registered in the locality
confi guration table. In Line 9, it calls configureLocality to specify locality
confi gurations of this event.

In Line 11, the reg operator associates dataTask with this event. If we look
back at Table 6.1, its fi rst row shows the locality confi gurations of this event.

In Line 14, we can see that when the sensed data is larger than a specifi c thresh-
old (0x03B0), an anomaly is detected and event “A” is triggered to enter its locality
(Line 15).

In the last column of Table 6.1 (called “adaptation functions”), enterl and
leavel are pointers to self-adaptation functions provided by this application. It
basically means that when “A” is detected, LA-TinyOS executes enterl to enter
its locality and it executes leavel to leave its locality.

6.2.1 Change Timer to Respond to Temporal and
Spatial Locality

Now let us see how LA-TinyOS updates its timer based on locality confi gurations.
A component called TimerM maintains a list of software timers, as shown in
Table 6.2. Th e timer ID tells us whether it is a one-shot timer (i.e., it is terminated
after it expires) or a periodic timer, its default timer period (a counter’s value), and
the time left before it expires.

If a timer interrupt is triggered, the interrupt handler of HWClock reduces the
value in the Time-to-Expired fi eld of each software timer. When the Time-to-Expired
reaches zero, it means that the timer expires; a corresponding handler is then executed.

Table 6.1 LA-TinyOS Locality Confi guration Table

Event Timer ID
Graceful
Length Tasks Hops

Adaption
Functions

“A” 1 2000 dataTask 2 enterl()/leavel()

“B” 2 1000 getMax 1 Null/Null

Source: Adapted from Huang, T. et al., LA-TinyOS: A locality-aware oper-
ating system for wireless sensor networks, Proceedings of the
2007 ACM Symposium on Applied Computing (SAC '07), Seoul,
Korea, March 11–15, 2007, ACM, New York, 1151–1158.

AU9215_C006.indd 211AU9215_C006.indd 211 2/12/2010 2:40:12 PM2/12/2010 2:40:12 PM

212 ◾ Wireless Sensor Networks: Principles and Practice

When an event enters its locality, LA-TinyOS uses the following data structure
to change the period of the software timer:

setLocailityTimer (unit8 _ t TimerID,
unit32 _ t ReducedPeriod);

In the above data structure, LA-TinyOS calculates its reduced period to show its
adaptation to temporal locality. Its TimerID can be easily found by searching the

1: implementation
2: {
3: command result _ t StdControl.start(){
4: event _ table _ entry _ T*e;
5: call SensorControl.start();
6: call Timer.start(TIMER _ REPEAT. 1500);
7: …
8: e = call LocalityControl.registerEvent(“A”);
9: call LocalityControl.configureLocality(e, 1, 2000, 10: 2, enterl,

leavel);
11: reg dataTask() “A”;
12: }
13: async event result _ t ADC.dataReady(uint16 _ t data){
14: if (data>0x03B0){ // an anomaly
15: call LocalityControl.triggerEvent(“A”);
16: }
17: pack->data[packetReadingNumber] = data;
18: post dataTask();
19: }
20: }

Figure 6.5 Part of locality-aware oscilloscope. (Adapted from Huang, T. et al.,
LA-TinyOS: A locality-aware operating system for wireless sensor networks,
Proceedings of the 2007 ACM Symposium on Applied Computing (SAC '07),
Seoul, Korea, March 11–15, 2007, ACM, New York, 1151–1158.)

Table 6.2 List of Software Timers in the TimerM Component

Timer ID Type Status Period Time-to-Expired

0 ONE SHOT On 300 240

1 REPEAT On 1500 360

2 REPEAT Off 500 450

Source: Adapted from Huang, T. et al., LA-TinyOS: A locality-aware
operating system for wireless sensor networks, Proceedings
of the 2007 ACM Symposium on Applied Computing (SAC
'07), Seoul, Korea, March 11–15, 2007, ACM, New York,
1151–1158.

AU9215_C006.indd 212AU9215_C006.indd 212 2/12/2010 2:40:12 PM2/12/2010 2:40:12 PM

Operating System in Sensors ◾ 213

localityconfiguration table. Th e default period will be saved in a kernel
data structure. When an event leaves its locality, setLocailityTimer is again
applied to reset its period.

In Table 6.1, the third column indicates the graceful length of each event. Whenever
an anomaly is detected, this counter is reset to its full value. When an event enters its
locality, LA-TinyOS reduces its graceful length counter at each timer interrupt.

Eventually, the graceful length counter reaches zero. Th en, the “period” of its
associated software timer (shown in Table 6.2, column 4) is reset to its default
value, to indicate that this event is leaving its locality.

Th e above description corresponds to the temporal locality case. How does
LA-TinyOS implement spatial locality? It does this by broadcasting alerting messages.
Th e number of broadcasting hops defi nes the alerting area. Th e number of hops is
also available in the locality confi guration table (Table 6.1). When a sensor receives an
alerting message, it activates a corresponding anomalous event to enter its locality.

6.2.2 Multiple-Level Scheduler
As we mentioned in Section 6.1, TinyOS uses a non-preemptive FIFO scheduler.
Now the issue is as follows: Such a simple scheduler cannot diff erentiate tasks that are
associated with an anomalous event from tasks that are regular and nonurgent.

To solve such an issue, LA-TinyOS proposes a three-level scheduler without
changing the TinyOS non-preemptive scheduling, as follows:

Level 1: When a sensor detects an anomalous event, it registers associated tasks
in the locality confi guration table. Th ese tasks are queued in the fi rst level and
are scheduled to be executed with the fi rst priority.

Level 2: For spatial locality, tasks are associated with an event that is triggered to
enter its locality by an alerting message. Th ese tasks are queued in the second-
level FIFO queue.

Level 3: When level 1 and level 2 tasks do not occur, the nonurgent, normal
tasks are served in the third-level FIFO scheduler.

Th e above three-level FIFO scheduler can make sure that LA-TinyOS performs
tasks according to their importance.

Th e multilevel hierarchical tree concept has been used
to obtain solutions to many problems. Its basic idea is
to avoid fl at (i.e., one-level) topology, where all nodes
are treated in the same way. By distinguishing among
diff erent levels, we have the fl exibility to handle diff er-
ent priorities.Good idea

AU9215_C006.indd 213AU9215_C006.indd 213 2/12/2010 2:40:12 PM2/12/2010 2:40:12 PM

214 ◾ Wireless Sensor Networks: Principles and Practice

6.2.3 LA-TinyOS Code Structure
Th e code structure of LA-TinyOS is shown in Figure 6.6. We can see that
LA-TinyOS enhances TinyOS by adding a LocalityM module and a multilevel
scheduler.

As we discussed before, the locality confi guration table is used to register and
confi gure the events under either temporal locality or spatial locality. And the
LocalityM component in turn uses the original TinyOS kernel components to
automatically adjust the detection “period” of a task when it enters and leaves its
locality.

Without LocalityM, a programmer can still use the original TinyOS components
(see Figure 6.7) to program a locality-aware application.

Now let us summarize the main advantages of using LA-TinyOS to handle
locality-aware applications:

First, the LA-TinyOS kernel component houses all of its locality-aware
codes. Th e kernel execution is much more reliable than the original TinyOS
implementation.

Second, LA-TinyOS allows a programmer to easily program locality-aware events,
as the programmer only needs to register a locality event during the initialization
phase, and then make a method call to enter its locality when an anomaly event is
detected.

Finally, when more than one locality event occurs, a programmer can use
LocalityM to handle the locality-aware code of all events. Th erefore LA-TinyOS

Light

Photo

GenericCommM

Timer Clock

Message Packet

HW Clock

Original TinyOS component

Multilevel
scheduler
Msg #N
handler

Radio

Locality

LA-TinyOS component

Application

Oscilloscope

Figure 6.6 The code structure of LA-TinyOS. (Adapted from Huang, T. et al.,
LA-TinyOS: A locality-aware operating system for wireless sensor networks,
Proceedings of the 2007 ACM Symposium on Applied Computing (SAC '07),
Seoul, Korea, March 11–15, 2007, ACM, New York, 1151–1158.)

AU9215_C006.indd 214AU9215_C006.indd 214 2/12/2010 2:40:12 PM2/12/2010 2:40:12 PM

Operating System in Sensors ◾ 215

allows a more effi cient implementation with multiple locality events. In contrast,
a TinyOS implementation needs to provide a redundant locality-aware code for
each event.

6.3 SOS [HanC05]
SOS, another improved version of TinyOS, is proposed in [HanC05]. It shows
that WSN OSs can achieve dynamic and general-purpose OS semantics with-
out sacrifi cing signifi cant energy or performance. Its main features include the
following:

SOS has a common kernel and dynamic application modules. Th ese modules can
be loaded or unloaded at runtime. A system jump table is used by modules to send
messages and communicate with the kernel. A module can also register function
entry points for other modules to call.

SOS contains no memory protection, which is similar to TinyOS. However,
it protects against common bugs. Th is is an improvement over TinyOS.
Dynamic memory is used in SOS for the application modules and the kernel.
Th is makes programming easier, as it decreases complexity and increases tem-
poral memory reuse.

Just as LA-TinyOS uses a three-level task scheduler, SOS also proposes to use
priority scheduling to move processing out of the interrupt context and provide
improved performance for time-critical tasks.

Message

Module
Message handler

SOS scheduler

Init
handler

Timer
handler

Final
handler

Registered

SOS FCB

Msg #0
handler

Figure 6.7 Module interactions. (Adapted from Han, C. et al., A dynamic oper-
ating system for sensor nodes, Proceedings of the Third International Conference
on Mobile Systems, Applications, and Services (MobiSys '05), Seattle, WA, June
6–8, 2005, ACM, New York, 163–176.)

AU9215_C006.indd 215AU9215_C006.indd 215 2/12/2010 2:40:12 PM2/12/2010 2:40:12 PM

216 ◾ Wireless Sensor Networks: Principles and Practice

Th e SOS kernel has dynamically linked modules, fl exible priority scheduling, and
a simple dynamic memory subsystem. SOS kernel services provide a higher-level API
(applied program interface) to free a programmer from managing underlying services
or re-implementing popular abstractions.

6.3.1 Modules
An SOS program uses modules (which are position-independent binaries) to
implement a specifi c task or function. SOS consists of multiple interacting mod-
ules. From the functionality viewpoint, the modules are similar to the concept of
components in TinyOS. An SOS programmer implements the primary develop-
ment, including drivers, protocols, and application components, that occur at the
module layer.

It is challenging to maintain modularity and safety in SOS without incurring
high code overhead due to the loose coupling of modules. All SOS modules are
self-contained and position independent. Th ey use clean messaging and function
interfaces to maintain modularity. Most applications do not need to modify the
SOS kernel unless the low-layer hardware or resource management capabilities
need to be changed.

6.3.1.1 Module Structure

Figure 6.7 shows SOS module interactions. As we can see, SOS maintains a
modular structure by implementing modules with well-defi ned and generalized
points of entry and exit. Th e fl ow of execution enters a module either from
(1) messages delivered from the scheduler or (2) registered functions (for exter-
nal use).

A module-specifi c handler function handles messages between modules. Th ere
are two parameters accepted by a handler function: (1) the message being delivered
and (2) the state of the module.

When a module is inserted, SOS kernel produces an init message. Th e init mes-
sage handler sets the module’s initial state, which includes initial periodic timers,
function registration, and function subscription.

When a module is removed, the SOS kernel produces a fi nal message. Th e fi nal
message handler releases all sensor resources, including timers, memory, and reg-
istered functions.

Besides the above init and module messages, there are also other module-specifi c
messages, including handling of timer triggers, sensor readings, and incoming data
messages from other modules or nodes.

SOS handles messages asynchronously (i.e., using a queue to store these mes-
sages). Similar to TinyOS, the main SOS-scheduling loop picks up a message from
a priority queue and delivers the message to the message handler of the destination
module.

AU9215_C006.indd 216AU9215_C006.indd 216 2/12/2010 2:40:12 PM2/12/2010 2:40:12 PM

Operating System in Sensors ◾ 217

Module-specifi c operations need to run synchronously. SOS uses direct func-
tion calls between these modules. A function registration and subscription scheme
implements these direct function calls.

Th e RAM stores the modules’ states. Modules are relocatable in memory. Th e
location of inter-module functions is exposed through a registration process.

6.3.1.2 Module Interaction

Messages are used to implement interactions between modules. Messaging enables
asynchronous communication between modules. Messaging can also break up
chains of execution into scheduled subparts. Th ese subparts are stored into a queue
for scheduled execution.

Although the above messaging is fl exible, its execution is slow. Th erefore, SOS
provides direct calls to functions that are registered by modules. Th ese direct
function calls can bypass the scheduler to provide lower latency communication
between the modules.

SOS uses function registration and subscription to implement direct inter-module
communication and function calls from the kernel to modules. A function control
block (FCB) is used to store crucial information about the registered function.
An FCB is created by the SOS kernel and indexed by the tuple {module ID, function
ID}. Th e FCB includes a valid fl ag, a subscriber reference count, and prototype
information.

Th e module ID and the function ID are used to locate the FCB of interest,
and type information is used to provide an additional level of safety. If the lookup
succeeds, the kernel returns a pointer to the function pointer of the subscribed
function.

A jump table shown in Figure 6.8 is used by modules that need to access kernel
functions. Such a jump table also allows each module to remain loosely coupled to
the kernel, rather than be dependent on specifi c SOS kernel versions. It also allows
the kernel to be upgraded without the need of recompiling SOS modules. Th us, the
same module can run in a deployment of heterogeneous SOS kernels.

6.3.1.3 Module Insertion and Removal

Module insertion: A distribution protocol keeps listening to the advertisements of
new modules in the network. Th e distribution protocol that advertises and prop-
agates module images through the network is independent of the SOS kernel.
SOS currently uses a publish–subscribe protocol, similar to a Mobile-Oriented
Applications Platform (MOAP). When an advertisement for a module is captured
by the protocol, the protocol needs to check whether or not the module is the
updated version of a module already installed on the node. It also needs to check
if the node is interested in the module and has free program memory for the
module.

AU9215_C006.indd 217AU9215_C006.indd 217 2/12/2010 2:40:13 PM2/12/2010 2:40:13 PM

218 ◾ Wireless Sensor Networks: Principles and Practice

To fi nd out whether or not the above two conditions are true, the distribution
protocol examines the metadata in the header of the packet. Such metadata con-
tains the following information: (1) the unique identity for the module, (2) the size
of the memory required to store the local state of the module, and (3) the version
information used to diff erentiate each module version. Th e protocol will abort the
module insertion if the SOS kernel fi nds that it is unable to allocate memory for
the local state of the module.

Module insertion needs to be created as a kernel data structure that is indexed
by the unique module ID included in the metadata. Such a kernel stores the
absolute address of the handler. It also stores a pointer to the dynamic memory
holding the module state and the identity of the module. Finally, the SOS
kernel invokes the handler of the module by scheduling an init message for the
module.

Module removal is initiated by the kernel that dispatches a fi nal message.
Th is message commands a module to gracefully release any resources it holds.
Such a message also informs other modules that depend on the removed module.
After the fi nal message, the kernel performs garbage collection by releasing all
resources as follows: dynamically allocated memory, timers, sensor drivers, and
other resources owned by the module. FCBs are then used after a module removal
to ensure the integrity of the platform.

Module list

Jump table

Module # 0
Module # 1
Module # 2
Module # 3

SOS kernal

Jump table is accessed
through a register and refers
to a specific kernal function

Figure 6.8 Jump table layout and linking in SOS. (Adapted from Han, C.
et al., A dynamic operating system for sensor nodes, Proceedings of the Third
International Conference on Mobile Systems, Applications, and Services (MobiSys
'05), Seattle, WA, June 6–8, 2005, ACM, New York, 163–176.)

AU9215_C006.indd 218AU9215_C006.indd 218 2/12/2010 2:40:13 PM2/12/2010 2:40:13 PM

Operating System in Sensors ◾ 219

6.3.2 Dynamic Memory
Dynamic memory allocation can use a fl exible queue length to adapt to the worst-case
scenarios and complex program semantics for common tasks, such as passing a data
buff er down a protocol stack. Dynamic memory in SOS is based on a simple, best-fi t,
fi xed-block memory allocation with three base block sizes as follows.

Th e smallest block sizes are used for most SOS memory allocations, including
message headers. Larger block sizes are used for applications that need to move large,
continuous blocks of memory, such as module insertion. Th e largest block sizes are
actually a linked list of free blocks and can be used for any complex applications.

All data structures (such as queues and lists) in SOS dynamically grow and
shrink at runtime. Th e dynamic use and release of memory (i.e., dynamic memory)
creates a system with eff ective temporal memory reuse. Dynamic memory can also
dynamically tune memory usage to specifi c environments and conditions.

Modules can transfer memory ownership to reject data movement. SOS anno-
tates dynamic memory blocks by using a small amount of data that is used to
detect basic sequential memory overruns. Memory annotations can be used for a
post-crash memory analysis to identify suspected memory owners, such as a bad
module that owns a great deal of system memory or overfl owed memory blocks.
SOS memory annotations also enable garbage collection on unload.

6.4 RETOS [Hojung07]
Resilient, expandable, and threaded operating system (RETOS) aims to provide a
robust, reconfi gurable, resource-effi cient multithreaded OS for WSN nodes. Figure 6.9
shows its overall architecture.

Although the event-driven approach has been used extensively for sensor OSs
due to its effi cient implementation in resource-constrained sensors; however, in
RETOS, application developers can manage the states of tasks and events explicitly,
via a program split process as follows: RETOS explicitly separates applications from
the kernel. An application is separately and dynamically loaded into the system
(as does the kernel module). RETOS uses a loadable module framework to achieve
kernel reconfi gurability.

6.4.1 Application Code Checking
RETOS uses a software technique, called application code checking (ACC), to perform
static and dynamic code checks. Th e goal of ACC is to prevent user applications
from accessing memory outside its legal boundary and direct hardware manipula-
tion. It thus always checks the destination fi eld of machine instructions. Th e source
fi eld of instructions can also be examined to prevent the application from reading the
kernel or another application’s data.

AU9215_C006.indd 219AU9215_C006.indd 219 2/12/2010 2:40:13 PM2/12/2010 2:40:13 PM

220 ◾ Wireless Sensor Networks: Principles and Practice

ACC uses static code checking to verify direct or
immediate addressing instructions and pc-relative
jumps during the compilation time. (For details on
instructions’ addressing modes, please refer to the
Assembly Language courses.)

ACC uses dynamic code checking to verify the
correct usage of indirect addressing instructions dur-
ing runtime. Dynamic checking is also required for
the Return instruction.

Figure 6.10 shows the procedure of construct-
ing trusted codes. Th e application source code is
compiled to the assembly code. Th e compiler then
inserts checking codes to the place where dynamic
code checking is required.

After the dynamic code insertion, static code
checking is conducted on the binary codes. When
the compiler cannot detect some application errors,
the missed errors will be reported to the kernel. After

Thread data
&

 stack
Module data Single kernel

stack
Kernel

data

User space Dynamic kernel Static kernel Hardware

MCU

SPI

I2C

ADC

GPIO

Module managerCommom libraries
Dynamic

code

Dynamic
networking

Protocol
Variable timer

Event-boosting
thread scheduler

Networking
support layerStatic

code

Code

Figure 6.9 RETOS architecture. (Adapted from Cha, H. et al., Resilient, expandable,
and threaded operating system for wireless sensor networks, IPSN '07, Cambridge,
MA, April 25–27, 2007.)

Binary source

Assembler source code

Application code
C, C++, Java, Python, Ruby,

etc.

Figure 6.10 Generating
trusted code. (Adapted from
Cha, H. et al., Resilient,
expandable, and threaded
operating system for wire-
less sensor networks,
IPSN '07, Cambridge, MA,
April 25–27, 2007.)

AU9215_C006.indd 220AU9215_C006.indd 220 2/12/2010 2:40:13 PM2/12/2010 2:40:13 PM

Operating System in Sensors ◾ 221

receiving these reported errors, the kernel informs users of the illegal instruction
address and safely terminates the program.

6.4.2 Multithreading System
We know that TinyOS is an event-driven OS, and TinyOS programmers need
to worry about the optimal execution of their programs through explicit concur-
rency control.

However, RETOS uses a diff erent approach, that is, multithreading, to inherently
provide high concurrency with preemption and blocking I/O characteristics of the
underlying system. Although the multithreading approach is attractive, it is challeng-
ing to implement multithreading in a resource-constrained sensor node environment.
In a multithreading environment, each thread needs a stack to maintain state vari-
ables. A scheduling scheme is used to perform context switching between the stacks.
RETOS has carefully considered memory usage, energy consumption, and scheduling
effi ciency. RETOS has implemented a single kernel stack and a stack-size analysis,
a variable timer, and an event-boosting thread scheduler, respectively.

 1. Minimizing memory usage
RETOS provides two techniques to reduce the memory usage for the
kernel.

 a. A single kernel stack is used to reduce the size of the thread stack required.
Th e mechanism separates the thread stack into two types: kernel stacks and
user stacks. RETOS has a strict, controlled access to the kernel stack. Th is
is to make sure that the system does not arbitrarily interleave the execution
fl ow during the kernel mode, such as thread preemption. With thread pre-
emption, hardware contexts are saved in each thread’s control block based
on kernel stack sharing.

 b. A stack-size analysis is used to assign an appropriate stack size to each thread
autonomously. An accurate thread stack size needs to be estimated to reduce
the memory usage. A stack-size analysis has been implemented in RETOS
to automatically generate a minimal and system-safe stack for each thread.

 2. Variable timer
Energy is consumed in multithreading computations, which include timer
management, context switching, and a scheduling operation.

Timer management: In multithreading systems, from an energy consump-
tion viewpoint, a variable timer (instead of a fi xed periodic timer) technique
could be more energy effi cient. Timer requests from threads are processed
by the system timer, which then updates the remaining time independent of
currently running threads. Th e timer interrupt interval can be reprogrammed
by the variable timer. Such an interval is set to the earliest upcoming timeout
among the time quantum of the currently running thread.

AU9215_C006.indd 221AU9215_C006.indd 221 2/12/2010 2:40:13 PM2/12/2010 2:40:13 PM

222 ◾ Wireless Sensor Networks: Principles and Practice

Th e scheduling operation does not occur as frequently as passing messages
between handlers in an event-driven system. In most WSN applications, the
context-switching overhead is only a moderate issue.

 3. Event-aware thread scheduling
Th read scheduling is based on a priority-aware real-time scheduling interface to
enable the kernel’s dynamic priority management. Th ree policies are used to sched-
ule RETOS threads: SCHED_RR, SCHED_FIFO, and SCHED_OTHER.

Event-aware thread scheduling is used to increase the event response time
of threads. To handle an important event, the scheduler directly boosts the
priority of the thread that handles such a specifi c event. When an event occurs,
the priority-boosted thread will be able to swiftly preempt other threads.

6.4.3 Loadable Kernel Module
Dynamic application loading is supported in RETOS. A memory relocation mech-
anism is used to support dynamic application loading. Memory relocation cannot
be supported by a PIC (position-independent code) approach.

A memory relocation mechanism is shown in Figure 6.11. A RETOS fi le format
consists of a generic portion and a hardware-dependent section. It has compiled
codes. If a sensor uses RETOS, its microcontroller needs to support diff erent
addressing features, such as relocation type and relative memory-accessing instruc-
tions. Th erefore, such a fi le format has hardware-specifi c information to aid the
memory relocation for the corresponding hardware.

Specific
Non-volatile

Operating system

Specific

Specific
application

Customizing file

Application

Specific
application

OS data

RAM

Figure 6.11 Simple RETOS relocation mechanism. Reading from left to right, this
mechanism produces the smallest footprint of the OS to free space and resources
on the system. (Adapted from Cha, H. et al., Resilient, expandable, and threaded
operating system for wireless sensor networks, IPSN '07, Cambridge, MA, April
25–27, 2007.)

AU9215_C006.indd 222AU9215_C006.indd 222 2/12/2010 2:40:14 PM2/12/2010 2:40:14 PM

Operating System in Sensors ◾ 223

Problems and Exercises
6.1 Compared to traditional OSs (such as Microsoft Windows), what special

characteristics does TinyOS have?
6.2 Explain the TinyOS architecture.
6.3 What enhancements does LA-TinyOS make on the basis of TinyOS?
6.4 Explain the SOS module interaction principle.
6.5 What benefi ts does RETOS have when using module relocation?

AU9215_C006.indd 223AU9215_C006.indd 223 2/12/2010 2:40:14 PM2/12/2010 2:40:14 PM

AU9215_C006.indd 224AU9215_C006.indd 224 2/12/2010 2:40:14 PM2/12/2010 2:40:14 PM

225

7Chapter

Middleware Design in
Wireless Sensor Networks

Th is chapter introduces the middleware architecture of a WSN. Our discussions
are based on the summarization of [Miaomiao08]. For more details, readers are
referred to [Miaomiao08] for a comprehensive survey.

7.1 Introduction
Typically, the network protocol stack can be classifi ed into fi ve layers (from top to bot-
tom): application layer, transport layer, routing layer, MAC layer, and physical layer. As
an example, Crossbow Inc. motes (i.e., WSN nodes) allow a user to use NesC (similar
to C language) to build sensor network control programs. As shown in Figure 7.1, a
user builds these programs in the application layer to control WSN operations, such as
performing data aggregation among neighboring sensors. Note: Th e application layer
does not deal with WSN routing issues, as they belong to the routing layer. It also does
not handle network congestion issues, as they belong to the transport layer.

Although the above direct programming in the application layer can perform
many WSN data-processing and other high-level wireless applications, it is still not
convenient for a programmer to build these application layer programs due to the
following reasons:

 1. Most WSN systems do not have convenient programming/compiling tools.
For instance, NesC in a TinyOS environment needs a longtime learning
curve. A programmer needs to learn dozens of diff erent entity interfaces.
TinyOS installation is still a problematic issue today.

AU9215_C007.indd 225AU9215_C007.indd 225 2/11/2010 12:22:36 PM2/11/2010 12:22:36 PM

226 ◾ Wireless Sensor Networks: Principles and Practice

 2. More importantly, a programmer needs to get familiar with many WSN
internal operation details to build an effi cient, easy-to-use application layer
program. For instance, if a programmer wants to build a sensor data query
software (which is a basic WSN application layer function), she should know
the routing layer details, as it is the routing protocol that delivers query com-
mands to each sensor. Th e programmer should also understand the network
topology, as a data query command may need data from certain sensor areas.

 3. Although a programmer can build application layer programs to control a
sensor’s behavior, many WSN operations are built on the collaboration of
many nodes instead of just one node. For instance, to save wireless communi-
cation energy consumption, a data query command eventually collects data
through the data aggregation technology. Th at is, a program could reside in
an individual node, but it needs to control many other nodes. Apparently,
this is a challenging task for any programmer.

Th erefore, to unburden a WSN programmer from these heavy responsibilities, we
need to add a new layer to the traditional network stack. We call this new layer as the
middleware layer. As shown on the right-hand side of Figure 7.1, the middleware layer
should be located between the application layer and the transport layer. Th rough the
WSN middleware, we could hide the complexity of low-level operations. A programmer
can avoid the troublesome considerations of a WSN’s dynamic network topology and
low-level embedded OS (operating system) APIs (application program interfaces).

A good WSN middleware provides a programmer with some reusable code ser-
vices, which allow the programmer to access the functionality of network resources,
while minimizing the eff ort of dealing with code dissemination, data aggregation,
and power management.

Although traditional middleware schemes (used in distributed computing
systems) can also provide transparency abstractions by hiding the context information,
they primarily aim to satisfy the interests of individual nodes. However, WSN

Application layer

Application layer

User-built application
programs for complex

sensor operation control,
such as data aggregation,
sleep/wake-up control,

data query propagation, and
remote sensor parameters

(e.g., setting up sensor
detection threshold)

Transport layer

Routing layer

MAC layer

Physical layer

Transport layer

Middleware layer

Routing layer

MAC layer

Physical layer

Figure 7.1 Middleware’s location.

AU9215_C007.indd 226AU9215_C007.indd 226 2/11/2010 12:22:37 PM2/11/2010 12:22:37 PM

Middleware Design in Wireless Sensor Networks ◾ 227

applications are data centric, and, therefore, the middleware must be able to operate
in all available nodes rather than in individual nodes. Moreover, the WSN middle-
ware should support data aggregation in intermediate nodes along the forwarding
path. But the traditional distributed system middleware does not need to support
data aggregation, as it uses an end-to-end paradigm [Miaomiao08].

In a middleware, data management is an important task. Th e middleware needs
to provide appropriate abstractions of data structures and operations. Without such
abstractions, the application programmer must manage the heterogeneous data and
low-level operations [Miaomiao08].

When we design a WSN middleware, we need to make sure that it is light-
weight enough for implementation in sensor nodes having limited processing and
energy resources.

How to minimize a programmer’s working load is the goal
of many platforms. It is very time consuming if a WSN
programmer needs to understand all network operation
details before she writes the application layer program.
Many WSN companies try to encapsulate the complex
sensor/network control into a set of APIs, which is part of
middleware tasks. A programmer can then quickly come
up with a useful application based on these friendly APIs.

Good idea

7.2 Reference Model of WSN Middleware
[Miaomiao08]

7.2.1 Model Overview
As shown in Figure 7.2, a WSN middleware includes four major components:

 1. Programming abstractions: A middleware design should fi rst defi ne a set of
friendly APIs that hide all complex WSN operations.

 2. System services: After defi ning program abstractions, a middleware should
internally provide concrete implementations of these abstractions. Th ese

Programming
abstractions

WSN middleware components

System
services

Runtime
support

QoS
mechanisms

Figure 7.2 WSN middleware components. (Adapted from Wang, M.
et al., J. Comput. Sci. Technol., 23(3), 305, 2008.)

AU9215_C007.indd 227AU9215_C007.indd 227 2/11/2010 12:22:38 PM2/11/2010 12:22:38 PM

228 ◾ Wireless Sensor Networks: Principles and Practice

implementations are called system services, as they belong to part of system
codes instead of user codes.

 3. Runtime support: After we have the above system service codes, the sensor OS
should be able to run these codes in an optimized way, that is, we need to
have runtime support.

 4. Quality of service (QoS): In the application layer, people typically use QoS to
defi ne some visible application performance metrics, such as data resolution,
processing speed, and network delay performance. Th e middleware should be
able to adapt to diff erent QoS requirements.

Th e fi rst three WSN middleware components have a
very close relationship among them. Th e purpose of
defi ning programming abstractions is to hide complex
WSN operations. As per user’s viewpoint, they only
require that the middleware provides a set of system
services. As per middleware designer’s viewpoint, they
need to write codes to provide runtime support for these
system services.

Remember

WSNs

Figure 7.3 shows the details of each of the above components. Note that this is just
a typical middleware reference model. It does not mean that all WSN middleware
implementations should include all of these components.

It is a misunderstanding that the middleware is only implemented in sensors.
As a matter of fact, because a user can program the system in diff erent places, the
middleware can be located in a sensor node, a sink (i.e., a base station), and a user
terminal that communicates with a sink. Th e distributed middleware components
in diff erent places are able to communicate with each other to achieve common
goals, such as a data query execution. Figure 7.4 illustrates this point.

7.3 Middleware Example: Agilla
[CFok05, Miaomiao08]

A type of middleware implementation is based on the concept of mobile agent,
which is an execution thread that can migrate from one node to another. Such
an agent encapsulates the running codes, the system state, and the application
data.

Agilla [CFok05] is an example of the implementation of the agent-based
middleware. We can inject a new agent in a WSN to reprogram the network.

AU9215_C007.indd 228AU9215_C007.indd 228 2/11/2010 12:22:38 PM2/11/2010 12:22:38 PM

Middleware Design in Wireless Sensor Networks ◾ 229

Application 1

Sink node

WSN middleware
user terminal WSN

middleware
node

WSN
middleware

node

WSN
middleware

node

WSN middleware
sink side

Application N

Application 2

... ...

Figure 7.4 System architecture of WSN middleware. (Adapted from Wang, M.
et al., J. Comput. Sci. Technol., 23(3), 305, 2008.)

Application

Programming abstraction

WSN middleware

Domain services

Common services

Code
management

Data
management

Location
tracking

Other domain
services

SHM domain
services

Integration

Resource discovery Resource management

Runtime support Processing
support

Communication
support

Storage
support

Q
oS

services
Security
services

Figure 7.3 WSN middleware reference models. (Adapted from Wang, M. et al.,
J. Comput. Sci. Technol., 23(3), 305, 2008.)

AU9215_C007.indd 229AU9215_C007.indd 229 2/11/2010 12:22:38 PM2/11/2010 12:22:38 PM

230 ◾ Wireless Sensor Networks: Principles and Practice

Figure 7.5 shows the Agilla system model. Note that each sensor node can support
multiple agents. A node also maintains a tuple space and a neighbor list:

 1. Th e tuple space can be shared by all agents residing on the same node. Agilla
provides special instructions to remotely access the agents in another node’s
tuple space.

 2. Th e neighbor list contains the addresses of all directly adjacent nodes in the
WSN. Th is is for the convenience of agent migration.

Th e mobile agent concept has attracted many research-
ers’ interests. Its basic feature is to allow a physical entity
to transfer its unfi nished task to another entity. Such a
“chain” eff ect eventually achieves a systematic task. Please
note that the mobile agent concept is diff erent from the
general multi-agent concept. Th e latter typically assumes
that agents do not migrate/transfer between entities.

Good idea

As shown in Figure 7.6, a mobile agent in Agilla consists of a stack, a heap, and some
registers. Th e heap is actually a memory space to store system variables. Similar to a com-
mon CPU architecture, a register consists of the agent ID, the program counter (PC), and

Agilla middleware

Tuple
space

Tuple
space

TinyOS
MICA2 mote

Agilla middleware
TinyOS

MICA2 mote

Neighbors Neighbors

Node (1,1) Node (2,1)

Migrate

Remote
access

Figure 7.5 Agilla system model. (Adapted from Fok, C. et al., Mobile agent
middleware for sensor networks: An application case study, Proceedings of the
Fourth International Conference on Information Processing in Sensor Networks
(IPSN '05), UCLA, Los Angeles, CA, April 25–27, 2005, 382–387.)

AU9215_C007.indd 230AU9215_C007.indd 230 2/11/2010 12:22:38 PM2/11/2010 12:22:38 PM

Middleware Design in Wireless Sensor Networks ◾ 231

the condition code. Th e agent ID is unique to each agent. Th e PC contains the address
of the next instruction.

Code migration can be achieved by moving or cloning an agent from one node
to another. A tuple space can package up all register variables during code migra-
tion. When an agent moves, it carries its state variable and runtime code. After an
agent reaches a new node, it resumes the code executing. Multi-hop migration is
handled by the middleware OS.

7.4 Middleware for Data Acquisition:
Mires [ESouto04, Miaomiao08]

A typical task of a WSN middleware is data management, which provides services to
applications for data acquisition, data processing, and data storage.

Th is section uses Mires [ESouto04] as an example of data acquisition, which
includes a series of functions, such as event defi nition, event registration/cancellation,
event detection, and event delivery. Figure 7.7 shows Mires’ middleware architecture.

Mires uses a publish/subscribe paradigm (see Figure 7.8) to implement event-
based data acquisition. Such a paradigm supports asynchronous communication
and facilitates message exchange between the sensor nodes and the sink node. A
publish/subscribe system has two basic components: the event subscriber (in the
sink) and the event publisher (i.e., the event broker) (in the sensor nodes).

In Mires, the application layer in the sink subscribes the event data of interest.
Its subscribe messages are broadcasted down to the network nodes, which publish
their collected data to the network.

{149}
{150}

{ 1 }
{ 0 } 8 bit

40 bit
Pointer

Stack 16-bit
registers

Heap

ID

PC

Condition

{ ... }
{ ... }
{ 9 }
{ 10 }
{ 11 }

{ 1 }
{ 0 }

{ 3 }

Figure 7.6 Agilla agent architecture. (Adapted from Fok, C. et al., Mobile agent
middleware for sensor networks: An application case study, Proceedings of the
Fourth International Conference on Information Processing in Sensor Networks
(IPSN '05), UCLA, Los Angeles, CA, April 25–27, 2005, 382–387.)

AU9215_C007.indd 231AU9215_C007.indd 231 2/11/2010 12:22:39 PM2/11/2010 12:22:39 PM

232 ◾ Wireless Sensor Networks: Principles and Practice

Publish state

Service X

Notifier

Intercept

Multi-hop router BCast

Publish subscribe

Receive Send

Publish

Advertise

Application

Figure 7.7 Mire’s architecture. (Adapted from Souto, E. et al., A message-
oriented middleware for sensor networks, Proceedings of the Second International
Workshop on Middleware for Pervasive and Ad-Hoc Computing (MPAC '04),
Toronto, Ontario, Canada, October 2004, ACM Press, New York, 127–134.)

Routing Aggregation
service

Operating system

Publish/subscribe service

CPU

...

Node application

MIRES

Security

Figure 7.8 Mire’s Pub/Sub component. (Adapted from Souto, E. et al., A message-
oriented middleware for sensor networks, Proceedings of the Second International
Workshop on Middleware for Pervasive and Ad-Hoc Computing (MPAC '04),
Toronto, Ontario, Canada, October 2004, ACM Press, New York, 127–134.)

AU9215_C007.indd 232AU9215_C007.indd 232 2/11/2010 12:22:39 PM2/11/2010 12:22:39 PM

Middleware Design in Wireless Sensor Networks ◾ 233

A middleware for query-based data models can use TinyDB’s [SRM05] fl ooding
approach to disseminate the queries throughout the network.

7.5 Data Storage: DSWare [SLi03, Miaomiao08]
A WSN middleware needs to support one of the most important tasks, that is,
data-centric storage. Data service middleware (DSWare) [SLi03] is such a middle-
ware. As illustrated in Figure 7.9, DSWare implements a database-like abstraction
composed of various data services:

 1. Th e event detection component actually corresponds to the above-discussed
data acquisition service.

 2. Th e group management component can implement an important WSN fea-
ture, that is, data aggregation.

 3. Th e scheduling component can schedule all middleware services based on any
one of the two priorities: energy effi ciency or delay performance.

 4. Th e data storage component stores data according to the semantics associated
with the data. It stores correlated data in geographically adjacent regions to
achieve in-network processing.

 5. Th e caching component provides multiple copies of the data that is requested
most often. DSWare spreads the cached data over the network to achieve high
availability and faster query execution.

Scheduling

Data storage

Event detection

Data subscription

Data cachingGroup management

Figure 7.9 DSWare components. (Adapted from Li, S. et al., Event detection ser-
vices using data service middleware in distributed sensor networks, Proceedings of
the Second International Workshop on Information Processing in Sensor Networks
(IPSN '03), Palo Alto, CA, April 22–23, 2003, 502–517.)

AU9215_C007.indd 233AU9215_C007.indd 233 2/11/2010 12:22:40 PM2/11/2010 12:22:40 PM

234 ◾ Wireless Sensor Networks: Principles and Practice

7.6 WSN Runtime Support Example:
Mate [PLevis02, Miaomiao08]

As we mentioned before, all defi ned middleware services should have some form of
runtime support to ensure a well-defi ned execution environment.

Th e runtime support has the following basic functions: inter-process commu-
nication (IPC), memory control, and power management (in both voltage scaling
and component deactivation). Th ese functions are important because they can be
used to implement higher-level middleware services, such as multi-thread process-
ing, task scheduling, memory access synchronization, and spread signal spectrum
management.

Typically, some kind of virtual machine is used to implement runtime support.
We can implement a virtual machine as a platform-specifi c kernel on top of the
embedded OS. Mate [PLevis02] is such an example. It is built on top of TinyOS.
Figure 7.10 illustrates Mate’s architecture.

Th e core of the Mate architecture is a scheduler, which maintains a buff er with
contexts and interleaves their execution. Th e Mate concurrency model is based on
statically named resources, such as shared variables, which should be explicitly
specifi ed by any operation.

Capsule store Scheduler

Operations

VM template

Concurrency manager

Execution contexts

Figure 7.10 Architecture of Mate. (Adapted from Levis, P. and Culler, D., Mate:
A tiny virtual machine for sensor networks, Proceedings of the 10th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), San Jose, CA, 2002, ACM Press, New York, 85–95; Wang,
M. et al., J. Comput. Sci. Technol., 23(3), 305, 2008.)

AU9215_C007.indd 234AU9215_C007.indd 234 2/11/2010 12:22:40 PM2/11/2010 12:22:40 PM

Middleware Design in Wireless Sensor Networks ◾ 235

7.7 QoS Support Example: MiLAN
[WBHeinzelman04, Miaomiao08]

QoS support is important for applications having the following requirements:
fault tolerance, reliability, security, and real-time data processing. Th e following
parameters can be used to express QoS in a WSN: packet delay, jitter and loss,
throughput, and latency. However, we need more QoS metrics to make a quan-
titative performance measurement. For instance, we may defi ne some new QoS
parameters, including data accuracy, aggregation delay, aggregation degree, cover-
age, and precision. A WSN middleware that provides QoS support can effi ciently
support data acquisition.

MiLAN [WBHeinzelman04] has defi ned a set of QoS support, as shown in
Figure 7.11. A WSN application program starts with the conveyance of a set of QoS
parameters from the application layer to MiLAN (i.e., the middleware layer). Such
a QoS conveyance is achieved through a state-based variable equirements graph and
a sensor QoS graph.

System

...
App 1 App n

System
QoSQoS QoS

Expanded
node view

DataMiLAN

EM

M
M

M

M

D

C

B

A

Data

Network

Figure 7.11 QoS support in MiLAN. (Adapted from Heinzelman, W.B. et al., IEEE
Netw., 18(1), 6, 2004.)

AU9215_C007.indd 235AU9215_C007.indd 235 2/11/2010 12:22:41 PM2/11/2010 12:22:41 PM

236 ◾ Wireless Sensor Networks: Principles and Practice

 1. State-based variable requirements graph: It specifi es the application’s mini-
mum acceptable QoS for each performance parameter based on the current
running state of a system.

 2. Sensor QoS graph: It is used to determine which sets of nodes a WSN may
support from the QoS requirements viewpoint.

Problems and Exercises
7.1 Explain the roles of a WSN middleware in WSN system design. Point out its

components and explain each of them briefl y.
7.2 What challenges do we encounter when designing a WSN middleware?
7.3 Why should we use programming abstractions?
7.4 How does Agilla implement code management?
7.5 Why does Mires use a publish/subscribe architecture?
7.6 How does DSWare handle data storage?
7.7 Explain in detail the QoS support in MiLAN.

AU9215_C007.indd 236AU9215_C007.indd 236 2/11/2010 12:22:41 PM2/11/2010 12:22:41 PM

237

8Chapter

Sensor Data Management

After sensor data is collected, it needs further processing (such as noise removal) to
detect some events. In this chapter, we cover some typical sensor data management
issues including sensor data processing (such as data cleaning), sensor database
structure and data query strategies, data aggregation, and other issues.

8.1 Sensor Data Cleaning [Elnahrawy 2003]
8.1.1 Background
Sensors diff er signifi cantly in precision, accuracy, and their tolerance to hardware
and external noises. For example, photovoltaic sensors have large noise distribution
[BYCHKOVSKIY03]. Th e operating environment of sensors also aff ects the per-
formance of data acquisition. Sensor reading can also be aff ected by other external
and uncontrollable factors, which, in many cases, cause inaccurate measurements.
For example, the weight of trucks can be measured by the strain gauge sensors
attached to bridges, which can be aff ected by other objects’ vibrations.

Many industries are developing inexpensive sensors that can be distributed
everywhere and can be disposed when they run out of batteries. Th e high sensitivity
to internal and external noises, imprecision, and inaccuracies is expected in those
inexpensive sensors.

Sensor data has several sources of errors when it comes from the measurements
of physical or modeled phenomena. Errors can be classifi ed into two main types:
systematic (bias) or random (noise). Systematic errors come from change of operat-
ing conditions such as temperature, humidity, or aging of the sensors, which can
be corrected by calibration [Bychkovskiy03]. Random noise may come from the

AU9215_C008.indd 237AU9215_C008.indd 237 2/12/2010 2:48:04 PM2/12/2010 2:48:04 PM

238 ◾ Wireless Sensor Networks: Principles and Practice

following sources: (1) random hardware noise, (2) measurement inaccuracy, (3)
environmental eff ect and noise, and (4) imprecision in computing a derived value
from measurements (i.e., inconsistency in measuring the same phenomenon under
the same conditions). Elnahrawy and Nath (2003) have discussed the reduction of
random noise part, as well as their serious eff ect on sensor data [Elnahrawy2003].

Th e random errors given by cheap sensors strongly aff ect the sensor data accu-
racy. Th ey may give imprecise or even misleading answers, which may yield high
loss in immediate critical decisions or the activation of actuators. Th erefore, the
sensor data errors cannot be neglected.

To support this argument, we use an example from [Elnahrawy 2003]. Bacteria
growth is monitored over the time by inexpensive wireless temperature and humidity
sensors. If the temperature and humidity go beyond some given thresholds, the item
should be discarded. As shown in Figure 8.1, based on the sensor data acquired, items
1 and 2 should be discarded and items 3 and 4 should be kept. However, based on the
true conditions, items 1 and 2 should be kept and item 3 should be discarded.

One may wonder why traditional databases do not
need data cleaning. Data cleaning is not necessary in
traditional data sources that are from either an explicit
data-entry operation or a transaction activity with trust-
worthy steps. As a matter of fact, such data is typically
used in banks, companies, or by personnel. Clean data
models are assumed. Any noisy data is assumed to be
cleaned off -line by separate database functionality.

Difference

WSNs

Temperature(a) (b) Temperature

H
um

id
ity

H
um

id
ityt4

t1 t2

t3

o4

o1

o2

o3
U4

U1
U2

U3

Figure 8.1 (a) Based on the observed readings items 1 and 4 will be thrown
away and (b) based on the uncertainty regions; only item 3 will be thrown away.
(Adapted from Elnahrawy, E. and Nath, B., Cleaning and querying noisy sensors,
Proceedings of the Second ACM International Conference on Wireless Sensor
Networks and Applications, San Diego, CA, September 19, 2003.)

AU9215_C008.indd 238AU9215_C008.indd 238 2/12/2010 2:48:05 PM2/12/2010 2:48:05 PM

Sensor Data Management ◾ 239

However, the situation is diff erent for WSN data. Th is data is typically continu-
ously generated and thus forms a data stream. Moreover, we cannot use an off -line
approach to handle this data as we typically need such data in a real-time way.

Although WSNs have some important performance metrics to consider, such
as network bandwidth and energy consumption, data errors could have the same
importance as those metrics because they cause uncertainty in determining the
true reading (measurement) of the sensor.

Elnahrawy and Nath (2003) have introduced a good approach to clean-
ing and querying of noisy sensors [Elnahrawy2003]. Its scheme can reduce the
uncertainty in sensor readings that arises due to random noise. Specifi cally,
its scheme is based on a Bayesian approach for reducing the uncertainty in an
online fashion. Such a scheme is called Bayesian-based cleaning (BayC). BayC
can be operated in either individual sensors or in the base station. BayC cleans
data in each sensor because it assumes that the reading of each individual sensor
is important.

BayC makes some assumptions as follows: A set of n sensors, S = {si}, i = 1,…n,
are deployed in the space and form a WSN. Some networking techniques such
as routing, topology maintenance, and communication are already implemented.
We also think of each sensor si at a specifi c time instance t as a tuple in the sensor
database. Th e database has some attributes that correspond to the sensor readings.
Each sensor has one or more readings corresponding to each measurement. Th e
same sensor can sense diff erent phenomena. It is interesting to see that in the same
location we may have some specialized sensors. We can combine their values, which
is just like the data from one “virtual” multi-attribute sensor.

All the attributes are assumed to be real valued. We can extend BayC frame-
work to the case of discrete-valued attributes. Note that we always specify the time
stamp when each piece of sensed data is collected. Later on, we just drop the time
index t when we talk about sensor readings.

8.1.2 General Model
As shown in Figure 8.2, the overall BayC framework is composed of two major
modules:

 1. Th e fi rst one is called cleaning module, which is used to clean the noisy sensor
data online, through computing uncertainty models of data that are unable to
predict. Th is cleaning module has three inputs: (a) noisy sensor data reported
from sensors, (b) noise character metadata of every sensor (error model), and
(c) true reading distribution at each sensor (prior knowledge). Th e following
is a brief discussion of the latter two inputs. Cleaning module’s output is
probability models of the reading of “unknown” sensors, that is, a probabil-
ity density function. We will provide the details of the computation of this
model in the next section.

AU9215_C008.indd 239AU9215_C008.indd 239 2/12/2010 2:48:05 PM2/12/2010 2:48:05 PM

240 ◾ Wireless Sensor Networks: Principles and Practice

 2. Th e query-processing module can produce answers to any posted query to the
system based on the current readings’ uncertainty model. A traditional query,
which assumes a single value for every reading, cannot be used here because
the uncertainty models are probabilistic (i.e., statistical distribution). Th e
new query-processing module is based on the algorithm that uses statistical
approaches to compute a function over random variables.

Sensors’ error model should refl ect the noise distribution. We assume that it
follows a Gaussian distribution with mean value zero. To determine the error
model, we need to calculate the variance, which is based on the specifi cation of
each sensor (including accuracy, precision, etc.) and calibration test under normal
deployment conditions. Th e calibration test can be done either by manufactur-
ers or by users after installation and before usage. We also need to consider the
environmental factors or characteristics of the fi eld. Error models may change
with time and be replaced by new models. Th ey should be stored as metadata
in the cleaning module. As sensors’ noise characteristics are not homogeneous,
each sensor type or even individual sensor should be calibrated to get its own
error model.

Prior knowledge is the distribution of the true sensors’ readings. Several meth-
ods are available to obtain prior knowledge. We can compute it based on the facts
about the sensed phenomenon, which is learned over history, or from less-noisy
readings, or even from expert knowledge and subjective conjectures. It can be com-
puted dynamically at the same time if the sensed phenomenon is known to follow
a specifi c parametric model. For instance, if the temperature of perishable items is
known to drop by a factor of x percent from time t − 1 to time t, then the (cleaned)
reading at time t − 1 is used to obtain the prior distribution at time t. Th e resultant
along with the error model and the observed noisy readings at time t are the input

Cleaning module

Unclean noisy
observations
from sensors

Error modles
Prior knowledge

Uncertainty
model

(posterior) Query answer
Query-processing

module

Figure 8.2 The overall framework of sensor data cleaning. (Adapted from
Elnahrawy, E. and Nath, B., Cleaning and querying noisy sensors, Proceedings
of the Second ACM International Conference on Wireless Sensor Networks and
Applications, San Diego, CA, September 19, 2003.)

AU9215_C008.indd 240AU9215_C008.indd 240 2/12/2010 2:48:05 PM2/12/2010 2:48:05 PM

Sensor Data Management ◾ 241

to the cleaning module to obtain the uncertainty model of the sensor at time t. Th e
approach used in this case is similar to Kalman fi lters [LEWIS86].

Th e straightforward approach to model uncertainty in noisy sensor readings
is to assume that the reading of each sensor’s distribution is the Gaussian model
that centers around the observed readings and has a variance equal to the noise
variance. It is common knowledge that the use of prior knowledge gives more
accurate estimations [KAY93]. Th us, our motivation here is to use the prior
knowledge to reduce the noisy sensors’ uncertainty. Prior knowledge with less
variance is more useful than others, as it reduces the uncertainty and enhances
the overall accuracy.

If the prior knowledge is not strong enough to give a narrow distribution (com-
pared with the noise distribution), BayC scheme will still be superior. Fortunately,
in most cases, a strong prior knowledge can be easily computed even though the
noise may have a wide distribution (i.e., in situations where we have noisy sensors
scattered in a large area to collect data from a well-modeled phenomenon such as
temperature).

Data cleaning and query processing can occur at the sensor level or the database
level (or base station). Each option has certain communication and processing costs
(i.e., energy consumption, memory storage cost). Th e decision of which approach to
use is made on the sensor capabilities and applications.

Sensor level: When the data cleaning is performed at the sensor level, we need a
certain memory space to store the prior knowledge and the error models at the
resource-constrained sensors. Furthermore, there could be a signifi cant commu-
nication cost to send the prior knowledge from the base station to the sensors.

Database level: We could assume that any processing or storage at the database
level has no cost because the base station has enough computing capability to
handle database operations. Th is is also the major advantage of performing
the cleaning and the query processing in the base station. Furthermore, we
could save communication cost because it is not necessary to send dynamic
priors to the sensors in this case.

8.1.3 Reducing the Uncertainty
Th is section illustrates the method of reducing uncertainty associated with noisy
sensor reading, that is, computing more accurate uncertainty models of each sen-
sor. Th e proposed approach in [Elnahrawy2003] is to use online data cleaning. It
combines the prior knowledge of the true reading, the error model of the sensor,
and its observed noisy reading together in one step. Th is step is performed using
Bayes’ theorem. Th e likelihood is the probability that data x would fall into a given
value of the parameter (θ), and is denoted by p(x|q), which gives the posterior
probability density function of θ, p(θ|x).

AU9215_C008.indd 241AU9215_C008.indd 241 2/12/2010 2:48:06 PM2/12/2010 2:48:06 PM

242 ◾ Wireless Sensor Networks: Principles and Practice

× θ θθ = =

∫
likelihood prior (|) ()(|)

evidence (|) ()
y

p x pp x
p x y p y dy

(8.1)

Assume that a sensor has only one attribute. Th e attribute o is noisy, that is, it will
be higher or lower than the true value, t. As discussed, the true value t follows a
Gaussian distribution with mean value μ = t and with variance δ2, that is, p(o|t) ∼
N(t, δ2). Th en the Bayes’ theorem is applied to obtain more accurate uncertainty
model (posterior probability density function) for t, p(t|o). Finally, the observed
value o is combined with error model ∼ N(0, δ2), and the prior knowledge of the
true reading distribution p(t) is as follows:

= (o |) ()(| o)

(o)
p t p t

p t
p

(8.2)

Th e following two equations are valid when the reading of some specifi c sensor
“s” is known to follow a Gaussian distribution with mean μs and standard devia-
tion σs, that is, μ σ2

s s(,)t N∼ (prior). Generally, there is no restriction of the prior
distribution of true reading t, to a specifi ed distribution. However, it is tempting
to use Gaussian distribution as it has attractive properties that are convenient for
modeling priors.

2 2
s

s2 2 2 2
s s

t Oδ σμ = μ +
σ + δ σ + δ

(8.3)

2 2
s2
2 2
s

t
σ × δσ =
σ + δ

(8.4)

Th is example [Elnahrawy2003] shows how to obtain the
uncertainty model of a temperature sensor at a specifi c
time instance. Assume that our prior knowledge is that the
temperature r follows a Gaussian distribution, and the tem-
perature is 9 centigrade degrees (in average) with standard
deviation of 4, that is, μ = σ =2 2

s s(9, 4)r N∼ . We further
assume that the noise at this sensor is known to have a stan-
dard deviation of 10, that is, noise ∼ N(0, δ2 = 102). If the

reported noisy temperature is 15, using Equations 8.3 and 8.4, we obtain a mean ≈ 9.8
and a standard deviation ≈ 3.7 of the posterior distribution for the true unknown
temperature, p(t|o) ∼ N(9.8, 3.72). Th is is shown in Figure 8.3.

Case study

AU9215_C008.indd 242AU9215_C008.indd 242 2/12/2010 2:48:06 PM2/12/2010 2:48:06 PM

Sensor Data Management ◾ 243

Obviously, due to the use of prior knowledge, BayC
can greatly reduce the uncertainty. Moreover, when the
variance of the prior knowledge becomes very small as
compared to the variance of the noise, that is, when the
prior data becomes very strong, the error of the posterior
becomes smaller and the uncertainty is further reduced.
Consequently, BayC’s uncertainty model becomes far

more accurate than the no-prior case. Equation 8.3 also illustrates an interest-
ing fact: BayC approach makes a good balance between the prior knowledge
and the observed noisy data. When the sensor becomes less noisy, its observed
reading becomes more important and the model depends more on it. At very
high noise levels, the observed reading could be totally ignored.

Good idea

8.2 TinyDB: An Acquisitional Query-Processing
System for Sensor Networks [SRM05]

TinyDB aims to address a few questions on query processing of sensor networks:

 1. What is the proper time of sending out a particular sensor data query?
 2. Which sensor nodes have data related to the issued query?

Prior

Prior

0.1

0.05

0
–5 0 5 10 15 20

PosteriorPosterior Observed

Figure 8.3 The resultant uncertainty model of the true temperature (posterior)
and the observed erroneous reading. (Adapted from Elnahrawy, E. and Nath, B.,
Cleaning and querying noisy sensors, Proceedings of the Second ACM International
Conference on Wireless Sensor Networks and Applications, San Diego, CA,
September 19, 2003.)

AU9215_C008.indd 243AU9215_C008.indd 243 2/12/2010 2:48:06 PM2/12/2010 2:48:06 PM

244 ◾ Wireless Sensor Networks: Principles and Practice

 3. What is the right order of taking sensor data samples, and how to interleave
sampling with other WSN operations?

 4. Is it worth wasting computational power or bandwidth to process and relay a
particular data sample?

Among these issues, (1) is the only one that is acquisitional. Th e other three questions
can be answered by modifying methods used to solve traditional query processing.
Questions (2) and (3) can be solved with notions of indexing and optimization,
and question (4) bears some similarity to issues that arise in stream processing and
approximate query answering.

Figure 8.4 shows the basic principle of data query: After the query is parsed
and optimized, it is sent into the sensor network, and then is disseminated and
processed. Th e results are sent back to the base station in the routing tree that is
initialized at the time when queries start their propagation.

Remember a few important facts on WSN data query.
(1) It is built on a certain routing topology, for instance,
a hierarchical tree structure with the root as the base
station. Such a tree structure allows the effi cient propa-
gation of query commands and quick data fi nding. (2)
Although TinyDB data query commands have similar
syntax to Microsoft SQL, its internal implementation

(i.e., how we send out query commands to sensors and how sensors feedback
the required query results) is very challenging. (3) Data query belongs to
application layer issues. But it needs help from routing layer.

Remember

WSNs

NULL
OPs

Nodeid
light

FIELDS
Query

Select nodeid,
light FROM
SENSORS

PC
mote

Sensor 1

1
2
3

28

2 55
3 48

55
48

Sensor 2
Sensor 3

PC

Figure 8.4 A query and results propagating through the network. (Adapted from
Madden, S.R. et al., ACM Trans. Database Syst., 30(1), 122, March 2005.)

AU9215_C008.indd 244AU9215_C008.indd 244 2/12/2010 2:48:07 PM2/12/2010 2:48:07 PM

Sensor Data Management ◾ 245

8.2.1 Data Model
In TinyDB, the sensor data is stored in a table with the following structure: every
row is a sensor’s data in each time instant, and each column is one attribute (e.g.,
light and temperature) produced by the sensor.

8.2.2 Basic Language Features
Data queries in TinyDB should be quick to satisfy real-time response requirements.
A query command consists of a SELECT-FROM-WHERE-GROUPBY clause to sup-
port selection, joins, projection, and aggregation. Its syntax is similar to Microsoft
SQL. Th e FROM clause points out the sensor table or stored tables, which are called
materialization points. Materialization points are created through special logging
queries described below, which provide basic support for subqueries and windowed
stream operations.

To defi ne a query, we must fi rst defi ne the sample intervals, which are an impor-
tant parameter of the query. Th e time period between the start of each sample
period is known as an epoch, which provides the method to structure computation
and minimize power consumption. Consider the following query:

SELECT nodeID, light, temp
FROM sensors
SAMPLE PERIOD 5 s FOR 15 s

Th is query can be used to report each sensor’s identifi er (ID), light, and tem-
perature readings once per second for a total duration of 10 s. Th e query’s result is
sent via multi-hop topology to the root of the network tree (i.e., the base station),
where it can be logged or output to the user. Th e query result consists of a stream
of tuples, clustered into 1 s time intervals. Each tuple has a time stamp to indicate
the time it was produced.

At the beginning of each epoch, the data collection is initiated by sensors, as
specifi ed in the SAMPLE PERIOD clause. Th ere is a simple time synchronization
protocol in TinyDB to ensure that all sensors have correct time stamps.

Note that each query has an ID. Th is ID can be used to explicitly stop a query
via a “STOP QUERY ID” command. Other ways to stop a query include setting a
specifi c time period via a FOR clause, which is shown above (when the time period
ends, the query ends), or using a stop condition.

Th e concept of windows is defi ned in TinyDB based on the materialization
points over the sensor streams. A small buff er of data accumulated in these materi-
alization points can be used in other queries. Consider the following example:

CREATE
STORAGE POINT recentlight SIZE 8
AS (SELECT nodeid, light FROM sensors
SAMPLE PERIOD 20 s)

AU9215_C008.indd 245AU9215_C008.indd 245 2/12/2010 2:48:07 PM2/12/2010 2:48:07 PM

246 ◾ Wireless Sensor Networks: Principles and Practice

Th is statement shows the use of a local (i.e., single-node) location to store a
streaming view of recent data.

8.2.3 Event-Based Queries
As an alternative to the continuous- and polling-based mechanism for data acquisi-
tion, TinyDB provides event-based data collection. TinyDB events are generated
explicitly either by another query or by the operating system (in which case the code
that generates the event must have been compiled into the sensor node).

Consider the following query:

ON EVENT animal-detect(loc):
SELECT AVG(light), AVG(temp), event.loc
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE PERIOD 2 s FOR 30 s

Th is query could be used to extract the average light and temperature data at
sensors near a bird’s nest where a bird has just been detected. Each time a bird-
detect event occurs, the detecting sensor issues the query to collect the average light
and temperature from nearby sensors every 2 s for a total duration of 30 s.

Such events allow the system to be dormant until some external conditions
occur, instead of continually polling or waiting for some data to arrive. As many
CPUs (i.e., microprocessors) include hardware interrupt lines than can wake up a
sleeping sensor to begin data processing, events-triggered query can provide signifi -
cant reductions in power consumption.

8.2.4 Other Queries Defi ned in TinyDB
We will discuss more queries defi ned in TinyDB. Th ose queries are suitable for dif-
ferent special conditions. For example

Network health queries: Th ey are meta-queries over the network itself. For exam-
ple, we may query parents and neighbors in the network tree, or fi nd nodes
with battery life less than some specifi ed threshold. Th e following network
health query reports all sensors whose current battery voltage is less than k:

SELECT nodeid,voltage
WHERE voltage < k
FROM sensors
SAMPLE PERIOD 10 minutes

Actuation queries: In this type of query, users will take actions in response to a data
query. OUTPUT ACTION clause could be used for this purpose. For example, in a
building, a fan could be turned on when temperature is higher than a threshold:

AU9215_C008.indd 246AU9215_C008.indd 246 2/12/2010 2:48:07 PM2/12/2010 2:48:07 PM

Sensor Data Management ◾ 247

SELECT nodeid,temp
FROM sensors
WHERE temp > threshold
OUTPUT ACTION power-on(nodeid)
SAMPLE PERIOD 10 s

Note that this OUTPUT ACTION clause tells that a sensor control command should
be invoked in response to results satisfying the query. In this case, the power-
on command is triggered to pull an output pin on the microprocessor “high,”
which closes a relay circuit and gives power to sensor. We could also use OUTPUT
ACTION to power-off the fan when the temperature falls below a threshold.

Off -line delivery: Sometimes users want to log some phenomenon that happens so
fast that we cannot obtain the data in a real-time way. In this case, TinyDB
supports the logging of results to EEPROM for off -line, non-real-time delivery.

8.2.5 Power-Based Query Optimization
Th e above sections introduced the data query syntax. Th is section discusses some
internal implementation (in a sensor) of those queries. Th is section is primarily
focused on optimization for data acquisition, selection, and aggregation.

TinyDB parses queries at the base station in a simple binary format, and then
disseminates into the sensor network that will instantiate and execute them.
A simple query optimization is performed before the queries are disseminated. Th e
optimization procedure chooses the order of sampling, selections, and joins.

A cost-based optimizer is adapted to choose the query plan with the lowest
overall power consumption. Th is optimization allows us to consider some issues
including CPU-processing cost and radio communication, both of which contrib-
ute to power consumption.

To start, we look at the metadata types stored in the optimizer. Each sensor in
TinyDB maintains a catalog of metadata that describes its local attributes, events,
and user-defi ned functions. Th rough routing protocols, such metadata is periodi-
cally sent to the base station for use by the query optimizer.

What is metadata? Let us take a database (say, Microsoft
Access) as an example. MS Access uses a table to store
raw data. However, the database operations (such as
indexing and sorting) should be controlled by a series of
commands. Where do we store such commands? Using
metadata. Th erefore, metadata is “data of data,” that is,
extracting/building a small amount of control informa-
tion from large amounts of raw data.

Good idea

AU9215_C008.indd 247AU9215_C008.indd 247 2/12/2010 2:48:07 PM2/12/2010 2:48:07 PM

248 ◾ Wireless Sensor Networks: Principles and Practice

Such metadata can be maintained in the nodes via static linking done at compile
time using the TinyOS C-like programming language. If any event or attribute is
needed in query metadata, we can declare it in an interface fi le and then use a han-
dler function to refer to such an interface fi le. For example, to make sensor network
topology available to the query processor, the TinyOS program components adopt
an attribute called “parent node.” Such an attribute can be accessed by using a han-
dler that returns the ID of the node’s parent in the query “tree.”

Event-based metadata has the following structure: a name, a signature, and a
frequency estimate that is used in query optimization. For any user-defi ned predi-
cates, we also use a name and a signature, along with a selectivity estimate that is
provided by the author of the function.

Attribute-based metadata in TinyDB is shown in Table 8.1. Attribute-based
metadata typically includes the power cost, time to fetch data, and the range of an
attribute.

Some examples of power and sample time values are shown in Table 8.2. We
can see that the power consumption and sample time can diff er across sensors by
several orders of magnitude.

Here we use a simple case to show the use of metadata. Suppose we monitor
the microclimates created by plants and their biological processes [DELIN00].
Table 8.2 shows the big diff erence between the order of magnitude in per-sample
costs for the accelerometer and the magnetometer. Th is also means that the
power costs of data query plans with diff erent sampling and selection orders
could vary substantially. For instance, the following three query strategies could
lead to very diff erent power costs: (1) the magnetometer and accelerometer are
sampled before either selection is applied, (2) the magnetometer is sampled and
the selection over its readings is applied before the accelerometer is sampled, (3)
the accelerometer is sampled fi rst and its selection (Saccel) is applied before the
magnetometer is sampled.

Table 8.1 Metadata Fields Kept with Each Attribute

Metadata Description

Power Cost to sample this attribute (in J)

Sample time Time to sample this attribute (in s)

Constant Is this attribute constant-valued (e.g., id)?

Rate of change How fast the attribute changes (units/s)

Range Dynamic range of attribute values (pair of units)

Source: Adapted from Madden, S.R. et al., ACM Trans. Database Syst.,
30(1), 122, March 2005.

AU9215_C008.indd 248AU9215_C008.indd 248 2/12/2010 2:48:07 PM2/12/2010 2:48:07 PM

Sensor Data Management ◾ 249

8.2.6 Summary of TinyDB Strategies
To conclude, Table 8.3 lists the important techniques used in TinyDB.

8.3 Data Aggregation: AIDA [Tian04]
Without using data aggregation scheme, sensors are mutually independent, and
each of them sends its collected data to the end nodes (sink). Such a strategy
does not utilize an important feature in WSNs, that is, sensors in a neighbor-
hood typically have redundant data because they can detect the same event in

Table 8.2 Summary of Power Requirements of Various Sensors

Sensor Examples
Time Per

Sample (ms)
Start-Up

Time (ms)
Current

(mA)
Energy Per

Sample (mJ)

Weather board sensors

 Solar radiation [TAOS,
Inc. 2002]

500 800 0.350 0.525

 Barometric pressure
[INTERSEMA2002]

35 35 0.025 0.003

 Humidity
[SENSIRION02]

333 11 0.500 0.500

 Surface temp.
[MELEXIS02]

0.333 2 5.6 0.0056

 Ambient temp.
[MELEXIS02]

0.333 2 5.6 0.0056

Standard mica mote sensors

 Accelerometer 0.9 17 0.6 0.0048

 (Passive) Thermistor 0.9 0 0.033 0.00009

 Magnetometer
[Honeywell08]

0.9 17 5 0.2595

Other sensors

 Organic by-products 0.9 >1000 5 >5

Source: Adapted from Madden, S.R. et al., ACM Trans. Database Syst., 30(1), 122,
March 2005.

AU9215_C008.indd 249AU9215_C008.indd 249 2/12/2010 2:48:08 PM2/12/2010 2:48:08 PM

250 ◾ Wireless Sensor Networks: Principles and Practice

the same area. It is not necessary to send out data by each sensor individually.
Such a scheme can also waste much energy due to redundant, long-distance data
transmissions.

In-network data aggregation can be used to overcome these shortcomings. As
shown in Figure 8.5, each sensor transmits data only to its neighbors. An algorithm
is used to select proper sensor to be the data aggregator. Th e aggregator removes
all redundant data. Or the aggregator could generate a new value (such as average
value) based on the received inputs from nearby sensors. Th us eventually the net-
work traffi c is greatly reduced compared to no data aggregation case.

Table 8.3 Summary of Acquisitional Query-Processing Techniques
in TinyDB

Technique Summary

Event-based queries Avoid polling overhead

Lifetime queries Satisfy user-specifi ed longevity
constraints

Interleaving acquisition/predicates Avoid unnecessary sampling costs in
selection queries

Exemplary aggregate pushdown Avoid unnecessary sampling costs in
aggregate queries

Event batching Avoid execution costs when a number
of event queries fi re

Semantic Routing Trees (SRT) Avoid query dissemination costs or the
inclusion of unneeded nodes in queries
with predicates over constant attributes

Communication scheduling Disable node’s processors and radios
during times of inactivity

Data prioritization Choose most important samples to
deliver according to a user-specifi ed
prioritization function

Snooping Avoid unnecessary transmissions during
aggregate queries

Rate adaptation Intentionally drop tuples to avoid
saturating the radio channel, allowing
most important tuples to be delivered

Source: Adapted from Madden, S.R. et al., ACM Trans. Database Syst., 30(1), 122,
March 2005.

AU9215_C008.indd 250AU9215_C008.indd 250 2/12/2010 2:48:08 PM2/12/2010 2:48:08 PM

Sensor Data Management ◾ 251

Data aggregation is an important concept in WSNs
due to the strong redundancy and correlation among
sensors’ data. However, data aggregation concept is dif-
ferent from “data fusion.” Data aggregation typically
uses routing layer protocols (such as network topology
discovery) to perform a high-level data analysis. Data
fusion typically operates in physical layer, that is, from

the signal-processing viewpoint. For instance, how do we deduce a new signal
from two spatially correlated time series? Th is book will not cover data fusion
because it belongs to the signal-processing issue.

Difference

WSNs

Grid-based data aggregation [Karthikeyan] is suitable to many sensor network
applications such as military surveillance and weather forecasting. In such a scheme
the sensor network environment is divided into pre-determined grids, each of which
has a grid center (i.e., the data aggregator) that observes and reports data to the sink
nodes.

AIDA [Tian04] is an adaptive application-independent data aggregation in
WSNs. AIDA’s functionality includes two components. One is the functional unit
that aggregates and deaggregates network packets (units). Th e other is the AIDA
aggregation control unit, which is used to adaptively control timer settings and fi ne
tune the desired degree of aggregation.

Event-detecting node
In-network aggregator
Event location

In-network aggregator
sending data to sink

An in-network data aggregation scheme

4.9

7.3

6.8

9.9
5.1

3.7

1.2

2.4

Sink

Figure 8.5 In-network data aggregation scheme. (Adapted from Vaidyanathan, K.
et al., Data aggregation techniques in sensor networks, Technical Report
OSU-CISRC-11/04-TR60, Department of Computer Science and Engineering, The
Ohio State University, Columbus, OH.)

AU9215_C008.indd 251AU9215_C008.indd 251 2/12/2010 2:48:08 PM2/12/2010 2:48:08 PM

252 ◾ Wireless Sensor Networks: Principles and Practice

AIDA protocol [Tian04] works as follows:

For outgoing traffi c (i.e., data to be sent out): It puts packets from the network
layer into an aggregation pool. Based on the number of packets to be concat-
enated (in one aggregate session) and also based on the next-hop destinations
of those packets, AIDA’s aggregation function unit fi nishes an aggregate and
passes it down to the MAC layer for next-hop transmission.

AIDA aggregation control unit determines the number of packets to aggregate
and the time to invoke such aggregation. Th e control unit is a feedback-based,
adaptive component. It can make online decisions based on local current net-
work conditions.

For incoming traffi c (i.e., data to be received): When data is received at the MAC layer,
it is passed up to the AIDA function unit. Within the AIDA function unit, the
received aggregates can be refragmented into their original network units. Th en
each piece of the fragments is passed up to the network layer for next-step routing.

One may argue that it may not be a good idea to perform aggregation if many
aggregates are to arrive at the same ultimate destination as we could waste network
resources if we deaggregate and reaggregate at every intermediate node. However,
to ensure the modularity of layers, and also to allow the networking component to
determinate routes independently, AIDA still uses data aggregation. Th is is because
that the aggregation of multiple network data units into a single AIDA aggregate
could reduce the MAC layer overhead of channel contention (by using wait/backoff
operations in MAC layer) and the communication overhead of control packets
(such as RTS/CTS/ACK in 802.11, ACK in regular reliable MAC). By using data
aggregation, these costs are incurred only once per aggregate.

Although data aggregation has signifi cant benefi ts, it is a challenging issue to
design an adaptive AIDA control unit that can set up appropriate aggregation tim-
ing and parameters online. For instance, what is the good time to perform data
aggregation—periodically or wait for enough data arrivals? What data compression
scheme should be used? How do we kick out “strange data” (deviating from other
data) before we perform aggregation?

An interesting issue is as follows: where (in network layers) should we imple-
ment aggregation? To avoid the change of traditional network layers, AIDA uses a
delegation approach to intercept all function calls and to establish direct commu-
nications between the MAC and routing layer (also called network layer). Th rough
delegation approach, AIDA data aggregation layer becomes one of the interfaces
between the MAC and routing layer.

He et al. [Tian04] have designed diff erent styles of AIDA. Th ose styles include
the fi xed, on-demand, and dynamic feedback schemes. Th e aggregation decisions in
those schemes could be based on static thresholds or achieve an ultimate solution that
incorporates a dynamic, online feedback control mechanism. In the following discus-
sion, a baseline without aggregation is also mentioned for comparison purpose.

AU9215_C008.indd 252AU9215_C008.indd 252 2/12/2010 2:48:08 PM2/12/2010 2:48:08 PM

Sensor Data Management ◾ 253

 1. No aggregation: When no aggregation is used (i.e., the baseline scheme), we
simply use the traditional network stack that does not use direct communica-
tions between routing layer and the MAC protocol.

 2. Fixed scheme: Here “fi xed” means that AIDA aggregates a fi xed number of
network data units into one AIDA payload. After a routing layer fi nishes the
data aggregation for those fi xed number of data units, it passes the AIDA
payload down to the MAC layer for transmission. To ensure that AIDA does
not wait for an indefi nite amount of time before fi nishing the collection of
fi xed number of data units, a sender sets up a timeout value (say, Tfi xed). If
timer expires, it will not wait for more data units and just begin to aggregate
what it collects.

 3. On-demand scheme: In this scheme, data aggregation is just an optional oper-
ation. Th is is because that a sensor will try to be “always busy.” Th at is, a
sensor will not waste a long time to collect enough data units (for aggrega-
tion). Instead, when the MAC layer is available for transmission, no mat-
ter how many data units it has collected so far, it just fi nishes aggregation
and immediately sends out the data. AIDA-layer data aggregation only takes
place when a sensor really has nothing to send and gets “stuck” there. (For
instance, the outbound message queue has built up or the radio medium is
busy preventing the MAC layer from accessing the channel). Th is on-demand
scheme avoids message delay.

 4. Dynamic feedback scheme: Th is is the ultimate solution based on a combina-
tion of on-demand and fi xed aggregation. Th e scheme works by monitoring
two parameters: (a) the AIDA output queue size: if the queue has space, it will
aggregate more data units and (b) current queuing delay: if the delay is large,
it will reduce the aggregation size (i.e., aggregating less data units). AIDA uses
control theory to dynamically adjust the degree of aggregation to converge
the MAC delay to a certain set point.

8.4 Sensor Data Storage: Tiered Storage
ARchitecture (TSAR) [Peter05a]

Th e data generated by sensor networks must be processed and stored, as typical sen-
sor applications require access to both live and past sensor data. Access to past data
is required for applications such as sensor data mining to detect unusual patterns,
analysis of historical trends, and off -line analysis of particular events. Th e essential
design considerations of the storage system that stores past sensor data are the loca-
tion of data storage, indexing or not, and the method for application to access data
with energy-effi cient manner and low latency.

People have proposed variable approaches on sensor data storage. Th e simplest
scheme allows sensors to stream data or events to the base station for long-term
archival storage [PBonnet01]. Th e data is indexed to ensure effi cient access at a

AU9215_C008.indd 253AU9215_C008.indd 253 2/12/2010 2:48:08 PM2/12/2010 2:48:08 PM

254 ◾ Wireless Sensor Networks: Principles and Practice

later time. Th e advantage of this approach is that the storage is centralized, and the
access to the storage is effi cient and inexpensive. Th e disadvantage is that writes to
the storage are expensive and ineffi cient.

An alternative scheme is to allow each sensor to store its own data locally (e.g.,
using its fl ash memory), so all writes are local and effi cient. Th en a simple read
request is handled by a particular sensor, and more complex read requests are handled
by fl ooding to the network. Th is approach has distributed storage and inexpensive
write, but reads are ineffi cient and expensive.

Some other sensor storage solutions exist between the two extremes discussed above.
One of these solution is geographic hash table (GHT) approach [RATNASAMY01,
RATNASAMY02], in which every data item has a key associated with it, and a dis-
tributed GHT maps keys to diff erent sensors. To read the storage, in-network hash
table is looked up and the nodes that store the data item are located. Th us fl ooding is
not needed in this approach.

Compared with the fl at and homogeneous architecture where every sensor
node is energy-constrained, a new storage architecture named TSAR is proposed in
[Peter05a]. TSAR organizes a WSN into a multi-tier architecture. It is a predictive
storage architecture, and combines archival storage with caching and prediction.
TSAR exploits the resource-rich sensor tiers for caching and prediction.

TSAR stores data on fl ash storage in each sensor. Sensors send metadata (concise
identifying information) to a nearby proxy (a special sensor with network control
capabilities). Th e metadata may be an order of magnitude smaller than the data
itself, which helps to reduce the communication cost. Th en the resource-rich prox-
ies mutually interact to create a distributed index of the data stored in sensors.
Th is index can be used by applications to query and read past data effi ciently, for
instance, data that matches a read request can be pinpointed by the index and then
retrieved from the corresponding networks. Th e separation of data stored at the sensors
and metadata stored at the proxies gives TSAR the ability to leverage the tethered
proxy resources and reduce sensor energy consumption.

TSAR organizes a WSN into three tiers. Th e bottom one is untethered remote
sensor nodes, these nodes are low-power sensors; the middle one is tethered, power-
rich sensor proxies; and the upper tier has applications and user terminals.

Th e middle tier plays a crucial role. Its sensor proxies have signifi cant computa-
tion, memory, and storage resources. In a typical WSN application, the proxy tier
may comprise tethered base-station class nodes (e.g., crossbow stargate). Each of
those nodes is equipped with multiple radios. For instance, it may have an 802.11
radio to communicate with a wireless mesh network, and another radio (e.g.,
802.15.4) to connect to the low-tier sensor nodes.

Th e middle-tier proxies could use solar power cell to have longer lifetime. Each
proxy can manage hundreds of lower-tier sensors in its vicinity. A typical WSN
deployment will contain multiple geographically distributed proxies.

Th e upper tier has WSN applications that query the network through a query
interface [MADDEN02a]. TSAR aims to design a storage system that exploits the

AU9215_C008.indd 254AU9215_C008.indd 254 2/12/2010 2:48:08 PM2/12/2010 2:48:08 PM

Sensor Data Management ◾ 255

relative abundance of resources at middle-tier proxies to mask the scarcity of
resources in the bottom-tier sensors.

TSAR uses the following principles to design the sensor storage system for
multi-tier networks:

Principle 1: Store locally, access globally: Th e cost is lower and the effi ciency is better in
the case of local storage (compared with networked storage), and this trend will
continue for the next few years. To maximize the network lifetime, we could store
data locally in a sensor’s fl ash memory, which can save much more energy than
exchanging storage message through expensive radio transmissions. TSAR uses
an effi cient information retrieval mechanism based on local storage.

Principle 2: Distinguish data from metadata: Metadata uses special data fi elds
with pre-determined syntax. It uses identifi ers such as location, time, or
summarized data values. Metadata is accompanied with each data record to
reduce the searching and retrieving time. Th en it is indexed by proxies to pro-
vide effi cient database lookups. TSAR system has a unifi ed logical view for all
data, and can exploit the idiosyncrasies of multi-tier networks to improve its
performance and functionality.

Principle 3: Support data-centric query: In sensor applications, it is important
to build interfaces that allow TSAR to locate data by value or attribute (i.e.,
location or time). Th us indexing metadata can lower lookup costs.

Th e key feature of TSAR system design is based on the principles listed above. It
uses a distributed index at the proxies. In this system, sensor nodes write data that
is composed of opaque data and application-specifi c metadata. Metadata can be
searched on and compared by TSAR. One example is a camera-based sensing appli-
cation. In this case, the metadata can include coordinates describing the fi eld of
view, average luminance, motion values, and other basic information such as time
and sensor location. Th e size of metadata varies depending on the application, as it
can be much smaller than the raw data extracted from image or acoustic data.

Not only do sensors store data locally, but sensors also report metadata sum-
mary to nearby proxies periodically. Th is summary carries the information such as
the sensor ID, the time interval (t1, t2) over which the summary was generated, a
handle identifying the corresponding data record (e.g., its location in fl ash mem-
ory), and a coarse-grain representation of the metadata associated with the record.
Th e data representation in the summary depends on the application. One example
is the temperature sensor. In this case, the summary consists of maximum and
minimum temperature values observed in an interval.

Th e summary reported is used by the proxy to construct an index, which is
global because it collects information from the entire system. Th e index provides
a unifi ed view of distributed data such that it can be queried by the application to
access data stored at any sensor. In each query, the lookup is triggered in the distrib-
uted index, and the matching results are used to retrieve data from sensors.

AU9215_C008.indd 255AU9215_C008.indd 255 2/12/2010 2:48:08 PM2/12/2010 2:48:08 PM

256 ◾ Wireless Sensor Networks: Principles and Practice

Th e TSAR summarization makes sure no missing summaries (which include
the value being searched for) would occur, or no false negatives. However, false posi-
tive is possible whereas a matching summary does not yield matching value in a
remote sensor, which is a waste of network resources.

TSAR uses a novel index structure called the interval skip graph that com-
bines interval trees [CORMEN01], an interval-based binary search tree, with skip
graphs [ASPNES03], an ordered, distributed data structure for peer-to-peer systems
[HARVEY03] to fi nd all intervals containing a particular point for a range of values.
It has two advantages, which are ideal for sensor networks. Th e fi rst advantage is that
it has only O(logn) search complexity to access the fi rst matching interval, and has a
constant complexity to access successive interval. Th e second advantage is that it uses
interval indexing instead of value indexing, which makes it more convenient to index
summaries over time. Interval indexing is also suitable for energy constrained nodes, as
it saves the energy in transmitting summaries rather than transmitting all sensor data.

Interval skip graphs effi ciently look up sensor nodes that contain data relevant to
a query. When these queries are sent to the network, the sensors quickly locate the
relevant data records in their local archive and respond back to a middle-tier proxy.
To enable such lookups, each sensor maintains an archival store of sensor data.

Although it is straightforward to implement such an archival store in resource-
rich devices (such as a laptop), sensors have serious resource constraint. Consequently,
TSAR archiving subsystem has fully exploited sensor data characteristics. For
instance, a distinct characteristic of sensor data is that sensors generate time-series
data streams, which tells us that we could achieve data in temporal order.

As a matter of fact, many signal-processing schemes can utilize such a temporally
ordered store to perform operations. An example is digital signal processing that has
many time-series operations such as fast Fourier transform (FFT), wavelet transforms,
clustering, similarity matching, and target detection.

As mentioned before, each raw data record has an associated metadata fi eld that
includes a time stamp, sensor settings, calibration parameters, etc. Raw sensor data is
stored in the data fi eld of the record. Note that such a data fi eld is opaque and applica-
tion-specifi c as the storage system is not aware of this fi eld or does not care about such
a fi eld. For example, a video sensor may store binary images in this data fi eld.

8.5 Multi-Resolution Data Processing [GANESAN03a]
In [GANESAN03a], an interesting concept is proposed, that is, extracting sensor data in
a multi-resolution manner from a sensor network. Multi-resolution means that we could
observe the data from diff erent levels, for instance, a coarse level or a fi ne level. It allows
users to look at low-resolution data from a larger region quickly and cheaply, before decid-
ing to obtain high-resolution data, which are more detailed and potentially more expen-
sive datasets. In some cases, it is suffi cient to use compressed low-resolution sensor data for
spatio-temporal querying to obtain statistical estimates of a large body of data [DAI04].

AU9215_C008.indd 256AU9215_C008.indd 256 2/12/2010 2:48:08 PM2/12/2010 2:48:08 PM

Sensor Data Management ◾ 257

To refl ect diff erent resolution levels, a concept called data “dimensions” is pro-
posed in [GANESAN03a]. We have noticed that there are correlations in sensor data
along multiple axes such as temporal, spatial, and between multiple sensor modali-
ties. Th ese correlations can be exploited to reduce data dimensionality. Although
we can exploit temporal correlation locally, the routing protocol needs to be tailored
to spatial correlation between sensor nodes for maximum data reduction.

Th e temporal correlation exists in many applications. For example, in a video
sensor network, a new captured image has strong correlations with previous image
as most background pixels in those two images do not change much.

To obtain diff erent resolutions (i.e., data dimensions), Ganesan et al. (2003)
[GANESAN03a] use wavelet subband coding, a popular signal-processing technique
for multi-resolution analysis and compression [CORMEN01, Shanmugasundaram04].
Wavelets have many advantages over other signal-processing techniques when view-
ing a spatiotemporal dataset. For instance, the data can be decomposed at multiple
spatial and temporal scales. Important features in the data, such as abrupt changes at
various scales, can be extracted to obtain good compression. When wavelet thresh-
olding is applied to compression in typical time-series signals, we only need a few
coeffi cients for reasonably accurate signal reconstruction.

Problems and Exercises
8.1 Multi-choice questions:
 1. Due to which of the following reasons could the sensor data have noise?
 a. Hardware/circuit noise
 b. Operation environments
 c. Measurement inaccuracy
 d. All of the above
 2. Data cleaning generally is not necessary in traditional databases because
 a. Noisy data, if any, is assumed to be cleaned off -line by separate database

functionality.
 b. Th e source of data is either an explicit data-entry operation or a transac-

tion activity.
 c. Th ey occupy too much space and data cleaning is hard.
 d. Both a and b.
 3. Which of the following is not true on Bayesian-based cleaning (BayC)?
 a. It consists of cleaning module and query-processing module.
 b. Traditional query, which assumes a single value for every reading, can

be used in its query-processing module.
 c. Prior knowledge is the distribution of the true sensors’ readings.
 d. Online cleaning combines the prior knowledge of the true reading, the

error model of the sensor, and its observed noisy reading together in
one step.

AU9215_C008.indd 257AU9215_C008.indd 257 2/12/2010 2:48:08 PM2/12/2010 2:48:08 PM

258 ◾ Wireless Sensor Networks: Principles and Practice

 4. Which of following feature(s) does TinyDB have?
 a. Its data query command format is similar to SQL.
 b. Its event-based queries can avoid polling overhead.
 c. It cannot perform data aggregation query.
 d. Both a and b
 5. Which of the following features do data aggregation schemes not have?
 a. It is typically used for in-network data reduction.
 b. AIDA is to separate AIDA functionality into two components. One is

the functional unit that aggregates and deaggregates network packets
(units). Th e other is the AIDA aggregation control unit, employed to
adaptively control timer settings and fi ne tune the desired degree of
aggregation.

 c. AIDA can dynamically adjust the degree of aggregation.
 d. AIDA is not transparent from other network protocol layers.
8.2 Explain the BayC general model and point out how it can clean data noise

online.
8.3 How does BayC use prior knowledge to remove uncertainty?
8.4 Explain major features of TinyDB.
8.5 What is the relationship between data aggregation and in-network routing

protocol?

AU9215_C008.indd 258AU9215_C008.indd 258 2/12/2010 2:48:08 PM2/12/2010 2:48:08 PM

VADVANCED
TOPICS

AU9215_S005.indd 259AU9215_S005.indd 259 12/17/2009 3:18:09 PM12/17/2009 3:18:09 PM

AU9215_S005.indd 260AU9215_S005.indd 260 12/17/2009 3:18:09 PM12/17/2009 3:18:09 PM

261

9Chapter

Sensor Localization

In this chapter, we discuss about wireless sensor network (WSN) localization
schemes, that is, how the sensors can use message exchanges to fi nd approximate
locations of object sensors. First, we discuss about the basic knowledge of sensor
localization based on the reference [Xiang04]. Th en, we exemplify some typical
localization algorithms.

Node localization is an important and interesting topic in many wireless net-
works. Th is chapter has introduced seven good sensor localization schemes that
have elegant math models. To keep the original meanings of those algorithms, we
have kept the original math notations and algorithm procedures in our citations.

9.1 Introduction [Xiang04]
We have addressed localization problems in many fi elds such as the autonomous
robot and vehicle navigation for mobile robotics, virtual reality systems, and
user location and tracking in cellular networks. However, the crucial issue of
determining the locations of sensors for wireless sensor network operations is
far-reaching.

Sensor networks typically form a layered network protocol stack. In the appli-
cation layer, location-aware applications necessitate sensor localization. Sensor
position information is often integral to the use of data collected by sensors. For
example, to detect and track objects with sensor networks, the physical position of
each sensor is needed for identifying the positions of detected objects. In the net-
work layer, many communication protocols of sensor networks are built upon the
knowledge of the geographic positions of sensors. For example, the knowledge of

AU9215_C009.indd 261AU9215_C009.indd 261 2/23/2010 12:59:51 PM2/23/2010 12:59:51 PM

262 ◾ Wireless Sensor Networks: Principles and Practice

location information and transmission range enables geographic routing algorithms
that propagate information through multi-hop sensor networks to operate.

In most cases, location information is unknown upon deployment, and there
is no infrastructure available to locate them. It is, therefore, necessary to fi nd some
approaches to identify the location of each sensor in WSNs after their deployment.

One of the most popular technologies for localization is the global positioning
system (GPS). Many applications have been developed based on GPS. It is quite
possible to locate sensors if each is equipped with a GPS; however, this method is
impractical for three main reasons. First, GPS is not always available due to the
line-of-sight (LOS) conditions. For instance, it does not work indoors, under water,
or in a subway. Second, a typical GPS receiver costs approximately $100 so far,
so it is often too expensive to equip each sensor with a GPS receiver, considering
that these sensors are usually designed to be low cost and disposable. Finally, GPS
receivers consume large amounts of power (from a tiny sensor viewpoint).

Based on the previous discussion, alternative sensor localization systems are
required. Considering the application scenarios of sensor networks, designing
localization systems for sensor networks is more challenging than designing local-
ization systems for applications in many other domains. Sensors are designed to be
small and have low power. Th ey are usually randomly and densely deployed within
a large region. After being deployed, these sensors self-organize into a distributed
ad hoc sensor network. Th e ideal sensor localization system is also required to have
a low computation and a low power cost. Th e localization system should be able
to tolerate ad hoc deployment without infrastructure support for localization, and
should be able to perform self-localization. Th e localization system is expected to
scale to include a large number of sensor nodes, and must accommodate a dynamic
environment.

9.2 Elements of Localization [Xiang04]
Most localization methods fi rst approximate distances or angles between unknown
sensors and anchor sensors (those with known locations), then the location of
unknown sensors are calculated with geometry algorithms. Th us, the most impor-
tant elements for sensor localization are distance measurement, angle measurement, and
geometric constraints. In the following section, we discuss available techniques for
ascertaining each of the prerequisites.

9.2.1 Received Signal Strength Indication
An important characteristic of radio propagation is the attenuation of the radio signal
as the distance between the transmitter and the receiver increases. Th e strength of
the received radio signal decreases exponentially relative to the increase in distance.
Th e receiver can measure this attenuation based on received signal strength indication

AU9215_C009.indd 262AU9215_C009.indd 262 2/23/2010 12:59:54 PM2/23/2010 12:59:54 PM

Sensor Localization ◾ 263

(RSSI). RSSI estimates the distance to the sender by measuring the power of the
received signal. Based on the transmitted power, the propagation loss is calculated,
and the loss can be translated into an estimated distance. Th is method has been used
mainly for radio frequency (RF) signals. In [Rappaport96], radio propagation models
are well researched, and they are used to predict the average RSSI at a given distance
away from the transmitter. Th e ideal radio propagation model is

λ λ

=
π

2
t

r 2()
4

r
n

P G G
P d

d L (9.1)

Equation 9.1 predicts the received signal power as a function of the distance between
the transmitter and the receiver. In the ideal model, Pλ is the transmitted power,
Gt is the antenna gains of the transmitter, Gr is the receiver, L is the system loss, and
λ is the system wavelength. Usually Gt, Gr, and L can be taken out of the equation, as
they are set to one. In [ASavvides01], they have shown the distance estimation with
received RF signal strength using the wireless integrated network sensors (WINS) sen-
sor nodes [WINS]. In the experiments, diff erent confi guration strategies, including dif-
ferent power levels in transmitters and the deployment strategies of sensors, are used to
estimate the relation between the received signal strength and the distance between the
transmitter and the receiver. Th e power of the received radio signal strength attenuates
exponentially with the increase in distance as shown in Figure 9.1.

5 10 15
Distance (m)

Re
ce

iv
ed

 si
gn

al
 st

re
ng

th Measured P = 7
LS fit P = 7

20 2501.2

1.4

1.6

1.8

2

2.2

2.4

2.6×104

Figure 9.1 The power of the received radio signal strength attenuates exponen-
tially with the increase of distance between the transmitter and the receiver.
(From Ji, X., Localization algorithms for wireless sensor network systems, PhD
thesis, Department of Computer Science and Engineering, The Pennsylvania State
University, Philadelphia, PA, 2004.)

AU9215_C009.indd 263AU9215_C009.indd 263 2/23/2010 12:59:54 PM2/23/2010 12:59:54 PM

264 ◾ Wireless Sensor Networks: Principles and Practice

In theory, the power of a radio signal diminishes in relation to the square
of the distance from the source of the signal. As a result, a node listening to a
radio transmission should be able to use the strength of the received signal to
calculate its distance from the transmitter. RSSI suggests a practical solution
to the hardware-ranging problem: use the radios present in most sensor nodes to
calculate ranges for localization [Jonathan08]. In practice, however, RSSI rang-
ing measurements contain noise to the order of several meters. Th is noise occurs
because radio propagation tends to be nonuniform in real environments. For
instance, radio signals propagate diff erently over asphalt than they do over grass.
Physical obstructions, such as walls or furniture, refl ect and absorb radio waves.
As a result, distance predictions using signal strength have been unable to dem-
onstrate the precision obtained by other ranging methods such as time diff erence
of arrival (TDoA).

A more cautious physical analysis of radio propagation and increased precision
sensor radio calibration may allow for better use of RSSI data. Th us, it is likely that
a more sophisticated use of RSSI could prove to be a superior ranging technology
from a price/performance standpoint. Regardless, the necessary technology does
not presently exist.

9.2.2 Time of Arrival
Th e distance between the transmitter and the receiver can be estimated based on
the speed of the wave propagation and the measured time for a radio signal to
travel between two sensor nodes. Th is method can be applied to several types of
signals, such as RF, acoustic, infrared, and ultrasound. Th e implementation of this
technique depends on the measurement of time of arrival (ToA). Th e ToA may be
measured with advanced timing techniques. Th e GPS utilizes one such advanced
timing technique for distance estimation [BHW97]. In GPS, each satellite
(transmitter) transmits a unique code. Th e receiver replicates the code. Th e receiver
gradually shifts its internal clock to correspond to the received code; this process is
called lock on. Once a receiver has locked on to a satellite, the receiver determines
the exact time of the reception of the radio signal from the satellite. Based on that
time, the ToA can be determined by subtracting the known transmission time from
the calculated reception time.

Although ToA off ers a high level of accuracy, such precise measurements require
sensor nodes to have relatively fast processing capabilities to resolve small timing
discrepancies.

9.2.3 Time Difference of Arrival
Th e distance from the transmitter to the receiver can be measured by the TDoA of
a variety of communication media at diverse speeds. For example, the measurement

AU9215_C009.indd 264AU9215_C009.indd 264 2/23/2010 12:59:55 PM2/23/2010 12:59:55 PM

Sensor Localization ◾ 265

for ToA is based on two diff erent modalities of communication, ultrasound and
radio, in sensor nodes. Th e propagation speeds for ultrasound and radio are nota-
bly diff erent. Due to this discrepancy, the radio signal is used for synchronization
between the transmitter and the receiver, and the ultrasound signal is used to esti-
mate the distance between them. Th e TDoA technique is used in projects of Active
Bat [BWarneke01] and AHLoS [ASavvides01].

In TDoA schemes, each node is equipped with a speaker and a microphone.
Some systems use ultrasound while others use audible frequencies. However, the
general mathematical technique is independent of particular hardwares. In TDoA,
the transmitter fi rst sends a radio message (see Figure 9.2). It waits for a fi xed
interval of time, tdelay (which might be zero), and then generates a fi xed pattern of
“chirps” with its speaker. When listening nodes captured the radio signal, they
record the current time, tradio, and turn on their microphones. When their micro-
phones detect the chirp pattern, they again record the current time, tsound. Once
they have tradio, tsound, and tdelay, the listeners can compute the distance d between
themselves and the transmitter, given the fact that radio waves travel substantially
faster than sound waves in air.

 = − − −radio sound sound radio delay() ()*d s s t t t (9.2)

TDoA methods are impressively accurate under LOS conditions; however, they
perform best in areas that are free of echoes and in situations where the speakers
and microphones are calibrated to each other. Several groups are working to com-
pensate for these issues, which will likely lead to improved fi eld accuracy.

tsound

sradio – ssoundtdelay

tdelay

tradio

d

Ra
di

o

Sound

Figure 9.2 TDoA illustrated. (Adapted from Bachrach, J. and Taylor, C.,
Localization in sensor networks, Computer Science and Artifi cial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA.)

AU9215_C009.indd 265AU9215_C009.indd 265 2/23/2010 12:59:55 PM2/23/2010 12:59:55 PM

266 ◾ Wireless Sensor Networks: Principles and Practice

9.2.4 Angle of Arrival
Angle of arrival (AoA) refers to the angle at which signals are received by the receiver
from the transmitter. An AoA system is able to estimate the angle at which signals
are received and to use simple geometric relationships to estimate the relative loca-
tions of the transmitter and the receiver. Angles of arrival may also be combined
with distance estimates to derive relative locations.

Th e implementation of the AoA system relies on smart antenna with antenna
arrays to measure the angle at which the signal arrives. A smart antenna is an array
of antenna elements connected to a digital signal processor. Such a confi guration
will not only enable AoA estimation but also dramatically enhance the capacity of
wireless links through the combination of diversity gain, array gain, and interfer-
ence suppression. Th ere are two major disadvantages of the AoA techniques, which
make it inapplicable to sensor networks. First, the cost of the complex antenna
array is high. Second, the AoA techniques will not scale well for systems with a
large number of such nodes.

9.2.5 Triangulation
Triangulation is a geometric technique that uses the angles of arrival to determine
the location of sensors. With the angle of each anchor sensor, with respect to the
unknown sensor node in some reference frame, the locations of the unknown
sensor node are calculated with the trigonometric laws of sine and cosine. Th e
computation of triangulation is illustrated by Figure 9.3 [CSavarese02].

9.2.6 Trilateration
Trilateration is a geometric technique that uses distances between three anchor
sensors and one unknown sensor to determine the location of the unknown sensor.

α1
α2

α3

Figure 9.3 Triangulation. (From Savarese, C., Robust positioning algorithms
for distributed ad hoc wireless sensor networks, Master’s thesis, University of
California at Berkeley, Berkeley, CA, 2002.)

AU9215_C009.indd 266AU9215_C009.indd 266 2/23/2010 12:59:55 PM2/23/2010 12:59:55 PM

Sensor Localization ◾ 267

An unknown sensor is uniquely located when at least three reference points are
associated with it in a two-dimensional (2D) space. Th e location of the unknown
sensor is estimated by calculating the intersection of three circles. Figure 9.4 illus-
trates the computational geometric constraint [ASavvides01].

9.2.7 Multilateration
Th e location of an unknown sensor may also be estimated with multilateration uti-
lizing its distances to more than three anchor sensors. In [JBeutel99], Beutel studied
the multilateration with the least square algorithm.

Given n anchor sensors, in a three-dimensional (3D) space, and their distances
to the unknown sensor, we have

⎡ ⎤ ⎡ ⎤− + − + −
⎢ ⎥ ⎢ ⎥

− + − + −⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + − + −⎣ ⎦ ⎣ ⎦

� �

2 2 2 2
1 1 1 1

2 2 2 2
2 2 2 2

2 2 2 2

() () ()

() () ()

() () ()

x y z

x y z

n n x n y n z

d x u y u z u

d x u y u z u

d x u y u z u

(9.3)

where
di is the distance between the ith anchor sensor and the unknown sensor
(xi, yi, zi) is the location of the ith anchor sensor in 3D space
(ux, uy, uz) is the location of unknown sensor in 3D space

Figure 9.4 Trilateration. (From Ji, X., Localization algorithms for wireless sensor
network systems, PhD thesis, Department of Computer Science and Engineering,
The Pennsylvania State University, Philadelphia, PA, 2004.)

AU9215_C009.indd 267AU9215_C009.indd 267 2/23/2010 12:59:55 PM2/23/2010 12:59:55 PM

268 ◾ Wireless Sensor Networks: Principles and Practice

Th e equation can be converted into the following relations through linear operations:

 Au b= (9.4)

⎡ ⎤ ⎡ ⎤− + −
⎢ ⎥ ⎢ ⎥

− + −⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦

� �

2 2 2
1 1 1

2 2 2
2 2 2

2 2 2

() ()

() ()

() ()

x y

x y

n n x n y

d x u y u

d x u y u

d x u y u

(9.5)

x

y

z

u
u u

u

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

(9.6)

2 2 2 2 2 2 2 2
1 1 1 1

2 2 2 2 2 2 2 2
2 2 2 2

2 2 2 2 2 2 2 2
1 1 1 1

n n n n

n n n n

n n n n n n n n

d d x x y y z z

d d x x y y z z
b

d d x x y y z z− − − −

⎡ ⎤− − + − + − +
⎢ ⎥

− − + − + − +⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥− − + − + − +⎣ ⎦

�

(9.7)

Th e u can be derived with [GGolub96]

 −= ′ ′1() *u A A A b (9.8)

Figure 9.5 illustrates the computational geometric
scenario [ASavvides01].

9.3 Using Mobile Robots
for Sensor Localization
[Pubudu05]

9.3.1 Delay-Tolerant Sensor Networks
A delay-tolerant network (DTN) architecture
was proposed in [Kavek04] for sensors deployed
in mobile environments lacking an always-on
infrastructure. These sensors are envisioned to
monitor the environment over an extended time
period. Rather than using packet switching,
communication is based on an abstraction of
message switching.

Figure 9.5 Multilateration.
(Adapted from Savvides, A.
et al., Dynamic fi ne-grained
localization in ad-hoc net-
works of sensors, Procee-
dings of the Seventh ACM
International Conference
on Mobile Computing and
Networking (Mobicom),
Rome, Italy, July 2001, ACM,
New York, 166–179.)

AU9215_C009.indd 268AU9215_C009.indd 268 2/23/2010 12:59:56 PM2/23/2010 12:59:56 PM

Sensor Localization ◾ 269

A concept called “bundles” could be defi ned to describe the moderate-length
messages for noninteractive traffi c. Such a concept is good for network manage-
ment because it allows the network path selection and scheduling functions to
know beforehand about the size and performance of requested data transfers.

Pathirana et al. [Pubudu05] propose a novel localization scheme for DTNs using
RSSI measurements from each sensor device at a data gathering mobile robot. It uses
one or more mobile robots to perform node localization in a DTN, eliminating the
processing constraints of small devices. Th e mobility of the robots is exploited to
reduce localization errors and the number of static reference location beacons.

An extended Kalman fi lter (Robust Extended Kalman Filter [REKF])–based
[IPetersen99] state estimation algorithm is proposed for node localization in DTNs.
Localization is defi ned as an online estimation in a nonlinear dynamic system.
Its model incorporates signifi cant uncertainty and measurement errors.

Let us take a look at its system dynamic model and the nonlinear measurement
model.

9.3.1.1 System Dynamic Model

Assume that sensors are randomly distributed in an environment. Th e dynamic
model for n sensors and the mobile robot can be given in 2D cartesian coordinates
as [ASavkin03]

 = + + ω� 1 2() () () ()x t Ax t B u t B t (9.9)

where

⎡ ⎤Φ⎡ ⎤ ⎡ ⎤Θ Φ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= − = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥Θ Φ⎢ ⎥⎣ ⎦ ⎣ ⎦Φ⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Θ = Φ =⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥−⎣ ⎦

� � �1 2

0 0
, , ,

0 0

0 0
0 0 1 0

0 00 0 0 1
,

0 0 0 0 1 0
0 0 0 0

0 1

A B B

(9.10)

Th e dynamic state vector with x(t) = [x1(t) … xi(t) … xn(t)]′ and xi(t) = [Xi(t)Yi(t)
X. i(t)Y

.
i(t)]′, where i ∈ [1…n], Xi(t) and Yi(t) represent the position of the ith sensor

(Sensori) with respect to the mobile robot at time t, and their fi rst-order derivatives,
X. i(t) and Y.i(t), represent the relative speed along the X and Y directions.

AU9215_C009.indd 269AU9215_C009.indd 269 2/23/2010 12:59:56 PM2/23/2010 12:59:56 PM

270 ◾ Wireless Sensor Networks: Principles and Practice

If xc(t) = [xc(t) yc(t) x. c(t) y.x(t)]′ represents the absolute state (position and veloc-
ity in the X and Y directions, respectively) of the mobile robot, and =()i

sx t
′⎡ ⎤⎣ ⎦� �() () () ()i i i i

s s s sx t y t x t y t denotes the absolute state of the Sensori in the same order,
then Δ= −() () ()i

i c sx t x t x t .
Assume that u(t) is the 2D driving/acceleration command of the mobile robot

from the respective accelerometer readings, and ω(t) denotes the unknown 2D
driving/acceleration command of the sensor if it is moving. Assume that the sensors
are stationary and set ω(t) = 0.

Th en we can represent the system in the form of an input (u(t)) and measure-
ment (y) system, as shown in Figure 9.6. We omitted B2 as we only consider the case
of stationary sensors. Now the issue is to estimate state x from measurement y.

As the sensor locations are unknown, in the beginning of the algorithm we
simply assume an arbitrary location (0, 0) for the sensor to be located. Th e algo-
rithm can ensure that this assumed state converges to the actual state and, hence,
the unknown sensor location can be estimated (as the position/state of the mobile
robot is known) within the prescribed time frame.

Channel Measurement
Model (RSSI)

A

+

B1

C(x)

u(t)

x

y

Figure 9.6 Location estimation system. (Adapted from Pathirana, P.N. et al., IEEE
Trans. Mobile Comput., 4(3), 285, May/June 2005.)

AU9215_C009.indd 270AU9215_C009.indd 270 2/23/2010 12:59:57 PM2/23/2010 12:59:57 PM

Sensor Localization ◾ 271

9.3.1.2 RSSI Measurement Model

As discussed before, we can observe the distance between two communicating
entries by using the forward link RSSI of the receiver. Th e data association is unam-
biguous when multiple transmitters are present. We can precisely determine which
measurement comes from which transmitter by examining the source (transmitter)
identifi er in the data packet.

For our case, RSSI is measured in decibels at the mobile robot. If we denote the
ith sensor as Sensori (Figure 9.7), we could determine the RSSI from the Sensori
pi(t) as [HXia96]

 = − ε +() 10 log () ()i oi i ip t p d t v t (9.11)

where
poi is a constant determined by the transmitted power, wavelength, and antenna

gain of the mobile robot
ε is called path loss ratio (typically 2–4)
vi(t) is the logarithm of the shadowing component, which is considered as an

uncertainty in the measurement
di(t) is the distance between the mobile robot and the Sensori, which can be

further expressed in terms of the position of the ith sensor with respect to the
location of the mobile robot, that is, (Xi(t), Yi(t))

 = +2 2 1/2() (() ())i i id t X t Y t (9.12)

Mobile robot

Sensor 3

Sensor 2

Sensor 1

Sensor n

Figure 9.7 Network geometry. (Adapted from Pathirana, P.N. et al., IEEE Trans.
Mobile Comput., 4(3), 285, May/June 2005.)

AU9215_C009.indd 271AU9215_C009.indd 271 2/23/2010 12:59:58 PM2/23/2010 12:59:58 PM

272 ◾ Wireless Sensor Networks: Principles and Practice

Th e observation vector

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

�
1()

()
()n

p t
y t

p t

(9.13)

is sampled progressively as the mobile robot moves in the coverage area. Th e
measurement equation for the measurements made by the mobile robot for the n
number of sensors is in the form of

 () (()) ()y t C x t v t= + (9.14)

where v(t) = [v1(t) ∙ ∙ ∙ vn(t)]′ with

2 2
1 1

2 2

10 log(() ())
(())

10 log(() ())

oi

oi n n

p X t Y t
C x t

p X t Y t

⎡ ⎤− ε +
⎢ ⎥

= ⎢ ⎥
⎢ ⎥− ε +⎣ ⎦

�

REKF can be simply explained as follows: fi rst, we use the state space model with a
set of diff erential equations derived from simple kinematic equations. Such a model
has two noise inputs: (1) measurement noise (this is standard with any measure-
ment), v in y = C(x) + v and (2) w-acceleration, which is also considered noise as
it is unknown. In this application, the initial condition errors are quite signifi cant
as no knowledge is available regarding the sensor locations. If we use REKF in a
DTN, the ith system (the mobile robot and the Sensori), during a corresponding
time interval, is represented by the nonlinear, uncertain system, together with the
following integral quadratic constraint (IQC):

− −′

+ ω + ≤ +′ ′ ′∫ ∫

0 0

0 0

((0)) ((0))

1 1(() () ()) () () () () ()
2 2

i

s s

i i

x x N x x

t Q t w t v t R t v t dt d z t z t dt

(9.15)

Here, Q i > 0, Ri > 0 and Ni > 0 (i ∈ {1,2,3}) are the weighting matrices for each system i.
Th e initial state (x0) is the estimated state of respective systems at start-up. Note that
we could derive the initial state from the terminal state of the previous system, together
with other data available in the network (i.e., robot position and speed). With an uncer-
tainty relationship of the form of this equation , the inherent measurement noise, the
unknown mobile robot acceleration, and the uncertainty in the initial condition, are
considered as bounded deterministic uncertain inputs. In particular, the measurement
equation with the standard norm-bounded uncertainty can be written as

AU9215_C009.indd 272AU9215_C009.indd 272 2/23/2010 12:59:58 PM2/23/2010 12:59:58 PM

Sensor Localization ◾ 273

 = + δ + 0() ()y C x C x v (9.16)

where |δ| ≤ ξ, with ξ being a constant indicating the upper bound of the norm-
bounded portion of the noise. By choosing z = ξC(x) and v = δC(x),

< ′∫ ∫

0 0

| |
T T

v dt z z dt

(9.17)

Considering v0 and the corresponding uncertainty in w as w0 satisfying the bound

 Φ + ω ω + ≤′ ′∫ 0 0 0 0

0

((0)) [() () () ()]
T

x t Q t v t Rv t dt d (9.18)

Any noise model assumptions in algorithm development are removed by this more
realistic approach. Th is approach also guarantees the robustness. Pathirana et al.
[Pubudu05] conducted experiments based on these algorithms and showed that it
could converge to the actual sensor locations (see Figure 9.8).

Assumed initial position (0,0)

Sensor 1

Sensor 2

Sensor 3
Vehicle trajectory

18,000

16,000

14,000

12,000

10,000

8,000

6,000

4,000

2,000

–2,000
–3,000 –2,000 –1,000 0

X direction (m)

Y
di

re
ct

io
n

(m
)

1,000 2,000 3,000

0

Sensor 4

Figure 9.8 Location estimation trajectories converging to the actual sensor loca-
tions. (Adapted from Pathirana, P.N. et al., IEEE Trans. Mobile Comput., 4(3), 285,
May/June 2005.)

AU9215_C009.indd 273AU9215_C009.indd 273 2/23/2010 12:59:59 PM2/23/2010 12:59:59 PM

274 ◾ Wireless Sensor Networks: Principles and Practice

9.4 Sensor Localization with Multidimensional
Scaling [Xiang04]

Most existing localization algorithms make use of trilateration or multilateration
based on range measurements obtained from ToA, TDoA, and RSSI. In [Xiang04],
they explore the idea of using dimensionality reduction techniques to estimate the
coordinates of sensors in two- (or three-) dimensional space. Th ey present a central-
ized sensor localization algorithm based on a dimensionality reduction technique—
multidimensional scaling (MDS). It utilizes pair-wise sensor distances to recover
locations of sensors in two (or three) dimensions. If pair-wise distances between all
sensors are known, a simple eigen-decomposition will generate the locations of the
sensors.

To estimate the locations of all sensors in a distributed wireless ad hoc sensor
network, a small percentage of sensors have their location information known
either through manual confi guration or equipped with GPS. Th ese sensors with
known location information are referred to as anchor sensors, and other sen-
sors without location information are defi ned as unknown sensors. We hope to
estimate locations of all sensors with the assistance of anchor sensors. In gen-
eral, the anchor sensors broadcast their locations to their neighbors. Neighboring
unknown sensors measure their spatial relation from their neighbors, and use
the broadcasted anchor sensor locations to estimate their own positions. For
an unknown sensor, once an unknown node estimates its position, it becomes
an anchor sensor and is able to assist other unknown sensors to estimate their
locations.

MDS has been popularly used in the analysis of dissimilarity of data on a set of
objects. It can disclose the structure in the data [IBorg97]. We can use MDS as a
data-analytic approach to discover the dimensions that underlie the judgments of
distance and model data in geometric space.

MDS usually begins by assigning objects to arbitrary coordinates in a 2D space.
Next, it computes Euclidean distances among all of the coordinate pairs of points
to form a distance matrix. Th en, MDS compares the matrix with the measured
distances. Finally, the coordinates of each object are adjusted in the direction that
best minimizes stress.

A good aspect of using MDS for location estimation is that it can still generate
accurate location estimation even when we have erroneous distance information.
Although there are numerous varieties of MDS, here we use classical MDS and its
iterative optimization.

9.4.1 Classical Multidimensional Scaling
We use T = [tij]2 × n to denote the true locations of n sensor nodes in 2D space. And
we use dij(T) to represent the distance between sensors i and j, based on their loca-
tion in T, and we have

AU9215_C009.indd 274AU9215_C009.indd 274 2/23/2010 12:59:59 PM2/23/2010 12:59:59 PM

Sensor Localization ◾ 275

() α α

α=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠∑

1
22

2

1

()ij i jd T t t

(9.19)

Th e collected distance between nodes i and j is denoted as δij. We ignore the errors in
distance measurement, δij is equal to dij(T). Let X = [xij]2 × n denote the estimated locations
of n sensor nodes in a 2D space. If all pair-wise distances of sensors in T are collected, we
can use the classical MDS algorithm to estimate the locations of sensors:

 1. Compute the matrix of squared distance D2.
 2. Compute the matrix J with J = I − e * eT/n, where e = (1, 1,…, 1).
 3. Apply double centering to this matrix with H = −(1/2)JD2J.
 4. Compute the eigen-decomposition H = UVU T.
 5. If we seek for the i dimensions of the solution (i = 2 in 2D case), we denote

the matrix of largest i eigen-values by Vi, and Ui is the fi rst i columns of U.
Th e coordinate matrix of classical scaling is 1/2

i iX U V= .

9.4.2 Iterative Multidimensional Scaling
If we do not know the distances between certain pairs of sensors, we could use the
iterative MDS to compute the relative coordinates of adjacent sensors. Th e iterative
MDS is an iterative algorithm based on multivariate optimization n for sensor-location
estimation in a 2D space. As only part of the pair-wise distances are available, δij is
undefi ned for some i, j. To assist computation, we defi ne weights wij with value 1 if δij
is known and 0 if δij is unknown, and also assume

 ()ij ijd Tδ = (9.20)

X is randomly initialized as X [0] and will be updated into X [1], X [2], X [3]… to approx-
imate T with the iterative algorithm.

We could make a location matrix X approximate T through the minimizing of
the following equation:

 <

σ = − δ∑ 2() (())ij ij ij

i j

X w d X

(9.21)

We could reach the minimum value of such functions when its gradient is equal to 0.
Th e update formula for the iterative algorithm is thus

− ⎛ ⎞δ

= ⎜ ⎟⎝ ⎠
1

()
ij ij

ij
ij

w
X V A T

d T
(9.22)

AU9215_C009.indd 275AU9215_C009.indd 275 2/23/2010 12:59:59 PM2/23/2010 12:59:59 PM

276 ◾ Wireless Sensor Networks: Principles and Practice

where Aij is a matrix with aii = ajj = 1, aij = aji = −1, and all other elements zeros, and

ij ij

i j

V w A
<

=∑

(9.23)

If V −1 does not exist, we replace it with Moore–Penrose inverse of V given by
Equation 9.24 [IBorg97].

 1 1 2(11) 11V V n− − −′ ′= + − (9.24)

We can summarize the iteration steps as follows:

 1. Initialize X [0] as random start confi guration, set T = X [0] and k = 0, and com-
pute σ(X [0]).

 2. Increase the k by 1.
 3. Compute X [k] with this updated formula and σ(X [k]).
 4. If σ(X [k − 1]) − σ(X [k]) < ε, which is a small positive constant, then stop; Otherwise

set T = X [k] and go to Step 2. (Th e ε is an empirical threshold based on our accu-
racy requirement. We usually set ε = 5 percent of the average hop distance. Th is
algorithm generates the relative locations of sensor nodes in X [k].)

Th ese MDS techniques are used in a distributive manner by estimating a local map
for each group of adjacent sensors. Th ese maps are then stitched together. Next we
will present the details of the distributed-sensor localization method.

9.4.2.1 Hop Distance and Ranging Estimation

In [Xiang04], distance measurement model is based on RSSI. Th e hop distance
is defi ned as the RF communication range of a sensor. A receiver can estimate the
distance to the sender by measuring the attenuation of RF signal strength from the
sender to the receiver. For example, there are four sensor nodes A, B, C, and D in
Figure 9.9. Hop distance is rh. Th e distance between A and D, rad, can be inferred
from A’s signal strength at the location of D and rh.

Other distance measure approaches, such as ToA, TDoA, AoA, and ultrasound,
can also be applied here. Although they may generate more accurate distance mea-
sure than RSSI, more complex hardware may be needed in each sensor.

9.4.2.2 Aligning Relative Location to Physical Location

After the pair-wise distances of a group of adjacent sensors are estimated, a local
map of their relative locations can be calculated using the MDS techniques. As
we hope to utilize our distributed localization method to compute the physical

AU9215_C009.indd 276AU9215_C009.indd 276 2/23/2010 1:00:00 PM2/23/2010 1:00:00 PM

Sensor Localization ◾ 277

locations of all sensors, it is necessary to align the relative location to the physical
location. Th is is accomplished via the aid of sensors with known locations. It is
known that, in an adjacent group of sensors, the physical locations of at least three
sensors are required to locate the remainder of the nodes in the group, in 2D cases.
Th us, each group of adjacent sensors must contain at least three nodes with known
physical locations; these sensor nodes can be either anchors or nodes with physical
locations that were previously calculated.

Th e alignment procedure includes shift, rotation, and refl ection of coordinates.
Let us denote R = [rij]2 × n = (R1, R2, …, Rn) as the relative locations of the set of n
sensor nodes in 2D space. T = [tij]2 × n = (T1, T2, …, Tn) denotes the true locations of
the set of n sensor nodes in 2D space. In the following explanation, we assume the
nodes 1, 2, and 3 are anchors. A vector Ri may be shifted to (1)

iR by (1)
i iR R X= + . It

may be rotated counterclockwise through an angle α to (2)
1i iR Q R= , where

1

cos() sin()
sin() cos()

Q
α − α⎡ ⎤

= ⎢ ⎥α α⎣ ⎦
(9.25)

It may also be refl ected across a line

β⎡ ⎤
⎢ ⎥=

β⎢ ⎥⎣ ⎦

cos(/2)

sin(/2)
S

(9.26)

rad

D

A

B

C

rh
rh

Figure 9.9 Hop distance and signal strength. (Adapted from Ji, X., Localization
algorithms for wireless sensor network systems, PhD thesis, Department
of Computer Science and Engineering, The Pennsylvania State University,
Philadelphia, PA, 2004.)

AU9215_C009.indd 277AU9215_C009.indd 277 2/23/2010 1:00:00 PM2/23/2010 1:00:00 PM

278 ◾ Wireless Sensor Networks: Principles and Practice

To (3)
2i iR Q R= , where

 2
cos() sin()
sin() cos()

Q
β β⎡ ⎤

= ⎢ ⎥β − β⎣ ⎦
 (9.27)

Before alignment, we only know R and physical locations of three or more other
sensors T1, T2, and T3. Given the locations of the other sensor, we can compute T4,
T5, …, Tn. Based on these rules, we have

 1 1 2 1 3 1 1 2 1 1 2 1 3 1(, ,) (, ,)T T T T T T Q Q R R R R R R− − − = − − − (9.28)

With R1, R2, R3, T1, T2, and T3 known, we can compute

− − −⎛ ⎞= = ⎜ ⎟⎝ ⎠− − −

1 1 2 1 3 1
1 2

1 1 2 1 3 1

, ,
, ,

R R R R R R
Q Q Q

T T T T T T
(9.29)

Th en, (T4, T5, …, Tn) can be calculated with

 4 1 5 1 1 4 1 5 1 1

4 5 4 1 5 1 1 1 1 1

(, , ,) (, , ,)

(, , ,) (, , ,) (, , ,)

n n

n n

T T T T T T Q R R R R R R

T T T Q R R R R R R T T T

− − − = − − −

= − − − +

… …

… … …

 (9.30)

9.4.2.3 Distributed Physical Location Estimation

An anchor node labeled as the “starting anchor” initializes fl ooding to the entire net-
work. When other anchor nodes, called “ending anchors,” receive the fl ooding message,
they send their location information back to the starting anchor, along with the reverse
routes from the starting anchor to themselves. Now, the starting anchor knows the loca-
tions of the ending anchors and the corresponding route to each of them. Th e starting
anchor uses the routes to estimate the locations of those sensors that are one hop away.
Figure 9.7 illustrates the procedure: A is the starting anchor, and D and G are the end-
ing anchors. A knows the locations of D and H as well as the routes to them, which are
(A, B, C, D) and (A,E, F, G,H), respectively. A estimates that the location of B is B′
on the dashed line AD and that the location of E is E′ on the dashed line AH. A also
estimates the average hop distances in the direction of AD and AH, respectively.

With the collection of pair-wise distances among neighboring nodes by RSSI
sensing, MDS can be performed to calculate the local map, or the relative locations,
for neighboring sensor nodes. In Figure 9.10, the relative locations of neighboring
nodes A, B, E, J, and K are calculated by A. Th rough the alignment of the relative
locations of A, B, and E with their physical locations, the physical locations of J and
K can be calculated as well. In the same manner, localized mapping and alignment
are performed for sensor nodes along a route from the starting anchor to an ending

AU9215_C009.indd 278AU9215_C009.indd 278 2/23/2010 1:00:01 PM2/23/2010 1:00:01 PM

Sensor Localization ◾ 279

anchor. Figure 9.8 illustrates the procedure of propagated-location estimation from
the starting anchor to the ending anchor.

In Figure 9.11, A is the starting anchor and D is the ending anchor. Th e remain-
der of the sensor nodes is spread throughout the route of fl ooding from A to D, and
each local map is represented with a dash ellipse. Map i contains adjacent sensors E,
F, G, H, and K. As the physical positions of E, F, and G have been previously calcu-
lated, the physical positions of H and K can be computed with the aforementioned
MDS and alignment techniques. Th en, H, K, I, J, and G are adjacent sensors that
build map j to further estimation of I and J’s positions.

J

B

A

H΄
G΄

F́

É

B́

C΄C

K E
F

G

H

D΄

D

Figure 9.10 Location estimation for a neighborhood. (Adapted from Ji, X.,
Localization algorithms for wireless sensor network systems, PhD thesis,
Department of Computer Science and Engineering, The Pennsylvania State
University, Philadelphia, PA, 2004.)

Map i
Map j

KF

A

B
E

G

H

I

J

C
D

Figure 9.11 The propagation of position estimation. (Adapted from Ji, X.,
Localization algorithms for wireless sensor network systems, PhD thesis,
Department of Computer Science and Engineering, The Pennsylvania State
University, Philadelphia, PA, 2004.)

AU9215_C009.indd 279AU9215_C009.indd 279 2/23/2010 1:00:01 PM2/23/2010 1:00:01 PM

280 ◾ Wireless Sensor Networks: Principles and Practice

We can estimate the locations of all nodes surrounding a route from a starting
anchor to an ending anchor, as well as the ending anchor itself. For example, in
Figure 9.11, the estimated location of nodes E, F, and G are E′, F′, and G′, respec-
tively. Given the physical location of G, we can compare the location of G′ and G.
If they are not equivalent, we can align them by rotating ∠G′AG about a center A,
and then scale AG″ to AG. We can also apply the same alignment to the coordi-
nates of all sensors along the route, such as E′ and F′. In general, the locations of
E′ and F′ are eff ectively corrected and approximated to their true locations, respec-
tively. Th is location-estimation procedure is executed iteratively on a route from a
starting anchor to an ending anchor, until estimated locations converge.

Th e experimental results in [Xiang04] indicate that this procedure usually gen-
erates highly accurate estimations of location for sensors along a route. Th ose nodes
with accurately estimated location can then be viewed as anchor nodes, and they,
in turn, initialize more location estimation for sensors along diff erent routes. Th is
estimation method can be performed on a diff erent portion of sensors in an ad hoc
sensor network simultaneously, until all sensors are accurately located.

9.5 Localization in Wireless Sensor
Networks [Masoomeh07]

In [Masoomeh07], the authors consider a network with a small fraction of sensors
equipped with hardware such as GPS, which allows them to be aware of their loca-
tions at all times. Aside from this, the sensors are all identical.

We model irregularity in radio range by assuming that the sensor radio range is
normally distributed with mean r and standard deviation σ. Th e simulator uses σ to
randomly determine for each packet whether the sender and the receiver are within
radio range. Initially, nodes are spread randomly throughout the network area.

Th e one-hop neighbors of sensor p are those sensors that can communicate with
it directly. Th e algorithms do not require very tightly synchronized clocks. Each
node and seed is capable of moving a distance v in a time step in any direction
where 0 ≤ v ≤ vmax. Th e nodes know vmax, but they do not know the value of v or the
direction of movement in any time step.

9.5.1 The Monte Carlo Method
In the event that a system state needs to be estimated from some observations,
the Bayesian model can formulate the system in which the posterior distribution
of the state depends only upon the current observations and state [ADoucet01].
Observations arrive sequentially in dynamic systems, requiring updates for the pos-
terior distribution to take place with the arrival of new observations. Th e Monte
Carlo method estimates the state of the distribution with a set of samples, and
updates these samples as new observations arrive.

AU9215_C009.indd 280AU9215_C009.indd 280 2/23/2010 1:00:02 PM2/23/2010 1:00:02 PM

Sensor Localization ◾ 281

Although diff erent approaches for the Monte Carlo method have been pro-
posed, we focus on the particle fi ltering approach [ADoucet01]. Th is technique is
used for estimating robot locations, and is fully distributed and easy to implement
[DFox99]. Th e objective of this method is to represent data distribution of the sys-
tem as a set of N weighted samples:

 { }=
≈…

…

() ()
0 1, ,

(|) ,i i
t t t t i N

p S Q s w (9.31)

where
p(St |Q0…t) is the distribution representing the state of the system at time t

()i
ts is a sample of the state of the system at time t

()i
tw ’s are nonnegative numerical weights that sum to one

We need a minimum number of samples so that the set of samples converges to the
posterior distribution of the system (see Doucet et al. [ADoucet01] for details).

Th e steps of the Monte Carlo method are as follows:

Initialization: N samples chose from initial system distribution, p(S0).
Sampling: N samples, i

ts� for i = 1, …, N, are drawn from the distribution p(St|St − 1)
where p(St|St − 1) is the transition equation or motion model. Compute each sample
weight and normalize this value, ()i i

tw w= η � , where η is the normalizing factor.
Resampling: N samples are chosen (with replacement) from the current sample

set according to their weights.

Each node denotes its possible locations with a set of weighted samples. Using
the Monte Carlo method, each node updates its samples with each observation. In
the upcoming discussions, d(a, b) denotes the distance between locations a and b,
and r denotes the ideal radio range. We describe algorithm (1) fi rst.

9.5.2 Algorithm (1)
In algorithm (1), a set of probable locations (samples) is maintained for each node.
Th ese samples are given diff erent weights that provide an estimate of their quality.
Conceptually, this value represents the likelihood of truly representing the nodes loca-
tion, given the estimated locations of its neighbors. Th e steps of the algorithm are

Step 1. Initialization: Nodes have no information about their locations, thus the
fi rst set of samples is chosen randomly from the entire fi eld of sensors, using
only the seeds within the neighborhood to assign weights to the samples.

Step 2. Sampling: Based on the following transition equation, nodes generate
new samples:

1 max2
max1

1 max

1 if (,)
()(|)

0 if (,)

t t
t t

t t

d S S v
vp S S

d S S v

−
−

−

⎧ ≤⎪π + α= ⎨
⎪ >⎩

(9.32)

AU9215_C009.indd 281AU9215_C009.indd 281 2/23/2010 1:00:02 PM2/23/2010 1:00:02 PM

282 ◾ Wireless Sensor Networks: Principles and Practice

 where
 vmax is the maximum speed of a node
 d(St, St − 1) denotes the distance between the locations of a sample at time t and t − 1

With each time step, new samples are generated from each current sample by
randomly selecting a point inside the circle centered at the current location of
the sample and with a radius of (vmax + α). If α is too small, there will not be
enough variability in the new sample selections when the speed of these sen-
sors is low. Th e value of α, that is, α = 0.1r, was determined empirically.
After choosing a sample, neighborhood information can be used to generate

its weight as follows. Th e weight of a sample s chosen for node p, ws(p), is
computed as follows: corresponding to each neighbor q of node p, we fi nd
a partial weight for sample s, ()sw q′ . Th e weight of the sample is the prod-
uct of the partial weights obtained from each neighbor node p. Th at is,

 1

() ()
k

s s

q

w p w q
=

′=∏
(9.33)

 where
 k is the number of one-hop and two-hop neighbors of node p
 q is a neighbor of node p

Th e partial weight of sample s corresponding to a one-hop seed neighbor q is

1 if (,)

()
0 otherwises

d s q r
w q

≤⎧
′ = ⎨

⎩
(9.34)

Th e partial weight of sample s corresponding to a two-hop seed neighbor q is

1 if (,) 2

()
0 otherwises

r d s q r
w q

≤ ≤⎧
′ = ⎨

⎩
 (9.35)

Th e partial weight of sample s corresponding to a one-hop node neighbor q is
computed using the weights w(qi) of samples qi of node q as follows:

max() (), where (,)

i

s i i

q

w q w q d s q r v′ = ≤ +∑

(9.36)

Similarly, for two-hop neighbors q, ()sw q′ is computed as follows:

max max() (), where (,) 2

ii

s i i

q

w q w q r v d s q r v′ = − ≤ ≤ +∑
(9.37)

AU9215_C009.indd 282AU9215_C009.indd 282 2/23/2010 1:00:02 PM2/23/2010 1:00:02 PM

Sensor Localization ◾ 283

Sample s is kept if ws(p) is greater than a threshold value, β. Parameter β is a real
number in the interval [0, 1] and its value depends on the number of neighbors
of a node. Th erefore, diff erent nodes have diff erent β values. β should be chosen
such that its value decreases with an increasing count of neighbor nodes. Th e
reason for this is that ws(p) is the product of numbers, which is at most 1. Partial
weights corresponding to nodes usually retain a value less than 1, and the par-
tial weights corresponding to the seeds are 0 or 1. Here we use β = (0.1)t, where
t is the number of one-hop and two-hop neighbors of a node.
After computing ws(p) the weights are normalized to ensure that the sum is

equal to one. Th erefore, if N samples are chosen for node p, the weight of
the ith sample is normalized as

 1

()

()
i

N

j
j

w p

w p
=∑

(9.38)

Step 3. Resampling: this step gradually removes samples with lower weights,
gradually reducing the set to only those with the highest weights. Each node
computes a new sample set from its current set, with the samples of the new
set containing all the old samples, but updating them to have a probability
proportional to their weights. As the number is fi xed, a sample with a small
weight has a lower chance of being selected, thus higher weighted samples are
likely to have duplicates in the new sample set.
Pseudocode for MSL* is given in Figure 9.12. Th e algorithm has the same

basic structure as the distance vector algorithm used for propagating router
information.

If (node not localized or number of samples are zero)
If (node has first-hop or second-hop neighbors)
find N samples with weights greater than β
Normalize the weights of the samples
Else
closeness = ∞
keep the last set of samples
Else
Sample (α) (Sampling step with parameter α)
If no sample found
closeness = ∞
keep the last set of samples
Normalize weights
Resample the sample set (Re-sampling step)
Send locations and closeness to first- and second-hop neighbors.

Figure 9.12 Algorithm (1) in every node. (Adapted from Rudafshani, M. and
Datta, S., Localization in wireless sensor networks, IPSN '07, Cambridge, MA,
April 25–27, 2007.)

AU9215_C009.indd 283AU9215_C009.indd 283 2/23/2010 1:00:03 PM2/23/2010 1:00:03 PM

284 ◾ Wireless Sensor Networks: Principles and Practice

Each node weights its own samples using the location estimates of its neighbors.
However, by only using neighbors with highly accurate estimates of their locations,
we gain an advantage of reducing communication costs. Th e qualities of these esti-
mates are measured using a parameter called closeness. Th e formula for closeness
value for a node p with N samples is

2 2

1
() ()

closeness

N

i i i
i

p

w x x y y

N
=

− + −
= ∑

(9.39)

where
N is the number of samples of node p
(xi, yi) denotes the coordinate of the ith sample (i = 1, … N)
wi denotes the weight of the ith sample
(x, y) is the current location estimate of node p

Seeds always have a closeness value of 0, and the closeness of a node is always greater
than 0. Lower closeness values indicate more accurate location estimates, making
this a good measure of accuracy of the location estimate of a node.

At the start of algorithm (1), closeness values for seeds are 0 and ∞ for nodes.
Th us, in the fi rst time step, only the seeds can provide information for the one-hop
and two-hop neighbors. As the process proceeds, nodes update their estimates and
their closeness, and send this information to their neighbors.

A node will not receive new location information in the event it moves to a new
position in which it has no neighbors. If this occurs, the previous sample set is used
to estimate the location of the node. Th e node must then be re-localized and the
current sample set must be re-initialized.

Th is algorithm is performed at a high communication cost due to the fact that
each node uses information of all of its fi rst- and second-hop neighbors. We now
describe algorithm (2).

9.5.3 Algorithm (2)
Algorithm (2) is communication intensive, due to the transfer of samples between nodes.
We assign a weight to each node, which then uses the weights of only its neighbors (as
opposed to samples and neighbors) to assign weights to its samples. After computing
these weights, MSL computes a single location estimate and a closeness value. Each
node broadcasts its estimate and closeness to its neighbors. Th is way reduces communi-
cation costs signifi cantly because it does not transmit the value of its samples.

In this approach, the weight assigned to each node depends on the quality of
the location estimate. To achieve this, we defi ne the weight of a node as a function
of its closeness value:

closenessq

pw b−= (9.40)

AU9215_C009.indd 284AU9215_C009.indd 284 2/23/2010 1:00:03 PM2/23/2010 1:00:03 PM

Sensor Localization ◾ 285

Th e performance of algorithm (2) was not sensitive to the choice of b; we use b = 7
here. Similar to algorithm (1), in algorithm (2) a node uses the locations of only
those neighbors with lower closeness values.

In algorithm (2), we compute the weights of seed neighbors just as in algorithm
(1), but the weights of fi rst-hop, non-seed neighbors are computed by

max extraif (,)

()
0 otherwise

q
s

w d s q r v v
w q

≤ + +⎧
′ = ⎨

⎩
(9.41)

We need to account for extra uncertainty because nodes are using less information
than in algorithm (1) (a single location estimate of neighbors rather than a set of
weighted samples). Using the parameter vextra, we are able to achieve this aff ect.
Algorithm (2) was not sensitive to the choice of vextra ∈ [0.2r, 0.5r]; we use vextra =
0.3r here.

Th e weights of second-hop non-seed neighbors are computed as follows:

− − ≤⎧
⎪

=′ ⎨ ≤ + +
⎪
⎩

max extra

max extra

if (,)

() 2
0 otherwise

q

s

w r v v d s q

w q r v v

(9.42)

Th is algorithm uses the Monte Carlo method, like Monte Carlo Localization (MCL)
[LHu04a], but we improve on MCL and generalize it in several ways. Modifying
the sampling procedure allows our approach to work in static networks and enables
it to outperform MCL, even when using only information from seed neighbors.

Second, in both algorithm (1) and algorithm (2), nodes use information from
neighbors with more accurate estimates than their own, yielding improved perfor-
mance in networks with low-speed nodes or low seed densities.

Th ird, modifying the sampling procedure and permitting samples to have
weights greater than a threshold value β, we are able to generate faster convergence
of the localization algorithm. Th is produces faster execution time and better esti-
mation of locations in mobile networks.

For algorithm (2) to function as directed, sensors must move with some prede-
termined minimal speed, but it cannot work below this speed and does not work in
static networks. Algorithm (1) can estimate locations with high accuracy even when
sensors are static, and move with low speeds or very high speeds.

9.6 GPS-Free Node Localization in Mobile
WSN [Akcan06]

Consider a fi re search mission inside a building where a set of mobile nodes explore
a fl oor. Th e goal is to locate the source of the fi re. In a semirigid swarm, the nodes

AU9215_C009.indd 285AU9215_C009.indd 285 2/23/2010 1:00:03 PM2/23/2010 1:00:03 PM

286 ◾ Wireless Sensor Networks: Principles and Practice

move collaboratively. Th e swarm follows a path covering the area while taking tem-
perature measurements. A number of issues must be taken into consideration to
solve the problem of localization management in GPS-free environments where
nodes are mobile. Most importantly, the additive error in the estimated location can
amass to very high values caused by mechanical errors in evaluating the direction
and distance of movement, which can occur in all measurements. Th e source for
this type of error is due to changes in the environment or manufacturing defects.
Th is means that as the motion changes, the uncertainty of the position and direc-
tion of a node decreases.

Akcan et al. [Akcan06] proposed a solution to the problem of directional local-
ization in GPS-free sensor networks with mobile nodes. It proposed a motion-based
algorithm for node position and direction calculation with respect to the local coor-
dinate system of each individual node. Th e algorithm is very fast and does not
require additional memory. In addition, cumulative position errors do not aff ect it.
More specifi cally, the algorithm is unaff ected by the speed of nodes.

Th e GPS-free localization algorithm assumes sensors can measure the distance
to their neighbors using a well-known range measurement method (e.g., ToA). It
also needs motion actuators that allow each node to move a specifi c distance in a
specifi c direction (with respect to North).

First, the core localization algorithm will be described with two neighbors, n1
and n2, that generate two possible relative positions. Later, a verifi cation algorithm
that uses a common third neighbor to select the correct solution will be discussed.
Core localization algorithm. Th e core localization algorithm works on rounds, and
each round essentially consists of three steps:

 1. Measure distance between neighbors
 2. Continues with individual node movement
 3. Ends with an exchange (between neighbors) of direction and distance values

for that round

Whenever nodes need localization, rounds are initiated. Any other continuity or
pattern between rounds are not required. Also, no assumptions are made about the
temporal duration of the rounds. However, it is assumed that nodes do not change
their directions within a round.

A typical movement of two nodes n1 and n2 in a round is shown in Figure 9.13.
At time t1, n1 is at position (x0, y0) and n2 at (x2, y2), and the nodes measure the
initial inter-distance d1. Between times t1 and t2, each node {ni | i = 1, 2} moves in
a direction αi and covers a distance vi. At time t2, the nodes, now at positions
(x1, y1) and (x3, y3), calculate their inter-distance d2 and exchange vi and αi. Each
node selects itself as the origin and calculates the position and direction of the
other node in its local coordinate system, only after receiving all the information.
We choose the position (x0, y0) of n1 as the origin and write the following to solve
the equations in the local system of n1:

AU9215_C009.indd 286AU9215_C009.indd 286 2/23/2010 1:00:04 PM2/23/2010 1:00:04 PM

Sensor Localization ◾ 287

= α = α
= + α = + α

− + − = + =

1 1 1 1 1 1

3 2 2 2 3 2 2 2

2 2 2 2 2 2
3 1 3 1 2 2 2 1

cos , sin (i)
cos , sin (ii)

() () (iii)

x v y v
x x v y y v

x x y y d x y d

(9.43)

Substituting Equations i and ii into Equation iii, we get

 + =2 2x A y B C (9.44)

With the appropriate defi nitions

2 2 1 1 2 2 1 1

2 2 2 2
2 1 1 2 1 2 1 2

cos cos , sin sin

1 (2 cos())
2

A v v B v v

C d d v v v v

= α − α = α − α

= − − − + α − α (9.45)

Substituting

 = − = − + =2 2 2
2 2 2 2 2 2 1()/ and ()/ intox C y B A y C x A B x y d (9.46)

We get

 − + = − + =2 2
2 2 2 22 0, 2 0x D x E F y D y G H (9.47)

d2

v2
v1

d1
(a) (b)

α1

α2

x2, y2

x3, y3

x0, y0

x1, y1

x2, y2

x3, y3

x0, y0

x1, y1

Figure 9.13 Typical movements of two nodes, with angles and distances.
(Adapted from Akcan, H. et al., GPS-free node localization in mobile wireless
sensor networks, Proceedings of the Fifth ACM International Workshop on Data
Engineering for Wireless and Mobile Access (MobiDE '06), Chicago, IL, June 25,
2006, ACM, New York, 35–42.)

AU9215_C009.indd 287AU9215_C009.indd 287 2/23/2010 1:00:04 PM2/23/2010 1:00:04 PM

288 ◾ Wireless Sensor Networks: Principles and Practice

Again with the appropriate defi nitions

2 2 2 2 2
1

2 2 2
1

, , ,

,

D A B E AC F C d B

G BC H C d A

= + = = −

= = − (9.48)

Note that the coeffi cient of 2
2x and 2

2y is the same in both equations, namely, D.
Using (9.48), each variable solves independently to

2 2

2 2, (vi)E E DF G G DHx y
D D

± − ± −= =

(9.49)

and solutions can be paired up by using Equation 9.49, as long as D ≠ 0. In practice,
one would compute either x2 or y2 using Equation 9.49 and deduce the other vari-
able using (9.48). When A = 0 but B ≠ 0, one would compute x2 using (9.46), and
when A ≠ 0 but B = 0, one would compute y2 using (9.44) instead.

Figure 9.14 is the core localization algorithm to calculate the position from n2
to n1. Each node fi nds out possible positions for each of its neighbors by solving the
equations. Each node has to complete a verifi cation step using an additional com-
mon neighbor (n3) because only one of these solutions is realistic (the other one is
due to “symmetry”).

If the entire WSN moves in a specifi c direction to accomplish a goal, the direc-
tional localization algorithm is very useful. To refl ect practical mobility features, the

CoreLocalization (n1, n2,, n1, α1)
1: d1 ← inter-distance(n1, n2)
2: Move node n1 by v1 and α1

3: d2 ← inter-distance(n1, n2)
4: Retrieve v2 and α2 from n2
5: Calculate positions of n2 using equations (4), (5) and (6)
Verification (NeighborList NL)
1: for each neighbor pair (m, n) in NL do
2: if m and n are neighbors then
3: dm,n ← measured inter-distance(m, n)
4: for each position pair {mi, nj\i, j = 1, 2} do
5: Compute Euclidean distance D between mi and nj

6: if D = dm,n then
7: mark mi and nj as exact positions

Figure 9.14 Core localization algorithm. (Adapted from Akcan, H. et al.,
GPS-free node localization in mobile wireless sensor networks, Proceedings
of the Fifth ACM International Workshop on Data Engineering for Wireless
and Mobile Access (MobiDE '06), Chicago, IL, June 25, 2006, ACM, New York,
35–42.)

AU9215_C009.indd 288AU9215_C009.indd 288 2/23/2010 1:00:05 PM2/23/2010 1:00:05 PM

Sensor Localization ◾ 289

reference point group mobility (RPGM) model is used in [XHong99]. Many other
mobility models have been surveyed in [TCamp02]. But RPGM is used due to the
generality of the model. In RPGM, the movement of an individual sensor is mod-
eled in relation to a randomly chosen directional motion of the entire group. Each
individual moves randomly around a fi xed reference point, and the entire group
move along the logical center of the group. Th e localization algorithm computes
the location/orientation of each node. In RPGM, a sensor does not need to know
the center of the group.

A sensor’s one-hop neighbors determine the context of random motion of that
sensor within the group. Th us we could remove the reference points and use the
neighbors to represent the reference points of motion.

Th e adapted mobility algorithm is presented in Figure 9.15. Th e network moves
with respect to a direction vector. Th e algorithm imposes a minimum neighbor
count k that each node strives to attain to maintain a semirigid formation without
disconnecting the network. Th is is a best-eff ort k-connected algorithm where a
sensor attempts to maintain a neighbor distance that is less than its RF commu-
nication range. And it adjusts such a distance dynamically with the number of
neighbors so that the neighbors within k hops stay closer while still moving with
the network. Th is idea can avoid network partitioning. Th e range function returns
the wireless range of the given node.

Obviously, as long as we know an initial direction of motion for the entire group,
we can keep the entire network cohesive. Th is idea is similar to “swarming” concept
in bio-inspired computing. For example, an oil-search WSN could move in a zigzag
pattern, with the goal to discover an oil spill and cover the contaminated area once it
is found. In this example, we can just specify a virtual boundary, and the network of
sensors will maintain suffi cient proximity to communicate, while covering the area.

Th e mobility algorithm requires only local position information. Th is is good
for scaling up to large network (>1000 sensors) because it requires a sensor to
communicate with its direct neighbors without message fl ooding.

MoveNode(Node N, NeighborList NL, DirectionVector D⃑, INT k, RangeFactor
RF)
1: V⃑ ← 0
2: count ← 0
3: for each localized neighbor n in NL do
4: ◁u →N,n n is the vector from N to n
5: V⃑ ← V⃑ + ū N,n
6: count ← count + 1
7: if count < k then
8: RF ← RF /2
9: V⃑ ← (RF + range (N) + V⃑ + D⃑)/(count + 1)
10: Move node N by V⃑

Figure 9.15 k-Neighborhood mobility algorithm.

AU9215_C009.indd 289AU9215_C009.indd 289 2/23/2010 1:00:05 PM2/23/2010 1:00:05 PM

290 ◾ Wireless Sensor Networks: Principles and Practice

9.7 A High-Accuracy, Low-Cost Localization
System for WSN [Radu05]

Th e diffi culties of traditional localization approaches are twofold. First, the eff ective
ranges of such devices are very limited, because there are restraints of form factor
and power supply. For example, the operation range of the ultrasonic transducers in
Cricket [NPriyantha05] is just a few meters. Second, it is expensive to equip these
sensors with special circuitry just for a one-time localization because most sensor
nodes are stationary.

Many range-free localization schemes have been proposed to overcome these
limitations. Most of them estimate the node location by exploiting the radio con-
nectivity information among neighboring nodes. Although they do not need high-
cost, specialized hardware, its accuracy may not be satisfactory.

Stoleru et al. [Radu05] achieve a high accuracy in sensor localization while not
involving high cost (from communication and calculation complexity viewpoint).
It uses a concept called Spotlight. Sensor nodes do not need new hardware for local-
ization purpose. All the sophisticated, costly hardware and computation are in a
single Spotlight device, which can issue a steerable laser light to illuminate the sen-
sor nodes placed within a known terrain.

Its localization is more accurate (i.e., <1 m) than the range-based localization
schemes. It has a much longer eff ective range (i.e., >1000 m) than the solutions
based on ultrasound/acoustic ranging. Because all complicated hardwares/softwares
are in a single sophisticated device, the cost is much lesser than the case with addi-
tional hardware components in each individual sensor.

Spotlight is a typical range-free localization scheme that also works well in an out-
door environment. An LOS is required between a single device and the sensor nodes.

Generating controlled events in the fi eld where the sensor nodes were deployed
is the main idea of the Spotlight system. Using the time when an event is perceived
by a sensor node, as well as the spatiotemporal properties of the generated events,
we can infer spatial information (i.e., location) of a sensor node.

In Figure 9.16, a sensor network deployment and localization scenario is
depicted as follows: from an unmanned aerial vehicle wireless sensor nodes are
randomly deployed. A time synchronization protocol should be executed among
sensors after sensor deployment. An aerial vehicle such as a helicopter, equipped
with a device called Spotlight, fl ies over the network and generates light events.
Each sensor detects the events and reports back to the Spotlight device with time
stamps when the events were detected. Th e Spotlight device computes the location
of the sensor nodes.

Such a spotlight system assumes the following conditions:

 1. Th e sensor nodes can communicate with the Spotlight device.
 2. Th e aerial vehicle knows about its own position and orientation very well; it

also possesses the map of the sensor fi eld.

AU9215_C009.indd 290AU9215_C009.indd 290 2/23/2010 1:00:05 PM2/23/2010 1:00:05 PM

Sensor Localization ◾ 291

 3. Th e Spotlight device can generate spatially large events to be detected by the
sensor nodes, even in the presence of background noise (daylight).

 4. Th ere exists an LOS between the Spotlight device and sensor nodes.

Th e Spotlight localization system uses the following defi nitions:
Let us assume that the space A ⊂ R3 contains all sensor nodes N, and that each

node Ni is positioned at pi(x, y, z). A Spotlight localization system needs to support
three main functions to obtain pi(x, y, z), namely, an event distribution function
(EDF) E(t), an event detection function D(e), and a localization function L(Ti). Th e
following are their formal defi nitions:

Defi nition 9.1: An event e(t, p) is a detectable phenomenon that occurs at time t and
at point p ϵ A. Examples of events are light, heat, smoke, and sound. Let Ti = {ti1, ti2, …, tin}
be a set of n time stamps of events detected by a node i. Let { }=′ ′ ′ ′…1 2, , , mT t t t be the
set of m time stamps of events generated in the sensor fi eld.

Defi nition 9.2: Th e event detection function D(e) defi nes a binary detection
algorithm. For a given event e

true, Event is detected
()

false, Event is not detected
D e

⎧
= ⎨
⎩

(9.50)

Figure 9.16 Localization of a sensor network using the Spotlight system. (Adapted
from Stoleru, R. et al., A high-accuracy, low-cost localization system for wireless
sensor networks, SenSys '05, San Diego, CA, November 2–4, 2005.)

AU9215_C009.indd 291AU9215_C009.indd 291 2/23/2010 1:00:05 PM2/23/2010 1:00:05 PM

292 ◾ Wireless Sensor Networks: Principles and Practice

Defi nition 9.3: Th e EDF E(t) defi nes the point distribution of events within A
at time t:

 = ∈ ∧ =() { | ((,)) true}E t p p A D e t p (9.51)

Defi nition 9.4: Th e localization function L(Ti) defi nes a localization algorithm
with input Ti, a sequence of time stamps of events detected by the node i:

 () ()
i

i

t T

L T E t
∈

=∩ (9.52)

As shown in Figure 9.17, the sensor nodes support the event detection function
D(e), which determines whether an external event happens or not. Th e detection
algorithm can be implemented by either a simple threshold-based detection algo-
rithm or other advanced digital-signal-processing (DSP) techniques.

A Spotlight device implements the event distribution E(t) and localization func-
tions L(Ti). Th e localization function is an aggregation algorithm that calculates the
intersection of multiple sets of points.

Sensor node Spotlight device

L(T)

E(t)e(t)

D(e)

p(x,y,z)

Ti = (ti1,ti2, ... ,tin)

Figure 9.17 Spotlight system architecture. (Adapted from Stoleru, R. et al.,
A high-accuracy, low-cost localization system for wireless sensor networks,
SenSys '05, San Diego, CA, November 2–4, 2005.)

AU9215_C009.indd 292AU9215_C009.indd 292 2/23/2010 1:00:06 PM2/23/2010 1:00:06 PM

Sensor Localization ◾ 293

Th e EDF E(t) can also describe the distribution of events over time. It is the
core of the Spotlight system, and it is more sophisticated than the other two func-
tions. E(t) is implemented by the Spotlight device (not in sensors).

Based on these three functions, the localization process is as follows:

 1. Events distribution: A Spotlight device distributes events in the space A over a
period of time.

 2. Events detection: During the event distribution, sensor nodes record the time
sequence Ti = {ti1, ti2, …, tin} at which they detect the events.

 3. Events report: After the event distribution, each sensor node sends the detec-
tion time sequence back to the Spotlight device.

 4. Location estimate: Th e Spotlight device estimates the location of a sensor node
i, using the time sequence Ti and the known E(t) function.

In the Spotlight system, the core technique is the EDF E(t). For simplicity, we
assume that a set of nodes are placed along a straight line (A = [0, l] ⊂ R). Th e
Spotlight device generates point events (e.g., light spots) along this line with con-
stant speed s.

Th e set of time stamps of events detected by a node i is Ti = {ti1}. Th e EDF E(t) is

 () { | }E t p p A p t s= ∈ ∧ = ∗ (9.53)

where t ∈ [0,1/s]. Th e resulting localization function is

 1 1() () { }i i iL T E t t s= = ∗ (9.54)

where D(e(ti1, pi)) = true for node i positioned at pi. Th e implementation of the EDF
E(t) is straightforward. As shown in Figure 9.18a, when a light source emits a beam

N1

(0,0)

(a) (b)

(0,l)
d

α

N2 Nj

Figure 9.18 The implementation of the point scan EDF. (Adapted from Stoleru, R.
et al., A high-accuracy, low-cost localization system for wireless sensor networks,
SenSys '05, San Diego, CA, November 2–4, 2005.)

AU9215_C009.indd 293AU9215_C009.indd 293 2/23/2010 1:00:06 PM2/23/2010 1:00:06 PM

294 ◾ Wireless Sensor Networks: Principles and Practice

of light with the angular speed given by Sa = dα/dt = (s cos2(α))/d, a light spot event
with constant speed s is generated along the line situated at distance d.

Besides this simple one-line case, the point scan EDF can also be extended to
the case where nodes are placed in a 2D plane R2. In this case, the Spotlight system
progressively scans the plane to activate the sensor nodes. Th is scenario is depicted
in Figure 9.18b.

Line scan EDF ◾
Some devices such as diode lasers can generate an entire line of events simul-
taneously. Th ey can then support the line scan event distributed function easily.
We assume that the sensor nodes are placed in a 2D plane (A = [l x l] ⊂ R2)
and that the scanning speed is s. Th e set of time stamps of events detected by
a node i is Ti = {ti1, ti2}. Th e line scan EDF is defi ned as follows:

 { }() | [0,1] (* ,)x k kE t p k p t s k= ∈ ∧ = (9.55)

For t ∈ [0, l/s], Ey(t) = {pk|k ∈ [0,1] ∧ pk = (k, t * s − l)},
For t ∈ [l/s, 2l/s], E(t) = Ex(t) ∪ Ey(t)

Obviously, we can use the intersection of the two event lines to locate a
sensor, as shown in Figure 9.19. More formally

 1 2() () ()i i iL T E t E t= ∩ (9.56)

Where D(e(ti1, pi)) = true, D(e(ti2, pi)) = true for node i positioned at pi.
Area cover EDF ◾

 Besides “line” coverage, we can also perform
“area” coverage. Other devices, such as light
projectors, can generate events that cover an
area. Th ey can implement area cover EDF. Area
cover EDF partitions the space A into multiple
parts and assigns a unique binary identifi er,
called code, to each section. Let us suppose
that the localization is done within a plane
(A ⊂ R2). Each section Sk within A has a unique
code k. Th e area cover EDF is then defi ned as
follows:

true, if th bit of is 1
BIT(,)

false, if th bit of is 0

() { | BIT(,) true}k

j k
k j

j k

E t p p S k t

⎧⎪= ⎨
⎪⎩

= ∈ ∧ =

(9.57)

Ey(ti)

Ex(ti)

Figure 9.19 The imple-
mentation of the line
scan EDF. (Adapted
from Stoleru, R. et al., A
high-accuracy, low-cost
localization system for
wireless sensor networks,
SenSys '05, San Diego, CA,
November 2–4, 2005.)

AU9215_C009.indd 294AU9215_C009.indd 294 2/23/2010 1:00:07 PM2/23/2010 1:00:07 PM

Sensor Localization ◾ 295

and the corresponding localization algorithm is

= = ∧ = ∈ ∧

= ∈ −

() { | COG() (BIT(,) true if)

(BIT(,) false if)}

i k i

i

L T p p S k t t T

k t t T T
(9.58)

where COG(Sk) denotes the center of gravity of Sk.
As shown in Figure 9.20, the plane A is divided into 16 sections. Each section Sk

has a unique code k. Th e Spotlight device distributes the events according to these
codes: at time j a section Sk is covered by an event (lit by light), if jth bit of k is 1. A
node residing anywhere in the section Sk is localized at the center of gravity of that
section. For example, nodes within section 1010 detect the events at time T = {1, 3}.
At t = 4 the section where each node resides can be determined.

9.8 LOCALE: Collaborative Localization Estimation
for Sparse Mobile Sensor Networks [Zhang08]

Zhang and Martonosi [Zhang08] present low-density collaborative ad hoc localiza-
tion estimation (LOCALE). It has the following features:

First, it is a distributed localization algorithm. It does not need a center control.
Second, it is built on collaborative localization. Th at is, a few sensors work

together to fi nd a special location.
Th ird, it works best in sparse, mobile sensor networks. It may not work well in

high-density scenarios. But it can be used in mobile cases.
LOCALE can actively predict and maintain the location estimation even dur-

ing disconnection periods. It uses dead-reckoning (DR) system to achieve such a
goal. When a sensor meets a neighbor, they swap position estimates and then refi ne

t = 0 t =1 t =2 t =3

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1001

1100 1101 1110 1111

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1001

1100 1101 1110 1111

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1001

1100 1101 1110 1111

Figure 9.20 The steps of area cover EDF. The events cover the shaded areas.
(Adapted from Stoleru, R. et al., A high-accuracy, low-cost localization system for
wireless sensor networks, SenSys '05, San Diego, CA, November 2–4, 2005.)

AU9215_C009.indd 295AU9215_C009.indd 295 2/23/2010 1:00:07 PM2/23/2010 1:00:07 PM

296 ◾ Wireless Sensor Networks: Principles and Practice

the location of the nodes by a linear combination of the two estimates, weighted by
the variances. Th e fi nal eff ect is that we can smoothly average the sensors’ move-
ment and give each sensor a distribution that describes its location. Sensors use such
distributions to get a good prediction of their actual locations. Moreover, “confi -
dence estimate” of prediction accuracy can be obtained.

LOCALE has the following main features:

A sensor readjusts its location estimation after swapping information with ◾
neighbors it encountered.
Its localization accuracy is much higher than commonly used beacon-tracking ◾
method.
Fast error correction when sensors do not have accurate estimations. ◾
Suitable to WSNs with sparse and heterogeneous systems. ◾
Low-power design. ◾

9.8.1 Collaborative Location Estimation
LOCALE is a delay-tolerant, collaborative localization policy that is eff ective for sparse
mobile sensor networks. LOCALE includes three major phases, shown in Figure 9.21,
to maintain and refi ne location estimations. Th e fi rst one is called local phase, which
uses the movement tracking information of the sensor to maintain coarse location
estimation. Th is phase allows the sensor to maintain location information during long
periods of disconnection, although it may not be suffi ciently accurate. In the transform
phase, a sensor uses the location estimation of its neighbor to estimate its own location.
In the update phase, a sensor combines the estimation obtained from the neighbor and
the existing estimation. Th is phase refi nes location estimation of a sensor.

Next let us see how LOCALE represents the position of a node.

No

Local phase Is there a
neighbor?

Yes Transform
phase Update phase

Figure 9.21 LOCALE overview: Location error increases during the local phase
and decreases with collaboration in the update phase. (Adapted from Zhang,
P. and Martonosi, M., LOCALE: Collaborative localization estimation for sparse
mobile sensor networks, Proceedings of the 2008 International Conference on
Information Processing in Sensor Networks (IPSN 2008), St. Louis, MO, April
22–24, 2008, Information Processing in Sensor Networks, IEEE Computer Society,
Washington, DC, 2008, 195–206.)

AU9215_C009.indd 296AU9215_C009.indd 296 2/23/2010 1:00:08 PM2/23/2010 1:00:08 PM

Sensor Localization ◾ 297

9.8.2 Location in LOCALE
If LOCALE needs to predict and merge localization information from multiple
estimations, it needs both absolute location estimation and estimation certainty
(i.e., confi dence), and the location of a node is actually a smooth average of location
estimations of neighbors.

A normal distribution can describe the location estimation (mean) and the
certainty (variance). Although location estimation of an individual node may not
follow a normal distribution, based on the central limit theorem, the averaged esti-
mation should approach a normal distribution. We then use the probability density
function as follows:

T 11() ()
21() *

2 | |

X X C X X
p X e

C

−− − −
=

π
(9.59)

Th is equation represents the probability of the true location for node (X) relative to
the estimated location (x‒). To defi ne the equation we need only the estimated loca-
tion (x‒) and the covariance matrix C. Here we focus on a 2D case; however, it can
be easily extended to 3D case with altitude information.

2

2

x x y

x y y

x
C X

y

⎛ ⎞⎛ ⎞σ ρσ σ
⎜ ⎟= =⎜ ⎟⎜ ⎟ ⎜ ⎟ρσ σ σ⎝ ⎠ ⎝ ⎠

(9.60)

In this matrix, the diagonal has the variances along the axes of its coordinate sys-
tem, and the other values are the covariances between the two axes. When the
nodes move and meet neighbors, those values will be updated.

LOCALE keeps three variables: the location estimation X‒, the covariance
matrix C, and the angle θ between the local coordinates and the global coordi-
nates. Figure 9.22 illustrates the relative angle of the neighboring nodes θo, where
each node has its own local coordinate (xh, yh) (xn, yn), and an angle (θh, θn) relating
it to the global coordinate (x, y).

9.8.3 Local Phase
In this phase, each node maintains local position estimation based on any move-
ment tracking methods. LOCALE uses low-cost, low-accuracy dead-reckoning
sensors to track their movement relative to their last measured location.

Th us we can obtain a new distribution through the combination of relative
measurement distribution and the existing estimation distribution:

 old 1 1 delta 2 2(,) (,)N N X C N X C= + (9.61)

AU9215_C009.indd 297AU9215_C009.indd 297 2/23/2010 1:00:08 PM2/23/2010 1:00:08 PM

298 ◾ Wireless Sensor Networks: Principles and Practice

Together this gives the new distribution with mean and variance as

 combined 1 2 1 2(,)N N X X C C= + + (9.62)

Th e movement covariance matrix is oriented in the movement direction. Th e cova-
riance matrix in local coordinate CL is described as

2

L 2

0

0
x

y

C
′

⎛ ⎞σ
= ⎜ ⎟⎜ ⎟σ⎝ ⎠

(9.63)

Th e local covariance matrix is rotated to the global coordinate by

 = −θ −θL() ()TC R C R (9.64)

where θ is the direction the node moved, and the rotational matrix is defi ned as

cos() sin()
()

sin() cos()
R

θ − θ⎛ ⎞
θ = ⎜ ⎟θ θ⎝ ⎠

(9.65)

Note that the mean and covariance matrix of the new estimated location dis-
tribution is simply the summation. By incorporating the relative movement

Host

y

d

Neighbor

x

yn

θn

θh

θo

xn

x h

y h

Figure 9.22 Representation of two neighboring nodes with different orientations.
(Adapted from Zhang, P. and Martonosi, M., LOCALE: Collaborative localization
estimation for sparse mobile sensor networks, Proceedings of the 2008 International
Conference on Information Processing in Sensor Networks (IPSN 2008), St. Louis,
MO, April 22–24, 2008, Information Processing in Sensor Networks, IEEE Computer
Society, Washington, DC, 2008, 195–206.)

AU9215_C009.indd 298AU9215_C009.indd 298 2/23/2010 1:00:08 PM2/23/2010 1:00:08 PM

Sensor Localization ◾ 299

tracking information, a sensor can merge the movement information along
with the covariance information.

9.8.4 Transform Phase
Although we can use the location of a neighbor to refi ne the location of a node,
we cannot simply use the position estimate of a neighbor and merge it with its
own. Th is is because there is distance between any two nodes. Th erefore, LOCALE
transforms the neighbor’s estimate to a format suitable for merging, and that format
should be an observation on the location of the host. Th e transform information
needs the information on the “relative” location between the two nodes. Figure 9.23
illustrates the transform principle.

In terms of “relative” location information, LOCALE allows multiple formats,
such as the relative measurement of range and direction of the neighbor, or sim-
ple information indicating that the neighbor is somewhere within communica-
tion range. And it is not diffi cult to obtain the range and direction information
[BKusy07].

In Figure 9.23, we can see the procedure of merging a neighbor’s observation
into the local frame of the host. It mainly includes the following few steps:

In Step 1, we rotate the observations to comply with the relative coordinate so
that the X-axis of the two observations coincide:

= θ − θ θ − θ

= θ − θ θ − θ

T
h o h Lh o h

T
n o n Ln o n

() ()

() ()

C R C R

C R C R
(9.66)

In Step 2, based on the angle uncertainty caused by the location uncertainty of the
host, we can calculate the y-component of the transformed covariance matrix.

In Step 3, we can then determine the transformed observation distribution
through the x component of the covariance matrix. Note that the matrix should
consider the variability of distance, which is the sum of x components of the host
variance and −2(1 2 2 /3)Range .

Th e covariance of the error observations should be 0 because all nodes are ori-
ented in the relative coordinates. Th e mean value of the observation to be merged is
moved by distance d, and the expected distance vector between the two neighbor-
ing nodes is / 2Range in the direction θo − θn.

σ + σ⎛ ⎞
= ⎜ ⎟σ + σ⎝ ⎠

+ θ − θ⎛ ⎞
= ⎜ ⎟+ θ − θ⎝ ⎠

radio n
L Observed

h n

n o n
Observed

n o n

0
0 2

* cos()
* sin()

C

x d
X

y d

(9.67)

AU9215_C009.indd 299AU9215_C009.indd 299 2/23/2010 1:00:09 PM2/23/2010 1:00:09 PM

300 ◾ Wireless Sensor Networks: Principles and Practice

Finally, to achieve fi nal merging, the transformed observation and the host distri-
bution need to be rotated to the global coordinate system:

 = −θ −θT
Observed o LObserved o() ()C R C R (9.68)

As we can see, a good thing on the transformation phase is that the system can proj-
ect neighbor observation to a self-observation, allowing for more accurate merging

σ2
n

σ2
h

σ2
n

Host

Neighbor

d

1. Swap location estimation

σ2
n

σ2
h

σ2
n

σ2
n + σ2

radio

4. Obtain x component of error

Angle estimation
error

σ2
n

3. Add y component of error
(from neighbor location)

5. Obtain observed distribution 6. Merge to get new estimate

σ2
h

2. Estimate y component of error

Figure 9.23 Relative location estimation with no direction measurement.
(Adapted from Zhang, P. and Martonosi, M., LOCALE: Collaborative localiza-
tion estimation for sparse mobile sensor networks, Proceedings of the 2008
International Conference on Information Processing in Sensor Networks (IPSN
2008), St. Louis, MO, April 22–24, 2008, Information Processing in Sensor
Networks, IEEE Computer Society, Washington, DC, 2008, 195–206.)

AU9215_C009.indd 300AU9215_C009.indd 300 2/23/2010 1:00:09 PM2/23/2010 1:00:09 PM

Sensor Localization ◾ 301

in the next phase. Only probabilistic measurements are needed and no particular
radio profi le or special hardware are required.

9.8.5 Update Phase
In the two phases given earlier, we can see that LOCALE improves localization
accuracy by merging observations from neighbors. Th is way we can average out
measurement errors. On the other hand, if sensors have diff erent movement pat-
terns, the location estimations will have diff erent certainties. We can use variances
to represent the certainties. Eventually we merge the estimations weighted by their
respective variances. Th e location distributions are merged as a weighted linear
combination.

In the “update phase,” the system performs self-estimation preparation and the
fi nal merging process, which is shown in Figure 9.24. Because the number of obser-
vations can increase, we should calculate the combination of these distributions as
the harmonic mean.

Th e merge factor represents the weight each distribution has on the location
estimation result. Th e merge factor is defi ned as

 −= + 1
h h observed[]*K C C C (9.69)

Th e merge factor is used to calculate both the new covariance matrix and the new
location estimation as follows:

merged h h

merged h observed h
ˆ ˆ ˆ ˆ()

C C KC

X X K X X

= −

= + −
(9.70)

Th e new angle of the covariance matrix is

11 2tan ,

2
a bb C
b da d

− ⎛ ⎞⎛ ⎞θ = = ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠
(9.71)

Finally, we can rotate the merged distribution back to the local coordinate.

 T
L new merged merged h() ()C R C R= −θ −θ (9.72)

Th is merged location and the covariance matrix will be recorded in the memory in
each round as the new self-location estimate. Th is merging algorithm is a linear combi-
nation. Th erefore the process can be repeated as long as more neighbors are coming.

Th e update phase, in conjunction with other parts of LOCALE, achieves the
delay-tolerant, collaborative localization in extremely sparse sensor networks.

AU9215_C009.indd 301AU9215_C009.indd 301 2/23/2010 1:00:10 PM2/23/2010 1:00:10 PM

302 ◾ Wireless Sensor Networks: Principles and Practice

Merge process
starts

Is there a neighbor? No Keep old estimate

Yes

Self-observation prep.
Start merge

Neighbor transformation

Local estimate
(X, CL, θ)

Rotate coordinate to face each other
C΄= R(-(θ-θo))T CĹ R(-(θ-θo))

Rotate coordinate to face each other
C΄= R(-(θ-θo))T CĹ R(-(θ-θo))

Rotate to global Cartesian coordinate
C = R(-θo)T C h́ R(-θo)

Error
model

Get neighbor estimate
(X΄, CĹ , θ́)

Merge with observation error model
Cobs = C΄ + Coff
Xobs = X΄– Xdistance

Rotate to global Cartesian coordinate
C = R(-θo)T C h́ R(-θo)

Merging

Merge distributions
Cmerged = C - C[C + Cobs]

–1C
Xmerged = X - C [C + Cobs]

–1(Xobs–X)
θmerged = ½ tan–1 (2b/(a–d))

Rotate to local coordinates
CĹ = R(θmerged)T Cmerged R(θmerged)

Yes Are there more neighbors?

No

Finish

Figure 9.24 Block diagram of the merging process when neighbor is encoun-
tered. (Adapted from Zhang, P. and Martonosi, M., LOCALE: Collaborative
localization estimation for sparse mobile sensor networks, Proceedings of the
2008 International Conference on Information Processing in Sensor Networks
(IPSN 2008), St. Louis, MO, April 22–24, 2008, Information Processing in Sensor
Networks, IEEE Computer Society, Washington, DC, 2008, 195–206.)

AU9215_C009.indd 302AU9215_C009.indd 302 2/23/2010 1:00:10 PM2/23/2010 1:00:10 PM

Sensor Localization ◾ 303

9.9 On the Security of WSN Localization
[ASrinivasan08]

Th ere are four important metrics associated with localization: energy, effi ciency,
accuracy, and security. WSNs are designed to operate in harsh environments. With
hostile environments encountered by military equipment like landmine detection,
battlefi eld surveillance, or target tracking, the conditions can become much more
severe. In these unique environments, WSNs have to work autonomously and are
thus faced with unique challenges. An adversary can now capture and compro-
mise one or more sensors physically, thus rendering it to the mercy of its assailant.
By injection malicious code, the adversary is able to manipulate the workings of
the device, extract cryptographic information, or destroy it completely. If sensitive
information is extracted from the device, security hurdles such as authentication
routines can be bypassed, enabling the assailant to launch an attack from within
the system, which would cause most systems to fail.

To understand this, consider a beacon-based localization model, and as sen-
sor nodes are not capable of determining their own location, they are unable to
decipher whether or not beacon nodes are transmitting truthful, accurate loca-
tion information. A malicious node could be present transmitting falsifi ed data,
thus causing the receiving node to develop false location information. Th is is
referred to as information asymmetry, where one entity has more information
than the other. Th is model in beacon-based localization has been addressed in
[ASrinivasan06], and also presents an eff ective way of resolving insider attacks.
Th e attacker can also launch sybil, wormhole, or replay attacks to disrupt the
localization process.

In this section, we review the existing secure localization techniques, throwing
light on their strengths and weaknesses.

9.9.1 SeRLoc
In [LLazos04], Lazos and Poovendran propose a novel scheme for the localization
of nodes in WSNs in un-trusted environments called SeRLoc. Th is is a range-
free, distributed, resource-effi cient technique in which there is no communication
requirement between nodes for location discovery. Th is method is also robust
against wormhole attacks, sybil attacks, and sensor compromise. In this method,
we consider two sets of nodes: N, which is the set of sensor nodes equipped with
omnidirectional antennas, and L, which is the set of locator nodes possessing direc-
tional antennas. Th e sensors are able to use the location information transmitted
by the locators to determine their own location. Each locator transmits diff erent
beacons at each antenna sector.

In SeRLoc, an attacker must impersonate a multitude of nodes to compromise
the localization process. Also, the adversary has no incentive to impersonate sen-
sor nodes, as each node computes its own location without any assistance from

AU9215_C009.indd 303AU9215_C009.indd 303 2/23/2010 1:00:12 PM2/23/2010 1:00:12 PM

304 ◾ Wireless Sensor Networks: Principles and Practice

the other sensors. Th ere exist two techniques in this model to prevent wormhole
attacks: sector uniqueness property and communication range violation property.

To improve localization accuracy, either more locators must be deployed or more
directional antennas must be used. Th e entire process is made using the assumption
that no jamming of the wireless medium is feasible. Th is is a very strong assump-
tion for a real-world setting.

9.9.2 Beacon Suite
In [DLiu05], Liu, Ning, and Du present a suite of techniques for detecting malicious
beacon nodes that provide incorrect information to sensor nodes providing location
services in critical applications. Th is includes the detection of malicious signals, the
detection of replayed signals, the identifi cation of malicious nodes, the avoidance
of false detection, as well as the revoking of malicious beacon nodes. Beacon nodes
serve two purposes: providing location information to sensor nodes and perform-
ing detections on the beacon signals they hear from other beacon nodes. It is not
necessary for a beacon note to wait idly for beacon signals. It can request location
information. Th e node performing the detection is called the detection node, and
the node it is listening from is called the target node. Th ey suggest that the detect-
ing node should use a non-beacon ID when requesting location information from a
target node to observe the true behavior of the target node. Th e revocation scheme
works on the basis of two counters being maintained for each beacon node, repre-
senting an alert and report counter, respectively. Th e alert counter is responsible for
recording suspiciousness of the corresponding beacon node, and the report counter
tallies the number of alerts this node reported.

In the event that a detecting node determines that a target node is misbehaving,
this report is sent to the base station. Reports from alert counters are only accepted
from detecting nodes whose report counter is below a threshold and against nodes
that have not yet been revoked. Meeting these criteria increments the alert and
report counter of this respective node. Th e two counters function on a discrete
scale, and the revocation mechanism is centralized. Th is has been improved to be
more robust in [ASrinivasan06] by employing a continuous scale and a reputation
and trust-based mechanism.

9.9.3 Attack-Resistant Location Estimation
In [DLiu05a], Liu, Ning, and Du put forward two range-based robust methods to
tolerate malicious attacks against beacon-based location discovery in sensor net-
works. Th e fi rst method is the attack-resistant minimum mean square estimation,
which fi lters out malicious beacon signals. By examining the inconsistency among
location references of diff erent beacon signals, which can be represented by the
mean square error of estimation, we can defeat attacks by removing harmful data.
Th e second method, voting-based location estimation quantifi es the deployment

AU9215_C009.indd 304AU9215_C009.indd 304 2/23/2010 1:00:12 PM2/23/2010 1:00:12 PM

Sensor Localization ◾ 305

fi eld into a grid of cells and has each location reference “vote” on the cells in which
the node may reside. Th is method tolerates malicious beacon signals by adopting
an iteratively refi ned voting scheme. Both methods can survive malicious attacks,
even if the attacks bypass the authentication process.

9.9.4 Robust Statistical Methods
In [ZLi05], Li, Trappe, Zhang, and Nath introduced the idea of being tolerant to
attacks rather than trying to eliminate them by exploiting redundancies at various
levels within wireless networks. Two classes of localization are examined: trian-
gulation and RF-based fi ngerprinting. Th ey propose two statistical methods for
securing localization in sensor networks, both based on the simple idea of fi ltering
outliers from the data in the range estimates used for the location estimation.

In the triangulation model, an adaptive least squares and least median squares
estimator is used. Th is adaptive estimator switches to the robust mode with least
mean squares estimation when attacked and exhibits the computational advantage
of least squares in the absence of attacks. In the fi ngerprinting model, a Euclidean
distance metric is not secure enough, thus they propose a median-based nearest
neighbor scheme that defends against location attacks. Th e authors also discussed
attacks unique to localization in sensor networks. Th e statistical methods proposed
in [ZLi05] are based on the assumption that benign observations at a sensor always
outnumber malicious observations.

Problems and Exercises
9.1 Use any software (tools) to study and verify the effi ciency of one of the dis-

cussed WSN localization algorithms.
9.2 Compare diff erent localization schemes from algorithm complexity, accuracy,

and practical implementation (in distributed sensors) viewpoints.
9.3 Why should we consider security in WSN localization?

AU9215_C009.indd 305AU9215_C009.indd 305 2/23/2010 1:00:12 PM2/23/2010 1:00:12 PM

AU9215_C009.indd 306AU9215_C009.indd 306 2/23/2010 1:00:12 PM2/23/2010 1:00:12 PM

307

10Chapter

Time Synchronization in
Wireless Sensor Networks

In this chapter, we discuss the basic concepts of WSN clock synchronization
schemes. Our discussions are based on the summary of a comprehensive survey
paper [Sundararaman05]. Readers may refer to [Sundararaman05] for more details
(such as the comparisons between diff erent WSN synchronization schemes).

Do not think that it is simple to defi ne “time” in wireless
sensors. How does a sensor guarantee that its claimed
local time is correct (i.e., equal to world standard time)?
Maybe one argues, “just asks a server to broadcast a stan-
dard time to all sensors.” However, wireless transmission
delays cannot be ignored. Moreover, when a server gets
a message (which has the right time) ready for transmis-
sion, it needs to pass through a series of local CPU oper-

ations to generate such a message. Such local delay cannot be ignored either.
Anyway, eventually a sensor receives a message from a server, and such a mes-
sage says “9AM now.” Can this sensor just set up its local time to “9AM”?

Remember

WSNs

10.1 Introduction
Time synchronization is one of the most important issues in WSNs, because all
sensor events need to have accurate time-stamp records. Especially in an object-
tracking application, if the timing information is not accurate, we cannot determine

AU9215_C010.indd 307AU9215_C010.indd 307 2/11/2010 12:56:52 PM2/11/2010 12:56:52 PM

308 ◾ Wireless Sensor Networks: Principles and Practice

the object’s trajectory. Th is is because we form a trajectory by linking all navigated
locations at diff erent times.

In wired networks, such as the Internet, researchers have created successful
clock synchronization protocols, such as NTP (network time protocol). However,
these are not appropriate for a WSN environment due to some reasons.

First, these wired network synchronization protocols do not work well in a wire-
less environment that has high error rate due to wireless interference.

Second, a WSN could have thousands of resource-constrained sensors. Th e syn-
chronization protocol needs to be highly scalable in large WSNs. Moreover, it should
be able to achieve a self-organized, robust synchronization without a central control.

Th ird, these synchronization protocols need to consider energy conservation as
a major concern. Power sources cannot be provided to each sensor, and their small
sizes limit the amount of energy that can be stored or collected.

Th erefore, we need a brand-new clock synchronization protocol for WSNs
having unreliable wireless links, large sensor density, and very limited energy and
memory.

Before we design a clock synchronization protocol, we need to understand the
notion of a computer clock. It has the following basic features:

 1. A computer clock could be generated by an electronic device that counts oscil-
lations in an accurately machined quartz crystal, at a particular frequency.

 2. Or, a clock could be determined by an ensemble of hardware and software
components. Th e hardware (quartz crystal) and software (timer control pro-
gram) work together to provide an accurate, stable, and reliable time-of-day
function to the operating system and its clients.

 3. A computer clock is essentially a timer. Th e timer counts the oscillations of
the crystal. Two registers, that is, a counter register and a holding register, work
together as follows: Th e counter register decreases by one for each oscillation
in the crystal. When the counter reaches zero, the sensor generates a timer
interrupt, which can be used to perform a specifi ed timing task, and the
counter is reloaded from the holding register (to the original counter value).

How do we provide a time stamp to a sensor event? Such a time stamp is obtained
from the system’s clock value, which is acquired from the reading of the timer
(described above). For instance, each time the counter reaches zero, the timer adds
1 to a system clock.

Although we expect that all sensors have exactly the same pace of internal timer
counters, unfortunately, in practice, the quartz crystals in each sensor could run at
slightly diff erent frequencies, causing the clock values to gradually diverge from
each other. We call such a divergence a clock skew (defi ned later), which can lead to
an inconsistent notion of time in diff erent sensors.

Th e clock value generated by an internal timer is also called a software clock. It is
determined by crystal oscillations. Unfortunately, most crystal oscillations are not very

AU9215_C010.indd 308AU9215_C010.indd 308 2/11/2010 12:56:53 PM2/11/2010 12:56:53 PM

Time Synchronization in Wireless Sensor Networks ◾ 309

accurate because the frequency that makes time increase is never exactly right. Even a
frequency deviation of just 0.001 percent can bring a clock error of about 1 s per day.

Now you see the purpose of clock synchronization—to correct the clock skew in a
distributed sensor system. Th ere are two general methods to correct the clock skew:

 1. Absolute synchronization: Clocks of all sensors should be synchronized to an
accurate real-time standard like UTC (universal coordinated time). In other
words, all local clocks must not only be synchronized with each other but also
have to adhere to a physical time.

 2. Relative synchronization: In some applications, we do not require that all clocks
synchronize with a global time. Instead, clocks are relatively synchronized to each
other because the requirement is only to provide an ordering of events, and not
the exact real-world time at which each event occurred.

Let us further defi ne some important concepts to be used in clock synchronization:

Time: In a sensor p, the clock’s reading (i.e., its claimed
time) is determined by the function Cp(t). If t is the
global standard time, Cp(t) = t represents a perfect clock
(i.e., no clock skew).

Clock off set: We defi ne the diff erence between the time
reported by a clock (i.e., Cp(t)) and the real time (i.e., t) as
off set. Th e off set of the clock Ca is given by Ca(t) − t. Th e

off set of a clock Ca relative to a clock Cb at time t is given by Ca(t) − Cb(t).
Clock frequency: Frequency is the rate at which a clock progresses. Th e

frequency at time t of the clock Ca is the derivative of its time function (see the
above defi nition), that is, aC ′ (t). A perfect clock has a frequency of 1.

Clock skew: Th e clock skew is the diff erence in the frequencies of the clock
(its frequency is aC ′(t)) and the perfect clock (its frequency is 1), that is, the clock
skew in a sensor is aC ′(t) − 1. Th e skew of a clock Ca relative to a clock Cb at
time t is (′aC (t) − ′bC (t)).

Clock drift: Th e drift of clock Ca is the second derivative of the clock value
with respect to time, namely, aC ′′ (t). Th e drift of a clock Ca relative to a clock
Cb at time t is (aC ′′(t) − bC ′′(t))

Remember

WSNs

Now let us consider the physical clock synchronization in a WSN to a perfect
time—UTC. Assume that the time at UTC is t, certainly we wish Cp(t) = t for all
p and all t, that is, the clock frequency dC/dt = 1.

However, due to clock skew, the time in the clock of sensor p is Cp(t), which is
not equal to t. For this case, a timer (clock) is said to be working within its specifi ca-
tion if its clock frequency is within a scope:

AU9215_C010.indd 309AU9215_C010.indd 309 2/11/2010 12:56:53 PM2/11/2010 12:56:53 PM

310 ◾ Wireless Sensor Networks: Principles and Practice

1 1dC

dt
− ρ ≤ ≤ + ρ

where constant ρ is the maximum skew rate specifi ed by the manufacturer.
Or, we can say its clock skew (relative to a perfect clock) is within a scope:

1dC

dt
⎛ ⎞−ρ ≤ − ≤ ρ⎜ ⎟⎝ ⎠

Refer to the previous defi nition, C(t) is the local time.
It can be any function, that is, it may not be equal to
perfect time (its function is C(t) = t). We also know that
clock frequency (rate) is its derivative, that is, C ′(t) = dC/dt.
For perfect time, C ′(t) = 1. Clock skew is the diff erence
between the frequency of a local time and that of a perfect
time, that is, (dC/dt) − 1.Remember

WSNs

Figure 10.1 illustrates the behavior of fast, slow, and perfect clocks with respect to
UTC.

Th ere are some basic requirements for clock synchronization protocols that use
network message exchange between nodes to achieve a synchronized clock:

 1. Th e synchronization protocol should be robust to unbounded message trans-
mission latencies and unreliable wireless communications.

 2. If a node wants to synchronize with another one, it must be able to estimate
the local time on the clock of the other node, which is not a trivial issue due to
network latency.

C = Clock time
t = UTC time

dC/dt

<1 >1

1

Slow
clock

Perfect
clock

Fast
clock

Behavior of fast, slow, and perfect clock with respect to UTC

Figure 10.1 Behavior of fast, slow, and perfect clocks with respect to UTC.
(Adapted from Sundararaman, B. et al., Ad Hoc Netw., 3, 281, May 2005.)

AU9215_C010.indd 310AU9215_C010.indd 310 2/11/2010 12:56:53 PM2/11/2010 12:56:53 PM

Time Synchronization in Wireless Sensor Networks ◾ 311

 3. We cannot run time backward, that is, we cannot set back clocks. All clocks
must be gradually and gracefully advanced until the correction is achieved.

 4. We should minimize the synchronization overhead from network communi-
cation viewpoint. For instance, we cannot use too many message exchanges
between nodes.

10.2 Synchronization in General Networks (Non-WSN)
Before we discuss the synchronization issues in WSNs, let us take a look at some
issues already solved in general networks (i.e., non-WSNs).

10.2.1 Remote Clock Reading
As mentioned earlier, message exchanges are used to accomplish clock synchroniza-
tion between any two nodes. Because a node does not know local clock values of
the other nodes, it can only estimate the time in the clock of the other node. Such
an estimate should consider the eff ect of network delay. After it gets an estimated
clock value, it can compute the time diff erence between the clocks of the nodes,
and adjust its local clock.

However, there exist nondeterministic and unbounded message delays that
make synchronization very diffi cult. Th erefore, the eff ectiveness of a synchronization
protocol lies in its ability to prevent nondeterministic message delays from aff ecting the
quality of synchronization.

Th e remote clock reading method [FCristian89] handles unbounded message
delays between processes (a process is the clock estimate program in a node). By
using the remote clock reading method, it synchronizes several clients to an accu-
rate time service, UTC.

Figure 10.2 shows its procedure to remotely read the time of the other node:

 1. At a local time point T0, a client sends a message to the server requesting a
time stamp.

 2. Th e server then returns a message holding the time stamp Stime. Note: Stime is
the local time at the server.

 3. Th e client receives this message at its local time T1.
 4. Th e client then sets its local time to Stime (accurate time from the server) +

(T1 − T0)/2 (time required to transmit the message).
 5. To enhance accuracy, Steps 1–4 will be repeated and the average will be used.

10.2.2 Offset Delay Estimation Method
Th e most popular clock synchronization method used in the Internet, called NTP
[DLM92], adopts the off set delay estimation method to estimate clock off set (see
defi nition before).

AU9215_C010.indd 311AU9215_C010.indd 311 2/11/2010 12:56:54 PM2/11/2010 12:56:54 PM

312 ◾ Wireless Sensor Networks: Principles and Practice

A hierarchical tree of time servers is implemented in its design. Th e tree root is
the primary server, which synchronizes with the UTC. Secondary servers, which
act as a backup to the primary server, are contained in the next tree level,. Th e cli-
ents are located at the lowest tree level. Th ese clients need to synchronize with the
tree root that has UTC time.

Because a client node cannot accurately estimate the local time of the target
node due to varying network delays during message transmission, NTP performs
several round-trip trials and chooses the trial with the minimum delay. Th is is simi-
lar to the above-mentioned Cristian’s remote clock reading method [FCristian89],
which also relied on the same strategy to estimate message delay.

As shown in Figure 10.3, assume that nodes A and B exchange NTP time
stamps. Node A sends a message at T3; Node B gets it at T1, and Node B feedbacks
a message at T2, which is received by Node A at T4. Assume that clocks in A and B
are stable and running at the same speed. Th en

T0

Client sends
request to

time server
Stime

Client receives time
from server and adds

(T1 – T0)/2

T1

Server
receives
request

Cristian’s synchronization protocol

Server sends
back its local
time (Stime)

Figure 10.2 Cristian’s synchronization protocol. (Adapted from Cristian, F.,
Distrib. Comput., 3, 146, 1989.)

T1 T2

T3 T4
A

B

Figure 10.3 Offset and delay estimation. (Adapted from Mills, D.L., IEEE Trans.
Commun., 39(10), 1482, October 1991.)

AU9215_C010.indd 312AU9215_C010.indd 312 2/11/2010 12:56:54 PM2/11/2010 12:56:54 PM

Time Synchronization in Wireless Sensor Networks ◾ 313

a = T1 − T3 is the message transmission delay from A → B;
b = T2 − T4 is the message transmission delay from B → A.

Although a and b could be diff erent due to the asymmetric nature of many
communication links, the diff erential delay (= a – b) is small in most cases. We
defi ne the clock off set θ and roundtrip delay δ as

,

2
a b a b+θ = δ = −

Note that we could record the values of three time stamps T1, T2, and T3 in the
message header when it travels between A and B. However, the value of T4 cannot
be put in the message as it can only be determined upon arrival. Th us, both peers A
and B can independently calculate clock off set θ and roundtrip delay δ using a single
bidirectional message stream, as shown in Figure 10.4.

Based on Figure 10.4, we can describe the NTP protocol as follows:
Assume that two servers (A and B) exchange timing messages to achieve time

synchronization. A server calculates a pair of parameters (Oi, Di) during the calculation
round i, where Oi is the off set value in that round (i.e., θ) and Di is the transmission
delay (i.e., δ). For all rounds of (Oi, Di), we select the off set corresponding to the
minimum delay.

Specifi cally, the delay and off set pair (Oi, Di) are calculated as follows. Assume
that message m (from A → B) takes time t to transfer and m′(from B → A) takes
time t′ to transfer. We know that Oi is the off set between A’s clock and B’s clock.
If A’s local clock time is A(t) and B’s local clock time is B(t), we have

 () ()= + iA t B t O

Th en,

 2 3i i iT T t O− −= + +

Delay Delay
Server B to A

Server A to B Server A to B

Server B to A

Timing diagram for two servers (A and B)

Ti–3 Ti–2 Ti–1 Ti

Figure 10.4 Timing diagram for the two servers. (Adapted from Mills, D.L., IEEE
Trans. Commun., 39(10), 1482, October 1991.)

AU9215_C010.indd 313AU9215_C010.indd 313 2/11/2010 12:56:54 PM2/11/2010 12:56:54 PM

314 ◾ Wireless Sensor Networks: Principles and Practice

 1i i iT T O t− ′= − +

Typically, we can assume that t = t′ in Internet (but not in a WSN). We then sub-
tract these two equations from each other, the off set Oi can be estimated as

2 3 1

2
i i i i

i
T T T TO − − −− + −=

We can also estimate the round-trip delay Di as

 3 1 2() ()i i i i iD T T T T− − −= − − −

NTP calculates eight most recent pairs of (Oi, Di). Th e value of Oi that corresponds
to minimum Di is chosen to estimate the whole network average off set value O.

Due to its averaging approach (it uses eight round trips), the off set/delay estima-
tion protocol is similar to the above-mentioned Cristian’s method [FCristian89].
But both methods have a high synchronization overhead in terms of message com-
plexity. However, as delays are partly compensated through forward and backward
messages, the accuracy of NTP is better than that of Cristian’s protocol.

10.3 Clock Synchronization in WSNs
Traditional clock synchronization protocols work well in wired networks. But they
may not be suitable for WSNs due to the following concerns in WSN environments:

 1. Energy effi ciency: Energy conservation is very important in WSNs because all
sensors are battery driven. Traditional protocols like NTP [DLM91] use an
external standard like GPS (global positioning system) or UTC (universal
time) to synchronize the network to an accurate time source. However, the
use of GPS poses a high demand for energy that is usually not available in
WSNs. Th is makes it diffi cult to maintain a common notion of time.

 2. Network dynamics: An initial set-up is usually required for a stationary sensor
network, without any mobility, to begin operation. However, when new sensors
keep adding to the WSN, or some nodes can die due to power drainage, we
can see the change in the neighborhood of each node and the confi guration
of the network. A worse case is when the nodes are mobile, the network
topology becomes more dynamic. Hence, the WSN synchronization proto-
cols should adapt to both stationary and dynamic network topology, and
must ensure self-confi guration (by the use of suitable neighborhood defi nition
or leader election protocols).

 3. End-to-end latency: Internet can use NTP to achieve synchronization very
well because Internet is based on wired networks that are fully connected
networks. In such networks, the message transmission delay is relatively

AU9215_C010.indd 314AU9215_C010.indd 314 2/11/2010 12:56:54 PM2/11/2010 12:56:54 PM

Time Synchronization in Wireless Sensor Networks ◾ 315

stable (i.e., we can get a constant end-to-end delay throughout the network).
However, WSNs use high error rate, wireless transmission over a shared
medium. It is not practical to assume a single latency bound between the ends
of the network. Th erefore, synchronization protocols that assume a fully con-
nected network with constant delay cannot be applied to multi-hop WSNs.

 4. Wireless loss: Traditional wired networks have very few data loss events. But
in a WSN we need to use multiple rounds of message exchange to fi gure out
clock parameters (such as off set) due to frequent wireless loss.

Classifi cation of WSN synchronization protocols ◾
Dozens of diff erent WSN clock synchronization protocols have been pro-
posed. Th ese protocols can be classifi ed as follows:

 1. Sender-to-receiver versus receiver-to-receiver synchronization
Sender-to-receiver synchronization. We have already mentioned the NTP pro-
tocol that belongs to a “sender-to-receiver” message exchange approach. Such
a scheme typically involves three steps. (a) Th e sender sends a message (with
its local time as a time stamp) to the receiver. (b) Th e receiver sends back a
message with its local time stamp. (c) Th e message delay between the sender
and the receiver is calculated by measuring the total round-trip time.

Th ese steps may need to run multiple rounds to get an average value.
Shortcomings: Depending on the distance between a sender and a receiver,
there could be highly variable latencies in each round of message exchange.
When a message travels many hops to reach a receiver, the delay could be
huge and very diff erent between rounds. Although we can compute the
average message delay after performing many rounds, the time parameters
cannot be accurately estimated, and too many rounds of message exchange
adds signifi cant network overhead. Also, when we calculate time off set, we
must consider the optimization of the time taken by the receiver to process
the message, and the time taken by the sender to prepare and transmit the
message.
Receiver-to-receiver synchronization. To overcome the above issues, we may
use a receiver-to-receiver–based synchronization. Th is is based on the following
principle: if we ask a sender to send out messages to any two receivers that
are close to each other, these two receivers will receive the message at approxi-
mately the same time. Th is approach exploits this property of the radio
broadcast medium. Instead of sending out messages between the sender and
the receiver for multiple rounds, the receivers can exchange the time at which
they received the same message and then compute their off set based on the
diff erence in reception times.

Obviously, this approach can reduce the message-delay variance. We just
need to be concerned about the propagation delay to the various receivers and
the diff erences in receive time.

AU9215_C010.indd 315AU9215_C010.indd 315 2/11/2010 12:56:54 PM2/11/2010 12:56:54 PM

316 ◾ Wireless Sensor Networks: Principles and Practice

 2. Clock correction versus untethered clocks
Clock correction. Today people typically handle synchronization issues by cor-
recting the local clock in each node to run on par with an atomic clock or
a global timescale (such as a UTC). Such a clock correction scheme provides
a convenient reference time. A node corrects its local clock either instanta-
neously or continually to keep the entire network synchronized.
Untethered clocks. Th e above clock correction needs continuous synchroniza-
tion, which can waste lots of energy. Untethered scheme does not correct local
clocks based on a global clock. Instead, it just maintains a table with the com-
parisons of local clock and other nodes’ time. Th us, the relative clock diff er-
ence is monitored. For example, reference broadcast synchronization (RBS)
[JElson02] (to be explained later) builds a table of parameters that relate the
local clock of each node to the local clock of every other node in the network.
Local time stamps are then compared using the table. In this way, a global
timescale is maintained while letting the clocks run untethered.

 3. Internal synchronization versus external synchronization
Internal synchronization. In this approach, a WSN does not have a global time
base. Th erefore, our goal is to minimize the local time diff erence from the
readings of sensors.
External synchronization. In external synchronization, the system may rely on a
standard source of time such as UTC. NTP [DLM91] synchronizes Internet
nodes in this fashion. But WSNs do not perform external synchronization unless
the application demands it, because energy effi ciency is a primary concern, and
employing an external time source typically induces high energy requirements.

Internal synchronization can typically give us a more correct operation;
external synchronization is primarily used to give the system convenient refer-
ence time. While internal synchronization can be performed in a peer-to-peer
(i.e., no central server) or a master–slave fashion, external synchronization
can only be performed in a master–slave fashion because it requires a master
node that communicates with a time service (such GPS) to synchronize the
slaves and itself to the reference time.

 4. Probabilistic versus deterministic synchronization
Deterministic synchronization. Th is is a typical way to achieve synchroniza-
tion. It uses deterministic synchronization algorithms/protocols to guarantee
an upper bound on the clock off set with certainty, that is, it can guarantee a
certain clock precision for sure.
Probabilistic synchronization. It cannot provide an absolute clock precision.
Instead, it can only use a probabilistic value to show its control of the clock off -
set, that is, it has a failure probability in terms of absolute probability. Although a
probabilistic approach has worse clock precision than a deterministic approach,
it does not need to force the synchronization protocol to perform many mes-
sage transfers. Th us it avoids extra processing. Th is can help to save energy.

AU9215_C010.indd 316AU9215_C010.indd 316 2/11/2010 12:56:54 PM2/11/2010 12:56:54 PM

Time Synchronization in Wireless Sensor Networks ◾ 317

 5. Stationary networks versus mobile networks
Mobile networks. Th e sensors can move. Moreover, a sensor communicates
with other sensors only when it enters the geographical scope of those sensors.
We need a robust synchronization protocol to handle the frequent network
topology changes due to the mobility of the nodes.
Stationary networks. Most WSNs have fi xed network topology, that is, sensors do
not move. It is easier to design synchronization protocol for stationary WSNs.

10.4 Evaluation of Synchronization Performance
Time synchronization protocol should be driven by the characteristics and require-
ments of each application. For instance, most WSN applications can use low-cost,
low-precision synchronization protocols. However, some safety-critical applica-
tions, such as aircraft navigation or intrusion detection in military systems, will
demand high-precision synchronization protocols for nodes to correctly identify
events occurring at a certain time.

In [Sundararaman05], some performance metrics are identifi ed to measure the
quality of a synchronization protocol.

10.4.1 Precision
Hardware clock: Th e initial time signals are generated from the internal hard-

ware (oscillator circuits) in a sensor. As mentioned before, the hardware clock
can have clock skew. Th erefore, we cannot directly use the time generated
from such a hardware clock.

Logic clock: As hardware clock is not accurate, sensors generally use a logical notion
of clocks and time. We could use software to modify such a logical clock dur-
ing synchronization protocol. All of our discussions here refer to this logic clock
concept.

Based on this logic clock concept, we could defi ne two types of synchronization
precision:

Absolute precision. Using an external standard (such as
UTC) to measure the maximum clock skew/off set error
of the logical clock of a node.

Relative precision. Without comparison with a stan-
dard clock, we only measure the maximum clock skew/
off set deviation among logical clock readings of the
nodes belonging to the same WSN.

Difference

WSNs

AU9215_C010.indd 317AU9215_C010.indd 317 2/11/2010 12:56:54 PM2/11/2010 12:56:54 PM

318 ◾ Wireless Sensor Networks: Principles and Practice

Obviously, the goal of any WSN synchronization protocol is to achieve an abso-
lute or relative precision. However, such a high synchronization precision comes
at the expense of increased computational complexity and communication over-
head (i.e., the number of messages exchanged among nodes).

A metric similar to the concept of precision is called accuracy, which measures
how well the time maintained within a WSN is true to the standard time. A syn-
chronization protocol with high accuracy thereby guarantees high precision.

10.4.2 Protocol Overhead
To reduce protocol overhead (i.e., the number of messages exchanged between nodes),
we may use piggybacking, which is the process of combining the application data
acknowledgment messages with messages that carry time synchronization informa-
tion, that is, we do not use independent messages to transmit time information.
Such control information can be embedded into general raw sensor data packets.
Th is can not only reduce communication overhead but also save memory storage.

10.4.3 Convergence Time
Some synchronization protocols only perform clock control infrequently. And
they do not use many message exchanges. Th us those protocols do not have a long
convergence time, which refers to the total time required to synchronize a network.
However, some high clock precision protocols require a large number of message
exchanges per synchronization, and thus result in a longer convergence time.

10.4.4 Energy Effi ciency
Energy effi ciency is always the top concern for any WSN protocol design. A low-
complexity protocol may save more energy.

10.4.5 Scalability
A synchronization protocol may need to make a large-scale WSN converge to the
same time signal, that is, it should have the capability of synchronizing hundreds
of sensors.

10.4.6 Robustness
Because the WSN uses low-bandwidth radio communications under harsh envi-
ronments, a synchronization protocol should be able to tolerate high packet loss
rate and large wireless interference.

AU9215_C010.indd 318AU9215_C010.indd 318 2/11/2010 12:56:54 PM2/11/2010 12:56:54 PM

Time Synchronization in Wireless Sensor Networks ◾ 319

10.5 Examples of WSN Synchronization Protocols
10.5.1 Reference Broadcast Synchronization [JElson02]
Th e RBS protocol [JElson02] is a receiver-to-receiver–based scheme. Two receivers
receive the same message (from the same sender) at approximately the same time.
RBS is so named because a message (that is broadcast from the same sender) will
arrive at a set of receivers with very little variability in its delay.

If each receiver records the local time as soon as the message arrives, all receivers
can achieve a clock synchronization with a high degree of precision by comparing
their local clock values (for the same received message).

RBS broadcasts messages through a time-critical path, which delivers a message
that contributes to nondeterministic clock errors in a protocol. In Figure 10.5, we
can see the diff erence between sender-to-receiver time-critical path and receiver-to-
receiver time-critical path (used in RBS).

It is important to remove/reduce the eff ects of nondeterministic transmission
delays as they are detrimental to the accuracy of a synchronization protocol. Th ey
also make it diffi cult for a receiver to estimate the time at which a message was sent
and vice versa.

Th e following four time factors are nondeterministic when a sender sends a
message to a receiver in a WSN:

Traditional protocol

Sender Sender

Receiver

ReceiverReceiver

Time

Critical path
Critical path

NIC NIC

RBS protocol

Figure 10.5 Time-critical path for traditional protocols (left) and RBS protocol
(right). (Adapted from Elson, J. et al., Fine-grained network time synchronization
using reference broadcasts, Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI 2002), Boston, MA, December 2002,
147–163.)

AU9215_C010.indd 319AU9215_C010.indd 319 2/11/2010 12:56:54 PM2/11/2010 12:56:54 PM

320 ◾ Wireless Sensor Networks: Principles and Practice

Send time ◾ : Th is time covers all operations before leaving the sender’s side:
“send time” includes (1) the time spent by the sender for message construction
(in its local machine) and (2) the time spent to transmit the message from the
sender’s host to the network interface (then ready to leave the sender).
Access time ◾ : In a WSN, a sender or a receiver may need to wait for some time
until the RF channel is ready for use (i.e., no other nodes use the channel).
Propagation time ◾ : Th is is the real “air fl y” time. It is the time for the message
to reach the receiver, once it has left the sender.
Receive time ◾ : Th e time spent by the receiver to locally process the message,
once it has received the message.

Compared to sender-to-receiver–based approach, RBS, a receiver-to-receiver scheme,
considers only the times at which a message reaches diff erent receivers. Th erefore, it
directly removes two of the largest sources of nondeterminism involved in message
transmissions, namely, the send time and the access time. Th us, this protocol can
provide a high degree of synchronization accuracy in sensor networks.

To estimate the phase off set between the clocks of two receivers, the following
simple steps are adopted:

 1. A sender broadcasts a reference packet (i.e., message) to two receivers.
 2. Each receiver records the local time at which the packet was received.
 3. (Important step) Th e two receivers exchange their recorded local times at

which they received the same packet.
 4. We can then calculate the clock off set between two receivers by computing the

diff erence of the local times at which the receivers received the same message.

To use RBS protocol to generate a high clock precision, it is important for each
receiver to record its local clock reading as soon as the message is received.
However, a receiving node may not be able to record the time of message arrival
promptly, for instance, if the node was busy with other computations when the
message arrived.

Obviously, RBS cannot just use a single message transmission to alleviate these
nondeterministic time factors. In practice, RBS protocol uses a sequence of refer-
ence messages from the same sender. Let parameters i and j denote two receivers.
Suppose total m messages are sent. Receiver j will compute its off set relative to any
other receiver i as the average of clock diff erences for each packet received by nodes
i and j:

, ,

1

1Offset[,] ()
m

i k j k

k

i j T T
m

=

= −∑

where Ti, k is node i’s clock when it receives broadcast k.

AU9215_C010.indd 320AU9215_C010.indd 320 2/11/2010 12:56:55 PM2/11/2010 12:56:55 PM

Time Synchronization in Wireless Sensor Networks ◾ 321

By using receiver-to-receiver time comparisons, RBS removes the largest sources
of error (send time and access time) from the critical path by decoupling the sender
from the receivers. Clock off set and skew are estimated independent of each other.
In addition, clock correction does not interfere with either estimation because local
clocks are never modifi ed.

However, it may have high communication overhead, because for a single-hop
network of n nodes, this protocol requires O(n2) message exchanges. Convergence
time, which is the time required to synchronize the network, can be high due to the
large number of message exchanges.

10.5.2 Time-Diffusion Synchronization Protocol [WSu05]
Time-diff usion synchronization protocol (TDP) is a scalable protocol. It could guar-
antee all the sensors in a WSN to have a synchronized time within a small bounded
time deviation from the networkwide “equilibrium” time. Th e protocol is com-
prised of several algorithms.

To guarantee high-precision clock synchronization, TDP runs periodically. It
thus has alternating active and inactive phases. Within each active phase, there are
multiple cycles, each cycle lasting a duration τ. In each cycle, some nodes are elected
as the masters by an election/reelection procedure (ERP).

Th ose masters selected by ERP concurrently initiate a diff usion of timing mes-
sages. A tree-like propagation structure can be dynamically created through those
timing diff usion messages.

ERP also selects some non-leaf nodes in this tree as “diff used leaders,” which
also propagate the timing messages. It may happen that a node does not qualify to
be a diff used leader node, and hence will not propagate the diff usion.

ERP has two important purposes:

 1. ERP can use Allen variance, a variance calculation algorithm, to eliminate
outlier nodes whose clock variance is above some threshold function. Allen
variance algorithm determines the variance by exchanging messages and cal-
culating deviations between pairs of adjacent nodes using a peer evaluation
procedure (PEP).

 2. ERP can achieve network traffi c (also called load) distribution among the
nodes because the roles of masters and diff used leaders put a greater demand
on the energy resource. It achieves load distribution by taking turns at being
the master, based on factors such as the available energy level being above a
tunable threshold.

TDP is a typical external synchronization (see Section 10.3) protocol, that is, it
uses the diff usion of timing messages to converge to the local times, and eventually
reaches a common notion of the system-wide time.

AU9215_C010.indd 321AU9215_C010.indd 321 2/11/2010 12:56:55 PM2/11/2010 12:56:55 PM

322 ◾ Wireless Sensor Networks: Principles and Practice

As mentioned before, TDP has alternating active and inactive phases. Each
active phase consists of multiple cycles. Each cycle has duration τ. Each cycle (τ)
consists of two serially executed tasks: (1) use PEP to determine master nodes and dif-
fused leader nodes and (2) run the main time diff usion procedure (TP), and each TP
consists of multiple rounds (each round has a duration of δ). Figure 10.6 shows the
relationship between “cycles,” PEP, and TP rounds.

After ERP selects masters, each master initiates a concurrent time message
broadcast that gets diff used along a tree-like structure, as illustrated in Figure 10.7.
A master’s time can be coordinated to an external precise time server that does
periodic broadcasts of a reference time. If no time servers are available, the protocol
may use UTC.

Referring to Figure 10.7, let us see how a master diff uses time message
(let us start from tree Level 1): First, a master sends many time messages to
its neighbors. Th e neighbors send back acknowledgments containing the two-
sample Allen variance of the local clock from the master’s clock. Based on the
received samples, the master calculates (a) an outlier ratio γyz for itself and each
neighbor, (b) the average of the Allen variances, and (c) the average of the Allen
deviations. Now, values (a), (b), and (c) are sent to each neighbor in a RESULT
message.

In each subsequent step j = 2, 3, … , n, the Level 1 procedure is repeated in each
level j >1 between diff used leader node and its neighbors.

During this time message diff usion procedure, all sensors will overhear the
outlier ratios and the average Allen deviation (with respect to their neighbors).
Th ey will use those values to evaluate the quality of their clocks with respect
to their neighbors. If a node’s average outlier ratio is >1, its local clock deviates

PEP PEPRounds of TP Rounds of TP

δ

Cycle

τ τ

Cycle

Figure 10.6 Illustration of timing relationships between the TP rounds (each
with duration 𝛅) and the PEP duration within each cycle. Each cycle has a dura-
tion of 𝛕. (Adapted from Su, W. and Akyildiz, I.F., IEEE/ACM Trans. Netw., 13(2),
384, 2005.)

AU9215_C010.indd 322AU9215_C010.indd 322 2/11/2010 12:56:55 PM2/11/2010 12:56:55 PM

Time Synchronization in Wireless Sensor Networks ◾ 323

from the clocks of its neighbors by more than twice the Allen variance. In this
case, that node does not become a diff used leader during the (TP of the) current
cycle, or a master in the next cycle.

Note that a node that is eligible for being a master in the next cycle cannot
guarantee to become a real master as TDP considers load distribution (mentioned
before). Only when a node has energy availability above a certain (dynamically
adjustable) threshold, it will possibly become a master. Load balancing is done by
rotating the role of master nodes.

Th e TP procedure performs the main function of diff using the time from each
master in a tree-like manner for n hops, where n is some predetermined parameter
smaller than the diameter of the network.

In summary, TDP protocol achieves a system-wide “equilibrium” time across
all nodes, computed using an iterative weighted averaging technique, and involves all
the nodes in the synchronization process.

A

B C

GH

I J

D

F

E

Diffusion initiated by A

Diffusion initiated by E

Diffusion initiated by K

Master node

Diffused leader node

K

Figure 10.7 Time diffusion with three master nodes and n = 3 hops. In each
round, nodes take the hop-weighted (or cumulative deviation weighted) aver-
age of the different times received from the masters’ diffused broadcasts.
(Adapted from Su, W. and Akyildiz, I.F., IEEE/ACM Trans. Netw., 13(2), 384,
2005.)

AU9215_C010.indd 323AU9215_C010.indd 323 2/11/2010 12:56:55 PM2/11/2010 12:56:55 PM

324 ◾ Wireless Sensor Networks: Principles and Practice

10.5.3 Probabilistic Clock Synchronization [SPalChaudhuri03]
Most of the proposed WSN synchronization schemes belong to deterministic
algorithms, that is, they can guarantee an upper bound on the error in clock off -
set estimation. On the other hand, such a deterministic algorithm needs a large
number of messages being exchanged during synchronization. Th is may not be
suitable to resource-constrained WSNs.

Th erefore, some people propose to use probabilistic algorithms to just provide a
reasonable synchronization accuracy at certain probability. Its advantage is low com-
putational and network overhead. PalChaudhuri et al. [SPalChaudhuri03] propose
such a probabilistic scheme based on the extension to RBS. It provides a probabilistic
bound on the accuracy of clock synchronization. It allows to trade off synchroniza-
tion accuracy for computational and energy resources in low-cost WSN sensors.

As mentioned before, RBS uses multiple messages sent from the sender to a set
of receivers. By exchanging messages, all receivers know the diff erences in actual
reception times. Because a sender sends out a set of messages with independent
distribution, the diff erence in reception times can be described by a Gaussian (or
normal) distribution with zero mean.

Th e synchronization error can also be described by the Gaussian probability
distribution. We can then easily calculate the relationship between a given maxi-
mum error in synchronization and the probability of actually synchronizing with
an error less than the maximum error.

Let us assume the maximum synchronization error (allowed between two syn-
chronizing nodes) is εmax, then we can use the Gaussian distribution property to
derive the probability of synchronizing with an error ε < εmax:

ε
−

−ε
ε

ε ≤ ε =
π

∫
max 2

max

(/2)

max(| |)
2

x dx
P

From this we can see that when the εmax limit is increased, the probability of failure
(1 − P(| ε | ≤ εmax)) decreases exponentially.

In [SPalChaudhuri03], the service specifi cation (maximum clock synchroniza-
tion error) is converted to actual protocol parameters (the number of messages and
synchronization overhead). It fi gures out that the probability of the achieved error
(being less than the maximum specifi ed error) is

εε ≤ ε =
σ

max
max(| |) 2 nP erf

where
n is the minimum number of synchronization messages to guarantee the error
σ is the variation of the distribution

AU9215_C010.indd 324AU9215_C010.indd 324 2/11/2010 12:56:55 PM2/11/2010 12:56:55 PM

Time Synchronization in Wireless Sensor Networks ◾ 325

In summary, a probabilistic synchronization approach makes a good trade-off
between synchronization accuracy and sensor resource cost. In safety-critical appli-
cations (e.g., nuclear plant monitoring), a probabilistic scheme may not be enough
as it cannot guarantee a certain synchronization accuracy.

Problems and Exercises
10.1 Why do traditional synchronization schemes in wired networks not work

well in WSNs? Use NTP as an example to analyze their shortcomings.
10.2 Explain the concepts of off set, skew, and drift.
10.3 Use any software to implement one of the discussed WSN clock synchroniza-

tion algorithms.

AU9215_C010.indd 325AU9215_C010.indd 325 2/11/2010 12:56:55 PM2/11/2010 12:56:55 PM

AU9215_C010.indd 326AU9215_C010.indd 326 2/11/2010 12:56:55 PM2/11/2010 12:56:55 PM

327

11Chapter

Security and Privacy in
Wireless Sensor Networks

Homeland security is a top issue in any country. Th e
cyber security, especially, plays a very important role in
today’s society, as many social activities are based on
computer communications. WSNs also require security
schemes if they are used in critical applications, such as
building monitoring.

Remember

WSNs

11.1 Introduction [YangXiao07, Tanya06, Internet07]
11.1.1 General Attack Taxonomy
Tanya et al. [Tanya06] have provided a taxonomy of basic WSN attacks and some
corresponding countermeasures. Attacks on sensor networks can be classifi ed into
general categories depending on classifi cation standards [CKarlof03] as follows.

 1. Mote-class/laptop-class attackers: A mote-class attacker typically does not have
enough resources to deploy strong attacks. But it can attack low-energy sensors.
A laptop-class attacker has access to more powerful devices, such as laptops. Such
powerful equipment allows the adversary to launch much more powerful attacks.

 2. Insider/outsider attackers: An outsider attacker has no special access to the
sensor network, because it does not know the WSN keys. But it can use

AU9215_C011.indd 327AU9215_C011.indd 327 2/23/2010 12:02:59 PM2/23/2010 12:02:59 PM

328 ◾ Wireless Sensor Networks: Principles and Practice

passive eavesdropping to obtain data. An insider attacker is more diffi cult
to prevent, because it has access to the encryption keys or other codes used
by the network. A compromised node, an otherwise legitimate part of the
network, can be considered an insider attacker.

 3. Passive/active attackers: A passive attacker compromises the privacy and con-
fi dentiality requirement by passively listening to the network data. However,
an active attacker could damage the function of the network by actively
attacking the WSN. For example, the attacker may inject faulty data into the
network by pretending to be a legitimate node.

Understanding the diff erence between diff erent WSN
attacks is the prerequisite for designing countermeasure
schemes. Please realize that we have many diff erent clas-
sifi cation standards of WSN attacks. For instance, if
we think of how “strong” an attack could be, an attack
may want to save some cost by using low-cost machines
to launch attacks. In our society, it may be easy to iden-

tify external enemies. But we cannot easily fi nd out spies. Likewise, in WSNs,
insider attacks are more threatening than outsider attacks. In the next section,
we classify WSN attacks from other perspectives, such as fi ve-layer protocols.

Difference

WSNs

11.1.2 Attacks on Physical Sensor Motes
In WSNs, sensor nodes are vulnerable to intentional physical tampering (e.g., open-
ing a sensor’s memory to access the data it contains). Such physical tampering facili-
tates external attacks on the software running on the sensors. Unfortunately, today’s
commercial sensor hardware cannot resist physical tampering. If an adversary cap-
tures a mote, he or she can easily exploit the shortcomings of the mote’s software.

Th e physical attacks on WSNs include two main types [Tanya06].

 1. Invasive attacks: An invasive attacker uses reverse engineering followed by
probing techniques to study the chip-level components of the device. Th is
attacker has unlimited access to any and all information stored within the
components. Such reverse engineering analysis can easily lead to substantial
damage to the sensor system.

 2. Noninvasive attacks: A noninvasive attacker does not open and physically tam-
per with the embedded device. For instance, a side-channel attack can use the
information gathered from the physical implementation of a cryptosystem to
get to know some hardware information, such as the power consumption, the
timing of the software operation execution, or the frequency of the electro-
magnetic (EM) waves.

AU9215_C011.indd 328AU9215_C011.indd 328 2/23/2010 12:03:01 PM2/23/2010 12:03:01 PM

Security and Privacy in Wireless Sensor Networks ◾ 329

As we can see from the above discussions, to study
WSN security, we not only need a good understand-
ing of sensor networking protocols and cryptogra-
phy knowledge (which is a typical computer science
area), but also need to have some electrical engineer-
ing knowledge, such as that of EM waves and reverse
engineering. Th erefore, WSN security is a cross-disci-
plinary fi eld.

Remember

WSNs

From the above two types of attacks, invasive attacks are more popular.
Unfortunately, there is no solution available to make the sensor nodes resistant
to physical tampering. Th e sensor nodes’ microcontrollers and memories lack
hardware-based memory protection. Although some embedded systems’ crypto-
processors are physically secure, they do not have a complete set of protection
schemes to defend against physical tampering. Th erefore, it is important to develop
optimized crypto-processors that fi t the low-cost, low-energy requirements of sen-
sor networks.

On the other hand, noninvasive attacks, such as side-channel attacks, can also
cause serious consequences. For example, a side-channel attack that uses simple
power analysis as well as diff erential power analysis can damage the message authen-
tication codes (MACs) [KOkeya05]. Security key bits can be extracted through the
power analysis attack. Power analysis can launch attacks on the block cipher in
WSNs. In cryptography, the block cipher uses a symmetric key cipher that operates
on fi xed-length groups of bits. Linear or diff erential crypto-analysis is commonly
used to launch these attacks. If the block cipher is used as a hash function, an attack
can result in the breaking of the hash function.

Another example of side-channel attacks is called timing attacks, which
use the nonconstant execution time to leak secret information. Nonconstant
execution time can be caused by conditional branching and various optimiza-
tion techniques. Because the sensor operating system is typically event driven
and optimized for low memory consumption, it makes the timing side-channel
attack possible. A solution to such an attack could be a constant execution
time software. However, it cannot be easily achieved in WSNs. Th erefore, the
timing attack in sensor hardware is an important subject for future research
[Internet07].

A frequency-based attack is also a side-channel attack. It aims to extract secret
keys of symmetric cryptographic algorithms.

Some countermeasures for side-channel attacks are available, such as power con-
sumption randomization, CPU clock randomization, using fake instructions, and
using bit splitting.

AU9215_C011.indd 329AU9215_C011.indd 329 2/23/2010 12:03:01 PM2/23/2010 12:03:01 PM

330 ◾ Wireless Sensor Networks: Principles and Practice

11.1.3 Attacks on WSN Communication Stack [Tanya06]
Th is section classifi es WSN attacks from the communication layer viewpoint. We
cover attacks in the following categories: physical layer, link layer, network and
routing layer, and transport layer.

11.1.3.1 Physical Layer

In the WSN physical layer, jamming, which is one of the most threatening
attacks, can launch RF signal interference within the radio channels of sensor
communications. Th e jamming of a few crucial nodes’ communication can even
disrupt the entire network, because these nodes may be at the intersections of all
route paths.

Spread spectrum (SS) communication is a common defense against jamming
attacks. SS includes frequency hopping and code spreading. Another solution to the
jamming attack has been proposed in [AWood03]. Th e authors proposed a mecha-
nism to isolate a jammed region through the surrounding nodes. After isolating the
jammed region from the network, the rest of the network can be made to function
as intended.

In the wireless physical layer, the radio-jamming attack
is one of the most challenging issues due to the easy
launching of jamming attacks. Just by relying on a
radio frequency detector and a strong signal generator,
a jammer could make normal data communications in
a certain frequency diffi cult to achieve due to lots of
interference signals from the attacker. CDMA (code

division multiple access) may be able to achieve certain anti-jamming
communications. But CDMA can cause high communication overhead in
resource-constrained WSNs.

Remember

WSNs

11.1.3.2 Link Layer

As you may recall, a data link layer protocol defi nes scheduling schemes for neigh-
boring nodes to access the shared wireless channel. Th e following are some examples
of link layer attacks: an attacker may cause transmission collisions by damaging
the scheduling protocols, it could exhaust good nodes’ battery by making them
have repeated retransmissions, and it could cause unfairness in using the wireless
channels among neighboring nodes. Some researchers have proposed a number of
solutions for detecting these attacks, such as using collision detection techniques,
modifying the MAC (Medium Access Control) protocols so as to limit the rate of
requests, and using smaller frames for each packet [AWood02].

AU9215_C011.indd 330AU9215_C011.indd 330 2/23/2010 12:03:01 PM2/23/2010 12:03:01 PM

Security and Privacy in Wireless Sensor Networks ◾ 331

Note that MAC could represent diff erent meanings in
this chapter. For example, it could mean the Medium
Access Control protocol, which manages the radio-sharing
schedule in wireless access. It could also mean message-
authenticated code, which is a special binary sequence
calculated from the original message data through a
function. Such a code is for authentication purposes,

that is, fi nd out whether or not a received message is from the right source
(not from an enemy’s machine).

Remember

WSNs

11.1.3.3 Routing Layer

As we know, routing protocols (also called networking protocols) attempt to fi nd an
optimized path from a sender to a destination. Such a path could have higher energy
effi ciency, or lower latency, or less congestion, or other advantages. Th e sensors in the
path are called relay points, which have a similar function as the routers in the Internet.
An attacker could mislead or damage such a path. Here, we mention a few of the
attacks on the routing protocols based on the discussion in [CKarlof03, Tanya06].

 1. Spoofed, altered, or replayed routing information: All data transmissions are con-
trolled by routing protocols. Th e establishment of a routing path is through the
protocol messages among relevant sensors. Th erefore, a direct attack against a rout-
ing protocol is to target the routing information exchanged between nodes. An
attacker could spoof, alter, or replay routing information, and thus create routing
loops (i.e., never getting to the destination side), attract or repel network traf-
fi c (i.e., misleading routing), extend or shorten source routes, generate false error
messages (i.e., reporting wrong error status), partition the network (i.e., making
routing diffi cult in isolated subnetworks), increase end-to-end latency, etc.

 2. Selective forwarding: WSNs use hop-to-hop routing protocols to relay sensor data.
A normal multi-hop routing protocol assumes that all relay nodes will blindly
and honestly relay received messages. However, when an attacker uses selective,
dishonest forwarding, it can refuse certain messages or drop them altogether.
Selective forwarding causes signifi cant data loss and can even disrupt a network.
A special form of the selective-forwarding attack is called “black hole.” Similar
to a universal black hole, an adversary node can refuse to forward every packet
it receives. A consequence of this attack is that the neighboring nodes will think
that the adversary node has failed and will choose an alternate route.

In other forms of selective forwarding, an attacker can alter certain nodes’
communications and make other nodes transmit as intended. Such an attack
could effi ciently suppress the data sent from these nodes without suspicion.

In most cases, selective-forwarding attacks occur when the adversary is
within the data path (i.e., becomes one of the relay points). However, an

AU9215_C011.indd 331AU9215_C011.indd 331 2/23/2010 12:03:02 PM2/23/2010 12:03:02 PM

332 ◾ Wireless Sensor Networks: Principles and Practice

adversary can overhear a fl ow passing through its neighboring nodes, and it
then emulates selective forwarding by jamming or causing a collision on each
forwarded packet of interest.

Typically, an adversary launching a selective-forwarding attack will select
the path with the least resistance as the attack target and then attempt to
include herself on the actual path of the data fl ow.

 3. Sinkhole attacks: With some similarities to “black hole,” a sinkhole attack
attracts the nearby traffi c through an adversary node that could be an out-
sider attacker or a native compromised node. Th e sinkhole attack eventually
creates a “hole” around the attacker. By attracting data to its side, it has many
opportunities to tamper with application data. In fact, sinkhole attacks can
enable many other attacks (such as selective forwarding).
How does a sinkhole attacker attract traffi c to its side? A simple way is to
make itself look more attractive than the surrounding nodes, which can be
done by spoofi ng or replaying an advertisement for a much higher quality
route to the base station. As we know, WSN routing protocols reply to these
advertisements. Once the surrounding nodes see this “attractive” route, they
will be much more likely to forward their data to it.

Black hole and sinkhole: Although both of them have some
ways to attract data to fl ow through the enemy’s node, black
hole makes the incoming data “disappear,” while sinkhole
does not just simply discard such data. Instead, it may keep
the data for further processing, such as content analysis.
Th us, a sinkhole may be harder to detect than a black hole.Difference

WSNs

A good news is that some protocols might actually try to verify the quality
of the route with end-to-end acknowledgments (ACKs) that contain reliability
or latency information. For instance, a sensor can always ask for a feedback on
where its data goes. However, a “strong” sinkhole attacker, such as a laptop-
class adversary with a powerful transmitter, can directly (i.e., using one-hop
instead of multi-hop) relay the information to the base station or use a worm-
hole attack (discussed later) to relay data. Due to the “seemingly” high quality
route through the compromised node, it is very likely that each neighboring
node of the adversary will forward packets (that are supposed to go to a base sta-
tion) through the adversary. A worse thing is that a good node can advertise a
“good” path to its neighbors. Consequently, the sinkhole attacker creates a large
“sphere of infl uence,” attracting all traffi c from the neighboring nodes.

So why is a sensor network so susceptible to sinkhole attacks? Th is is due
to the WSN routing protocol pattern. In a WSN, typically a base station is the
fi nal destination for all sensors’ data. If this is the case, why does a compromised

AU9215_C011.indd 332AU9215_C011.indd 332 2/23/2010 12:03:02 PM2/23/2010 12:03:02 PM

Security and Privacy in Wireless Sensor Networks ◾ 333

node not just simply provide a single high-quality route to the base station?
Th us, all nodes will like its route and send data through it.

 4. Sybil attack [Newsome04]: In a Sybil attack, a single sensor presents multiple
instances (i.e., IDs) to other nodes in the network. Th is is just like a spy who
owns multiple countries’ passports. Such attacks can signifi cantly reduce the
eff ectiveness of fault-tolerant schemes, such as distributed storage, dispersity,
and multipath routing schemes. Th is is because these schemes rely on some
type of redundancy to achieve fault tolerance. However, if diff erent objects (say,
routing paths or hard disks) are actually faked by the same node (i.e., a Sybil
attack is used), replicas, storage partitions, or routes believed to be using disjoint
nodes could be a single compromised node representing several identities.
In WSN routing schemes, Sybil attacks can seriously damage geographic routing
protocols. Th is is because geographic routing uses a location-aware scheme and
requires nodes to exchange coordinate information with their neighbors. By using
the Sybil attack, an attacker can make herself appear in multiple places simultane-
ously. Th is makes it impossible to effi ciently route geographically addressed pack-
ets, because we expect that diff erent sensors have really diff erent coordinates.

If every pair of neighboring nodes uses a unique key to initialize frequency
hopping or Spread Spectrum (SS) communication, it may be diffi cult for an
adversary to launch such an attack.

 5. Wormhole attack: Th e wormhole attack is one of the toughest threats in
WSNs. Here, we highlight its main features. In Section 11.2, we will analyze
some effi cient schemes to overcome wormhole attacks.

In a wormhole attack, an adversary tunnels the messages received in one
part of the network over a low latency link and replays them in a diff erent
part. Wormhole attacks more commonly involve two distant adversary nodes
that falsely identify themselves as adjacent nodes.

Suppose that a postman has some important mails to
be delivered from New York City to San Francisco. He
would normally go through many post offi ces in diff er-
ent states. Although very slow, but such a multi-hop path
is safe. However, if somebody says, “Hi, I have built a
tunnel for you. Th is tunnel links a post offi ce (called
“A”) near New York to another post offi ce (called “B”)
near San Francisco. From A to B, it takes only 1 hour

because I have built a sound-speed train there.” Based on the normal mailing
service rule, a postman should always fi nd the quickest way to deliver the top-
priority mails. Th us, he will take the tunnel to deliver the mails. Haha, this
tunnel is totally controlled by the enemy. He can then do anything he wants
(such as opening each mail and reading it).

Good idea

AU9215_C011.indd 333AU9215_C011.indd 333 2/23/2010 12:03:02 PM2/23/2010 12:03:02 PM

334 ◾ Wireless Sensor Networks: Principles and Practice

Th e above analogy can help you understand the wormhole attack.
In a wormhole attack, an attacker should place two machines: one near the

source and one positioned adjacent to a base station (fi nal destination). Th ere exists a
high-quality link (such as a high-speed optical fi ber) between these two machines.

By using the wormhole with a high-quality link, an attacker could con-
vince nodes who would normally be multiple hops away from a base station
that they are only one hop away.

As we can see, a wormhole can actually create a sinkhole: As the adversary
artifi cially provides a high-quality route to the base station, potentially all traf-
fi c in the surrounding area will be drawn through such an “attractive” path.

Of course, if the source is very close to the base station, it is not easy to
launch a wormhole attack.

 6. HELLO fl ood attack: Many WSN routing protocols require nodes to broadcast
HELLO packets to announce themselves to their neighbors. Th is is called neigh-
bor discovery. Upon receipt of such a packet, a node can assume that the sender
is at an appropriate reception distance. However, an adversary with a powerful
transmitter can convince all the nodes within a network that it is their neighbor.
An adversary who uses the HELLO fl ood attack could trick every node in the
network into believing that the adversary was its neighbor. If the attacker is
actually at a long distance, such an attack could eff ectively cause most of the
transmitted data to be lost.

Th e WSN could be put into a state of confusion by the HELLO fl ood attack.
Even if one sensor detected a problem with the route, the data still cannot be
relayed properly, because all its neighbors are sending data to an attacker.

Especially, if a WSN routing protocol depends on localized information
exchange between neighboring nodes for topology maintenance or fl ow con-
trol, it is subject to this attack.

An attacker does not need to have the capability of constructing legitimate
traffi c to use the HELLO fl ood attack. He can simply use a strong antenna to
rebroadcast route-search packets. Such a high-power antenna could make the
HELLO packets be received by every node in the network. Th erefore, in some
sense, HELLO fl oods can also be thought of as one-way broadcast wormholes.

Note: When we use the concept of “fl ooding,” we typically mean the
epidemic-like propagation of a message to every node in the network over a
multi-hop topology. Despite its name, here, we use the HELLO fl ood attack
to mean that an attacker uses a single-hop broadcast to transmit a signal to a
large number of nodes.

 7. ACK spoofi ng: To achieve route establishment reliability, some sensor network
routing algorithms rely on explicit or implicit data link layer ACKs. However,
because the wireless links have a broadcast nature, an attacker can spoof data
link layer ACKs that are addressed to neighboring nodes.
Th e ACK attacker’s purpose could be as follows: convincing a neighboring
node that a dead node is alive, or claiming a weak signal as a strong one. Such

AU9215_C011.indd 334AU9215_C011.indd 334 2/23/2010 12:03:03 PM2/23/2010 12:03:03 PM

Security and Privacy in Wireless Sensor Networks ◾ 335

an ACK attack can cause a signifi cant loss of data in networks that determine
paths using data link reliability.

An ACK attack reinforces a weak or dead link. Th is is an eff ective, but
subtle, way of manipulating such a scheme. As packets sent along weak or
dead links can be easily lost, an adversary can eff ectively mount a selective-
forwarding attack using ACK spoofi ng. Th e consequence is that the target
node will transmit packets on those links.

11.1.3.4 Transport Layer

A transport layer, such as the TCP, uses a timer, retransmissions, and end-to-end
retransmissions to achieve reliable packet transmissions between a source and a des-
tination. However, transport layer protocols in wired networks cannot be directly
used in sensor networks due to resource constraints. Chapter 5 has discussed WSN
transport layer protocols.

Some WSN transport layer attack examples are fl ooding and desynchronization
attacks. A fl ooding attack sends out multiple end-to-end connection establishment
requests, eff ectively exhausting the memory of a node. Th e desynchronization
attack tries to forge packets to one or both ends of a connection using diff erent
sequence numbers on the packets. It triggers the end points of the connection to
request retransmission of the ‘perceived’ missed packets.

Source authentication and client puzzles are two possible solutions to guard
against these attacks [AWood03]. However, we are still unsure whether or not these
solutions can be used in sensor networks and what improvements should be made
to facilitate such schemes.

11.1.3.5 Traffi c Analysis Attacks

As we know, the main purpose of WSNs is to collect sensor data from many remote
sensors to a base station. Th erefore, the traffi c through the network has a pattern of
many to one. Th is gives the adversary a chance to attack the network. For instance,
an attacker could analyze the traffi c patterns to gather the topology of the sensor
network as well as the location of the base station by observing the traffi c volume
and pattern.

Another traffi c analysis attack is to observe the traffi c and deduce the “impor-
tant” nodes that are at the intersections of many paths. Th en the attacker can attack
and compromise these nodes, and eventually break the network into multiple dis-
connected subnetworks. Or an attacker might launch a denial-of-service (DoS)
attack against the sensors on the vertex cut-set. Th ese DoS attacks could drain the
sensors’ energy, and thus reduce the lifetime of the network.

Traffi c analysis attacks can be launched in many other forms. For instance, the
adversary could observe the packet-sending rate of its neighboring nodes, and then
move toward nodes with a higher packet-sending rate. Or it could observe the time

AU9215_C011.indd 335AU9215_C011.indd 335 2/23/2010 12:03:03 PM2/23/2010 12:03:03 PM

336 ◾ Wireless Sensor Networks: Principles and Practice

gap between packet arrivals (in its buff er), and try to follow the path of the packet
that is being forwarded until it reaches the base station.

How do we countermeasure traffi c analysis attacks? A possible solution is to try
to “confuse” the enemies. For instance, between a source and a destination, we may
establish random and multiple paths, or use probabilistic routing, or introduce fake
messages in the network.

A probabilistic geographic routing (PGR) scheme [SSTanya05] selects the next
hop based on the link quality and the residual energy of a subset of the neighbors
of a node. Th eir experiments show that PGR is energy effi cient and performs well
in terms of high network throughput.

Using “confusing” messages could bring high network overhead in terms of
energy consumption and in-network traffi c. Th e confusing messages have to look
like real messages. Th erefore, the fake messages cannot be optimized.

11.2 Attack and Countermeasure Example:
Wormhole Attack

11.2.1 Wormhole Defense Scheme—LITEWORP [Issa06]
We fi rst classify the wormhole attack based on the attack-launching techniques.

 1. Wormhole Using Encapsulation
In [Issa06], Khalil has analyzed a generic wormhole attack. A Dynamic
Source Routing (DSR)[DSR] routing protocol is used as an example. Here,
we simply review DSR protocol ideas.

In DSR, if a node S needs to discover a route to a destination D, S fl oods
the network with a route request (RREQ) packet. Every node that hears the
request processes the packet, adds its identity, and rebroadcasts it. To limit
the amount of fl ooding through the network, each node broadcasts only the
fi rst RREQ it receives and drops any further copies of the same request. For
each RREQ that D receives, it generates a route reply (RREP) and sends it
back to S. Based on the RREP messages, the source S then selects the best
path that could be either the path with the shortest number of hops or the
path associated with the fi rst arrived reply.

Unfortunately, the DSR protocol can be easily attacked. For instance, an
attacker who hears the RREQ packet can tunnel it to a second colluding party
at a distant location near the destination. Th e second party then uses a replay
attack, that is, rebroadcasts the RREQ. Based on DSR rules, the neighbors of the
second colluding party that receive the RREQ will drop any further legitimate
requests that may arrive later on legitimate multi-hop paths. Such an attack is in
fact a wormhole attack, which makes the packets (to be passed to the base station)
travel between the two adversary nodes. Th e attacker can do anything to these

AU9215_C011.indd 336AU9215_C011.indd 336 2/23/2010 12:03:03 PM2/23/2010 12:03:03 PM

Security and Privacy in Wireless Sensor Networks ◾ 337

packets in a “shortcut” path. Such a wormhole attack eliminates the possibility of
discovering legitimate paths more than two hops away, as the attacker’s shortcut
typically uses a one-hop high-quality link.

Th e other way for two colluding malicious nodes to construct a wormhole route
is not building a one-hop shortcut by themselves. Instead, they may just discover
the shortest path and use it, even though there may be multiple hops between those
two colluding nodes. Consider Figure 11.1, in which nodes A and Z try to discover
the shortest path between them, in the presence of the two malicious nodes X and
Y. After node A broadcasts a RREQ, X gets the RREQ and encapsulates it in a
packet destined to Y through the path that exists between X and Y (6-7-8-9). Node
Y de-marshalls the packet, and rebroadcasts it again, which reaches Z. So X and Y
successfully include themselves in the route between A and Z. Any routing protocol
that determines “good” paths by the shortest route is vulnerable to such an attack.

In the above example, the two colluding nodes (X and Y) do not need
to have any cryptographic scheme, nor do they need any special capabilities,
such as a high-speed wire line link or a high power source. Th erefore, this
mode of the wormhole attack is easy to launch.

 2. Wormhole Using Out-of-Band Channel
In this type of wormhole attack, the attackers establish an out-of-band high-
bandwidth channel between the malicious nodes. Such a high-bandwidth
channel could be a long-range directional wireless link or a direct wired link.
Because such an attack needs specifi c and specialized hardware, it is more
diffi cult to launch than the previous case.

Figure 11.2 shows such a scenario. Node A sends a RREQ to node Z; nodes
X and Y are malicious nodes with an out-of-band channel between them.
Node X tunnels the RREQ to Y, which is a neighbor of Z. Node Y broadcasts

AdversaryGood node

X

6
7 8

9

5
Z

4
32

1

A

Y

Figure 11.1 Wormhole through packet encapsulation. (Adapted from Khalil, I.,
Mitigation of control and data traffi c attacks in wireless ad-hoc and sensor
networks, PhD dissertation, Purdue University, West Lafayette, IN, 2006.)

AU9215_C011.indd 337AU9215_C011.indd 337 2/23/2010 12:03:03 PM2/23/2010 12:03:03 PM

338 ◾ Wireless Sensor Networks: Principles and Practice

the packet to its neighbors, including Z. Node Z gets two RREQs—A-X-Y-B
and A-1-2-3-4-5-Z-Y. Th e fi rst route is both shorter and faster than the sec-
ond one. Z will choose the fi rst one, which results in a wormhole established
between X and Y in the route between A and Z.

 3. Wormhole Using High Power Transmission
In this case, an attacker receives a RREQ and rebroadcasts it at a higher power
level that is not available in other nodes’ antennas. All the nodes that hear the high-
power broadcast will rebroadcast it toward the destination. Th erefore, the mali-
cious node could easily get involved into the routes established between the source
and the destination even without the participation of a second colluding node.

A way to mitigate this attack is to require each node accurately determine
the signal strength of the received signal and use radio propagation models
to deduce the distance. As we know, the longer the distance, the weaker the
received signal strength (RSS). Th us, each node can determine whether or
not the received signal is within the appropriate power threshold. A malicious
node that uses high power could be easily detected by such a model, as other
nodes will not use such high power.

 4. Wormhole Using Packet Relay
In this case, a malicious node relays packets between two distant nodes (say A and
B, assume that there are multiple hops between them) to convince A and B that
they are one-hop neighbors. Th is attack can be launched from a single malicious
node, or through the cooperation of a greater number of malicious nodes, which
serves to expand the neighbor list of a victim node to several hops.

X

5
4

32
1

A

Y

Z

Adversary

Out-of-band channel

Good node

Figure 11.2 Wormhole through out-of-band channel. (Adapted from Khalil, I.,
Mitigation of control and data traffi c attacks in wireless ad-hoc and sensor net-
works, PhD dissertation, Purdue University, West Lafayette, IN, 2006.)

AU9215_C011.indd 338AU9215_C011.indd 338 2/23/2010 12:03:03 PM2/23/2010 12:03:03 PM

Security and Privacy in Wireless Sensor Networks ◾ 339

 5. Wormhole Using Protocol Deviations
Th is type of wormhole attack tries to disobey the rules in some routing protocols.
For instance, Authenticated Routing for Ad Hoc Networks (ARAN) [KSanzgiri02]
is a routing protocol that chooses the route with the shortest delay instead of the
route with the shortest number of hops. Th erefore, an attacker can try to shorten its
route-search delay to make its node look more appealing than others.

How does an attacker shorten its routing delay? In ARAN routing rules,
the good nodes will back off for a random period of time before forwarding
a RREQ. Th is is because the MAC layer requires that all nodes carefully
access the radio link—try to avoid transmission collisions by waiting for
a random time before re-forwarding a RREQ. However, a malicious node
will not obey such rules. It can create a wormhole by broadcasting a RREQ
without any delay. Th rough this way, an attacker’s RREQ packets can reach
the destination fi rst, thus making the entire route delay seem less than the
surrounding normal nodes. Th e malicious node thus has a high probability
of being included in the route between the source and the destination.

Th e above case is in fact a special form of the rushing attack described in [YCHu03].
Table 11.1 summarizes the diff erent modes of the wormhole attack, along with

the associated requirements.
Khalil [Issa06] also proposed a wormhole detection and countermeasure scheme

called LITEWORP. Its basic idea is to isolate the malicious nodes.
Any security scheme has some assumptions. LITEWORP has made some

assumptions for it to operate effi ciently:

 1. Th e communication links are bidirectional, meaning that if A can send to B,
then B can send to A.

 2. A fi nite amount of time is required before a node is compromised. No external
or internal malicious nodes exist before the completion of the neighbor discovery.

Table 11.1 Summary of Wormhole Attack Modes

Mode Name
Min. # of

Compromised Nodes Special Requirements

Packet encapsulation Two None

Out-of-band channel Two Out-of-band link

High power transmission One High-energy source

Packet relay One None

Protocol deviations One None

Source: Adapted from Khalil, I., Mitigation of control and data traffi c attacks in
wireless ad-hoc and sensor networks, PhD dissertation, Purdue
University, West Lafayette, IN, 2006.

AU9215_C011.indd 339AU9215_C011.indd 339 2/23/2010 12:03:04 PM2/23/2010 12:03:04 PM

340 ◾ Wireless Sensor Networks: Principles and Practice

However, this assumption can be removed by using a secure neighbor discovery
protocol, such as the one by Hu and Evans using directional antennas [LHu04]
or by using trusted and more powerful nodes as in [YTirta06].

 3. Th e WSN nodes are not mobile (this is a reasonable assumption in most
WSN applications). However, the network topology can have route changes
due to sensor power draining, sensor damage, malicious node isolation, route
evictions from the routing cache, or the change in the role of a sensor (e.g.,
cluster head and data aggregator).

 4. Each packet forwarder is required to explicitly announce the immediate
source of the packet, that is, the node from which it receives the packet.

 5. Finally, LITEWORP assumes a key management protocol, such as Scalable
and Energy-Effi cient Crpto on Sensors (SECOS) [IKhalil05], used to predis-
tribute pair-wise keys in the network.

11.2.1.1 Building Neighbor Lists

LITEWORP fi rst proposed a neighbor list discovery protocol, which aims to build
the data structure of the one-hop neighboring nodes and the nodes surrounding
them. A neighbor node is any node that falls within the transmission range. Such a
data structure is important to detect malicious nodes and to make a local response
to isolate the detected malicious nodes.

A HELLO message is a common way to fi nd neighbors. Immediately after a
node (say A) is deployed in the fi eld, it broadcasts a HELLO message for a one-hop
distance. Any node, say B, that hears the HELLO message, sends back a reply to A.
Node A accepts all the replies that arrive within a predetermined time-out duration.

By collecting these replies, A adds the responder to its neighbor list. Neighbor
discovery is not over yet. A will broadcast such a list to all one-hop nodes. When
any neighbor (say B) detects the broadcasted list, it stores it.

After we fi nish the above neighbor discovery process, each node has a list of its
direct neighbors and the neighbors of each of its direct neighbors. However, the
above process is only performed once per node and is assumed to be secure (which
can be achieved through a secure neighbor discovery protocol).
Note: After such a list is built in each node, a node will not forward packets to nodes
that are not neighbors. Also, two-hop neighbor information is used to determine if
a forwarded packet comes from a neighbor of the forwarder. If a node C receives a
packet forwarded by B claiming to come from A in the previous hop, C discards the
packet if A is not a two-hop neighbor.

After building its one-hop and two-hop neighbor lists, node A can activate the
local monitoring procedure to fi nd wormhole attackers.

Here, we show how local monitoring can be used to build the detection algo-
rithm individually for each of the fi rst four wormhole attack modes, and also show
how existing approaches can be used to detect the fi fth mode.

AU9215_C011.indd 340AU9215_C011.indd 340 2/23/2010 12:03:04 PM2/23/2010 12:03:04 PM

Security and Privacy in Wireless Sensor Networks ◾ 341

11.2.1.1.1 Detecting Out-of-Band and Packet Encapsulation Wormholes

LITEWORP introduces the concept of sentry (guard) node. Suppose that α is the
guard node of another node A. Suppose that α could monitor the wireless link from
a node X to A by using the following steps as part of its role in terms of monitoring
the sensor network communication:

 1. We require that the sentry node, α, stores information from the packet header
of each control packet going over the link from X to A and labels it with the
deadline τ.

 2. Node α overhears every packet going out of A. For all the packets that A
claims to come from X, α looks up the corresponding entry in its watch buf-
fer that has the neighbor list.

 3. If an entry is found, α discards it, because proper forwarding is assumed to
already be accomplished.

 4. If an entry is not found, then A is assumed to have fabricated the packet.
Therefore, α increments the malicious node’s count, MalC (α,A), by Vf .

 5. If an entry for a packet sent from X to A stays in the watch buff er beyond τ,
then A is accused of dropping the corresponding packet. Node α increments
MalC(α,A) by Vd .

 6. If the incoming packet to A is diff erent from the corresponding outgoing
packet from A, then A is accused of modifying the packet. Th erefore, α incre-
ments MalC(α,A) by Vm .

Let us consider the scenario in Figure 11.3. X and Y are two malicious nodes
wishing to establish a wormhole between two nodes (source node, A, and destina-
tion node, Z). When X hears the RREQ packet from A, it directs the packet to Y.
Y then rebroadcasts the RREQ packet after appending the identity of the previous
hop from which it got the RREQ.

Now, Y has two choices for the previous hop—either to append the identity of
X or append the identity of one of Y’s neighbors, say 9.

In the fi rst choice, all the neighbors of Y will reject the RREQ because they
all know, from the stored data structure of the two-hop neighbors, that X is not a
neighbor to Y.

In the second case, the knowledge of the one-hop and two-hop neighbor lists is not
suffi cient for all the guards to detect the attack. However, using local monitoring, all the
guards of the link from X to Y will detect Y as fabricating the RREQ, because they do
not have the information for the corresponding packet from X in their watch buff er.

In both cases, Y is detected, and the guards increment the MalC value of Y.
LITEWORP could also use the RREP packet to detect the behaviors of X and

Y. When the destination node Z gets the RREQ, it generates a RREP packet, and sends
it back to X. Th e guard nodes of the link from Z to Y can overhear the RREP and
save an entry in their watch buff ers. Node Y sends the RREP back to X using the
out-of-band channel or packet encapsulation.

AU9215_C011.indd 341AU9215_C011.indd 341 2/23/2010 12:03:04 PM2/23/2010 12:03:04 PM

342 ◾ Wireless Sensor Networks: Principles and Practice

After τ time units, the timers in the watch buff ers of the guard nodes run out,
and thus the guards detect Y as dropping the RREP packet and increment the MalC
of Y. However, if Y is smarter, it can forward another copy of the RREP through
the regular slower route. In this case, the MalC of Y is not incremented. When X
gets the RREP from Y, X forwards it back to A after appending the identity of the
previous hop.

As before, X has two choices—either to append the identity of Y or append the
identity of one of X’s neighbors, say 6. In the fi rst choice, node A rejects the RREP
because it knows that Y is not a neighbor to X. Also, all the neighbors of X know
that Y is not a neighbor to X. In the second case, all the guards of the link from 6 to
X detect X as forging the RREP, because they do not have the corresponding entry
from 9 in their watch buff ers.

11.2.1.1.2 Detecting High-Power-Transmission Wormhole

We could detect this case by using the assumption of symmetric bidirectional channels.
If a malicious node, X, tries to use high power transmission to forward a packet, P1,
to its fi nal destination or to cross multiple hops to involve itself in the shortest path,
all the nodes that do not have X listed as a neighbor realize the fraudulent packet and
drop it.

Good node Adversary

6
7 8

9

A

X Y

32
1 4

5
Z

Legitimate path

Out-of-band channel between X and Y
Path for encapsulation

Figure 11.3 Wormhole detection for out-of-band and packet encapsulation
modes. (Adapted from Khalil, I., Mitigation of control and data traffi c attacks in
wireless ad-hoc and sensor networks, PhD dissertation, Purdue University, West
Lafayette, IN, 2006.)

AU9215_C011.indd 342AU9215_C011.indd 342 2/23/2010 12:03:04 PM2/23/2010 12:03:04 PM

Security and Privacy in Wireless Sensor Networks ◾ 343

11.2.1.1.3 Detecting Packet Relay Wormhole

We could easily detect this case through the stored neighbor lists at each node.
Suppose that a malicious node, X, is a neighbor of two non-neighbor nodes, A and
B. If X tries to deceive them by relaying packets between them, both A and B will
be able to detect the malicious behavior of X and reject the relayed packet, because
A and B know that they are not neighbors to each other.

11.2.1.1.4 Detecting Protocol Deviation Wormhole

LITEWORP cannot detect this case. However, we can use other researchers’ ideas
on countering selfi sh behavior in specifi c protocols. Here, selfi shness (also called
greediness) refers to the property that nodes tend to deny required cooperating ser-
vices to other nodes to save their own resources, for example, battery power.

Th e problem of greediness at the MAC layer has been addressed by Kyasanur
et al. [Kyasanur03]. Selfi shness in routing packet forwarding has been addressed in
[SCapkun03]. A solution called the rushing attack, in which nodes forward informa-
tion quickly without waiting for the backoff time, is addressed in [YCHu03].

11.2.1.1.5 Response and Isolation Algorithm

Th e above solution only covers the wormhole detection issue. Th e next step is to use
the local response and isolation module to diagnose the attacker and employ the
appropriate response to isolate it from the network, thereby dissolving its ability
to harm the rest of the network. LITEWORP proposed such an attacker isolation
module, which is controlled by the local monitoring module and is only activated
upon detection of an adversary node.

LITEWORP uses a local response scheme to propagate the detection knowledge only
locally, that is, within two hops from the suspect node. It accomplishes a local response by
deleting the suspect node from the fi rst-hop and second-hop lists of all its neighbors.

Th e following is LITEWORP’s local response algorithm. It is activated when a
guide node, say a, detects a malicious behavior of a node, say A, during the course
of local monitoring.

 1. When the reputation value, MalC(α,A), goes beyond a threshold, Ct, the guard
α revokes A from its neighbor list and sends to each neighbor of A, say D, an
authenticated alert message indicating that A is a suspected malicious node.
Note: To permanently isolate the bad node, we could use a shared security key
among nodes to authenticate all nodes for the prevention of false accusations
in future. Th e next section provides more knowledge on key-based WSN
security management. Alternately, if the clocks of all the nodes in the network
are loosely synchronized, a can authenticate local two-hop multicast as in
TESLA [APerrig02], or μTESLA [APerrig02], to inform the neighbors of A.

AU9215_C011.indd 343AU9215_C011.indd 343 2/23/2010 12:03:05 PM2/23/2010 12:03:05 PM

344 ◾ Wireless Sensor Networks: Principles and Practice

Note that α isolates A without waiting for γ alerts from other nodes, as a node
is assumed to trust itself.

 2. When D gets the alert, it verifi es the authenticity of the alert message and
stores the identity of α in an alert buff er associated with node A.

 3. When D gets enough alert messages about A (we could defi ne a threshold of the
alert messages), it isolates the node by deactivating it on all the neighbor lists.

 4. After isolation, D does not send any packet to or accept any packet from A.

Th e above approach can remove the malicious nodes from the network. In addi-
tion, it reduces the time between detection and response, as the information can
be handled and processed locally. It does not cause much network traffi c, as it only
sends out messages to each neighbor of A (only in the detection phase). Th e number
of hops each message traverses is at most two hops.

LITEWORP also defi ned a useful concept, called detection confi dence (γ), which
is useful for reducing the possibility of framing with a higher value being favored for
this purpose. Framing is an attack whereby a malicious node acts as a sentry node
and begins sending false accusations about a legitimate node. If γ is set to infi nity,
then a node only trusts itself and is invulnerable to this attack.

From LITEWORP, we can learn many excellent ideas on
WSN security. By maintaining an honest neighbor list,
we can detect any “bad” nodes that try to get involved
into the routing procedure. After we detect these “bad
guys,” we need to put them into the jail, that is, we must
isolate them from good communications.

Fully explore your imagination!
Good idea

11.3 WSN Security Example: Blom- Based
Approach [DuW05]

As we mentioned before, the security keys can be used to achieve authentication (i.e.,
verify the source) and confi dentiality (i.e., encrypt a message). However, managing the
keys is a challenge in WSNs, because we need to deal with the key predistribution issue,
that is, how do we pre-allocate the keys in diff erent sensors for future security purposes?
In [DuW05], Wenliang Du et al. have built a WSN key predistribution scheme based
on the enhancement of the Blom scheme [Blom85] (see also [Blundo93]).

Assume that N is the total number of nodes in a WSN. If there exists a secure
communication between any two nodes, these two nodes have to share one secret
key to encrypt and decrypt the message between them. If we do not use a smart
key predistribution scheme to ensure that any two nodes can share at least one key,
each node will have to store (N − 1) keys.

AU9215_C011.indd 344AU9215_C011.indd 344 2/23/2010 12:03:05 PM2/23/2010 12:03:05 PM

Security and Privacy in Wireless Sensor Networks ◾ 345

In Blom’s key predistribution scheme, nodes are required to store only (λ + 1) keys,
with λ << N. Obviously, Blom’s scheme does not have a perfect fl exibility against node
capture, because we cannot guarantee that any two nodes share one common key.
However, in reality, we do not need to ensure that any two nodes have the same key if
those two nodes are not near each other and, thus, never talk with each other.

As a matter of fact, Blom’s scheme can ensure a λ-secure property, that is, as long
as no more than λ nodes are compromised by an adversary, the communication links
between all non-compromised nodes remain secure. Of course, if an adversary com-
promises more than λ nodes, the entire network of keys becomes compromised.

Th is threshold λ is a crucial security parameter. By selecting a larger threshold
λ, the key-sharing probability is increased, thus allowing better security perfor-
mance. Th erefore, by setting a large λ value, we force an adversary to attack a great
portion of the network if it wants to compromise the WSN communications. On
the other hand, the increase in λ would require a large memory space to store a lot
of key information.

Du’s scheme [DuW05] is the enhanced solution to Blom’s scheme. It uses a
probabilistic approach to increase the pliability of the network against node cap-
ture. Unlike Blom’s scheme, it does not require too much additional memory.

Blom’s scheme uses a single key space to ensure that any pair of nodes can compute a
shared key, whereas Du proposed a new scheme that uses multiple key spaces. It fi rst
uses Blom’s scheme to construct total ω spaces (where ω > 2), and then it requires
that each sensor node carry key information from τ randomly selected key spaces
(where 2 ≤ τ < ω). Blom’s scheme tells us that as long as two nodes carry key infor-
mation from a common space, these two nodes can compute a shared key.

Although there is only a probabilistic guarantee that two nodes can generate a
pair-wise key, Du’s analysis shows that when the same amount of memory is used,
their new scheme is considerably more resilient than traditional probabilistic key
predistribution schemes.

Many students/researchers ask a question: How do I pro-
pose a good idea to overcome a challenging issue? We
can learn the skills from [DuW05]: Blom’s algorithm
was proposed more than a decade ago. It was “hid-
den” in millions of papers published by IEEE, ACM,
Elsevier, etc. Th ere may be no direct solution to a new
issue. However, a new solution could possibly be found

by widely reading traditional cryptography papers and by constantly asking
ourselves a question, “Even though this paper is not for WSN security, can I
borrow some ideas from it and do some extensions/modifi cations to apply it
for the resource-constrained WSNs?” Always ask yourself the above question.
Someday you will say “Wow, I could use this idea!”

Good idea

AU9215_C011.indd 345AU9215_C011.indd 345 2/23/2010 12:03:05 PM2/23/2010 12:03:05 PM

346 ◾ Wireless Sensor Networks: Principles and Practice

To understand Du’s scheme, let us briefl y review Blom’s scheme. (Du’s scheme
has made some slight modifi cations to Blom’s scheme to make it more suitable
for WSNs’ serious resource constraints, but all Blom’s major features remain
unchanged.)

Assume that there exists an agreed-upon matrix, G, with a dimension of (λ + 1) ×
N over a fi nite fi eld, GF(q) (where q > N). Note: Th e matrix G is not secret. Even
adversaries are assumed to know G.

During the key generation phase, the WSN base station creates a random (λ + 1) ×
(λ + 1) symmetric matrix, D, over GF(q), and computes an N × (λ + 1) matrix, A =
(D . G)T, where (D . G)T is the transpose of D . G.

Note: Matrix D must be kept secret and should not be disclosed to adversaries
or to any sensor nodes. On the other hand, as we will discuss next, one row of
(D . G)T should be disclosed to each sensor node. Because D is symmetric, it is
easy to see that

⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅T T T T T() ()A G D G G G D G G D G A G

(11.1)

Th erefore, A . G is a symmetric matrix. If we let K = A . G, we know Kij = Kji, where
Kij is the element in the ith row and jth column of K. Th e idea is to use Kij (or Kji)
as the pair-wise key between node i and node j. Th e generation of the pair-wise
key, Kij = Kji, is shown in Figure 11.4. To carry out the above computation, nodes
i and j should be able to compute Kij and Kji, respectively. Such a procedure can be
achieved from the following key predistribution steps, for k = 1,…, N: (1) Node K
stores the kth row of matrix A. (2) Node K then stores the kth column of matrix G.
We will show later that a sensor does not need to store the whole column, because
each column can be generated from a single fi eld element.

A = (D . G)T (D . G)T . Gj

N × (λ + 1) (λ + 1) × N N × N

G

Kij

Kji

i

i

j

× =

Figure 11.4 Generating keys in Blom’s scheme. (Adapted from Du, W. et al.,
ACM Trans. Inf. Syst. Secur., 8(2), 228, May 2005.)

AU9215_C011.indd 346AU9215_C011.indd 346 2/23/2010 12:03:05 PM2/23/2010 12:03:05 PM

Security and Privacy in Wireless Sensor Networks ◾ 347

Th en, nodes i and j can generate a shared key (also called a pair-wise key) as
follows: Th ey fi rst exchange their columns of G, and then use their private rows of
A to compute Kij and Kji, respectively. As we mentioned before, as G is not kept pri-
vate, its columns can be transmitted in plaintext. It has been shown [Blom85] that
the above scheme is λ-secure if any λ + 1 columns of G are linearly independent.
Th is λ-secure property guarantees that no coalition of up to λ nodes (not including
i and j) has any information about Kij or Kji.

Du [DuW05] has shown an example of a matrix G. Any λ + 1 columns of G
must be linearly independent. As each pair-wise key is represented by an element in
the fi nite fi eld GF(q), we must set q to be larger than the key size we require. Th us,
if we want to generate a 64 bit key, we may choose q as the smallest prime number
larger than 264 (or we may just simply choose q = 264).

Assume s is a primitive element of GF(q), that is, each nonzero element in
GF(q) can be represented by s x. We can generate a feasible format of G as follows
[Macwilliams77]:

λ λ λ λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

�

�

� � � � �

�

2 3

2 2 2 3 2 2

2 3

1 1 1 1

() () ()

() () ()

N

N

N

s s s s

G s s s s

s s s s

(11.2)

Because s is primitive, as long as i = (j mod q), we have s i = s j. It can be shown that
any λ + 1 columns of G are linearly independent [Macwilliams77].

Because the matrix G has a nice property, that is, its columns can be generated
by an appropriate power of the primitive element s, to store the kth column of G at
node k, we only need to store the seed s k at this node. Matrix G’s column can be
regenerated when needed.

Du et al. [DuW05] have also provided an interesting theoretical analysis and
detailed experimental results. Th ese results have clearly shown the low memory
overhead and good security performance of their scheme, which is based on the
extension of Blom’s scheme.

11.4 Broadcast Authentication: μTESLA
[APerrig00, APerrig01]

In this section, we discuss another important security issue: authenticate the
source. We are especially interested in broadcast authentication, because, in a

AU9215_C011.indd 347AU9215_C011.indd 347 2/23/2010 12:03:06 PM2/23/2010 12:03:06 PM

348 ◾ Wireless Sensor Networks: Principles and Practice

WSN, the base station often broadcasts a command message (such as “tell me
the sensor value in area xxx”). Any sensor that receives such a broadcasted com-
mand needs to verify the source, as it could be a good base station or an attacker’s
machine.

Traditional ways for authenticating broadcasts do not work well for sen-
sor networks, because most of them rely on asymmetric digital signatures for
the authentication. An asymmetric digital signature requires a public key and
a private key in two nodes, respectively. Th e source could use its private key to
encrypt a message. And any receiver who owns the source’s public key could
successfully decrypt the message. However, if the source message is sent out
from an attacker’s machine, the attacker does not have the right public key, and
its message cannot be decrypted by any receiver, that is, the digital signature
will fail.

Although asymmetric digital signatures can authenticate a message, they need
public/private keys that require a much larger memory storage overhead than sym-
metric keys (which require only a small key in both nodes). Th erefore, asymmetric
authentication is impractical in sensor networks due to the sensors’ small memory
space.

Th e TESLA protocol [APerrig00], an asymmetric mechanism, provides an effi -
cient broadcast authentication method. However, this protocol needs an overhead
of around 24 bytes per packet to generate a digital signature key, which exceeds
the resources available in common WSNs. As a matter of fact, most WSNs need
around 30 bytes for a message. Th erefore, disclosing a 64 bit (which is 8 bytes) key
and the MAC message-authenticated code with every packet would take up over 50
percent overhead of each packet. Given these facts, it is evident that pure TESLA is
not practical for a node to broadcast system.

Th erefore, Perrig et al. [APerrig01] proposed a solution, called μTESLA, to
overcome the ineptitude of TESLA for sensor networks. Th e diffi cult issue is that
to achieve strong message authentication, an asymmetric mechanism is preferred
over a symmetric one. Th is is because of the following fact: If we simply use a
symmetric scheme (i.e., the same key is used for both the sender and the receiver),
a compromised receiver could get such a key and easily forge messages from the
sender.

μTESLA solves the problem of the extremely high computation, communi-
cation, and storage overhead that occurs in TESLA, by introducing asymmetry
through a delayed disclosure of symmetric keys. Its basic idea is as follows: When
a WSN base station sends a packet, it computes a MAC on the packet, but does
not yet disclose the MAC key. Packets received by nodes are buff ered in nodes’
memory until the corresponding MAC key is released by the base station. All
sensor nodes know that no adversary could have altered the packet in transit,
as the key is only known by the base station. Later on, the node receives the
disclosed MAC key and authenticates the packet that was stored in the buff er
for some time.

AU9215_C011.indd 348AU9215_C011.indd 348 2/23/2010 12:03:06 PM2/23/2010 12:03:06 PM

Security and Privacy in Wireless Sensor Networks ◾ 349

“Use a symmetric security scheme to achieve asymmetric
authentication.” Th is is the main idea of μTESLA. A sym-
metric scheme means only one key is used for each MAC.
However, an asymmetric scheme requires two keys (public/
private keys). μTESLA uses only one MAC key. But the
sender (base station) does not give the receiver the MAC
key when it sends out the MAC message. Instead, the
sender waits for some time (this delay will be larger than

maximum round trip delay between the base-station and the sensors) to disclose
the previous MAC key. Th us, such a delay achieves the eff ect of “asymmetry.”

Good idea

A well-known one-way function is used to generate each MAC key, and each MAC
key is part of a key chain. Th e sender chooses the last key (Kn) of the chain randomly
and is able to repeatedly apply F to compute all other keys: Ki = F(Ki + 1). Suppose that
the last key is K100. Th en it would be able to compute all other keys as follows:

 = = =…99 100 98 99 0 1(), (), , ()K F K K F K K F K

Because F(.) is a one-way function, given K100, we can easily fi gure out K99, K98, …,
K0. However, given K0, we cannot fi gure out K1, K2, …, K100.

Th e concept of one-way key chain in μTESLA is shown in Figure 11.5. Its
features are as follows.

F F F F

K0 K1 K2 K3 K4
Time

P1 P2 P3 P4 P5 P6 P7

Ki
F (Ki) F (K2) F (K1)K1 K0Ki – 1

Figure 11.5 The μTESLA one-way key chain. The sender generates the one-way
key chain right to left by repeatedly applying the one-way function, F. The sender
associates each key of the one-way key chain with a time interval. Time runs left
to right, so the sender uses the keys of the key chain in the reverse order, and
computes the MAC of the packets in a time interval with the key of that time
interval. (Adapted from Perrig, A. et al., SPINS: Security protocols for sensor net-
works, Proceedings of ACM MOBICOM, Rome, Italy, 2001.)

AU9215_C011.indd 349AU9215_C011.indd 349 2/23/2010 12:03:06 PM2/23/2010 12:03:06 PM

350 ◾ Wireless Sensor Networks: Principles and Practice

μTESLA assumes that the entire WSN has some type of loosely time-synchronized
protocol in all nodes. Th us, all nodes will be able to recognize diff erent sending
time intervals. When the base station sends out messages (packets), it uses the same
key to authenticate all packets sent within one time interval. Th e receiver knows K0
(a commitment to the key chain).

In Figure 11.5, packets P1 and P2 are sent in interval 1 and contain a MAC with
key K1 (note: without key K1, a receiver has no way to verify whether or not the
MAC is sent from the right base station). Packet P3 has a MAC using key K2, and
so far the receiver cannot authenticate any packets, because the base station does
not disclose the corresponding key of each MAC in that time interval (and it will
disclose it until some intervals later).

Note a nice feature of the μTESLA one-way key chain: It can tolerate the loss of
previous MAC keys. Suppose that some intervals later, key K1 (used to verify pack-
ets P1 and P2) could not be received by a sensor due to wireless loss. However, as
long as the sensor can get key K2 later on, it can verify K0 = F(F(K2)), and, therefore,
know K1 = F(K2). So, it can still authenticate all previously received packets.

Message-authenticated code (MAC): An example of MAC is
a keyed hash function. A hash function can map an arbitrary
message to a fi xed-length message. A hash function is in fact
a one-way function, as by giving a hash result you cannot
deduce the original message. If we use a key to encrypt the
hash result, we will get a MAC. Typically, a sender sends out
message M and its MAC to a receiver. Th e receiver will use
the same key to decrypt the MAC and compare the result

to M. If they are the same, we say that M is indeed sent from the right source.

Case study

11.4.1 μTESLA’s Detailed Description
μTESLA consists of a few operation phases, including sender setup, sending authen-
ticated packets, bootstrapping a new receiver, and authenticating packets.

Sender setup: In this phase, the sender (base station) constructs a key chain of
secret keys. Th e key chain is of length n and the sender generates it by choosing the
last key, Kn, randomly and using the one-way function, F, to successively generate
the remaining values. An example of a one-way function is a cryptographic hash
function, such as MD5: Ki = F(Ki + 1). As mentioned before, the one-way nature of
function F means that keys can always be computed forward but never backward.

Broadcasting authenticated packets: As shown in Figure 11.5, time is divided into
time intervals. And each key of the one-way key chain is associated with one time inter-
val. For each respective interval, the sender uses the key from that interval to compute
the MAC message-authentication code of packets in that interval. Th e sender reveals the
key for the respective interval after a preset delay after the respective interval.

AU9215_C011.indd 350AU9215_C011.indd 350 2/23/2010 12:03:07 PM2/23/2010 12:03:07 PM

Security and Privacy in Wireless Sensor Networks ◾ 351

Now the issue is as follows: How much delay should the
base station wait for before it discloses the key for that
time interval? Suppose that the base station used key K76
in interval 76. Defi nitely, the base station cannot disclose
K76 in interval 76, because, by doing this, an attacker
can immediately get to know K76. As long as the attacker
has K76, it can make a MAC using K76. Such a MAC
can be used to broadcast a command message. Th us, the
attacker can fake any command message to the sensors.

Th erefore, the base station should wait for some intervals later. Should
it wait for interval 77, 78, or some other interval to disclose K76? Here is
μTESLA’s solution: Th e set delay is on the order of a few time intervals and
must be greater than any reasonable round trip time (RTT) between the
sender (i.e., base station) and the receivers (i.e., sensors).

Case study

Why does the base station wait for at least a RTT to
disclose the MAC key? Th e answer is simple: We do not
want to give any attacker the chance to receive the cor-
responding MAC key and fake a command. If we wait
for the maximum RTT value (which can be obtained
from empirical data), it will be too late for an attacker to
fake a command, because all sensors would have already
got the right interval key.

Good idea

Bootstrapping a new receiver: As mentioned before, each sensor just needs to
know K0, which is the last key of the key chain. We call K0 the commitment. Based
on the one-way nature of the key chain, it is obvious that a sensor can verify whether
a received MAC key, Kx, is the right one, by constantly applying the one-way hash
function as follows:

()()()()… = 0?xF F F K K

If it is not equal to K0, we know such a key does not belong to the right key chain.
Th e procedure of assigning each sensor the commitment K0 is called bootstrap.

As we can see, it is easy to bootstrap a new sensor in μTESLA by ensuring that the
receiver has one authentic key of the one-way key chain as a commitment to the
entire chain.

Loose time synchronization is also important to the correct operation of μTESLA,
because the receiver will get to know the beginning of each time interval.

AU9215_C011.indd 351AU9215_C011.indd 351 2/23/2010 12:03:07 PM2/23/2010 12:03:07 PM

352 ◾ Wireless Sensor Networks: Principles and Practice

Th e above-mentioned two requirements, that is, the loose time synchroniza-
tion and the authenticated key chain commitment in each sensor, can be met with
a mechanism that ensures freshness (i.e., verifying that any message is a new one
instead of a replayed one by an attacker) and point-to-point authentication (i.e., veri-
fying that the source is a good base station instead of an attacker).

To ensure correct μTESLA operation, the base station needs to securely let the
sensors know the following parameters: the current time, TS (for the time synchro-
nization purpose); a key, Ki, of the one-way key chain used in a past interval, i
(disclosed after RTT); the starting time, Ti, of interval i; the duration, Tint, of a
time interval; and the disclosure delay, δ. We can use the following communications
to achieve secure parameter transmissions:

Sensors → Base Station: Nonce
Base Station → Sensors: TS | Ki | Ti | Tint | δ, MAC (KMS, NM | TS | Ki | Ti | Tint | δ)

Note: We use “nonce” (i.e., a random number that is used only once in the
entire session) in the above communications to ensure that each transmitted
message is a “fresh” one instead of a replayed one. Also note that the base station
does not need to encrypt the data, as the system requires no confi dentiality. Th e
MAC uses the secret key shared by the base station and the node to authenticate
the data.

Authenticating broadcast packets: If a sensor receives a key, Kj, that was used
for the MAC in a previous time interval, it can verify the correctness of the key Kj
by checking that it matches with the last authentic key that it knows (say Ki), by
applying the one-way function F for a few times: Ki = Fj − i(Kj). If the verifi cation is
successful, the new key, Kj, is authentic, and the sensor can then authenticate all
packets that were sent within the time intervals i to j. Th e receiver also replaces the
stored key, Ki, with Kj for the next time check.

11.5 Practical Security Schemes for “Motes”
In this section, we discuss some practical implementations of security schemes in
sensor hardware (called “motes”). Especially, we discuss data link layer security,
because it is important to achieve security among sensor neighbors.

11.5.1 TinySec [Karlof04]
In conventional networks, such as the Internet, message security (including authen-
ticity, integrity, and confi dentiality) is usually achieved by an end-to-end security
mechanism, such as SSH [TYlonen96], SSL [SSL], or IPSec [IPSec]. Th is is because
the Internet mostly uses end-to-end communication. Th e routers between the
sender and the receiver only need to view message headers. Th ey do not need to
access message bodies.

AU9215_C011.indd 352AU9215_C011.indd 352 2/23/2010 12:03:08 PM2/23/2010 12:03:08 PM

Security and Privacy in Wireless Sensor Networks ◾ 353

However, WSNs mostly use one-to-many (base station to sensors)/many-to-one
(sensors to base station) traffi c modes. Moreover, WSNs often have a large number of
nodes in an environmental monitoring application. Th erefore, neighboring nodes in
WSNs often witness the same or correlated environmental events. If each node sends
a packet to the base station separately, we will waste a lot of energy and bandwidth.
To avoid sending redundant messages, WSNs use in-network processing, such as data
aggregation techniques, to achieve duplicate data elimination [Samuel02].

Because in-network processing requires intermediate sensors to suppress the
contents of messages (or perform other processing), end-to-end security mecha-
nisms may not be as important as hop-to-hop (i.e., data link layer) ones. As a matter
of fact, if we just use end-to-end security mechanisms, all message integrity is only
checked at the fi nal destination. Th en we cannot detect the network attacks in each
sensor; for instance, an adversary may inject packets in the middle. Th erefore, data
link layer security is required to detect unauthorized packets when they are fi rst
injected into the network. Some researchers have proposed data link layer security
mechanisms for wired networks to resist DoS attacks [Mohamed02].

TinySec [Karlof04] is a WSN data link layer security mechanism that achieves
authenticity, integrity, and confi dentiality of messages between neighboring nodes,
while permitting in-network processing.

TinySec does not need heavy message overhead. It can easily be integrated
into other sensor network applications. TinySec can be portably used in a vari-
ety of sensor hardware and radio platforms. For more details, please refer to
[Karlof04].

11.5.2 MiniSec: A Secure Sensor Network Communication
Architecture [Mark07]

MiniSec [Mark07] is also a data link layer security scheme. It consumes lower
energy than TinySec; however, it can achieve a higher level of security. It accom-
plishes this by leveraging three techniques as follows:

 1. It uses a block cipher to provide both secrecy and authenticity.
 2. It sends only a few bits of the IV (initialization vector); however, it can retain

the security of a full-length IV per packet. In contrast, previous approaches
(such as TinySec) require two passes over the plaintext (one for encryption
and the other for authentication) and transmission of the full-length IV.

 3. In the broadcast mode (i.e., from the base station to sensors), MiniSec employs
a Bloom-fi lter-based replay protection mechanism that avoids the per sender
state. Such an improvement in energy consumption is achieved at the cost
of a modest increase in memory size, which is a desirable trade-off in sensor
nodes, as the memory technology is increasing fast.

For TinySec and MiniSec details, please refer to [Karlof04, Mark07].

AU9215_C011.indd 353AU9215_C011.indd 353 2/23/2010 12:03:08 PM2/23/2010 12:03:08 PM

354 ◾ Wireless Sensor Networks: Principles and Practice

11.6 Special Case: Secure Time Synchronization
in WSNs [Hui07]

WSN security is a wide fi eld with a lot of issues, because security could be implemented
in many aspects, such as routing layer, data link layer, and hardware chips. In this
section, we introduce the WSN time synchronization security implementations.

Most of the existing time synchronization schemes (in WSNs or other net-
works) are designed without security in mind and, thus, are vulnerable to malicious
attacks. In this section, we focus on a specifi c type of attack in WSN synchroni-
zation schemes, called the delay attack, which cannot be addressed by traditional
cryptographic techniques. In [Hui07], the author has proposed two approaches
to fi lter the outlier data (caused by the delay attack) using the time transformation
technique and the statistical method, respectively.

We have covered WSN synchronization in the previous chapter. We have known
that many WSN applications require time to be synchronized among all sensors.
Examples of such applications include data link access scheduling, μTESLA, and
in-networking aggregation, to name a few. We also know that all WSN time syn-
chronization methods rely on message exchanges between nodes.

When a sensor network is deployed in an adversarial environment, such as a
battlefi eld, the time synchronization protocol is an attractive target to the adversar-
ies. For example, time synchronization is the prerequisite of target tracking, because
the tracking time needs to be accurately recorded to estimate the object trajectory.
Th erefore, if an adversary can attack the time synchronization protocol, the estimated
direction of a mobile object could be seriously deviant from its actual direction.

Hui [Hui07] defi nes the delay attack as follows: Th e attacker deliberately delays
some of the time messages, for example, the beacon message in the RBS scheme,
so as to fail the time synchronization process. Figure 11.6a shows the normal RBS
scheme without the delay attack. Figure11.6b and c shows two ways to launch the
delay attack in the RBS scheme. In Figure 11.6b, two colluding nodes act as the
reference nodes for nodes A and B, respectively. Th ey send the reference beacon b to
nodes A and B at diff erent times. As a result, nodes A and B are deceived to believe
that they receive the beacon at the same time, although they actually receive it at
diff erent times. Figure 11.6c shows that a malicious node can launch the above
attacks alone if it has a directed antenna (instead of an omnidirectional antenna), so
that nodes A and B only hear one beacon message.

Note: If a benign node is synchronizing with a compromised node, the delay
attack can also be launched. Th e compromised node can intentionally add some
delay to the beacon-receiving time to mislead the good node to synchronize to a
wrong time.

Th e above example shows the delay attack in a receiver–receiver-based synchro-
nization model. A delay attack can also occur in a sender–receiver-based model
[Ganeriwal03], where the sender and the receiver exchange time synchronization

AU9215_C011.indd 354AU9215_C011.indd 354 2/23/2010 12:03:08 PM2/23/2010 12:03:08 PM

Security and Privacy in Wireless Sensor Networks ◾ 355

messages to estimate the round trip time (RRT) of transmission between them, and
synchronize their clocks after fi nding the clock off set between them. A node can be
deceived if it synchronizes with a malicious one. Th erefore, these schemes are also
subject to the aforementioned delay attacks.

Th e general idea of defending against delay attacks is to fi nd out bad time messages
and exclude them. Its basic steps are as follows.

Th e fi rst step is to collect a set of time off sets from involved nodes.

Beacon b

Beacon b

t

t

ta

tb

A

B

M Ack

(a) (b)

A

B

b

b

t + e

Compromised
reference

node
R

A

B

b

b

t + e

t
Attacker

Malicious
node

Compromised
reference

node
R

Reference
node

R

(c)

t

The RBS scheme Collusion-based

 Directional antenna delay attack
based delay attack

Figure 11.6 The RBS scheme and the delay attacks. (From Hui, S., Secure wireless
sensor networks: Building blocks and applications, PhD dissertation, Department
of Computer Science and Engineering, The Pennsylvania State University,
University Park, PA, 2007.)

AU9215_C011.indd 355AU9215_C011.indd 355 2/23/2010 12:03:08 PM2/23/2010 12:03:08 PM

356 ◾ Wireless Sensor Networks: Principles and Practice

Th en, some special schemes (such as outlier-detection-based statistical algo-
rithms) are used to identify the malicious time off sets that are under delay attacks.

Finally, the identifi ed malicious time off sets will be excluded and the rest of the
time off sets are used to estimate the actual time off set.

Hui [Hui07] has presented two models for collecting the time off sets: the two-
node model and the neighboring-node model, which are described in the context
of the RBS scheme.

Two-node model: In this model, a node only needs to synchronize with its cluster
head. As shown in Figure 11.7a, suppose that node B is the cluster head,
and A is a common node within the cluster. Due to security concerns, node
A only trusts the cluster head and not other nodes in the cluster. And node A
is required to synchronize only with cluster head B.

To countermeasure delay attacks, node A uses multiple reference nodes (R1,
R2, …, Rn) to obtain a set of time off sets. If ,i i

a bt t represent the two beacon-
receiving times obtained by using a reference node Ri (i.e., the receiving times
at node Ri when sending a message from A → i and B → i, respectively),
defi ne δ = −()i i

i a bt t as the time off set. Th us, we can obtain a set of n time off -
sets {δ1, δ2, …, δn}. Based on the collected time off sets, we can use some sta-
tistical algorithms to detect and exclude the malicious time off sets and obtain
a more accurate estimation on the actual time off set between A and B.

Neighboring-node model: In this model, a node is required to synchronize with its mul-
tiple neighbors (>2) to detect a delay attack. Th e reason of using the neighboring-

R1

R2

R3

R4
Ri

Ri + 1

Rn – 1

Rn

A

B

Delay attack

Delay attack

…

…

itb

ita

Two-node model

R1

Rn

Rn – 1

Ri

R5

R4

R2

R3

Neighboring-node model

b1

b1

b2

b2

b3b3
b4

b4

bn

bn

bi
bi

bn – 1

bn – 1δ1

δ(n – 1)
δ(i + 1)

δ2

δ3

δ4 δ(i)

δ5

δ(n)

A

Ri + 1

(a) (b)

Figure 11.7 Two models for secure time synchronization. (From Hui, S., Secure
wireless sensor networks: Building blocks and applications, PhD dissertation,
Department of Computer Science and Engineering, The Pennsylvania State
University, University Park, PA, 2007.)

AU9215_C011.indd 356AU9215_C011.indd 356 2/23/2010 12:03:08 PM2/23/2010 12:03:08 PM

Security and Privacy in Wireless Sensor Networks ◾ 357

node model is that the two-node model is not enough when one or multiple
neighbors may have been compromised. Th e good nodes could synchronize with
the malicious nodes that generate delay attacks, as illustrated in Figure 11.7b.
Suppose that A has n neighbors: R1, R2, …, Rn. We run the RBS scheme between
A and each of its neighbors and each time we use a diff erent node as reference
to obtain a time off set. After collecting a set of n time off sets, we can detect the
outliers, exclude them, and make a good estimation on the actual time off sets.

Th e delay attack countermeasure is based on out-
lier detection, which picks up a “strange” value from
a lot of data. As you can see, we can achieve security
from many diff erent perspectives: Although traditional
encryption/decryption could work on most cases, if an
internal node is compromised and becomes a “spy,” we
need other non-cryptographic ways to fi nd out the “spy.”
Th is section describes the use of math statistics for bad

behavior detection. Always remember: All disciplines can be related to each
other to generate some “magic” solutions to some challenging issues.

Good idea

Besides the above two models, other models are also possible to be used in terms of
collecting time off sets. However, all of these models have one thing in common: Th ey
collect a set of time off sets, which may include the malicious time off sets.

Th en the next question is as follows: Given a set of time off sets, how do we
identify the outliers and achieve an attack-resilient time estimation?

We could imagine that without delay attacks, the time off sets among nodes
follow a similar statistical distribution. Th e existence of delay attacks makes the
malicious time off sets much diff erent from the others. From the statistics view-
point, these malicious time off sets are referred to as outliers, which are defi ned
as “an observation which deviates so much from other observations as to arouse
suspicious that it was generated by a diff erent mechanism” [Hawkins80].

Many schemes have been proposed to detect outliers values ([Iglewicz93] has
a good survey). Hui [Hui07] introduced generalized extreme studentized deviate
(GESD) as an outlier detection algorithm. GESD is built on the extreme studen-
tized deviate (ESD) test (also called Grubb’s test). Th e ESD test can detect one
outlier in a random normal sample.
Defi nition of the ESD test: Given a data set Γ = {x1, x2,…, xn}, the mean of Γ is
denoted as x−, and the standard deviation of Γ is denoted as s. Let

 = − = ,…,| |/ , where 1i iT x x s i n

Ti is also called the corresponding T value of xi. Let xj be the observation that
leads to the largest |x − x−|/s, where i = 1, …, n. Th en xj is an outlier when Tj

AU9215_C011.indd 357AU9215_C011.indd 357 2/23/2010 12:03:09 PM2/23/2010 12:03:09 PM

358 ◾ Wireless Sensor Networks: Principles and Practice

exceeds a tabled critical value, λ. In principle, if Tj does not exceed the critical
value A, we need not single out xj. Assuming that this test fi nds an outlier, we
then look for further outliers by removing observation xj and repeating the pro-
cess on the remaining n − 1 observations. However, the ESD test can only detect
one outlier each time.

Th e GESD procedure [Hui07] is a modifi ed version of the ESD test, which can
fi nd multiple outliers at a time. GESD has two critical parameters: (1) r is the esti-
mated number of outliers in the data set and (2) λi is the two-sided 100 * a percent
critical value as follows:

− −

− −

−
λ =

− − + − +
1,

2
1,

()

(1)(1)
n i p

i

n i p

t n i

n i t n i

(11.3)

where i = 1, …, r, tv,p is the 100 * p percentage point from the t distribution with
v degrees of freedom, and p = 1 − [α/2(n − i + 1)]. Given α, n, and r, the critical
values, λi, can be calculated beforehand.

Defi nition (GESD-based delay attack detection). Given the time off set set Γ =
{δ1, δ2, …, δn}, all the time off sets δi that are identifi ed as outliers by GESD are
claimed to be under the delay attack.

In GESD, r is the estimated number of malicious time off sets. Note that it is
important to select a proper value of r. If r is set to too small a value and there are
more than r malicious time off sets among the m time off sets, some of them can-
not be detected using GESD. On the other hand, if r is too large, it wastes time in
checking the nodes that are in fact good.

In GESD, because the number of time off sets is small (e.g., 20), r is set to be half
of the total number of time off sets. GESD also assumes that the number of mali-
cious time off sets is less than half of the total number of time off sets. Without this
assumption, GESD may not work, because it may fi nd the malicious time off sets to
be benign and the benign ones to be malicious.

GESD estimates r as follows: Let the median of the time off set set Γ be x̂ and s be
the standard deviation. r is defi ned as the number of time off sets, xj, such that

−
> =

ˆ
2, where 1,2,3,...,

jx x
i n

s
(11.4)

When the number of malicious nodes is small, that is, less than fi ve percent of the
total, we can utilize the median of the time off sets to set r. As shown in the above
defi nition, r is the number of time off sets that are two standard deviations away
from the median. In most cases, the data and time off sets are normally distributed,
which means that 95 percent of the values are at most two standard deviations away
from the mean.

AU9215_C011.indd 358AU9215_C011.indd 358 2/23/2010 12:03:09 PM2/23/2010 12:03:09 PM

Security and Privacy in Wireless Sensor Networks ◾ 359

Problems and Exercises
11.1 Multi-choice questions
 1. With respect to sensor network security, which of the following is not

correct?
 a. Key management is a crucial step to achieve sensor network security,

because it controls key generation and distribution.
 b. Th e most important goal of sensor network security is to guarantee the

confi dentiality of transmitted data. Other security goals are minor.
 c. Traditional Internet security schemes may not be suitable to the sensor

network case due to their high calculation overhead.
 d. Th e security schemes should occupy small memory space (<100 kB) in

the sensors.
 2. Which of the following statements is not correct on sensor network attacks?
 a. Attackers do not belong to sensor network nodes. Th ey have no access

to the encryption keys stored in the sensors’ memory.
 b. A side-channel attack refers to any attack that is based on the infor-

mation gathered from the physical implementation of a cryptosys-
tem. Th e attacker may analyze the power consumption, the timing of
the software operation execution, or the frequency of the EM waves.

 c. A typical network physical layer attack is the jamming attack.
 d. A link layer attack tries to damage the normal medium access control

operations.
 3. With respect to sensor network routing attacks, we have which of the

following fact(s)?
 a. An attacker can mislead a routing control command.
 b. An attacker can attract the network traffi c into its machine through

the sinkhole attack.
 c. A Sybil node can fabricate a new identity.
 d. All of the above.
 4. Wormhole attacks have which of the following features?
 a. An adversary tunnels the messages received in one part of the network

over a low latency link and replays them in a diff erent part.
 b. An adversary that had tricked every node in the network into believing that

the adversary was its neighbor could eff ectively cause most of the transmit-
ted data to be lost, provided that the adversary was at a long distance.

 c. Due to the inherent broadcast medium, an attacker can spoof link layer
ACKs for “overheard” packets addressed to neighboring nodes.

 d. Wormhole attacks try to hide the enemies’ IDs.
 5. Which of the following is not correct with respect to wormhole attacks?
 a. Wormholes can be launched by encapsulating the routing packets.
 b. Two attackers can use a worse communication channel (compared to

normal sensors’ links) to build a wormhole attack.

AU9215_C011.indd 359AU9215_C011.indd 359 2/23/2010 12:03:10 PM2/23/2010 12:03:10 PM

360 ◾ Wireless Sensor Networks: Principles and Practice

 c. Wormholes can be made by a higher power transmission between ene-
mies’ machines.

 d. A malicious node can create a wormhole by not following the normal
routing protocol and broadcasting without delay. Th is is an eff ort to
make the packet reach its destination fi rst, thus making the delay seem
less than the surrounding nodes.

 6. With respect to time synchronization security, we have which of the fol-
lowing fact(s)?

 a. A delay attack can delay some of the time messages to fail the time
synchronization process.

 b. Traditional encryption/decryption schemes can solve time synchroni-
zation security issues.

 c. Outlier detection aims to use statistical mean values to overcome
attacks.

 d. None of the above.
 7. MiniSec improves TinySec in which of the following aspect(s)?
 a. MiniSec exploits the fundamental distinctions between unicast and

broadcast communication, providing two energy-optimized commu-
nication modes.

 b. MiniSec is more energy effi cient than TinySec.
 c. MiniSec can run in the routing layer.
 d. Both A and B.
 8. μTESLA does not have which of the following features?
 a. It fi rst uses TESLA to fi lter bad nodes.
 b. Th e entire time is divided into intervals.
 c. Authentication keys are disclosed after some time.
 d. Th e keys are generated by a one-way hash function.
11.2 Explain the principle of LITEWORP in terms of overcoming the wormhole

attack. Illustrate with the operation diagrams.
11.3 Why does μTESLA wait for some intervals to release an authentication key?

How long should the waiting time be?
11.4 Use a broadcast communication scenario to explain the detailed operation

principle of μTESLA.
11.5 Explain the delay attack countermeasure in the time synchronization protocol.
11.6 Read the papers on TinySec and MiniSec, and explain the major operation

diff erences between them.
11.7 Explain the Blom-based key generation principle.

AU9215_C011.indd 360AU9215_C011.indd 360 2/23/2010 12:03:10 PM2/23/2010 12:03:10 PM

VISPECIAL WIRELESS
SENSOR NETWORKS

AU9215_S006.indd 361AU9215_S006.indd 361 12/17/2009 3:26:40 PM12/17/2009 3:26:40 PM

AU9215_S006.indd 362AU9215_S006.indd 362 12/17/2009 3:26:40 PM12/17/2009 3:26:40 PM

363

12Chapter

Wireless Sensor and
Actor Networks

12.1 Introduction [Melodia07, Akyildiz04]
Wireless sensor and actor networks (WSANs) [Akyildiz04] are distributed wireless
communication and control systems consisting of heterogeneous devices referred
to as sensors and actors. Sensors have the same characteristics as general WSNs
such as low-cost, low-power, multifunctional devices that communicate untethered
in short distances [Akyildiz02]. Actors collect and process sensor data and conse-
quently perform actions on the environment. Diff erent from sensors, actors have
rich resources, such as high processing capabilities, high transmission power, and
long battery life.

Th e term actor is diff erent from the more conventional notion of an actuator.
An actuator typically refers to a device that can convert an electrical control signal
to a physical action, and may be used for fl ow-control valves, pumps, motors, etc.
An actor has functions of an actuator; more importantly, it is also a single and
separated network entity that performs networking-related functionalities, that is,
receive, transmit, process, and relay data. For example, a robot may interact with
the physical environment by means of several motors (i.e., actuators). However,
from a networking perspective, the robot constitutes a single entity, which could be
called an “actor” [Melodia07].

As shown in Figure 12.1, sensors and actors are deployed in the wide fi eld.
A sink monitors the overall network, and communicates with the task manager
node and sensor/actor nodes. Similar to WSNs, a WSAN has a possibly large num-
ber of sensor nodes, that is, of the order of hundreds or thousands. Such a dense

AU9215_C012.indd 363AU9215_C012.indd 363 2/13/2010 12:32:22 PM2/13/2010 12:32:22 PM

364 ◾ Wireless Sensor Networks: Principles and Practice

deployment is not necessary for actors, because actors are typically more expensive
than sensors and have higher capabilities to act on large areas.

As we can see, WSAN is a special WSN. Th e biggest dif-
ference between them is that WSAN has a small number
of actors that are mobile, have better CPU performance,
and longer wireless communication range than sensors.
Th ose actors need to coordinate with sensors to deter-
mine how to respond to a certain sensed event.Difference

WSNs

If a sensor detects an event, they could send their readings to the nearby actors that
process all incoming data and initiate appropriate actions, or they route data hop-to-hop

Sensor and actor field

Task
manager

nodeSink

Actor

Sensor

Figure 12.1 The physical architecture of WSANs. (Adapted from Akyildiz, I.F.
and Kasimoglu, I.H., Ad Hoc Netw., 2, 351, October 2004.)

AU9215_C012.indd 364AU9215_C012.indd 364 2/13/2010 12:32:23 PM2/13/2010 12:32:23 PM

Wireless Sensor and Actor Networks ◾ 365

to the sink, which then fi nds out an actor to handle the event. We call the former case
automated architecture (see Figure 12.2a) due to the nonexistence of central control-
ler, for example, the sink, while the latter case is called semiautomated architecture
(see Figure 12.2b) as the sink (central controller) collects data and coordinates the
acting process. Th ese two schemes have diff erent pros and cons. Th e automated mode
saves action time; but the semiautomated one has better global management because
a sink can check all actors’ resource status and make decisions.

After sensors detect a special event, they may directly (without going to a sink
fi rst) request actors to respond to the event. Th ese sensors and actors may coordinate
with each other to establish effi cient routing paths among them. Such a coordination
procedure is referred to as sensor–actor coordination [Akyildiz04].

On the other hand, when an actor receives an event-handling request from sensors,
it may not be able to handle such an event effi ciently due to limited capacity. In this
case, it will coordinate with other actors to make a collaborative decision on how to
perform the action. Th is process is referred to as actor–actor coordination.

Th ere are some crucial requirements for WSANs:
First, the WSANs need to have real-time coordination and communication

among actors (and even between sensors and actors) to guarantee timely execution
of the right actions.

Second, energy effi ciency is still required, especially for sensors, which are
resource-constrained nodes with limited battery lifetime.

Th ird, as in WSNs, we still have scalability requirements for WSAN protocols
and algorithms because the number of sensors can be arbitrarily high.

WSANs have wide applications in battlefi eld surveillance, nuclear, biological,
or chemical attack detection, home automation, and environmental monitoring.
Akyildiz and Kasimoglu [Akyildiz04] have a few good examples:

Fire control: When a building has a fi re event, the temperature/smoke sensors
can detect the exact origin and intensity of the fi re, and send those param-
eters data to water sprinklers (i.e., actors) that will extinguish the fi re before
it is out of control.

Sink

Actor

(a) (b)

Sensor
Actor
Sensor

Sink

Figure 12.2 (a) Automated versus (b) semiautomated architecture. (Adapted
from Akyildiz, I.F. and Kasimoglu, I.H., Ad Hoc Netw., 2, 351, October 2004.)

AU9215_C012.indd 365AU9215_C012.indd 365 2/13/2010 12:32:24 PM2/13/2010 12:32:24 PM

366 ◾ Wireless Sensor Networks: Principles and Practice

Pollution control: Sensors may detect visible or measurable discharges of con-
taminants in water or in the air, and actors (such as pollution cleaner) can
reactively take countermeasures.

Building surveillance: In a building, motion, acoustic, or light sensors can detect
the presence of intruders and request the cameras to track them. Security
personnel (also called actors) can move to the area where the intruder has
been detected.

12.2 Sensor–Actor Coordination Problem [Melodia07]
As discussed in the previous section, sensor–actor communications have real-time
requirements. Melodia et al. [Melodia07] introduce a set of interesting schemes
to solve the sensor–actor coordination issues. Besides real-time requirements (i.e.,
bounded communication delay), it also considers communication reliability issue.
Especially, it introduces “delay-bounded reliability,” which accounts for the percent-
age of packets that are generated by the sensors in the event area and are received
within a predefi ned latency bound (which is referred to as reliable packets). Note its
reliability concept is related to the real-time delivery of data packets from sources
to actors, and is calculated at the network layer.

Th e concept of latency bound B is defi ned as follows: it is the maximum allowed
time between the instant when the sensor samples the physical features of the event
and the instant when the actor receives a data packet eventually.

Obviously, if a packet does not meet the latency bound B when it is received by
an actor, it is useless. Likewise, a data packet received within the latency bound B is
said to be unexpired and thus, reliable.

We defi ne the event reliability r as the ratio of reliable data packets over all the
packets generated in a decision interval. We also defi ne rth as the minimum event
reliability required by the application. Th e lack of reliability is the diff erence (rth – r)
between the required event reliability threshold rth and the observed event reliabil-
ity r at a given time.

Now we can formulate the sensor–actor coordination problem as follows:
How do we establish routing paths from each sensor residing in the event area

to the actors under the following two conditions?

Th e achieved reliability ◾ r should be larger than the threshold rth (i.e., r ≥ rth).
Th e routing paths should have minimum energy consumption. ◾

Based on the above goals, Melodia et al. [Melodia07] solve the sensor–actor coordi-
nation problem through event-driven partitioning with multiple actors, and using a
math model called integer linear program (ILP) [Ahuja93]. To describe ILP, we need
to fi rst defi ne WSAN network model and energy model.

AU9215_C012.indd 366AU9215_C012.indd 366 2/13/2010 12:32:24 PM2/13/2010 12:32:24 PM

Wireless Sensor and Actor Networks ◾ 367

Remember: when you try to minimize or maximize an
object function under a series of constraints/conditions,
and if those conditions can be formulated into math
equations (could be the formats of A > B, A < B, A = B,
where A and B are functions), then you may consider
using ILP. ILP is actually a function optimization prob-
lem. In MATLAB® (a math tool) you could set up those
ILP constraints.

WSNs

Remember

12.2.1 Network and Energy Model
Melodia et al. [Melodia07] use a graph model to describe the network topology. A
WSAN is represented as a graph G(SV, SE), where SV = {v1, v2,…, vN} is a fi nite set
of Vertexes in a fi nite-dimension terrain, with N = |SV|, and SE is the set of Edges
among nodes, that is, eij ∈ SE iff nodes vi and vj (also i and j for simplicity in the
following) are within each other’s transmission range.

Let SA represent the set of actors, with NA = |SA|. We refer to an actor that is
collecting data from one or more sources as collector.

Let SS be the set of data sources, with NS = |SS|. Th is set represents the sensor
nodes that detect the event, that is, the sensors that reside in the event area.

We defi ne P = {(s, a): s ∈ S, a ∈ A} as the set of source–destination connections.
Energy model: Following the model in [Heinzelman02], we can assume that the
energy consumption per bit (in physical layer) is E = 2Eelec + βdα, where α is the
exponent of the path loss (2 ≤ α ≤ 5), β is a constant, and Eelec is the energy needed
by the transceiver circuitry to transmit or receive one bit [J/bits].

12.2.2 ILP Algorithm
Th e ILP-based sensor–actor routing path search problem is to fi nd data aggrega-
tion trees (da-trees) from all the sensors that reside in the event area (referred to as
sources) to the appropriate actors. All tree leaves in a da-tree are source sensors (but
not all source sensors are necessarily leaves), and each actor is either the root of a
da-tree or does not participate in the communication.

Th e ILP-based algorithm aims to construct a set of da-trees where each source
sensor belongs to one tree only. Each da-tree has only one actor as its root. Th erefore,
each source sensor is associated with an actor to achieve an optimal event-driven
partition.

Th e ILP algorithm aims to build such an event-driven partitioning with the fol-
lowing two major steps: (1) fi rst, we need to select the optimal subset of actors to which
sensor readings will be transmitted and (2) second, after we select those actors, we can

AU9215_C012.indd 367AU9215_C012.indd 367 2/13/2010 12:32:24 PM2/13/2010 12:32:24 PM

368 ◾ Wireless Sensor Networks: Principles and Practice

then construct the minimum energy da-trees toward those selected actors that meet
the required event reliability constraint (i.e., the above-mentioned two conditions).

Th erefore, we could partition the set of source nodes in the event area based on the
da-trees rooted at the actors. Figure 12.3 gives an example of event area partition.

Before we use ILP algorithm to formulate the area partition problem, we intro-
duce the following notations that are used in the ILP model:

eij is a binary variable (either 0 or 1). It equals to 1 if nodes i and j are within
each other’s transmission range.

cij is the energy cost of the link between nodes i and j, that is, 2Eelec + βdij, where
dij is the distance between nodes i and j.

k
ijx is a binary variable that equals 1 if link (i, j) is part of the da-tree associated

with actor k.
,k s

ijf is a binary variable that equals 1 if source sensor s sends data to actor k and
link (i, j) is in the path from s to k.

lk,s is a binary variable that equals 1 if sensor s sends data to actor k.
pij is the propagation delay associated with link (i, j), defi ned as dij/v, where v is

the signal propagation speed.
d∼ is a parameter that accounts for processing, queuing, and medium access

delay at each sensor node.
B is the latency bound on each source–actor fl ow.
r and rth are the actual event reliability and the required event reliability thresh-

old, respectively.
bk,s is a binary variable that equals 1 if the connection between source s and

actor k is not compliant with the latency bound, that is, the end-to-end delay is
higher than the latency bound B.

Q is the number of noncompliant sources.

Sensor
Sensor in event
area
Actor

Figure 12.3 Event-driven partitioning with multiple actors. (Adapted from
Melodia, T. et al., IEEE Trans. Mobile Comput., 6(10), 1116, October 2007.)

AU9215_C012.indd 368AU9215_C012.indd 368 2/13/2010 12:32:24 PM2/13/2010 12:32:24 PM

Wireless Sensor and Actor Networks ◾ 369

Th e ILP-based area partition problem (i.e., da-trees construction) can then be
formulated as follows:

Com
MinP : event area sensor partitioning with multiple actors

Given: eij, cij, pij, v, d∼, B, rth

Find: k
ijx , ,k s

ijf , l k,s, b k,s,r
Minimize:

 ε∈∈

= ⋅ + γ ⋅∑ ∑TOT

(,)A

k
ij ij

i j Sk S

C x c Q

(12.1)

Th e above equation is called the object function: Once all routing paths (from sen-
sors to actors) are established, the entire system should have minimized energy
consumption. Th is constraint imposes a penalty by multiplying the number Q of
noncompliant source sensors by a penalty coeffi cient γ.

Subject to the following constraints:

∈

− = ∀ ∈ ∀ ∈∑ , , ,() , ,
V

k s k s k s s A
sj js

j S

f f l s S k S

(12.2)

(Th is constraint guarantees that a source sensor generates a data fl ow on the
da-tree of the selected actor, and only on that da-tree; while non-source nodes do
not generate any data fl ow.)

∈

− = − ∀ ∈ ∀ ∈∑ , , ,() , ,
V

k s k s k s s A
sj js

j S

f f l s S k S

(12.3)

(Th is constraint requires that data fl ows generated by each source sensor be collected
by one actor only.)

 ∈

− =∑ , ,() 0
V

k s k s
sj js

j S

f f

(12.4)

(Th is constraint imposes that the balance between incoming and outgoing fl ows is
null for non-source and nonactor nodes.)

 ∀ ∈ ∀ ∈ ∀ ∈ ≠ ≠, , s.t. ,s A Vs S k S i S i s i k

 ≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈, , , , ,k s s A V V
ij ijf e s S k S i S j S (12.5)

(Th is constraint ensures that data fl ows are created on links between “adjacent”
nodes [i.e., they are within the transmission range of each other]).

AU9215_C012.indd 369AU9215_C012.indd 369 2/13/2010 12:32:25 PM2/13/2010 12:32:25 PM

370 ◾ Wireless Sensor Networks: Principles and Practice

 ≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈, , , , ,k s k s A V V
ij ijf x s S k S i S j S (12.6)

(Th is constraint forces all data fl ows from diff erent source sensors but directed
toward the same actor to be aggregated in the da-tree associated with that actor.)

∈

= ∀ ∈∑ , 1,
A

k s s

k S

l s S

(12.7)

(Th us constraint imposes that each source sensor sends data to exactly one actor.)

 ≤ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈, , , , , ,k s k s s A V V
ijf l s S k S i S j S (12.8)

(Th is constraint ensures that all fl ow variables from a source to a particular actor
are zero unless that actor is selected by the source.)

 ε∈

∼⎡ ⎤
⎢ ⎥ε ⋅ − + ≤ ∀ ∈ ∀ ∈
⎢ ⎥
⎣ ⎦

∑ , ,
,

(,)

() , ,k s k s s A
i j ij

i j S

B f p d b s S k S

(12.9)

[Th is constraint requires that the binary variable bk,s be equal to 1 if and only if
the fl ow between source sensor s and actor k violates the latency bound B. Th e small
negative coeffi cient ε scales the value in the square parentheses to make it smaller
than 1. Hence, when the latency bound is violated, the left side of (12.9) is a small
positive value, which forces the binary variable bk,s to be 1. Conversely, when the
latency bound is met, the left side of (12.9) is negative and bk,s will assume the 0
value to minimize the objective function in (12.1).]

 ∈ ∈

−= = ≥∑∑ ,
th

| |
;

| |A s

S
k s

S

k S s S

S Q
Q b r r

S
(12.10)

(Q is defi ned as the number of noncompliant source sensors, and the reliability r is
calculated as the ratio of compliant source sensors over all source sensors. r should
be larger than the required threshold.)

12.2.3 Sensor–Actor Coordination: Distributed Protocol
Th e next step is to transform the above math models to practical sensor–actor
coordination protocol. Th e objective of the distributed protocol is to build da-trees
between the source sensors (that reside in the event area) and the actors in such a
way as to minimize the objective function in (12.1), that is, to provide the required
reliability rth while, in the meantime, minimizing energy expenditure.

AU9215_C012.indd 370AU9215_C012.indd 370 2/13/2010 12:32:26 PM2/13/2010 12:32:26 PM

Wireless Sensor and Actor Networks ◾ 371

As we mentioned before, the result of sensor–actor coordination protocol is a
set of da-trees that have all the routing paths from source nodes to actors. It is an
approximate solution to the event area partitioning with multiple actors problem.
Melodia et al. [Melodia07] refer to the protocol as distributed event-driven parti-
tioning and routing (DEPR) protocol.

We also know that routing algorithms with localized routing decisions (i.e.,
based on local topology information) can generate routing paths with energy effi -
ciency close to the global optimum [Melodia05]. Th erefore, the objective of the
DEPR protocol is to minimize the energy consumption by relying on local infor-
mation and on greedy routing decisions.

To guarantee predetermined delay bounds in each sensor–actor routing path,
we require some form of end-to-end feedback. DEPR relies on collective feedback
from the receiving actors. Each actor advertises the observed reliability.

DEPR adopts local behavior control in each individual sensor node to lead to a
global network eff ect with two most important aspects: (1) providing event reliabil-
ity r above the required threshold rth and (2) minimizing the energy consumption.

However, DEPR controls the reliability through the adjustment of the rout-
ing delays, which can be achieved by modifying the average routing path length.
In general wireless networks, we could control the energy consumption in each
communication link by changing the transmitted power in the sender node.
Th at is, when we decrease the antenna power level of the sender node, we could
save more energy. On the other hand, changing the power level of the trans-
mitter can control the signal propagation distance. Th e larger the transmitter
power, the longer distance the signal can propagate, and less delay the routing
task takes.

DEPR protocol makes some assumptions in its geographical routing algorithms:
Some sensor positioning schemes should be used to ensure that each sensor is aware
of its position. Each sensor should also be aware of the position of its neighbors, as
every node locally broadcasts its position. It should also be aware of the position
of the actors, as each actor periodically beacons its position in the sensor fi eld. Th e
entire network should be synchronized by means of one of the existing time syn-
chronization protocols [Sundararaman05].

12.2.4 Overview of DEPR
Let us repeat the objective of DEPR protocol: it aims to create da-trees between the
sources and a subset of the actors. Th ose actors are also called collectors. A da-tree
is created between each collector and the source sensors that provide sensor data to
the collector. Th e protocol generates a partitioned event area, with each part com-
posed of the source sensors associated with a single collector.

DEPR protocol requires each sensor to operate among four diff erent states,
namely, idle, start-up, speed-up, and aggregation states. When the reliability
requirement is not met, the main objective of these state transitions is to reduce the

AU9215_C012.indd 371AU9215_C012.indd 371 2/13/2010 12:32:26 PM2/13/2010 12:32:26 PM

372 ◾ Wireless Sensor Networks: Principles and Practice

number of hops, which results in decreased delay. When the reliability requirement
is met, our objective is to save energy.

Besides the state transition, DEPR protocol controls the energy and reliability
performance by transmit power control. Th e transmit power level aff ects the quality
of the received wireless signal and thus impacts packet error rate. Higher transmission
power can bring higher reliability.

Th e transmission power also determines the radio communication range and
thus aff ects the pool of feasible next hops at the routing layer. High transmission
power reduces the number of hops needed to reach the intended destination. A high
transmission power makes the network more connected by increasing the number
of direct links seen by each node.

On the other hand, a lower transmission power reduces the energy consump-
tion and thus increases the network lifetime. However, a low transmission power
causes shorter communication range of a sensor, and thus requires more forwarding
nodes (i.e., more hops), which results in higher end-to-end latency.

In summary, an effi cient power control scheme should make a balance between
energy consumption and routing latency. Th is is also the objective of the DEPR
distributed protocol. In the following discussion, we will provide more details on
the DEPR protocol.

Th e latency of each packet is calculated by an actor that checks the time stamp
in the packet header. In each decision interval, the actor computes the data arrival
reliability r as the ratio of unexpired packets over all generated packets and peri-
odically broadcasts its value to its neighborhood. Sensor nodes (associated with
that collector) control their state transitions (among idle, start-up, speed-up,
and aggregation states) based on the reliability observed by the collector, which is
broadcasted at the end of each decision interval.

A sensor transfers states as follows: it starts in an idle state, where it senses data
from the environment and monitors the wireless channel for incoming data pack-
ets. A sensor then enters the start-up state when it either senses a special event or
receives the fi rst data packet from a neighboring sensor.

Sensor nodes expect feedback messages from the collector (i.e., actor) they are
associated with. If the event reliability r is advertised to be below the low event reli-
ability threshold −

thr , we need to reduce the sensor–actor routing delay, which can be
achieved by reducing the end-to-end path length. Hence, when −< thr r , a sensor in
the start-up state will enter the speed-up state with probability Pst–sp, which can be
a monotonically increasing function of the lack of reliability (− −thr r). Note that here
we use a probabilistic policy (Pst–sp) to prevent state transitions deadlock (i.e., sys-
tem oscillations), which could occur if all sensors changed state at the same time.

If the event reliability r is above the high event reliability threshold +
thr (i.e.,

+> thr r), we may consider to save energy. In this case, a node in the start-up state enters
the aggregation state with probability Pst–ag, which can be a monotonically increasing
function of the excess of reliability +− th()r r . In this case, it tries to minimize the energy
consumption by relaying data to the closest neighbor that participates in a da-tree.

AU9215_C012.indd 372AU9215_C012.indd 372 2/13/2010 12:32:26 PM2/13/2010 12:32:26 PM

Wireless Sensor and Actor Networks ◾ 373

Th en, sensors can alternate between the speed-up and the aggregation state to
respond to feedback messages from collectors. Th e objective of the DEPR protocol
is to converge to a solution with reliability close to the event reliability threshold
with minimal energy consumption. A sensor goes back to the idle state if it does not
generate or receive packets for timeout (a parameter) seconds.

12.3 Hierarchical Sensor–Actor Coordination
Mechanism [Yuan06]

12.3.1 Hierarchical WSAN Coordination Architecture
A three-level sensor–actor coordination model for WSANs is proposed in [Yuan06],
which can be shown in Figure 12.4a through c.

(c)

(a) (b)

Actor
Sensor
Cluster head

Actor
Cluster head

Task manager

Satellite
and Internet

Sensor
Sensor/actor
coordination level
Actor–actor
coordination level

Figure 12.4 Three-level coordination model. (Adapted from Yuan, H. et al.,
Coordination mechanism in wireless sensor and actor networks, Proceedings
of the First International Multi-Symposiums on Computer and Computational
Sciences (IMSCCS '06), April 20–24, 2006, IEEE Computer Society, Washington,
DC, 2006, Vol. 2, 627–634.)

AU9215_C012.indd 373AU9215_C012.indd 373 2/13/2010 12:32:27 PM2/13/2010 12:32:27 PM

374 ◾ Wireless Sensor Networks: Principles and Practice

Level 1: Sensor–sensor coordination ◾ : As shown in Figure 12.4a, sensor–sensor
coordination is based on the clustering technique with the cluster head col-
lecting data from other neighboring sensors. Th e sensor–sensor coordination
aims to minimize the energy consumption of sensors and maximize the net-
work lifetime.
Level 2: Sensor–actor coordination ◾ : As shown in Figure 12.4b, the goal of sensor–
actor coordination is to minimize the latency between sensing and acting
when the cluster heads transmit data to appropriate actors. Another goal of
sensor–actor coordination is to make actors perform most of the energy-
consuming tasks such as routing computation and data aggregation.
Level 3: Actor–actor coordination ◾ : As shown in Figure 12.4c, the purpose of
actor–actor coordination is to control actors to perform eff ective and reli-
able actions. Th e main goal of actor–actor coordination is to maximize their
overall task performance by actualizing optimal policy of the task allocation
and cooperation.

Th e multilevel coordination scheme has been used in
many problem solutions. Its basic feature is to defi ne
two or more levels with close mapping relationship
between any two neighboring levels. Higher levels typ-
ically have less (however, more capable) objects than
lower levels. Th erefore, there is less communication
traffi c in higher levels. In lower levels, people concern

scalability and energy effi ciency as large amount of objects need to com-
municate with each other.

WSNs

Remember

12.3.2 “Sensor–Sensor” Coordination Level—Use Clusters
Sensor–sensor coordination is based on the cluster-based routing protocol. Both
LEACH [WBHeinzelman02] and TEEN [AManjeshwar01] can be used because
they all use clusters. However, they did not use geographical location information,
which is necessary here because Yuan et al. [Yuan06] assume a grid-based routing
architecture. Each sensor/actor needs to know their positions before they know
which grid they belong to.

GAF [YXu01] (geographical adaptive fi delity) is a location-based routing algo-
rithm, but is not a cluster-based algorithm. In GAF, the network area is divided into
fi xed zones and forms a virtual grid. Inside each grid, nodes collaborate with each
other to become active nodes or sleeping nodes in turns. GAF conserves energy by
turning off unnecessary nodes.

Figure 12.5 shows a clustering algorithm based on GAF. Th e nominal radio range
R of stationary sensors is shown as a dashed line in Figure 12.6. Assume that the virtual

AU9215_C012.indd 374AU9215_C012.indd 374 2/13/2010 12:32:27 PM2/13/2010 12:32:27 PM

Wireless Sensor and Actor Networks ◾ 375

Actor
Cluster head

A

1

2

3

B C

Sensor
R (nominal
radio range)
Sensor–actor
coordination

Figure 12.5 R-based clustering and routing. (Adapted from Yuan, H. et al.,
Coordination mechanism in wireless sensor and actor networks, Proceedings
of the First International Multi-Symposiums on Computer and Computational
Sciences (IMSCCS '06), April 20–24, 2006, IEEE Computer Society, Washington,
DC, 2006, Vol. 2, 627–634.)

Actor
Cluster head
Event area

Actor–actor
coordination

Sensor–actor
coordination

Figure 12.6 Two-level aggregation tree. (Adapted from Yuan, H. et al.,
Coordination mechanism in wireless sensor and actor networks, Proceedings
of the First International Multi-Symposiums on Computer and Computational
Sciences (IMSCCS '06), April 20–24, 2006, IEEE Computer Society, Washington,
DC, 2006, Vol. 2, 627–634.)

AU9215_C012.indd 375AU9215_C012.indd 375 2/13/2010 12:32:27 PM2/13/2010 12:32:27 PM

376 ◾ Wireless Sensor Networks: Principles and Practice

grid is a square with r units on a side. Th e distance between two possible farthest sen-
sors in any two adjacent grids must not be larger than R. Yuan et al. [yuan06] require

 ≤
5

Rr (12.11)

Sensors in adjacent grids can communicate directly with each other. Inside each
grid, sensors elect one sensor as cluster head that aggregates the sensing data from
each sensor associated with it, and is responsible for monitoring and reporting data
to the appropriate actors.

12.3.3 “Sensor–Actor” Coordination Level
To achieve sensor–actor coordination, we require that all actors announce their
information (such as their current locations and accurate time) periodically or
throughout the duration of actors’ movement. After receiving such information,
each cluster head (special sensors) achieves clock synchronization, and maintains a
routing table that includes nearby actor(s) to deal with the mobility of actors.

As the whole sensor area is divided into location-based grids, the serial number of
each grid can be regarded as the ID of each cluster head. Furthermore, every cluster
head need not exchange and maintain the ID of other cluster heads, because event
information is transmitted through cluster heads to actors only grid by grid; only
grids included in the routing path are involved in the communication process.

When an important event is sensed, which actor(s) should respond to it? In Section
12.2, we have used ILP-based event area partition algorithm to make all sensors in
the event area coordinate with each other to select the appropriate actors according to
diff erent criteria, for example, the distance between the event area and the actor, the
energy consumption of sensors, or the acting ranges of the actors. When the actor is
closer to the event area, the actor can be informed earlier, thus the actor reacts more
quickly. So, the best criterion of selecting the actor is the distance between the cluster
head and the actor, that is, the distance between the event area and the actor.

In the sensor–actor coordination scheme proposed by Yuan et al. [Yuan06], the
cluster head is responsible for monitoring and transmitting data to the closest actor.
In the case of a cluster head far from all actors, the cluster head coordinates with
the adjacent cluster head that is closer to the actor (based on geographical location
information). Eventually, it can fi nd the closest actor.

After a cluster head fi nds the closest actor, it maintains some information on
the actor such as the current location, accurate time, and maintains a routing table
toward it. When an event occurs, each cluster head can relay event information
immediately to the closest actor with one hop or multi-hop, without establishing
routes that will decrease energy or timing consumption.

If an event area is wide and thus relates to many actors, every cluster head in that
event area still communicates with the closest actor. All cluster heads associating

AU9215_C012.indd 376AU9215_C012.indd 376 2/13/2010 12:32:28 PM2/13/2010 12:32:28 PM

Wireless Sensor and Actor Networks ◾ 377

with one actor construct a data aggregation tree toward the selected actor, and all
actors triggered by the same event construct a second-level aggregation tree in the
actor–actor coordination level as shown in Figure 12.6, toward the actor in the center
of the event area. Such a strategy can achieve an optimal strategy to provide energy
effi ciency and meet the required event reliability and timing constraint.

12.3.4 “Actor–Actor” Coordination Level
Depending on the characteristics of the detected event, one or multiple actors may
be triggered to perform one or more tasks. To solve the task allocation problems,
the actor–actor coordination mechanism can use two approaches: the action-fi rst
(AF) scheme and the decision-fi rst (DF) scheme.

 1. AF scheme: when actors near an event area receive event information via
sensor–actor coordination, these actors perform action immediately without
negotiating with farther actors. Each involved actor broadcasts the action
information to other actors that are one hop or m hop away. Th ose farther
actors can learn the event information and make decision to join or retreat
the action independently.

We do not want too many actors to get involved in the event process-
ing. Th erefore, Yuan et al. [yuan06] propose the use of a prespecifi ed action
threshold to control the number of actors to join the action. Th e action expec-
tation can be represented as follows:

 = α + β − γ + δ(,) (,) () () ()ex N A d N A e N n A p A

 where
 ex(N, A) is the expectation of actor N to join the action A
 d(N, A) is the distance between the actor N and the action area A
 e(N) is the remaining energy of the actor N
 n(A) is the number of actors executing the action A
 p(A) is the priority of the action A
 α, β, γ, and δ are proportional parameters

It is a common way to defi ne a series of factors and assign
diff erent weights to diff erent factors depending on the
importance of each factor. Th e fi nal equation can be used
to represent the combined eff ect of all factors. How to
assign weights to diff erent factors is a diffi cult issue.

WSNs

Remember

AU9215_C012.indd 377AU9215_C012.indd 377 2/13/2010 12:32:28 PM2/13/2010 12:32:28 PM

378 ◾ Wireless Sensor Networks: Principles and Practice

Let us denote the action threshold as TH. Th en if ex(N, A) > TH, the
actor N will join the action A. By this way, latency between sensing and act-
ing can be very low. If a certain actor is not capable of doing the action due
to coverage or energy constraints, the actor may deliver the “help” message to
other actors instead of forcing itself to perform the action.

 2. DF scheme: In this scheme, all actors receiving event information coordinate
closely to maximize their overall task performance. Section 12.2 discussed
the ILP-based scheme that achieves optimal task allocation among actors. It
can then be used for this scheme.

In the ILP-based scheme, an actor–actor coordination model is presented
to solve the problem of overlapping area, that is, a certain area where multiple
actors can act on. Likewise, in the DF scheme, according to the event features
and the location-based grids, the area can be optimally split among diff erent
actors. Th e acting area of each actor can be located effi ciently among the
nonoverlapping area.

Problems and Exercises
12.1 Explain the diff erences between general WSNs and WSANs.
12.2 In the algorithm of Melodia et al. [Melodia07], we explained “sensor–actor”

coordination algorithm. Read the original paper and explain the “actor–
actor” coordination algorithm.

12.3 Why do Yuan et al. [Yuan06] use a three-level hierarchical architecture
(instead of a one-level one)?

AU9215_C012.indd 378AU9215_C012.indd 378 2/13/2010 12:32:28 PM2/13/2010 12:32:28 PM

379

13Chapter

Underwater Sensor
Networks

13.1 Introduction [Melodia07, Akyildiz04a,
Pompili06, Pompili09]

13.1.1 Underwater WSN Applications
In our planet, around 70 percent of the surface is comprised of water. Th erefore,
it is important to perform underwater communications using underwater devices.
Underwater acoustic networks (USNs) use the interconnection of large amounts of
underwater sensors and mobile vehicles to perform collaborative monitoring tasks.

USNs can perform adaptive sampling of the three-dimensional (3D) coastal
ocean environment. Th ey can carry out important underwater tasks such as pol-
lution monitoring, ocean/wind monitoring, and biological monitoring. Pollution
monitoring could help to fi nd the level of metals such as lead in water. Ocean/
wind monitoring is important to analyze climate change, weather forecast, or the
understanding of the eff ect of human activities on marine ecosystems. Biological
monitoring could be used to keep track of fi sh or microorganisms.

Th ere could be more useful applications if we integrate underwater sensors with
other sensors. For instance, seismic sensor networks can provide tsunami warnings
to coastal areas, or study the eff ects of submarine earthquakes (seaquakes). Seismic
monitoring allows reservoir management approaches when dealing with oil extrac-
tion. Some underwater navigation sensors can be used to detect seabed hazards, to
locate dangerous rocks or shoals in shallow waters, to explore submerged wrecks,
or to perform bathymetry profi ling. Moreover, various underwater mobile vehicles

AU9215_C013.indd 379AU9215_C013.indd 379 2/22/2010 12:17:47 PM2/22/2010 12:17:47 PM

380 ◾ Wireless Sensor Networks: Principles and Practice

equipped with sensors could perform mine reconnaissance. Th ose underwater vehi-
cles have acoustic and optical sensors to perform rapid environmental assessments
and detect mine-like objects.

Only recently, low-cost, large-scale underwater sensor
networks have attracted lots of attention. Th e U.S. Navy,
in particular, has invested lots of eff ort in practical USN
design. Please note that although a USN is a special
WSN, it has dramatically diff erent characteristics from
terrestrial WSNs. Th is will be further explained later on.
Th is is also the reason why we use a separate chapter to
explain USNs in detail.

Good idea

Most traditional underwater networks do not use wireless (acoustic) sensors. Instead,
they use cables to connect small amounts of high-cost underwater sensors. Such an
approach has the following disadvantages:

Because of high wiring fee, it is diffi cult to perform real-time monitoring. Most
times the recorded data cannot be retrieved until the instruments are recovered. It
is diffi cult to achieve online system reconfi guration due to the limited length of the
cable and the lack of interaction between onshore control systems and monitoring
instruments.

High-cost deployment makes it unsuitable for large water area–monitoring
applications.

Th ere are many challenges in the design of USNs. For instance, acoustic links
have very limited available bandwidth for radio communications; propagation delay
under water is fi ve orders of magnitude higher than that in radio frequency (RF)
terrestrial channels; the sensor battery power is limited and usually batteries cannot
be recharged because solar energy cannot be exploited; and several other issues.

13.1.2 Differences between USNs and
Terrestrial Sensor Networks

In the following, we list a few major diff erences between terrestrial and underwater
sensor networks.

Th e most important diff erence is the radio communication frequency: Under
water, popular terrestrial radio frequencies (such as 2.4 GHz and 833 MHz) can-
not be used due to the special characteristics of water—it can severely weaken
RF signals in a short distance. However, acoustic signals (typically <1 MHz) could
propagate for a much longer distance than radio signals under the water.

Special acoustic modem and advanced underwater transceivers are needed for
USNs, and we need sensor protection in the extreme underwater environment. For

AU9215_C013.indd 380AU9215_C013.indd 380 2/22/2010 12:17:49 PM2/22/2010 12:17:49 PM

Underwater Sensor Networks ◾ 381

instance, water can corrode the sensors. Th e higher the communication distance
is, the more complex signal-processing techniques the receivers need. All the above
aspects make the USN design cost higher.

Underwater sensors are typically sparsely deployed compared to the densely
deployed terrestrial sensor networks.

Th e readings from terrestrial sensors are often correlated, and this is more unlikely
to happen in underwater networks due to the higher distance among sensors.

Acoustic underwater communications need higher power than that needed by
terrestrial radio communications because the acoustic communications in USNs
need more energy.

Terrestrial sensor nodes could have very limited storage capacity. However,
underwater sensors may need to have the ability to do some data caching as the
underwater channel may be intermittent.

13.1.3 Network Topology
Typically a 3D (instead of 2D) network topology is used to detect and observe the
objects. Note: a sensor network deployed in ocean bottom cannot perform coopera-
tive sampling of the 3D ocean environment.

As shown in Figure 13.1, in 3D underwater networks, sensor nodes fl oat at diff er-
ent depths to observe underwater parameters. A metal object with a rope can anchor
a sensor to the ocean bottom. Also, a sensor can be equipped with a fl oating buoy
that pulls the sensor toward the water surface. By adjusting the length of the wire that
connects the sensor to the anchor, we can control the depth level of the sensor.

Satellite

Surface sinkSurface station
Onshore sink

Underwater WSN
architecture

Underwater sensors
 (2-D or 3-D)

Figure 13.1 Architecture for 3D underwater sensor networks. (Adapted from
Melodia, T. et al., IEEE Trans. Mobile Comput., 6(10), 1116, October 2007.)

AU9215_C013.indd 381AU9215_C013.indd 381 2/22/2010 12:17:50 PM2/22/2010 12:17:50 PM

382 ◾ Wireless Sensor Networks: Principles and Practice

An underwater WSN protocol design needs to consider the eff ect of ocean cur-
rents on sensor mobility.

Please note that most of the WSN routing protocols only
assume a 2D, instead of a 3D, structure. In the underwater
case, all sensors are located in diff erent depth levels (verti-
cal direction). In each depth level, lots of sensors form a
2D topology. A sensor needs to keep communication con-
nections with both horizontal and vertical sensors.Good idea

13.1.4 Acoustic Signals Propagation
As we mentioned before, radio signals cannot propagate well in water. Hence, acous-
tic signals should be used. However, acoustic communications can be infl uenced by
path loss, noise, multipath, Doppler spread, and high propagation delay. Th ese factors
can tell us the temporal and spatial variability of the acoustic channel.

Path loss, also called signal attenuation, is caused by energy absorption during
the conversion of acoustic energy into heat. Higher distance or acoustic frequency
can bring more signal attenuation. Th e signal attenuation could be caused by mul-
tiple signal propagation phenomena such as wave scattering and reverberation,
refraction, and dispersion. Water depth also has an eff ect on the attenuation.

Communication noise is mostly caused by machinery noise such as pumps and
shipping activity (such as hull fouling or cavitations especially) in areas with heavy
vessel traffi c. Ambient noise comes from tides, current, storms, wind, and rain. It is
also related to seismic and biological phenomena.

Th e multipath signal propagation (i.e., there are multiple transmission paths for a
signal sent from a source) is obvious in the horizontal direction (i.e., from sea bottom
to surface). Smart transceivers could utilize such multipath signals to enhance signals.

Doppler spread is scattering of sound energy as a result of the expansion of the
wave fronts. It grows with the propagation distance. Th ere are two common kinds
of geometric spreading: spherical in deepwater communications and cylindrical in
shallow water communications.

Acoustic propagation delay is fi ve orders of magnitude higher than that in the
radio channel case (the acoustic speed is around 1500 m/s). Such a large propaga-
tion delay can lessen the throughput of the system. It is very harmful for an effi cient
network protocol design.

Most of those factors limit the available bandwidth of the underwater acous-
tic channel that is mainly dependent on signal range and frequency. Long-range
acoustic communications (∼tens of kilometers) only have a bandwidth of a few
kilohertz. Short-range (∼100 m) may have a higher bandwidth (>100 kHz). In both
cases, these factors lead to low bit rates.

AU9215_C013.indd 382AU9215_C013.indd 382 2/22/2010 12:17:50 PM2/22/2010 12:17:50 PM

Underwater Sensor Networks ◾ 383

We may classify the underwater acoustic communication links based on
their ranges as very long, long, medium, short, and very short links. Table 13.1
[Melodia07] shows typical bandwidths of the underwater channels in diff erent
propagation ranges.

Always remember that the long, variable acoustic delay
in USNs necessitates a set of new protocols compared to
RF-based terrestrial WSNs. An acoustic wave is simi-
lar to human sound. It travels very slowly but reaches a
long distance in the water. An underwater sensor needs
special wireless transceiver, called the acoustic modem,
to communicate with other nodes. Commercial acoustic
modems are very expensive.

WSNs

Remember

13.1.5 Underwater Sensors
An underwater node has a similar architecture to general WSN nodes. Th e micro-
controller/CPU works along with analog underwater sensors through a sensor
interface circuitry or oceanographic instrument (Figure 13.2). Th e microcontroller
accepts the data (such as water pollution level and metal level) from the analog sen-
sor, stores it in the onboard memory, processes it, and delivers it to other network
devices by controlling the acoustic modem. Th e electronics are usually mounted
on a frame that is protected by the housing. By housing all components beneath a
low-profi le pyramidal frame, we could prevent water corrosion.

Table 13.1 Available Bandwidth for
Different Ranges in UW-A Channels

Range (km) Bandwidth (kHz)

Very long 1000 <1

Long 10–100 2–5

Medium 1–10 ∼10

Short 0.1–1 20–50

Very short <0.1 >100

Source: Adapted from Melodia, T. et al., IEEE
Trans. Mobile Comput., 6(10), 1116,
October 2007.

AU9215_C013.indd 383AU9215_C013.indd 383 2/22/2010 12:17:50 PM2/22/2010 12:17:50 PM

384 ◾ Wireless Sensor Networks: Principles and Practice

Th e underwater sensors could assess the quality of water by measuring param-
eters such as temperature, density, salinity, chemicals, conductivity, pH, oxygen
hydrogen, dissolved methane gas, and turbidity. We could also use disposable sen-
sors to detect the highly poisonous protein that could be found in castor beans
and thought to be a potential terrorism agent. DNA microarray sensors have been
designed to monitor abundance and activity-level variations among natural micro-
bial populations. Force/torque sensors can simultaneously measure several forces
and moments.

Th e trend is to develop less-expensive/robust underwater nano-sensors. All
underwater sensors need periodical cleaning mechanisms against corrosion and
fouling, which may impact the lifetime of underwater devices. Integrated sen-
sors are under research for synoptic sampling of physical, chemical, and biological
parameters to better understand the processes in marine systems.

13.2 USN Protocol Stack [Akyildiz04a, Melodia07]
13.2.1 Physical Layer
In terms of modem and modulation schemes, a simple way is to use the frequency
shift keying (FSK) modulation scheme. In the FSK scheme, the multipath eff ects
can be tightly bounded by inserting time guards between successive pulses. We
could also use dynamic frequency guards between frequency tones to adapt the
communication to the Doppler spreading of the acoustic channel.

However, FSK has low bandwidth effi ciency and is not stable for high-data-rate
communication applications. We could use coherent modulation techniques for
long-range, high-throughput applications. For instance, diff erential phase shift
keying (DPSK) encodes information relative to the previous symbol.

Recently, orthogonal frequency division multiplexing (OFDM) spread spectrum
technique has become a promising solution for underwater communications.
OFDM is also called multi-carrier modulation because it modulates signals

Sensor
interface
circuitry

Batteries

Memory

Underwater
sensors

CPU onboard
controller

Acoustic
modem

Figure 13.2 Internal architecture of an underwater sensor. (Adapted from
Melodia, T. et al., IEEE Trans. Mobile Comput., 6(10), 1116, October 2007.)

AU9215_C013.indd 384AU9215_C013.indd 384 2/22/2010 12:17:51 PM2/22/2010 12:17:51 PM

Underwater Sensor Networks ◾ 385

across multiple sub-carriers simultaneously. As the symbol duration for each indi-
vidual carrier is wider than many other modulation schemes, OFDM systems
perform robustly in severe multipath environments, and achieve a high spectral
effi ciency.

Besides modulation design, other physical layer issues need to be addressed to
enable underwater acoustic sensor networks. For example, inexpensive transmitter/
receiver modems for underwater communications need to be developed.

13.2.2 Data Link Layer
Th is layer solves multiple neighboring sensors’ acoustic channel access issues. People
also call this layer as MAC (medium access control) layer because channel access is
the main design issue in the data link layer. How do we make sure that no confl ict
exists when those neighbors try to access the channel at the same time? A good
access schedule needs to be developed.

Channel access control in USNs should adapt to the limited bandwidth, and
high/variable delay. Frequency division multiple access (FDMA) may not be used
due to its narrow bandwidth.

If using TDMA, we need to design a good channel access schedule that can
overcome the variable acoustic delay. Such a TDMA-based scheme should be
based on a precise clock synchronization because TDMA needs a common timing
reference.

Contention-based techniques such as carrier sense multiple access (CSMA), which
uses ready-to-send/clear-to-send (RTS/CTS) to avoid confl icts, may not be practi-
cal in underwater due to the large acoustic delays in the propagation of RTS/CTS
control packets. Th e high variability of acoustic delay also makes it very diffi cult
to predict the start and fi nish time of the transmissions. Th e result is that the col-
lisions can still occur.

Th erefore, we cannot simply use MAC schemes in terrestrial sensor networks
for underwater sensor networks because we need to overcome a few challenges in
underwater channels: variable and high propagation acoustic delays and very lim-
ited underwater communication bandwidth.

Code division multiple access (CDMA) may be a good solution although it needs
more complex hardware. It is robust to frequency-selective fading caused by underwater
multipaths because it can use orthogonal codes to distinguish among simultaneous
signals transmitted by multiple devices. CDMA also reduces the number of packet
retransmissions, which results in decreased battery consumption and increased network
throughput. If we adopt CDMA, we need to design communication access codes with
high autocorrelation and low cross-correlation properties to achieve minimum interfer-
ence among users. We need to fi nd out the optimal data packet length to maximize the
network effi ciency.

AU9215_C013.indd 385AU9215_C013.indd 385 2/22/2010 12:17:51 PM2/22/2010 12:17:51 PM

386 ◾ Wireless Sensor Networks: Principles and Practice

13.2.3 Network Layer (Routing Layer)
Th e network layer aims to search a good routing path between a source and a
destination node. Th ere are many routing protocols proposed for terrestrial sensor
networks. However, we cannot directly use them for USNs due to the high/variable
acoustic delay.

Th e existing WSN routing protocols mainly include three categories, namely,
proactive, reactive, and geographical routing protocols.

Proactive protocols always make an up-to-date routing table ready at all times
from each node to every other node. It thus avoids the message latency induced
by route discovery. However, it has high routing updating overhead when used in
underwater networks.

Reactive protocols initiate a route discovery process only when a route to a desti-
nation is required. It does not maintain an “always correct” routing table.

Geographical routing protocols select each relay node based on the position of
sensors. Global Positioning System (GPS) receivers may be used in terrestrial sys-
tems to accurately estimate the sensor location. However, they do not work well
inside water because USN does not use radio signals (it uses acoustic signals).

It is important to devise routing algorithms that are robust with respect to the
intermittent connectivity of acoustic channels.

13.2.4 Transport Layer
We also need a transport layer protocol in USNs to achieve end-to-end reliable
transport of event features, and to perform fl ow control and congestion control.
Th e most popular transport layer protocol, TCP, is not suitable to the underwater
environment because it uses a window-based fl ow control mechanism that relies on
an accurate estimate of the round trip time (RTT). Unfortunately, the versatility of
the underwater RTT would make it diffi cult to eff ectively set the time-out of the
window-based mechanism.

USNs transport layer protocol should deal with the following issues for reliable
data transport: large propagation delays, low bandwidth, energy effi ciency, high
error probabilities, and highly dynamic network topologies. A good transport layer
solution for the underwater environment may use the following design principles
such as shadow zones, minimum energy consumption, rate-based transmission of
packets, timely reaction to local congestion, and reliability. Th e following provides
more details:

Proper handling of communication shadow zones (they have very weak sig- ◾
nals) requires the parameters from the routing layer such as the delay in
each hop.
Minimum energy consumption should be considered due to the battery- ◾
driven nature in underwater sensors.

AU9215_C013.indd 386AU9215_C013.indd 386 2/22/2010 12:17:51 PM2/22/2010 12:17:51 PM

Underwater Sensor Networks ◾ 387

Rate-based transmission of packets is better than window-based schemes ◾
(such as TCP case) because we could achieve a more accurate traffi c control.
Timely reaction to local congestion should adapt to local conditions imme- ◾
diately, and it should decrease the response time in case of congestion. Th us,
rather than relying on the base station, intermediate nodes should be capable
of determining and reacting to local congestion. A hop-by-hop reliability
control is better than an end-to-end control.

13.3 MAC Design Example [Min07]
As we mentioned before, it is challenging to design USNs MAC protocols due to
energy limitations, long propagation delays, low data rates, and the diffi culty of
synchronization in underwater environments. Th e MAC protocols used in terrestrial
sensor networks are not suitable for the underwater acoustic communication medium
that experiences a very large propagation delay of 1 s over 1.5 km. Th is section will
use [Min07] to exemplify the effi cient MAC design in underwater environment.

First, let us review some related works in this fi eld. FDMA was used in the
underwater network project called SeaWeb [JRice00]. But it was found to be restric-
tive and ineffi cient in terms of bandwidth utilization. SeaWeb 2000 [JGProakis01]
favored a carrier sense multiple access/collision avoidance (CSMA/CA) solution
with RTS/CTS handshake/exchange. However, we will have high energy consump-
tion overhead when using the RTS/CTS packets.

You have learned some MAC schemes for terrestrial
WSNs such as S-MAC. Th ose MAC protocols put
“energy effi ciency” as a top priority. Th ey try to put
sensors into “sleep” status for a long time. Th ey also try
to reduce the channel access scheduling complexity to
further reduce energy. However, in underwater WSNs,
the MAC design should put “adaptation to long, variable
acoustic delay” as the top priority.

Difference

WSNs

Min and Volkan [Min07] thus designed the UWAN-MAC protocol. Its basic idea
is illustrated in Figure 13.3 [Min07], which explains how to achieve a locally syn-
chronized schedule even in the presence of long, unknown propagation delays.

 1. Determination of “Listen” cycles: As shown in Figure 13.3, assume that sensor
A broadcasts an SYNC packet (the shaded rectangle) to its neighborhood in
the beginning of its cycle period, and then goes to sleep status (by turning
off its transceiver circuits to save energy). Th is SYNC packet announces A’s
communication cycle period TA.

AU9215_C013.indd 387AU9215_C013.indd 387 2/22/2010 12:17:51 PM2/22/2010 12:17:51 PM

388 ◾ Wireless Sensor Networks: Principles and Practice

Assume that another sensor, B, belongs to neighborhood of A. When node
B joins the network, it fi rst tries to capture this SYNC packet to achieve
communication synchronization with sensor A. (Th e white rectangles in the
fi gure indicate node B’s receptions of node A’s SYNC packets.)

Because B follows the explicit stamping of sensor A’s transmission cycle
period instead of using absolute wake-up period, B can wake up at exactly
the correct time in the next transmission cycle to listen to A without any
knowledge of the acoustic propagation delay. (Of course, here we assume that
the propagation delay remains almost fi xed from one cycle to the next and
the clock drift is not signifi cant in one cycle. Th is is a reasonable assumption
if the clock cycle is not so long.)

We should use the above SYNC broadcasting protocol for any neighbor-
ing sensors (such as A and B). Further, this scheduling algorithm does not
require any adjustments to the sensors’ clocks because absolute timing infor-
mation is not needed.

 2. Determination of transmit start times: Th e MAC protocol also needs the help
of network topology control protocol that keeps track of the neighbors of
a node. Even though the listen times are determined based on the above
described scheme, the initial transmission time of a sensor is selected ran-
domly and independently by each sensor. However, once a node chooses a
certain transmission start time, it sticks to its schedule by transmitting its
data at that time again in the next cycle. As long as the cycle period is much
longer than the transmit duration (in Figure 13.3, TA ≥ TB), the probability of
channel access collisions will be small.

In UWAN-MAC protocol, each node compares its stored neighbor list (from
neighbor discovery protocol) with the list of nodes from which a node has actually
received signals. After this comparison, the node generates the “missing node list”

Sensor A

Sensor B

Unknown propagation delay Note: B knows when to wake up to listen to A,
although neither knows the propagation delay

Broadcast SYNC packet Next wake-up and comm.

Sleep time

Sleep time

Comm.

Comm.Comm.

TA

TA

TB

Comm.

Figure 13.3 Basic idea of the UWAN-MAC protocol. (Adapted from Park, M.K.
and Rodoplu, V., IEEE J. Ocean. Eng., 32(3), 710, July 2007.)

AU9215_C013.indd 388AU9215_C013.indd 388 2/22/2010 12:17:51 PM2/22/2010 12:17:51 PM

Underwater Sensor Networks ◾ 389

and sends the list of “missing” neighbor nodes in the header of the data packet in
its next transmission cycle.

During regular operation, every node keeps sending its cycle period (i.e., TA in
Figure 13.3) in its SYNC header. Th e SYNC message allows a node to change its
current cycle period, and its neighbors can decode the modifi ed SYNC message and
change their wake-up times. If a node, say B, loses contact with node A during this
modifi cation, it will use the missing neighbor list to recover node A as a neighbor.

Note that TA (cycle period) actually includes three parts: (1) data transmission
(including sending and receiving); (2) idle listening; and (3) sleep status. After the
data transmission phase, a node does not immediately go to sleep but rather enters
idle-listening mode. In the listening mode, the node is still awake but operates at
low power. If it hears something, it will go into the receiving mode.

Th is listen duration can also be used to hear newcomers. Th e length of the listen
duration needs to be chosen carefully: A very long duration decreases the energy
effi ciency of the protocol due to idle period energy consumption, but a very short
duration might not be enough to catch some of the newcomers’ messages.

Handle newcomer: When a new node joins the network, as long as it hears from
another node, it can send a HELLO packet back to that neighbor to tell about
its transmission schedule. Such a HELLO packet should be sent out in “data
transmission” phase. Typically, a sensor divides its transmission time slot uni-
formly among M time slots, and a slot lasts for the duration of a HELLO
packet. Th e sensor randomly selects one out of M slots to transmit a HELLO
packet. Such a random HELLO transmission avoids the possible collisions
among HELLO packets from diff erent newcomers, in case an existing node
has multiple newcomer neighbors who simultaneously enter the network.

Handle node failure: If the channel condition is poor, or if a sender fails, a node
may not be able to receive data at a scheduled wake-up time. If the receiver
node does not hear from the sender at a scheduled time, the receiver puts the
sender in its missing node list, as explained before.

Handle variable acoustic delay: In Figure 13.3, we assume that acoustic propa-
gation delay remains fi xed from cycle to cycle. However, in reality it varies
due to channel fl uctuations caused by sensor motions/water current. We may
assume that a node has the knowledge of the maximum propagation delay. For
example, for densely deployed underwater WSNs, the maximum propagation
delay is about 70 ms for distances of up to about 110 m.

Here is a new MAC protocol to handle variable delay: each node i places a certain
“guard time” on both sides of its transmit duration. To reduce the packet transmission
collision rate, we can choose the guard times of each node in a completely localized
manner to reduce collision rate.

Figure 13.4a shows an example that does not use guard time. A receive–receive
collision occurs in the presence of variable propagation delays. To avoid this

AU9215_C013.indd 389AU9215_C013.indd 389 2/22/2010 12:17:52 PM2/22/2010 12:17:52 PM

390 ◾ Wireless Sensor Networks: Principles and Practice

collision, node A or B (here we ask A to add guard times) reselects its transmission
start time to avoid collisions. Figure 13.4b suggests one possible solution for the
case where τ2 < τg < τ1. No collision occurs because node A’s newly selected transmission
start time has been applied.

“Guard time” is really a good idea! In wireless multichan-
nel communications, people typically add a “guard chan-
nel” to a communication band (a narrow bandwidth) to
prevent signal interference among neighboring bands.
Here we use “guard time” to make the transmission time
more “fl exible” to avoid receiver–receiver collisions.Good idea

13.4 Routing Design Example: Vector-Based
Forwarding Protocol [PXie05]

USN routing protocols need to meet two requirements: (1) It needs to be energy
effi cient because the sensors are battery driven and (2) the underwater sensors
can move around due to water current. Th us routing protocol needs to handle

Sender A Pkt # 1

Pkt # 1

Pkt # 2

Pkt # 2

Sender B

Receiver C

(a)

Sender A

Guard time

Pkt # 1

Pkt # 1

Pkt # 2

Pkt # 2

Sender B

Receiver C

(b)

Figure 13.4 Collision with propagation delays and CA using the guard time
policy. (a) Receiver–receiver collision due to the variable acoustic propagation
delays. (b) Guard time solution. (Adapted from Park, M.K. and Rodoplu, V., IEEE
J. Ocean. Eng., 32(3), 710, July 2007.)

AU9215_C013.indd 390AU9215_C013.indd 390 2/22/2010 12:17:52 PM2/22/2010 12:17:52 PM

Underwater Sensor Networks ◾ 391

node mobility. Vector-based forwarding (VBF) protocol [PXie05] meets these
requirements.

We have noticed that the USN routing has a direction from the sea bottom
to the surface. Th erefore, we could use a routing vector to represent such a path.
Th e idea behind VBF is shown in Figure 13.5. Node S1 is the source and S0 is
the receiver. Th e routing vector is

→
1 0S S , and the routing pipe is shown with a pre-

controlled radius of W. VBF does not require state information at each node and is
scalable to the size of the network. As only nodes in the forwarding path contribute
to the forwarding, it makes the network energy effi cient.

In VBF, each data packet needs to have the positions of the sender node, the
target node, and the forwarding (relay) node. When a node receives a packet, it
computes its position in relation to the forwarder by measuring (1) the distance to
the forwarder and (2) the angle of arrival (AOA) of the signal. All nodes that receive
the packet compute their positions recursively.

If a node determines that it is close enough to the routing vector (i.e., it could
be added to the routing pipe), it adds its position to the packet and forwards it.
Otherwise, it discards the packet. All the packet forwarders in this sensor network
thus form a “routing pipe” that consists of only the nodes that are eligible for packet
forwarding (Figure 13.5).

Routing vector from sender A to receiver B is usually denoted as
→

AB . In a 3D
space, if A’s coordinate is (Ax, Ay, Az) and B’s coordinate is (Bx, By, Bz), then the vec-
tor

→
AB can be represented by (Bx − Ax, By − Ay, Bz − Az).

Sink

Routing vector

Source

Range of routing
vector

Figure 13.5 VBF protocol scenario. (Adapted from Xie, P. et al., VBF: Vector-
based forwarding protocol for underwater sensor networks, UCONN CSE
Technical Report, UbiNet-TR05-03 (BECAT/CSETR-05-6), February 2005.)

AU9215_C013.indd 391AU9215_C013.indd 391 2/22/2010 12:17:52 PM2/22/2010 12:17:52 PM

392 ◾ Wireless Sensor Networks: Principles and Practice

Assume that we have a point V = (vx,vy,vz) and another point U =
(ux,uy,uz). Th e distance between points v and u can be calculated by =d

− + − + −2 2 2() () ()x x y y z zv u v u v u (Figure 13.6).
VBF routing protocol is built based on protocol packet (not data packet)

exchanges. Each of the protocol packets consists of three position fi elds, OP, TP,
and FP, which are the coordinates of the sender, the target, and the forwarder.
When a data packet reaches the area specifi ed by its TP, the packet is fl ooded in an
area controlled by the range fi eld.

Each protocol packet has a fi eld called radius, which is a predefi ned threshold
and can be used by the sensor nodes to determine if they are close enough to
the routing vector to be considered in packet forwarding (within the routing
pipe).

VBF can execute two types of sensor data queries. Th e fi rst query is location
dependent. Th e sink is interested in a specifi c area and knows the area’s location. Th e
second is location independent. Th e sink wants to know some specifi c data regardless
of positions. An example of this case is if the sink wants to know if any metal pol-
lution exists anywhere in the network.

Good idea

“Routing pipe” is an interesting and useful idea. In some
cases, it may not be robust to rely on a line of single
nodes to achieve multi-hop wireless communications.
Th erefore, people suggest to use a “pipe” concept that
consists of a thickness of nodes in the path. Th e thicker
the pipe, the more robust the routing scheme is. Th is is
because any of the nodes in the pipe can help to relay

data. On the other hand, such routing robustness may bring higher routing
complexity due to the maintenance of the routing pipe.

Uu

d h
V

o

v

Figure 13.6 An illustration of vector calculation. (Adapted from Xie, P. et al.,
VBF: Vector-based forwarding protocol for underwater sensor networks, UCONN
CSE Technical Report, UbiNet-TR05-03 (BECAT/CSETR-05-6), February 2005.)

AU9215_C013.indd 392AU9215_C013.indd 392 2/22/2010 12:17:53 PM2/22/2010 12:17:53 PM

Underwater Sensor Networks ◾ 393

13.5 Hardware Prototype Design [Hu2009e]
In this section, we will discuss a USN prototype designed by us [Hu2009e]. Most
commercially available underwater communication systems [DSPComm08] are
designed for long-range communications (with link distances of several kilometers).
Th ese modems can carry sustained data rates of approximately 1–40 kbps. Th e
implementation of a system is thus cost prohibitive.

In our design, the majority of the sensor node’s functionality is software defi ned,
allowing for low-cost reconfi guration of the platform for a variety of tasks. Th e
underwater sensor hardware remains relatively simple and provides only the follow-
ing functionality: amplify both outgoing and incoming signals, and provide signal
conditioning for all environmental sensors and probes. Th is leaves the remainder of
the node’s functionality to be defi ned in software, including both modulation and
demodulation.

Although a variety of embedded processors could fulfi ll the networking
and routing needs, a digital signal processor (DSP) is needed for this platform
because modulation and demodulation will take place in the software. Figure 13.7
[Hu2009e] shows the connection of DSP chip with other components such as the
transmitter (Tx) and the receiver (Rx).

Using loudspeakers to serve as hydrophones is a simple
approach and works for prototype purposes. However,
it cannot be used in commercial applications. We still
need to design robust acoustic modem to achieve under-
water communications.

Case study

Sensor
conditioning

DSP
D/A Tx Amp

Rx AmpA/D

A/D

Figure 13.7 Hardware and DSP interaction.

AU9215_C013.indd 393AU9215_C013.indd 393 2/22/2010 12:17:54 PM2/22/2010 12:17:54 PM

394 ◾ Wireless Sensor Networks: Principles and Practice

13.5.1 Hardware Design
Hydrophones (used to convert the electrical signals into acoustic waves and vice
versa) cost approximately $1000, even for small transducers designed for shorter-
range applications [Transducer08]. Th erefore, a cheaper alternative than commer-
cially available hydrophones was needed. For prototype purposes, we have used
a small loud speaker in which the paper cone was waterproofed. Th ese speakers
produced an audibly louder tone at the desired frequency range, and were used as
both the transmitting and receiving hydrophones (Figure 13.8).

We have used two types of sensors, pH and temperature. Th e signal must be
conditioned so that it produces a valid signal for the analog-to-digital converter
(ADC).

Th e pH amplifi er has a constant gain of 2.4. It consists of a non-inverting ampli-
fi er. It should be able to accept high impedance sources because the pH sensor used
has an impedance of 50 MΩ, and the underwater node’s ADC can only accept at
most 5 kΩ sources.

Th e temperature amplifi er has a constant gain of 2, which covers the analog
range of the ADC, and also provides greater precision. Th e temperature amplifi er
utilizes a Wheatstone bridge and an inverting diff erential amplifi er. Th e temperature
sensor used is a 10 kΩ thermistor.

Our low-cost
prototype used

speakers to serve as
acoustic signal

sources

Figure 13.8 Loudspeakers serving as hydrophones.

AU9215_C013.indd 394AU9215_C013.indd 394 2/22/2010 12:17:54 PM2/22/2010 12:17:54 PM

Underwater Sensor Networks ◾ 395

To execute acoustic communication protocols with a neighboring underwater
node, a microcontroller is used to control all sensors. It is a fi xed-point DSP with
256 kB of direct memory access (DMA)–capable memory. We use a fi xed-point
processor because a fl oating-point processor is more expensive, and requires sub-
stantially more power to operate. Th e board has a RAM of 100 kB, which is good
enough for signal sampling and signal processing. Th e DMA system is used to
allow the sampled symbols to be placed into memory directly, thus we do not need
to use valuable CPU cycles to move the samples from the ADC to memory. It
allows a symbol to be demodulated concurrently with sampling, so that no samples
are lost during the long demodulation calculation.

Th e microcontroller is packaged with an interface board, which contains periph-
erals that are directly accessible to the processor. Th ese include a variety of digital
I/O ports, a digital potentiometer-based DAC, and a 10-bit/12-bit ADC. Having
these peripherals integrated directly with the CPU, our system saves substantial
development time and cost.

Figure 13.9 shows our fabricated underwater board (it has DSP and acoustic
communication modules; analog sensors are not shown).

RS232 interface for
re-programming

For analog acoustic
signal acquistion

Microcontroller with
interface to DSP chips

for acoustic signal
processing

Figure 13.9 Fabricated underwater node with microcontroller and acoustic
transceiver. (Adapted from Hu, F. et al., J. Circuits Syst. Comput., 17(6), 1203,
2008.)

AU9215_C013.indd 395AU9215_C013.indd 395 2/22/2010 12:17:55 PM2/22/2010 12:17:55 PM

396 ◾ Wireless Sensor Networks: Principles and Practice

13.5.2 Software Design
Th e software of the system is divided into two sets of components, those associ-
ated with transmission and those associated with reception. Figure 13.10 shows our
software structure in the receiver side. It includes analog sensor data fi ltering and
acoustic demodulation. Figure 13.11 is the transmitter’s software structure that has
modulation and CRC (cyclic redundancy check) error control.

13.5.3 System Testing
Th e water surface sensor (i.e., the sink) is connected to a PC via an RS-232 con-
nection at 2400 baud. Th e surface node has no sensors of its own in this case. Th e
underwater nodes have the pH and temperature sensors. Th e underwater nodes are
to poll its sensors for information every 30 s. Once the sensor data is retrieved a
packet is constructed and the CRC of the packet is computed.

After an underwater sensor sends out a packet to the sink, the sink must send
an acknowledgment (ACK) back to the underwater node so it knows the packet
was received successfully and will not have to be resent. If the CRC shows that the

Bitstream Demod
Matched

filter

Buffer A Buffer B

DMA
controllerA/DRx Amp.

Figure 13.10 Receiver side software block diagram. (Adapted from Hu, F. et al.,
J. Circuits Syst. Comput., 17(6), 1203, 2008.)

Bitstream CRC Modulation D/A Tx Amp.

Figure 13.11 Transmitter side software block diagram. (Adapted from Hu, F.
et al., J. Circuits Syst. Comput., 17(6), 1203, 2008.)

AU9215_C013.indd 396AU9215_C013.indd 396 2/22/2010 12:17:56 PM2/22/2010 12:17:56 PM

Underwater Sensor Networks ◾ 397

packet is corrupted, or the packet does not arrive at all, the receiver will send out a
negative ACK. Eventually, the sender will time out while waiting for the acknowl-
edgment, and send the packet again. Th e sequence of error recovery is shown in
Figure 13.12. Th is is known as a stop-and-wait Automatic Repeat reQuest (ARQ)
mechanism.

Th e lab test has a setup as shown in Figure 13.13. Th e system achieved its
theoretical bit rate of 15.625 bits/s. An average bit error rate (BER) of 0.091 was
observed. Th e CRC did not avoid all errors because it is not the strongest error-
checking scheme in wireless networks. Th ese can be seen in Figure 13.14 where
spikes are present in the pH temperature results. Th ese points are outlier values
(when the pH greatly exceeds 14, and it must be a result of bit errors).

Due to packaging issues, we
didn’t put the CPU boards in
the water. Next step we will
make water-proof container
to hold everything in a node.

We intentionally change
the pH value to see
whether the sensor

values can be
accurately captured.

BaseStation to display data and
sensor status

Note: The software includes
NesC sensor programming

and LabView based GUI.

Underwater acoustic
sensor communication TestBed

Analog pH sensor

Figure 13.13 Lab test setup. (Adapted from Hu, F. et al., J. Circuits Syst. Comput.,
17(6), 1203, 2008.)

BaseStation BaseStationSensor Sensor

Wait for ACK;
Timeout

No
error

Error

Packet #2 Resend
Packet #1

Packet #1 Packet #1
ACK

Figure 13.12 ARQ interactions. (Adapted from Hu, F. et al., J. Circuits Syst.
Comput., 17(6), 1203, 2008.)

AU9215_C013.indd 397AU9215_C013.indd 397 2/22/2010 12:17:56 PM2/22/2010 12:17:56 PM

398 ◾ Wireless Sensor Networks: Principles and Practice

Problems and Exercises
13.1 Explain the diff erences between underwater and terrestrial sensor networks.
13.2 What specifi c improvements should we make when changing general WSN

MAC layer protocols (see Chapter 3) to underwater WSNs?
13.3 Can we directly use the routing protocols in Chapter 4 to USN cases? Why

or why not?
13.4 Draw the underwater sensor network system architecture (hardware/

software) based on Section 13.5.

pH value
25

20

15
10

5
3031323334353637383940414243444546474849505152535455

Time (minutes)

Outlier data

In the following diagram we
zoom in the pH values to
clearly see outlier values.

We can detect either pH
or temperature data

This table is controlled by
TinyDB database (a sensor

network database).

Figure 13.14 Underwater sensor data collection GUI. (Adapted from Hu, F.
et al., J. Circuits Syst. Comput., 17(6), 1203, 2008.)

AU9215_C013.indd 398AU9215_C013.indd 398 2/22/2010 12:17:57 PM2/22/2010 12:17:57 PM

399

14Chapter

Video Sensor Networks

14.1 Introduction
Today WSNs can use hundreds of diff erent analog sensors to collect environmental data.
Video capture can provide invaluable information that no other sensors are capable of
capturing. We can integrate video sensors with other types of sensors to provide multi-
media data, or we could use them alone in applications such as video surveillance.

Although it is very exciting to use video sensors, video data requires a tremendous
amount of storage space and wireless bandwidth. To overcome such challenges, we
can make use of various resource-conserving techniques while maintaining their
ability to capture and transmit video data.

In the following, we list some example applications of video sensor networks
(VSNs) as well as resource requirements associated with VSNs [Feng05].

Underwater exploration: Oceanographers can use VSNs to observe and study the
development of underwater sandbars. Th ey can also use digital image pro-
cessing to determine the evolution of such sandbars over time. Th e wireless
nature of the application requires self-suffi cient video sensors. For instance,
we may use solar panels or other dynamic methods (water current) to generate
sensor power. VSN protocols should be power saving. To reduce energy con-
sumption, we may establish network connectivity intermittently, that is, only
collect data from time to time. Although video sensors operate in a low-power
state, the network protocols should transmit the most important video data.

Environment surveillance: For building/outdoor surveillance applications, we may
not know beforehand which data would be important. To enhance network scal-
ability, reduce network traffi c, and save storage space, the video sensors should
try to fi lter useless data as much as possible. For instance, some image-comparing

AU9215_C014.indd 399AU9215_C014.indd 399 2/22/2010 9:29:55 PM2/22/2010 9:29:55 PM

400 ◾ Wireless Sensor Networks: Principles and Practice

techniques could be used to fi nd out any newly entered objects in an area. If the
video sensors cannot detect image change, they will not send out video data.

Emergency response systems: A video-based sensor network may be deployed for
emergency response applications. Video sensors can be used to capture and
transmit high-quality video for a specifi ed period of time (i.e., the duration
of the emergency). Th e VSN operation should have quick response and low
power adaptation attributes, to provide the emergency response personnel
with the video data throughout the incident.

For the above three applications, some common tasks are required, as follows.
[Purushottam07]

Object detection: One of the VSN goals is to detect familiar or new objects or scene
changes in the observation area. For example, an animal habitat–monitoring
application should detect when an animal enters/leaves an area. A building
security system should be able to detect intrusion events, such as a person enter-
ing the area. To perform object detection, the video sensors can use lots of pro-
posed object detection algorithms. Th ese detection algorithms should be able to
spend minimum time to detect each new object that enters the security area.

Object recognition: If object detection just fi nds out whether or not a new object has
entered the area, we also require object recognition schemes to recognize what
exactly that object is. For instance, after a new object is detected, we need to deter-
mine its type (e.g., normal personnel or enemies, zebra or deer). Such a recogni-
tion procedure can fi nd out whether or not the object is of interest. Recognition is
usually achieved by comparing the captured video/images to a database of object
images. Good matching algorithms can quickly fi nd out the targeted object.

Object tracking: After we recognize an object of interest, we may want to keep
track of such a target as it moves through the environment. In object tracking,
we typically fi rst determine the current location and the trajectory of the object;
then, we hand off the tracking task when an object moves out of the visual
range of one camera sensor and enters into the range of another sensor.

For each of the above three tasks, we need to design both hardware and software
to capture the desired information.

Today, many object detection/recognition/tracking
schemes have been proposed. Th ese typically need the
knowledge of machine learning that can classify objects
effi ciently. Th e neural network is a traditional scheme
that performs object recognition. Object tracking typi-
cally requires accurate object-positioning techniques.

WSNs

Remember

AU9215_C014.indd 400AU9215_C014.indd 400 2/22/2010 9:29:58 PM2/22/2010 9:29:58 PM

Video Sensor Networks ◾ 401

14.2 Panoptes [Feng05]
Feng et al. [Feng05] have illustrated the hardware design of video sensors. In design-
ing and choosing a video sensor, we must consider power source, memory space, and
CPU speed requirements. Although Intel’s StrongARM-based PDA (personal digital
assistant) was very popular in a number of high-profi le research projects at MIT and
ISI, it still cannot meet the low power requirements of video sensor design. In addi-
tion, traditional video sensor designs have more shortcomings, as follows.

Limited I/O bandwidth: Many of today’s embedded sensors use PCMCIA-based
devices. Th ey typically require signifi cant power. Some devices use USB interfaces.
Unfortunately, low-power, tiny video sensors cannot support USB 2.0 (455 Mb/s)
well, as a fairly large processor would be required to store the incoming data.

Lack of fl oating-point (FP) processing: Today, many embedded devices use
StrongARM processors and Xscale processors. However, both of them do
not support FP operations. As we know, video compression algorithms are
based on FP operations.

Memory bandwidth: Traditional devices are not optimized with respect to mem-
ory bandwidth, which is very important for video sensor operations due to a
lot of image/video data.

Th e Panoptes video sensor [Feng05] has been developed to overcome the above short-
comings. It uses the Linux operating system due to Linux’s simplicity in controlling the
device and its fl exibility to modify parts of the system. In Panoptes, the video-sensing
task is achieved through several components, including capture, compression, fi ltering,
buff ering, adaptation, and streaming. Some of the important components of the Panoptes
system are shown in Figure 14.1. Next, we briefl y describe these components.

Power
managementMemory-mapped

camera/PWC
module

Camera

Filtering
Compression Buffer

management/
adaptation

Data
14 123 1 22 17

Streaming
module Network

Figure 14.1 Panoptes’ sensor software components. (Adapted from Feng, W. et al.,
ACM Trans. Multimedia Comput. Commun. Appl., 1(2), 151, May 2005.)

AU9215_C014.indd 401AU9215_C014.indd 401 2/22/2010 9:29:58 PM2/22/2010 9:29:58 PM

402 ◾ Wireless Sensor Networks: Principles and Practice

14.2.1 Video Capture
Feng et al. [Feng05] use the Philips Web camera interface with video for Linux.
A Linux kernel decompresses the video data before passing it to the user space,
where the decompressed video data (>10 frames per second) is available via memory
mapped access. When a video frame is ready to be read, it is further processed
through a fi ltering algorithm, a compressor, or both.

14.2.2 Video Compression
To reduce memory storage and network traffi c, we need to compress the video
frames both spatially and temporally. Panoptes can use multiple compression
formats, such as JPEG, diff erential JPEG, and conditional replenishment com-
pression formats. Although JPEG itself does not achieve temporal compression
of data, it can reduce math computational cost (compared to formats such as
MPEG), and thus save sensor power. As compression is performed by the CPU,
the quality of video and the level of compression depend on the CPU’s processing
capability.

14.2.3 Data Filtering
Th e video sensors must have the ability to fi lter data at the sensor level to reduce
network traffi c. Note that fi ltering data at the sensor level instead of at the network
level allows us to reduce the overall network design cost. In many applications,
such as video security surveillance, the sensors should be able to fi lter “uninterest-
ing” data while compressing and transmitting only the desired information (such
as new faces). For environmental observation, the fi lter could create a time-elapsed
image to compress image data only, as it is required to reduce the amount of data
that needs to be transmitted [Stockdon00].

Panoptes has a fi lter for the user to specify which video data should be removed.
Because of the relatively high cost of Discrete Cosine Transformation (DCT)-based
video compression, low- complexity fi ltering algorithms should be run if they can
reduce the number of frames to be compressed.

14.2.4 Data Buffering
Data buff ering is a key component in developing a successful video sensor. We
can buff er the video data based on some type of priority-control scheme to ensure
that all important data is transmitted in the event of network congestion or out-
ages. In a buff ering scheme, if the buff er within the video sensor is full, effi cient
priority-control mechanisms should be used to determine which data should be
discarded fi rst. Panoptes uses a priority-based streaming mechanism to support
the video sensor.

AU9215_C014.indd 402AU9215_C014.indd 402 2/22/2010 9:29:58 PM2/22/2010 9:29:58 PM

Video Sensor Networks ◾ 403

As we can see, a VSN mainly needs two aspects of knowl-
edge: (1) digital image/video processing (such as data
compression, object detection, and tracking) and (2) net-
work multimedia processing (such as buff ering and QoS
schemes). Distributed data compression is a good example
that needs the integration of networking protocols and
image processing.

WSNs

Remember

14.3 Cyclops [Rahimi05]
Cyclops [Rahimi05] separates the above-mentioned two aspects: (1) local image
capture (in sensors) and (2) wireless network communications. It has program-
mable logic and memory circuits for high-speed data transfer. It also has a dedicated
microcontroller (MCU) to serve as a sensor-to-network interface. By using these
hardware components, it could separate high-speed data transfer from the low-
speed capability of the embedded MCU. Another benefi t of such separation is to
make the time-consuming image capturing and interpretation localized and not
aff ected by sensor communications. Th is is particularly useful for network-enabled
sensors that experience asynchronous events (e.g., MAC layer radio access) and, in
the meantime, need stringent delay constraints.

But we should note that one of the Cyclops design goals is to make power
consumption minimal for large-scale deployment and extended lifetime. Such a
goal also makes the platform face serious constraints with respect to computational
power and imaging size. Th erefore, Cyclops is appealing only for certain classes
of applications. It may not be so effi cient when an application requires high-speed
processing or high-resolution images.

In summary, Cyclops hardware has two appealing fea-
tures: (1) very effi cient energy-saving architecture and
(2) separate localized video processing from network sen-
sor communications. To achieve these two advantages,
Cyclops exploits computational parallelism to isolate
prolonged sensing computations, uses on-demand con-
trol of clocking resources to decrease power consump-

tion, and uses automatic relaxation of each subsystem to make each of them
reach its lower power state.

Good idea

Cyclops node hardware consists of an imager, an MCU, a complex programma-
ble logic device (CPLD), an external SRAM, and an external fl ash (Figure 14.2).
Th e MCU can control the video sensor by setting its parameters, instructing it to

AU9215_C014.indd 403AU9215_C014.indd 403 2/22/2010 9:29:58 PM2/22/2010 9:29:58 PM

404 ◾ Wireless Sensor Networks: Principles and Practice

capture video frames, and telling it when to run image computation. Th e complex
programmable logic device (CPLD) produces high-speed clock synchronization
signals and memory control commands that are required for image capture. Th e
MCU can also work with the CPLD to provide low-power processing as well as
access to high-speed clocking that are important in performing image capture. It is
interesting to know that the CPLD can also perform some image-processing tasks,
such as background subtraction and frame diff erentiation during video capture.
Such a design makes an extremely economical use of hardware resources, as the
CPLD is already clocking during the video capture. If the MCU does not require
the clocking or processing features of the CPLD at any point of time, it can send
out a halt command to stop the CPLD (this conserves power).

Another important feature of Cyclops nodes is their use of an external SRAM,
which is useful when the internal memory of the MCU is insuffi cient for many
applications. Th e external memory has enough space for image storage, computa-
tion, and manipulation purposes. Moreover, at the time of capture and computation,
the external memory allows us to access memory resources. Th e SRAM is kept in the
sleep state when we do not need extra memory resources (i.e., the internal memory
is enough). Cyclops also contains external fl ash memory for permanent data storage
that is used in template matching.

Camera
module

Image clock control
(from MCU)

CPLD clock control
(from MCU)

Processor

Memory

FlashSRAM

MCU

Host (mote)

CPLD

Figure 14.2 Hardware architecture of fi rst generation of Cyclops. (Adapted from
Rahimi, M. et al., Cyclops: In situ image sensing and interpretation in wireless sen-
sor networks, Proceedings of the Third International Conference on Embedded
Networked Sensor Systems (SenSys ’05), San Diego, CA, November 2–4, 2005,
ACM, New York, 192–204.)

AU9215_C014.indd 404AU9215_C014.indd 404 2/22/2010 9:29:59 PM2/22/2010 9:29:59 PM

Video Sensor Networks ◾ 405

Bus architecture: Th e MCU, CPLD, and memory modules all share the same address
bus and data bus. Th is feature helps fast and easy data transfer between hardware
components. Such a common bus structure requires a special mechanism for syn-
chronized data access among components.

Each module in Cyclops works in a few power “states.” Th e lower the power a
state uses, the higher the wake-up cost it requires to get back to the “active” state.
Th erefore, the application cannot just simply use a power state without consider-
ing the balance between the power saved (by entering the low power state) and the
power used (to bring the module back to full power).

Cyclops also has an asynchronous trigger command wire. It can be used as a
paging channel to perform event triggering in applications that require a quick
“wake-up” from the sleep state. For example, the trigger wire could be connected to
an IR (InfraRed) sensor, a microphone, or a magnet sensor, to trigger image capture
when a motion or sound is detected.

Th e fi rmware that controls the Cyclops platform should support automatic
relaxation to the lowest-possible power state, allow longtime image computations,
and support synchronized access by both the MCU and the CPLD to shared
resources such as SRAM. Th ese requirements indicate that a network- centric
approach is not suitable to primarily asynchronous events. Instead, Cyclops
requires a “sequential” approach, which performs sequential image capture and
processing. In this type of approach, a frame capture is followed by a series of
long synchronous operations with little concurrency.

Cyclops fi rmware is written in the NesC [Gay03] language and runs in the
TinyOS operating system environment. Th e use of TinyOS allows abstract func-
tionalities to be used in the form of “modules” that can be easily interfaced. In
addition, the operating system provides a scheduler and services that can be used
for event-timing control.

14.4 VSN Calibration [Purushottam07]
As we mentioned in Section 14.1, VSNs perform several common tasks, such as
object detection, object recognition, and object tracking. While object detection can
detect a new object that appears in the range of the video sensors, object recognition
determines what exactly the object is, and object tracking uses multiple video sensors
to continuously track the object.

Th e VSN needs to be calibrated at the initial setup time for all of the above
three tasks to be performed. For VSN calibration, we need to determine where each
camera is placed (i.e., its location) and how the camera is oriented (i.e., its angle).
Th e location of a camera is its position (3D coordinates) in a reference coordinate
system, while orientation is the direction to which the camera points. Only when
these two calibration statistics are obtained will we know the scope each video
sensor can view.

AU9215_C014.indd 405AU9215_C014.indd 405 2/22/2010 9:29:59 PM2/22/2010 9:29:59 PM

406 ◾ Wireless Sensor Networks: Principles and Practice

By using this calibration information (location and orientation), the entire
observation area can be broken down to fi gure out which parts of that area are cov-
ered by more than one sensor. We could also determine the relationship with other
nearby sensors, such as the overlap area among neighboring cameras.

After we know these overlapped view areas, we may determine which sensor
should sense which areas. We can also triangulate the location of the position
through the use of overlapping sensors. We can allocate tracking responsibilities to
sensors when the object moves out of a sensor’s view.

Calibration of cameras is a well-studied area in the computer vision fi eld. Many
techniques can accurately estimate the location and orientation of cameras (such as
in [Horn86] and [Tsai87]). Typically, they assume that the coordinates of a few land-
marks are known beforehand. By using the projections of these landmarks as well as
the principles of optics, we could determine a camera’s coordinates and orientation.

Unfortunately, we cannot simply use these camera-based calibration schemes,
because video sensors have serious computational limits and power constraints. Video
sensors’ limited calibration capability can lead to imprecise positioning of objects.

Even though we may borrow the concept of landmarks for the calibration of
VSNs, we may not have landmarks at all in a VSN due to their high cost (com-
pared to sensors). If we do not use landmarks, we may equip each video sen-
sor with a positioning device, such as a GPS, and a directional digital compass
[Sparton08]. Th ese two things enable direct determination of the node location
and orientation. Although this idea is extremely useful, today’s GPS systems are
expensive (compared to microsensors) and are not so accurate (errors up to 5–15 m).
Another alternative is to use ultrasound-based positioning and ranging technology
[Priyantha00] that provides greater accuracy. But the use of additional hardware
in low-power video sensors could be cost prohibitive and power ineffi cient.

Th erefore, accurate calibration is challenging for the initialization of resource-
constrained WSNs without infrastructure support. Is it possible to implement
calibration in video sensors without the use of known landmarks or without using
any positioning technology?

If it is cost prohibitive to achieve highly accurate calibration through an absolute
position knowledge, determining relative relationships between neighborhood nodes
may be the only available option. Th is raises the following questions: (1) How to deter-
mine relative locations and orientations of video sensors without the use of known
landmarks or positioning infrastructure? (2) How accurate are these techniques? and
(3) What is the performance of applications based on approximate initialization?

Let us consider a wireless network with randomly deployed video sensors.
Each sensor node consists of a low-power imaging sensor (such as Cyclops) and
an RF mote (such as the Crossbow mote or the TelosB node). No GPS hardware
is used. Our goal is to determine a parameter called k-overlap, which is a frac-
tion of a viewable area that overlaps with k video sensors. Assume that there is
a reference object present in the environment at any place. We assume that we
know beforehand the reference object’s dimensions as well as the focal length of

AU9215_C014.indd 406AU9215_C014.indd 406 2/22/2010 9:29:59 PM2/22/2010 9:29:59 PM

Video Sensor Networks ◾ 407

each video sensor. Kulkarni [Purushottam07] describes approximate techniques
to determine the degree of overlap and the region of overlap for camera sensors.

14.4.1 Determining the Degree of Overlap
We need to determine the value of k-overlap. Let us analyze a general case (i.e., k
is an arbitrary value). Th us, 1-overlap is the fraction of a sensor’s viewable region
without overlap with any other sensors, 2-overlap is the fraction of region viewable
to a sensor itself and one of the other sensors, and so on.

As shown in Figure 14.3, k1 is an area that is viewable by a single sensor, k2 is
an area viewed by two cameras, and k3 is an area that all three cameras in the fi gure
can view. Obviously, the union of the k-overlap regions of a sensor is exactly the total
viewable range of that sensor (i.e., the sum of the k-overlap fractions of a sensor is 1).

Th e next step is to determine the k-overlap for each sensor, k = 1…n, where n is
the total number of sensors in the system.

14.4.2 Estimating k-overlap
Assume that some reference objects are deployed randomly. We call the location
of each reference object as a reference point. Let us assume a uniform distribution of
reference points in the environment. Th e video sensors will then take pictures of
the environment. Once the pictures are processed, we can then see which refer-
ence objects each camera can view.

Suppose that a camera i can see ri reference points in the total set. Among these
ri reference points, let k

ir denote the reference points that are simultaneously visible
to exactly k cameras. Th e k-overlap for camera i is given by

Camera 1

Camera 3

Camera 2

k1

k1

k1

k1 k1 = 1 camera can view region
k2 = 2 cameras can view region
k3 = 3 cameras can view region

k1

k2

k2

k3

Figure 14.3 Different degrees of overlap (k-overlap) for a camera. (From
Kulkarni, P., SensEye: A multi-tier heterogeneous camera sensor network, PhD
thesis, Department of Computer Science, University of Massachusetts, Amherst,
MA, February 2007.)

AU9215_C014.indd 407AU9215_C014.indd 407 2/22/2010 9:29:59 PM2/22/2010 9:29:59 PM

408 ◾ Wireless Sensor Networks: Principles and Practice

=

k
ik

i
i

rO
r

(14.1)

As shown in Figure 14.4, camera 1 can see sixteen reference points, of which eight
are visible only to itself; four are visible to cameras 1 and 3; and another four to
cameras 1, 2, and 3. Th is yields a 1-overlap of 0.5, and 2-overlap and 3-overlap of
0.25 for camera 1. Likewise, we could fi nd the k-overlaps for other cameras.

14.5 SensEye [Purushottam07]
SensEye [Purushottam07] is a VSN comprising multiple tiers (see Figure 14.5). As
we have seen before, a sensor node consists of an analog video sensor, an MCU, a
radio transceiver, and on-board RAM and fl ash memory.

In each tier, all sensors are homogeneous (i.e., of the same type). However,
diff erent tiers have heterogeneous sensors (i.e., these video sensors have diff erent
capabilities). Higher-tier sensors have higher capabilities than lower-tier sensors.
Here, the capabilities include processing, networking, and imaging. On the other
hand, higher-tier sensors consume more power. Th erefore, to reduce the system
power consumption, we should activate or use higher-tier sensors only when the
lower-tier sensors are incapable of eff ectively capturing the image. Because dif-
ferent tasks will execute on multiple tiers, we need energy-effi cient protocols to
coordinate among various tiers of video sensors.

SensEye has made a good trade-off when allocating tasks to diff erent tiers.
SensEye uses a three-tier architecture (see Figure 14.5).

 1. Th e lowest tier of SensEye consists of Crossbow motes [Crossbow08] (RF =
900 MHz), and low-fi delity Cyclops or CMUcam video sensors.

Camera 1

Camera 2

Camera 3

Field of view

Reference objects

Figure 14.4 Estimation of k-overlap with the distribution of reference points.
(From Kulkarni, P., SensEye: A multi-tier heterogeneous camera sensor network,
PhD thesis, Department of Computer Science, University of Massachusetts,
Amherst, MA, February 2007.)

AU9215_C014.indd 408AU9215_C014.indd 408 2/22/2010 9:30:00 PM2/22/2010 9:30:00 PM

Video Sensor Networks ◾ 409

 2. Th e second tier consists of Stargate [Stargate08] nodes equipped with web-
cams. Each Stargate has an embedded 400 MHz XScale processor that runs
Linux. Obviously, this tier’s webcam can capture higher-resolution images
than Tier 1 video sensors. To maintain upstream and downstream commu-
nications, each Tier 2 node has two radios—an 802.11 radio for peer-to-peer
communications among Stargate nodes and a 900 MHz radio for communi-
cations with Tier 1 motes.

 3. Th e third tier has a sparse deployment of high-resolution pan-tilt-zoom
cameras that are connected to embedded systems (such as portable PCs).
Th ese cameras are programmable. Th ey can be utilized to fi ll the coverage
gaps provided by Tier 2. Th ey can also perform calibration.

Th e deployment of multi-tier video sensors is an interest-
ing idea. It is not energy effi cient to implement all object
detection/recognition/tracking algorithms in one tier.
Th e higher tiers have a higher CPU capacity. But they
consume much energy. Th is hierarchical structure has
been used in many problems. For instance, the Internet
backbone is such a multilevel architecture. Backbone

routers are superfast (>40 Gbs). But these are very expensive. Campus LANs
use inexpensive routers for edge traffi c processing. Such a tree-based multi-
level architecture is very similar to the architecture of human society.

Good idea

Wireless

PTZ cameraPC

CMUcam

Stargate and
webcam

Figure 14.5 Multi-tier SensEye’s hardware architecture. (From Kulkarni, P., SensEye:
A multi-tier heterogeneous camera sensor network, PhD thesis, Department of
Computer Science, University of Massachusetts, Amherst, MA, February 2007.)

AU9215_C014.indd 409AU9215_C014.indd 409 2/22/2010 9:30:00 PM2/22/2010 9:30:00 PM

410 ◾ Wireless Sensor Networks: Principles and Practice

Th e design of the SensEye multi-tier camera sensor network is based on the following
three principles.

Principle 1: Assign tasks to the lower tier: Try to assign tasks to the lower tier to
reduce power consumption. However, if the lower-tier sensors cannot meet
certain requirements for some tasks (for instance, we need to execute some
tasks correctly, reliably, and quickly), we need to seek the help of higher-tier
sensors.

Principle 2: Wake up nodes only when necessary: To conserve energy, the pro-
cessor, the radio, and the sensor on each node are duty cycled. SensEye will
wake up nodes from sleep states through the use of triggers only when it is
necessary. For example, we only wake up a higher-fi delity camera when we
need to acquire a high-resolution image after a new object is detected by a
lower-tier sensor. Putting these devices into the sleep state as much as possible
will drastically improve the network’s lifetime.

Principle 3: Exploit redundancy in coverage: Try to exploit overlaps in the cover-
age of cameras for calibration. For example, we could use two cameras with
an overlapping coverage to localize an object and compute its (x, y, z) coor-
dinates. Such data can then be used to intelligently wake up other sensors or
to determine the trajectory of the object. Moreover, by exploiting redundancy
in coverage, we improve the power consumption performance and maximize
system lifetime.

SensEye detects objects with low latency and high reliability, as well as with
energy effi ciency. Th ese confl icting goals cannot be achieved in a homogeneous,
single-tier network. It allocates tasks through the seeking of a point solution in the
space of all possible allocation permutations across tiers.

SensEye has used four types of cameras: (1) the Agilent Cyclops (discussed
in Section 14.3), (2) the CMUcam Vision sensor [CMUcam08], (3) a Logitech
Quickcam Pro Webcam, and (4) a Sony PTZ camera.

Th e RF communication is achieved through three diff erent platforms—Cross-
bow motes [Crossbow08], Intel Stargates [Stargate08], and a mini-ITX embedded
PC. Th ese motes interface with diff erent tiers of cameras.

Tier 1: It consists of a low-power camera sensor, such as Cyclops, connected to
a low-power mote sensor platform. Unfortunately, SensEye can only use a
prototype of the Cyclops camera, because mature products are not available.
Th e software in Cyclops provides support for frame capture, frame diff erenc-
ing, and object detection.

Tier 2: It has a more capable platform and camera. Each Tier 2 node has a wake-
up circuit to wake the node from a sleep or suspended state once it receives
a trigger from a Tier 1 node. In SensEye implementation, an Intel Stargate
sensor platform is used along with an attached mote that acts as the wake-up

AU9215_C014.indd 410AU9215_C014.indd 410 2/22/2010 9:30:00 PM2/22/2010 9:30:00 PM

Video Sensor Networks ◾ 411

trigger. As the Stargate does not have hardware support for automatic wake-
up, a relay circuit described in Turducken [Sorber05] is used for this purpose.
Th e Logitech Webcam connects to the Stargate through the USB port.

Tier 3: A Tier 3 node comprises a Sony SNC-RZ30N PTZ camera connected to
an embedded PC running Linux.

Figure 14.6 shows the software framework of SensEye. In this fi gure, it is
assumed that Tier 1 is comprised of motes connected to CMUcam cameras. We
could replace a CMUcam with Cyclops. Th e fi rst two tiers of SensEye have four
software components: (1) CMUcam frame diff erentiator, (2) mote-level detector,
(3) wake-up mote, and (4) object recognition at the Stargate.

Tier 1 frame diff erentiator: Tier 1 nodes can capture an image for diff erencing. Th e
CMUcam can capture an image and quantize it into a lower-resolution frame.
It then performs frame diff erencing by using the reference background frame.
Such a frame-diff erencing procedure can highlight objects by using nonzero

diff erence values. Th e CMUcam has two working modes during frame
diff erencing: (1) a low-resolution mode, where it converts the current image
(of 88 × 143 or 176 × 255) to an 8 × 8 grid for diff erencing; and (2) a high-
resolution mode, where a 16 × 16 grid is used for diff erencing.

Mote-level detector: Tier 1 motes report the results of object detection to the
higher-level nodes. On start-up, the Tier 1 mote sends initialization com-
mands to its analog video sensor to set up its background and frame-
diff erencing parameters. Th e video sensor periodically captures an image
and performs frame diff erencing. Th e mote uses a user-specifi ed threshold
and the returned frame diff erence result to decide whether an object appears
or moves. If an event is detected, the mote broadcasts a trigger to the higher-tier
motes.

Wakeup
mote

Stargate
frameGrabber

Wakeup signal is sent by
the wakeup mote to the

stargate system

Trigger from detector to wakeup mote
when an object is detected

Tier 2Tier 1

CMUcam

Mote-level
detector

Figure 14.6 SensEye’s software architecture. (From Kulkarni, P., SensEye: A
multi-tier heterogeneous camera sensor network, PhD thesis, Department of
Computer Science, University of Massachusetts, Amherst, MA, February 2007.)

AU9215_C014.indd 411AU9215_C014.indd 411 2/22/2010 9:30:01 PM2/22/2010 9:30:01 PM

412 ◾ Wireless Sensor Networks: Principles and Practice

Wake-up mote: Th e Tier 2 motes (connected to the Stargate) receive triggers from
the lower-tier motes and decide whether to wake up the Stargate for further
video processing. Th is procedure needs the localized coordinates. Note that we
typically do not compute the object coordinates at a Tier 1 mote, as this would
cause signifi cant coordination operations between the Tier 1 nodes. SensEye
thus uses a Tier 2 mote to compute these coordinates, and the Tier 1 nodes
just simply piggyback parameters such as θ and ϕ, as well as the centroid of the
image of the object. Th e Tier 2 mote then uses calibration algorithms to derive
the coordinates. Th e Stargate is then woken up if the object location is within
its fi eld of view; otherwise, the trigger is ignored.

High-resolution object detection and recognition: Th e Stargate mote can imme-
diately capture an image of the webcam’s current view upon being awo-
ken. Frame diff erencing between the captured image and the reference
background image is performed. Frame diff erencing fi nds out the pixels
and boundaries where the potential objects appear in the image. SensEye
removes noise pixels by using smoothing techniques based on color thresh-
old fi ltering and an averaging of the neighboring region. Next, object rec-
ognition algorithms are used to fi nd each possible object. SensEye uses an
averaging scheme based on the pixel colors of the object. It produces an
average value of the red, green, and blue components of the object. Th e val-
ues of red, green, and blue can then be matched against a library containing
many defi ned objects, to classify the object. SensEye can be extended by
adding sophisticated classifi cation techniques, face recognition, and other
vision algorithms.

PTZ controller: Tier 3 has some retargetable cameras that can fi ll the coverage
gaps and enhance coverage redundancy. Th e pan and tilt values for the PTZ
cameras use localization techniques to implement calibration. Th e cameras
export an HTTP API for a program-controlled camera movement. SensEye
uses one such HTTP-based camera driver [Sony08] to retarget the Tier 3 PTZ
cameras.

Problems and Exercises
14.1 Explain a few applications of VSNs in detail.
14.2 What special requirements does a VSN have compared to general sensor

networks?
14.3 Illustrate the importance of video sensor calibration.
14.4 Why does SensEye use a three-tier architecture?
14.5 Explain the basic principle of k-overlap determination.

AU9215_C014.indd 412AU9215_C014.indd 412 2/22/2010 9:30:01 PM2/22/2010 9:30:01 PM

VIIMISCELLANEOUS
TOPICS

AU9215_S007.indd 413AU9215_S007.indd 413 12/17/2009 3:36:28 PM12/17/2009 3:36:28 PM

AU9215_S007.indd 414AU9215_S007.indd 414 12/17/2009 3:36:28 PM12/17/2009 3:36:28 PM

415

15Chapter

WSN Energy Model

Because the sensor motes are battery driven, the energy consumption models are
needed to quantify the sensor’s lifetime. Th e design of all WSN protocols should
keep energy effi ciency in mind. In this chapter, we introduce some popularly used
WSN energy models.

In many cases, we need to use math or simulation mod-
els to describe a performance metric. Th e purpose is to
obtain an estimated performance value for any proposed
WSN protocol before we test it in the realistic hard-
ware testbed. In practice, we could not easily measure
the energy consumption of a sensor except approximate
system lifetime measure (e.g., how long a sensor’s bat-
tery can last). Th erefore, model-based energy calculation
could give us a good metric on WSN performance.

WSNs

Remember

15.1 Basic WSN Energy Model [Carlos04]
As discussed earlier, the sensor communications are the ones that consume most of
the energy on a typical wireless sensor node. Other parts (such as CPU calculations)
could consume certain energy, but typically less than communication energy. Let
us take a look at a simple wireless link (Figure 15.1) and its energy models. Th is
model has been used in many WSN energy calculations.

Th e energy consumed when sending a packet of m bits over one-hop wireless
link can be expressed as [Carlos04]

AU9215_C015.indd 415AU9215_C015.indd 415 2/13/2010 12:42:37 PM2/13/2010 12:42:37 PM

416 ◾ Wireless Sensor Networks: Principles and Practice

 { } { }= + + + + +L T T st encode R R st decode(,) (,) ()E m d E m d P T E E m P T E (15.1)

where
ET is the energy used by the transmitter circuitry and power amplifi er
ER is the energy used by the receiver circuitry
PT is the power consumption of the transmitter circuitry
PR is the power consumption of the receiver circuitry
Tst is the start-up time of the transceiver
Eencode is the energy used to encode
Edecode is the energy used to decode

If we assume that there exists a linear relationship for the energy spent per bit at the
transmitter and receiver circuitry, ET and ER can be written as

 ()α= +T TC TA(,)E m d m e e d (15.2)

where
eTC, eTA, and eRC are hardware-dependent parameters
α is the path loss exponent whose value varies from 2 (for free space) to 4 (for

multipath channel models)

Th e eff ect of the transceiver start-up time, Tst, will greatly depend on the type of
MAC protocol used. To reduce power consumption as much as possible, the trans-
ceiver should be in a sleep mode as much as possible. Th is can save a lot of power,

Baseband
DSP

m bits

m bitsPT

PR

eRE

eTE

eTA

Receiver
electronics

Baseband
DSP

Amplifier

Tx

d

Trans-
mitter

electronic

Figure 15.1 WSN energy model. (Adapted from Pomalaza-Ráez, C., Wireless
sensor networks energy effi ciency issues, Lecture notes, Fall 2004, University of
Oulu, Oulu, Finland.)

AU9215_C015.indd 416AU9215_C015.indd 416 2/13/2010 12:42:39 PM2/13/2010 12:42:39 PM

WSN Energy Model ◾ 417

but there is a caveat in that: constantly turning the transceiver on and off can con-
sume energy.

An explicit expression for eTA can be derived as [Carlos04]

απ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠λ

=
η

Rx 0

TA
ant amp bit

4()()()

()()()
r

S
NF N BW

N
e

G R
(15.3)

where
(S/N)r is the minimum required signal-to-noise ratio at the receiver’s demodulator

for an acceptable Eb/N0
NFRx is the receiver noise
N0 is the thermal noise fl oor in a 1 Hz bandwidth (Watts/Hertz)
BW is the channel noise bandwidth
λ is the wavelength in meters
α is the path loss exponent
Gant is the antenna gain
ηamp is the transmitter power effi ciency
Rbit is the raw bit rate in bits per second

Th e expression for eTA can be used for those cases where a particular hardware con-
fi guration is being considered. Th e dependence of eTA on (S/N)r can be made more
explicit if we rewrite the previous equation as

απ⎛ ⎞
⎜ ⎟⎝ ⎠λ

= ξ ∗ ς =
η

Rx 0

TA
ant amp bit

4()()()
 where

()()()
(/)r

NF N BW
e

G R
S N

(15.4)

It is important to bring this dependence explicitly as it highlights how eTA and
bit error rate p are related to each other. p depends on Eb/N0, which in turn
depends on (S/N)r. Note that Eb/N0 is independent of the data rate. To relate
Eb/N0 to (S/N)r, the data rate and the system bandwidth must be taken into
account, that is,

 = = γb 0 T b T/ / /(/) ()() ()r E N R B R BS N (15.5)

where
Eb is the energy required per bit of information
R is the system data rate
BT is the system bandwidth
γb is the signal-to-noise ratio per bit, that is, (Eb/N0)

AU9215_C015.indd 417AU9215_C015.indd 417 2/13/2010 12:42:39 PM2/13/2010 12:42:39 PM

418 ◾ Wireless Sensor Networks: Principles and Practice

Although the above model could accurately calculate the sending/receiving energy, many
WSN developers prefer a simplifi ed model (Figure 15.2) as follows [Akyildiz02]:

In the sender side, the energy consumption includes two sources: (1) local elec-
tronics and (2) sending out k bits for a distance of d. In the receiver side, the local
electronics consume energy when getting k bits.
Example: Suppose each hop has a distance of 5 m. Th e sender–receiver distance is
100 m. Th e data amount is 1 M bits. Th e coeffi cient Eelec = 50 nJ/bit, Eamp = 100 pJ/bit.
How much does the WSN consume?
Solution: Th ere will be 100 m/5 m = 20 pairs of transmitting and receiving sensors
(each sensor will be a receiver in last hop and a sender in next hop).

For each pair of sensors, the energy consumed is as follows:
Sender side energy consumption: ETx(k,d) = Eelec * k + Eamp * k * d 2
Th at is: ETx(k,d) = (50 * 10−9) * 106 + (100 * 10−12) * 106 * 52 = 0.0525 J
Receiver side energy consumption: ERx(k) = Eelec * k = 0.05 J
Each pair thus consumes energy = ETx(k,d) + ERx(k) = 0.1025 J
Th e entire WSN consumes energy = 0.1025 * 20 = 2.05 J

15.2 Simulation-Based Energy Modeling [DSchmidt07]
Th e above math models could provide quantitative results on WSN energy con-
sumption. Another approach to measuring energy is through simulation models.
In [DSchmidt07], a fi nite state machine (FSM)–based simulation model could
accurately measure Crossbow sensor energy.

Transmitter
electronics energy

k-bit

Distance d

Transmission energy
consumption in distance d

Transmission energy: ETx (k, d)

Receive electronics Eelec* k

Receiving energy: ERx (k)

Figure 15.2 Simplifi ed energy model.

AU9215_C015.indd 418AU9215_C015.indd 418 2/13/2010 12:42:39 PM2/13/2010 12:42:39 PM

WSN Energy Model ◾ 419

No matter whether you use math models or simulation
models, both approaches do not use realistic hardware
platforms to measure energy. In reality, it is not easy to
use instruments to measure CPU, radio chip, or other
circuit energy consumption. In your WSN research, you
may create some energy models based on empirical data
(such as experimental measurement) or system status
analysis (such as FSM models).

Good idea

Th e above model describes energy from the system level. Some software tools (such
as SPICE) could model the energy consumption of sensor chips in the transistor level
or in the register level. Although these simulation tools cover all eff ects including
leakage and switching energy, it is diffi cult to create the energy models because those
tools require a detailed in-depth knowledge of the hardware architecture such as
register interfaces. Also, simulation on circuit level is very time consuming. It takes a
long time to simulate whole networks with a large number of individual nodes.

As the circuit-level simulations are complex, energy models that simulate the
hardware on the instruction level (i.e., running codes) have been created for some
CPUs. Such an approach is usually done by measurement of synthetic software
benchmarks. Th ese benchmarks use a series of program loops that execute only one
kind of instruction, so that the energy consumption of every single CPU instruc-
tion can be calculated from the measurements. Some special energy measure should
be used to model inter-instruction dependencies and the impact of algorithm oper-
ands on CPU energy consumption.

Th e above instruction-based energy models could achieve relatively accurate
energy simulations without the need of much chip knowledge as in the hardware
circuit simulations. Another benefi t of instruction-level simulation is the improved
simulation runtime compared to circuit simulation. However, the cost of CPU model
creation is relatively high, and the resulting model has too much overhead when used
at runtime, because sensor nodes typically have very limited computational power.

If you have taken the computer architecture course, you
should be able to understand the importance of bench-
mark programs in CPU performance measurement. Th ose
benchmarks are well recognized by CPU designers in terms
of comparing diff erent CPUs’ speed and energy consump-
tion. However, here we measure not only CPU energy
but also some other parts such as wireless communication
energy. Th ose benchmarks would not be so useful.

WSNs

Remember

AU9215_C015.indd 419AU9215_C015.indd 419 2/13/2010 12:42:40 PM2/13/2010 12:42:40 PM

420 ◾ Wireless Sensor Networks: Principles and Practice

To overcome the mentioned problems, Schmidt et al. [DSchmidt07] proposed a
component-based high-level modeling approach. We all know that a WSN sensor
is made up of several hardware components such as a microcontroller (i.e., CPU),
a radio transceiver chip, sensor electronics, and various other devices like LEDs,
fl ash RAMs, etc. Each of these components can be operated in diff erent states. For
example, a transceiver chip would be able to operate in the following four states:
power down, idle, transmitting, and receiving. Th e CPU could also work in idle,
interrupt, and calculation states. A natural approach would be the use of an FSM
to model the component operation procedure and attach an energy model to each
state as follows:

We call every operational status of a sensor component as one ◾ state in the
FSM.
We model every possible ◾ change from one operational state to another as a
state transition in the FSM.
Every state in the FSM is associated with an energy consumed per unit time. ◾
Every transition in the FSM is associated with a time period needed to switch ◾
between two operational states.
Th e FSM has a well-defi ned initial state that corresponds to the stable state a ◾
component reaches after power up.

How do we obtain the time and energy consumptions associated with states and
state transitions? Typically, we could get those data from experiments or simple
measurements. We could start with the FSM model of every component of a sensor
node. Th en the FSM for the whole sensor node can be constructed.

In most cases, only the microcontroller (CPU) can trigger the state changes.
An FSM typically represents the possible states the system could be in. However,
it does not refl ect constraints on state changes that appear in normal operation.
Wireless communication is a good example. After the transceiver has begun frame
transmission, it cannot be interrupted. Such a case cannot be represented in the
FSM model. Hence, in a second-step, the dynamic behavior of the sensor node in
typical scenarios is analyzed to model these constraints.

Th e SDL (specifi cation and description language) model could defi ne a node’s
dynamic behavior. SDL includes the runtime environment implementing the SDL
semantics, and the code transformation patterns. We could represent power saving
strategies in the SDL model. We could use either explicit power-saving strategies
that are part of the application model, or implicit strategies that are part of the
runtime environment. Th e WSN dynamic behavior can be formalized as a set of
communicating state machines. Th e SDL model is based on state machines that
have common actions with the state machine describing the sensor hardware.

Figure 15.3 shows an example for a sensor’s dynamic behavior. It represents the
task of sending one frame of data via the wireless interface to a distant node. It starts
in the state where the microcontroller is the only active component of the sensor

AU9215_C015.indd 420AU9215_C015.indd 420 2/13/2010 12:42:40 PM2/13/2010 12:42:40 PM

WSN Energy Model ◾ 421

node. Later on, the transceiver is triggered to transmit one frame. Th e number
of data bytes to be transmitted determines the amount of time spent in transmit
mode. After transmission, the transceiver is deactivated again to save energy, and
the initial state is triggered again.

From the above fl owchart (Figure 15.3), it is very easy to calculate the energy
consumed by the specifi ed task, conforming to Equation 15.6 below. Here Pstate is
the power consumed in the state and tstate is the time spent in this state. Ptrans and
ttrans are the power and time for the transitions between two states.

= +⋅ ⋅∑ ∑state state trans trans

state trans

E P t P t

(15.6)

Such an FSM-based analytic model can be integrated in a software simulator, which
makes it possible to perform simulations that predict the energy consumption of a
sensor system very accurately.

On the other hand, some environment factors, such as platform resources, net-
work resources, and energy resources, can aff ect the behavior of the sensor nodes.
As one factor’s status can signifi cantly aff ect all of the other simulated factors, and
can eventually change the outcome of the simulation, we need to model all of these
factors to simulate the energy consumption of an array of sensor nodes accurately.

Let us see an example. Th e radio transceiver chip is used for communicating
with other network sensors. It signifi cantly aff ects the energy consumption of a sen-
sor node participating in a large sensor network. Some network-level factors, such as
network congestion and wireless bandwidth limitations, could cause a large number
of transmission errors. Th is could change the communication pattern of every sensor
in the network, and thus aff ecting the system energy consumption. Furthermore,
platform limitations such as inaccurate clocks/timers can make this situation worse

busy

activate

send frame

deactivate

Microcontroller

Transceiver
done sending

command: send frame

Figure 15.3 Parametric fl owchart for frame transmission. (Adapted from
Schmidt, D. et al., Adv. Radio Sci., 5, 347, 2007.)

AU9215_C015.indd 421AU9215_C015.indd 421 2/13/2010 12:42:40 PM2/13/2010 12:42:40 PM

422 ◾ Wireless Sensor Networks: Principles and Practice

by introducing clock jitter into time-synchronized networks. We need to design a
number of highly specialized simulators to capture all of these eff ects.

Some simulators that can simulate network behavior are already available
[SAM06]. Th ese specialized simulators can be programmed into diff erent simula-
tion components. To form a system-level simulator, we could use a message-based
interface to interconnect those components.

In the above component-system simulators, how do we model energy consump-
tion? A good idea is to use two steps:

Step 1: Use an FSM to describe an individual sensor’s energy consumption behavior.
Step 2: Use the message-based interfaces to couple the simulation of energy con-

sumption with other network-level operations (such as congestion control).

We could have two methodologies to support the above idea: (1) If the simula-
tion of the energy consumption in a hardware component (such as CPU) is already
implemented in a software simulation module, it would be easy to integrate energy
consumption into the existing simulators. In this case, we only need to implement
an interface between the energy simulation component and system simulation.
(2) If it is diffi cult to add another interface to an existing simulator, we could implement
energy consumption as a new simulation component. In the second approach, we
have separate software simulators: one simulation component simulates the behav-
ior of a sensor hardware component and another one simulates its energy consumption
by implementing the energy model.

We could easily integrate the above two methodologies into the energy simulator
framework. Figure 15.4 shows that the central component, “network node,” which is

Simulation
control

Network
node

Network
behavior

Tranceiver
wrapper

Energy
consumption

Energy
supplyNetwork

topology

Hardware
platform

Unchanged component Unchanged interface
New interface
Removed interface

Modified component
New component

Figure 15.4 Structure of the simulator integration framework. (Adapted from
Schmidt, D. et al., Adv. Radio Sci., 5, 347, 2007.)

AU9215_C015.indd 422AU9215_C015.indd 422 2/13/2010 12:42:41 PM2/13/2010 12:42:41 PM

WSN Energy Model ◾ 423

the core part of the simulator framework, needs to integrate the energy consumption
into the simulation software. In fact, such a core component controls all other simula-
tors that simulate one sensor’s diff erent operation states.

For the simulated hardware, we could integrate its energy consumption into
the already available simulator. Th is is actually the fi rst methodology mentioned
before.

For the simulation of the network-level system behavior, a new component that
implements the energy model could be created, and the simulation component for
the network behavior was replaced with a wrapper (see Figure 15.4). Such wrap-
per distributes simulator messages among the original simulation component (for
network behavior simulation) and the added component that tracks the energy
consumption of each sensor.

Schmidt et al. [DSchmidt07] provide an excellent example on Crossbow
MicaZ energy simulation. Th e MICAz node has an 8-bit Atmel microcontroller
with RISC architecture, clocked at 7.3728 MHz, with 4 kB of internal SRAM
and 4 kB data EEPROM as well as 128 kB of internal fl ash memory. Its trans-
ceiver chip operates at data rates up to 250 kbit/s. A 512 kB fl ash memory can
be accessed via two SRAM page buff ers of 264 bytes each. Th ree LEDs can be
used to show the operational status of the device and each node is equipped with
a serial-number chip that gives a node its unique ID. Th e MICAz has a 51-pin
expansion connector as an interface to arbitrary sensors. Figure 15.5 shows the
overall architecture.

Universal asynchronous receiver/transmitter (UART)

51-pin expansion
connector

RF-Frontend
Chipcon
CC2420

Serial-number
chip

Micro-
controller

ATMega 128L

Flash RAM AT45DB041B

Two-page buffer

Three LEDs

Figure 15.5 Architecture of MICAz. (Adapted from Schmidt, D. et al., Adv. Radio
Sci., 5, 347, 2007.)

AU9215_C015.indd 423AU9215_C015.indd 423 2/13/2010 12:42:41 PM2/13/2010 12:42:41 PM

424 ◾ Wireless Sensor Networks: Principles and Practice

To simulate MicaZ energy consumption, Schmidt et al. [DSchmidt07] consid-
ered the microcontroller, the transceiver chip, and the fl ash memory. Th e LEDs can
be turned off to reduce energy consumption, and the energy consumption of the
serial-number chip is negligible.

Figure 15.6 shows the component models of the transceiver and the microcon-
troller of the MICAz nodes. Such an FSM model also shows the state transition

Power down
VReg off
0.001 mA

Power down
0.02 mA

idle/1000 μs

ready/192 μs
idle/

0rec
eiv

e/1
92 μs

pd/0

send/192 μs

send/192 μs

Idle
0.426 mA

Send
[8.5..17.4] mA

Receive
18.8 mA

Transceiver (CC2420)

(a)

VReg on/600 μs

Standby
1 mA

interrupt/16000c

interrupt/10c

stdby/4c

idle/4c

active/10c

active/4c
pd/4c

active/10c

adc/4c

ext/4c

pwrsv/4cact/
16000c

Power down
0.3 μA

Idle
4 mA

Operating-modeClock cycle divider

Microcontroller
(ATMega 128L)

on/8

off/8

Divider
on

Divider
off

Power save
0.009 mA

Ext. standby
0.16 mA

Active
8 mA

ADC-mode
1 mA

(b)

Figure 15.6 Energy model of MICAz (only microcontroller and transceiver).
(Adapted from Schmidt, D. et al., Adv. Radio Sci., 5, 347, 2007.)

AU9215_C015.indd 424AU9215_C015.indd 424 2/13/2010 12:42:41 PM2/13/2010 12:42:41 PM

WSN Energy Model ◾ 425

times. For instance, it uses seconds for the transceiver, and uses clock cycles for the
microcontroller.

Th e microcontroller can be in diff erent power-reduced states. Th e MICAz
operates at a constant input voltage of 3 V (2 AA batteries). Its energy consump-
tion for every state is given in milliamperes. Please note that the transceiver
sending state is not a single value, instead, it is a range of energy consumption.
Th e actual consumption in this state depends on the chosen output power of the
transceiver chip.

15.3 Battery-Aware Routing [Chi06]
Nickel–cadmium and lithium-ion batteries have been widely used in wireless
devices and sensors. In a battery, lots of cells are arranged in series, in parallel, or
a combination of both. Th e active materials of each cell consist of two electrodes
(an anode and a cathode) separated by an electrolyte. A continuous reduction–
oxidation reaction can transfer electrons from the anode to the cathode after the
cell is connected to a load.

Figure 15.7 illustrates this phenomenon through the demonstration of a simpli-
fi ed symmetric electrochemical cell. Figure 15.7a is a fully charged cell, where the
electrode surface contains the maximum concentration of active species. When the
cell is linked to an external load, an electrical current fl ows through the external
circuit.

Figure 15.7b shows the discharge process. In this case, active species are consumed
at the electrode surface and replenished by diff usion from the bulk of the electrolyte.
But the diff usion process cannot compensate for the consumption. Th at is why a
concentration gradient can build up across the electrolyte in Figure 15.7b.

A higher current load causes a higher gradient concentration, that is, a lower
concentration of active species at the electrode surface [Doyle93]. Th is low con-
centration decreases the battery voltage. Eventually the voltage can drop below a
predefi ned cutoff threshold, which means that the electrochemical reaction can
no longer be sustained at the electrode surface. In this case, the battery dies (see
Figure 15.7e).

Note that we cannot use the electroactive species that have not yet reached the
electrode. Such unused charge is called discharging loss. It is not physical “loss.” It
just means that the species are not available because of the diff erence between the
reaction and the diff usion rates.

Before the battery stops working, if the battery current is very weak or is zero, that
is, in the battery recovery status (see Figure 15.7c), we can see that the concentration
gradient fl attens out after a suffi ciently long time, and reaches equilibrium again.

Following the above recovery process, the concentration of active species near the
electrode surface makes unused charge available again for extraction (Figure 15.7d).

AU9215_C015.indd 425AU9215_C015.indd 425 2/13/2010 12:42:42 PM2/13/2010 12:42:42 PM

426 ◾ Wireless Sensor Networks: Principles and Practice

Electroactive
species ElectrolyteElectrode

Fully charged state In discharging

Consumation Diffusion

In recovery After recovery

(a) (b)

(c) (d)

Battery dies with discharging loss Battery dies without discharging loss(e) (f)

Figure 15.7 Battery operations at different states. (Adapted from Ma, C. and
Yang, Y., Mobile Netw. Appl., 11, 757, 2006.)

AU9215_C015.indd 426AU9215_C015.indd 426 2/13/2010 12:42:42 PM2/13/2010 12:42:42 PM

WSN Energy Model ◾ 427

Th erefore, battery recovery can reduce the concentration gradient, recover discharg-
ing loss, and hence prolong the battery lifetime (Figure 15.7f).

Some experiments on nickel–cadmium battery and lithium–ion battery have
demonstrated that the discharging loss might take up to 30 percent of the total
battery capacity [Rakhmatov03]. Hence, it is important to precisely model battery
behavior to optimize system performance in sensor networks.

Battery-aware routing (BAR) in streaming data (such as video/audio) transmis-
sions can be simply modeled as streaming packets from a source to its correspond-
ing destination. But how do we maximize the communication lifetime between a
source–destination pair? In [Chi06], they propose the concept of BAR. Its basic
idea is to choose the “well-recovered” sensors as relay points, and use “fatigue”
sensors for recovery. If we could dynamically schedule routing paths to effi ciently
recover the sensor battery capacity, we can minimize the discharging loss on
sensors, and thus maximize the system lifetime and data throughput between a
source–destination pair.

Especially in [Chi06] a BAR protocol is proposed. Th ey use BAR algorithm to
setup a routing path in a source–destination pair. Before we describe BAR protocol,
let us make some assumptions.

Suppose sensors are randomly deployed in a WSN. And each node knows its
geographic position (this could be achieved by some accurate sensor localization
algorithms, see Chapter 9). Th e node is powered by AA batteries. Let us target the
steaming applications such as video monitoring where transmission is viewed as a
stream. If a sensor is on the routing path from the source to the destination, we call
it routing node. In each time slot, a routing node can be assigned for a task (“active”
status) or in “idle” status. A task may be a routing activity, video displaying, soft-
ware execution, or any other power-consuming function at this node. Multiple
tasks may be assigned in the same time slot.

Let us defi ne some parameters. Assume that C is the battery residual capacity.
Also assume that β (a constant) is an experimental chemical parameter. It varies
from battery to battery. Th e larger the β, the less the discharging loss.

Let us observe an example shown in Figure 15.8 [Chi06]. In this sensor net-
work, the source node S transmits packets to the destination node D. Th e battery
residual capacity C and parameter β are indicated in the fi gure. We compare the
following two approaches.

In the fi rst approach, S sends packets to D through multi-hop path S → A →
C → F → E → D. Some time (say 45 minutes) later, node A uses up its energy. After
that the routing path changes to S → B → C → F → E → D. Th e total connection
lasts around 90 minutes [Chi06].

However, the lifetime can be extended in a simple way by alternating between
the above two paths. In the second approach, nodes A and B alternate each other as
the router. A recovers its battery while B is routing, and so on. In this way, the total
lifetime is around 113 minutes [Chi06]. It is increased by 24.8 percent.

AU9215_C015.indd 427AU9215_C015.indd 427 2/13/2010 12:42:44 PM2/13/2010 12:42:44 PM

428 ◾ Wireless Sensor Networks: Principles and Practice

In summary, in the battery-aware energy-effi cient routing protocol, we could
alternatively recover batteries to extend node lifetime. Th e important idea is that we
always choose the most fully recovered nodes as routing nodes.

BAR is an excellent idea. Although there are many
energy-effi cient WSN routing protocols proposed to
extend the system lifetime by choosing the energy-sav-
ing path, very few ideas could go deep into the battery
itself and explore the cell charging/discharging concept.
As you can see, we may solve the same problem from
diff erent hardware levels (system level, board level, com-

ponent level, chip level, transistor level, etc.). Th e lower the level is, the more
accurate model we may defi ne.

Good idea

C = 3.3

C = 3.3

S

a

b

c
f

e

d

C = 12

C = 20

C = 13

β = 0.5

β = 0.5

β = 0.5

β = 0.5

β = 0.5

Path one
Node
Alternating node
Unused node
Battery diffusion parameter

Path two
Alternating paths

Residual battery capacity (Ahr)
β
C

Figure 15.8 BAR in a sensor network. The current at each node is I = 3.5 A.
By alternating between nodes A and B, the network achieves longer lifetime.
(Adapted from Ma, C. and Yang, Y., Mobile Netw. Appl., 11, 757, 2006.)

AU9215_C015.indd 428AU9215_C015.indd 428 2/13/2010 12:42:44 PM2/13/2010 12:42:44 PM

WSN Energy Model ◾ 429

Problems and Exercises
15.1 Figure 15.1 is the most typical WSN energy model. Please use such a model

to explain that a 100-m, 1-hop communication energy consumption is higher
than 10-hop (each hop 10 m) relay-based communication.

15.2 Go to http://www.xbow.com to read the data sheet on MicaZ motes. Explain
its power consumption features and search for some good energy models that
can simulate MicaZ energy consumption behaviors.

15.3 Besides the BAR example, can you search other energy-aware WSN protocol
design examples?

AU9215_C015.indd 429AU9215_C015.indd 429 2/13/2010 12:42:45 PM2/13/2010 12:42:45 PM

AU9215_C015.indd 430AU9215_C015.indd 430 2/13/2010 12:42:45 PM2/13/2010 12:42:45 PM

431

16Chapter

Sensor Network
Simulators

Developing the right simulation tools is especially important for WSN studies. In
many cases, we may not have large-scale (>1000 sensors) WSN hardware testbeds.
Software-based simulations provide inexpensive design performance tests. Today,
many simulation tools can simulate noise, interference, and other uncertain factors
in WSNs. Th ese can even analyze energy consumptions in diff erent hardware parts.
Th is chapter introduces some typical WSN simulators.

Some engineers may underestimate the role of software
simulations in the design of WSNs. As a matter of fact, to
save performance test time and cost, we typically use dis-
crete-event-based simulation tools fi rst, to verify the net-
work protocol effi ciency in a large-scale WSN. Th ese tools
have accurate radio propagation model and energy analysis
tools. After we obtain the simulation results, we may be
able to avoid some potential engineering design errors.

Remember

WSNs

16.1 GloMoSim [GloMoSim]
GloMoSim can be used to build a scalable simulation environment for wireless and
wired network systems, including WSNs. It is designed based on the parallel, dis-
crete-event simulation capability provided by Parsec. Most network systems are built

AU9215_C016.indd 431AU9215_C016.indd 431 2/22/2010 1:08:04 PM2/22/2010 1:08:04 PM

432 ◾ Wireless Sensor Networks: Principles and Practice

using a layered approach that is similar to the OSI seven-layered network architec-
ture. GloMoSim uses a similar layered approach. Standard APIs (application program
interfaces) are used between the diff erent simulation layers. Th is allows the rapid
integration of models developed at diff erent layers by diff erent people. Th e protocols
that are shipped with the current GloMoSim library include the following aspects:

Layers Protocols

Mobility Random waypoint, random drunken,
trace based

Radio propagation Two ray and free space

Radio model Noise accumulating

Packet reception
Models

SNR bounded, BER based with BPSK/QPSK
modulation

Data link (MAC) CSMA, IEEE 802.11, and MACA

Network (routing) IP with AODV, Bellman–Ford, DSR, Fisheye,
LAR scheme 1, ODMRP, and WRP

Transport TCP and UDP

Application CBR, FTP, HTTP, and Telnet

Source: Adapted from Zeng, X. et al., GloMoSim: A library for parallel
simulation of large-scale wireless networks, Proceedings of the
12th Workshop on Parallel and Distributed Simulations, May
26–29, 1998, Banff, Alberta, Canada.

To run GloMoSim, one will need the latest Parsec compiler (now included with
the GloMoSim distribution). If protocol developers write pure C codes, they need
to use the Parsec compiler. Th e Parsec code is used extensively in the GloMoSim
kernel. Most users do not need to know how the kernel works.

16.2 SensorSim [SensorSim]
SensorSim is built on the ns-2 simulator and provides additional features for model-
ing sensor networks. Th e main features of this platform include (1) sensing channel
and sensor models, (2) battery models, (3) lightweight protocol stacks for WSNs,
(4) scenario generation, and (5) hybrid simulation.

Figure 16.1 shows its internal simulation modules. It provides a graphical user
interface (GUI) for sensor data generation and visualization. Figure 16.2 shows the
simulation architecture of an individual sensor node. It includes accurate WSN
sending/receiving energy consumption models.

AU9215_C016.indd 432AU9215_C016.indd 432 2/22/2010 1:08:06 PM2/22/2010 1:08:06 PM

Sensor Network Simulators ◾ 433

Socket

comm.

RS232 Ethernet

APP

APP Real sensor apps on virtual sensor nodes

Proxy for real sensor node

APP

Prx

Prx
Prx

Prx

comm.

Serial

Real WSN application Gateway Simulation machine

Gateway

Figure 16.1 System model in SensorSim. (From Park, S. et al., SensorSim: A sim-
ulation framework for sensor networks, Proceedings of 3rd ACM International
Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
August 20, 2000, Boston, MA, 2000.

Node function model

Application layer

Middleware layer

Network protocol
stack

Network layer

MAC layer

Physical

Wireless

Sensor protocol stack

State
change

Power model

RF model

CPU model

Sensor #1 model

Sensor #2 model

Sensor #N

Status
check

Sensor layer

Physical layer

Sensor channel

Microsensor node

Figure 16.2 Sensor node model in SensorSim. (From Park, S. et al., SensorSim:
A simulation framework for sensor networks, Proceedings of MSWiM 2000,
Boston, MA, August 11, 2000.)

AU9215_C016.indd 433AU9215_C016.indd 433 2/22/2010 1:08:06 PM2/22/2010 1:08:06 PM

434 ◾ Wireless Sensor Networks: Principles and Practice

16.3 TOSSIM [Philip03]
TOSSIM [Philip03] can be used to describe the behavior and interactions of
networks of thousands of TinyOS motes at network bit granularity. Figure 16.3
shows a graphical overview of TOSSIM. It consists of fi ve parts: (1) an interface
to TinyOS component graphs, (2) a discrete event queue, (3) some re-implemented
TinyOS hardware abstraction components, (4) extensible radio and analog-to-digital
converter (ADC) models, and (5) communication services for external programs to
interact with a simulation.

In TOSSIM, discrete-event simulations are directly generated from TinyOS
component graphs. It runs the same codes that run on realistic WSN hardware.
By replacing some low-level components (see the shaded parts in Figure 16.3),
TOSSIM can translate hardware interrupts into discrete simulator events.

TOSSIM uses a very simple but powerful abstraction for a sensor network scenario.
Th e sensor state has what it hears on the radio channel. Th is abstraction allows testing
perfect wireless links (i.e., the bit error rate is zero). It also easily captures the hidden
terminal problem, and can capture many of the diff erent problems that can occur
during packet transmission (such as symbol detection failure and data corruption).

As shown in Figure 16.3, the TOSSIM engine provides a set of communication
services to interact with external applications. Th ese services allow users’ programs

Component graphsEvent queue

Communication
servicesTOSSIM implementations

APP
Clock

ADC

ADC model

Radio m
odel

CRC

Figure 16.3 TOSSIM architecture: frames, events, models, components, etc.
(Adapted from Levis, P. et al., TOSSIM: Accurate and scalable simulation of entire
TinyOS applications, SenSys ’03, Los Angeles, CA, November 5–7, 2003.)

AU9215_C016.indd 434AU9215_C016.indd 434 2/22/2010 1:08:06 PM2/22/2010 1:08:06 PM

Sensor Network Simulators ◾ 435

to interface with TOSSIM through a TCP socket to help programmers monitor or
actuate a running simulation. A user can also use these services to get to know the
specifi cations of the ADC and radio models, such as sensor readings and packet
loss rates.

TOSSIM has the support of the TinyOS tool-chain. Th is feature simplifi es the
transitions between simulated and real networks. Compiling to the native code
allows developers to use traditional debugger tools in TOSSIM. Users can set
debugger breakpoints and step through what is normally a real-time code (such as
packet reception) without disrupting the operation.

TOSSIM describes each hardware resource as a component. It can emulate the
behavior of the underlying raw hardware, which includes an ADC, a clock, a trans-
mit strength variable potentiometer, an EEPROM, a boot sequence component,
and several of the components in the radio stack.

Th e TOSSIM network model can easily capture the inter-sensor interactions.
Each bit transmission activates the model, which changes the state of the channel
observed by receiving events on other nodes.

Note that TOSSIM allows users to develop, test, and evaluate physical layer/
MAC layer network protocols, in addition to application layer characteristics.

Figure 16.4 is a sample TOSSIM execution procedure.

Figure 16.4 Sample execution. (Adapted from Levis, P. et al., TOSSIM: Accurate
and scalable simulation of entire TinyOS applications, SenSys ’03, Los Angeles,
CA, November 5–7, 2003.)

Time (4 MHz ticks) Action

100 Dequeue simulator event at time 100.

Th e clock interrupt handler is called, signaling the application Timer event.

Th e application’s Timer handler requests a reading from the ADC.

Th e ADC component puts a simulator ADC event on the queue with time stamp.

Th e interrupt handler completes; the clock event re-enqueues itself for the next tick.

400 Dequeue and handle simulator ADC event at time 400.

Th e ADC interrupt handler is called, signaling an ADC ready event with a sensor value.

Th e application event handler takes the top three bits and calls LEDs commands.

Th e ADC interrupt handler completes.

1000 Simulator event is dequeued and handled at time 1000.

Th e clock interrupt handler is called, signaling the application Timer event.

… execution continues as above.

AU9215_C016.indd 435AU9215_C016.indd 435 2/22/2010 1:08:07 PM2/22/2010 1:08:07 PM

436 ◾ Wireless Sensor Networks: Principles and Practice

TOSSIM allows TinyOS developers to choose the accuracy and complexity of
the radio model as necessary for their simulations. Th e radio models are indepen-
dent of the simulator. Th us, it would be easy for a user to change these models.

In TOSSIM, the network is modeled as a directed graph. As we know, in a
graph model, we use a vertex to represent a node, and each edge (u, v) in the graph
represents the error rate when mote u sends to v, and is distinct from the edge
(v, u). Such a model allows accurate simulation of asymmetric links, as we may have
diff erent error rates in back and forth directions. Bit errors are independent. Link
probabilities can be specifi ed by the user and changed at runtime. Transmission
events propagate to the simulated input channel of each connected node. Each
mote has its own local view of the network channel.

For example, assume that sensor T transmits data to mote R on an error-free
channel. On each of its bit events, T transmits a 0 or a 1. Th is transmission modi-
fi es the internal state of R, representing what it hears over the air. On each of its bit
events, R reads this state, and passes the bit up to a TinyOS component.

A user can use a TCP/IP to allow PC applications to communicate with
TOSSIM to drive, monitor, and actuate simulation. Such a simulation-application
protocol is a command/event interface based on TinyOS abstractions.

A user can send commands to TOSSIM to actuate a simulation and modify
its internal state. Th ese commands could be operations to change radio link error
rates/sensor readings, to turn sensors on and off , and to inject network packets.

Users can also write their own systems that interface with TOSSIM in new ways. Th e
monitoring/actuation codes and statements are removed when compiling for a mote.

TOSSIM has a visualization tool, called TinyViz, which is a Java-based GUI
for TOSSIM. It allows simulations to be visualized, controlled, and analyzed. It has
visual feedback to show the simulation state. It also has mechanisms to control the
simulation procedure, such as modifying sensor readings and radio link error rates.

TinyViz also has a plugin interface that allows developers to implement their
own application-specifi c visualization and control codes based on the TinyViz
engine. Th e TinyViz engine manages the event/command interface with TOSSIM.
Th e TinyViz engine sends out TOSSIM events to loaded plugins. Th is is very useful
in some cases, For example, a plugin may be used to visualize network traffi c as sen-
sors receive data. TinyViz plugins can also send commands to TOSSIM to invoke a
simulation. For example, when a user turns off a sensor in the visualization window,
the control plugin sends the corresponding power-off command to TOSSIM.

Besides the network and control plugins described above, TinyViz also has a set
of default plugins for basic debugging and analysis purposes. A plugin displays
(in a list format) all debug messages. Another one can graphically display the data
in radio and UART packets. A sensor plugin displays sensor values in the GUI and
allows the user to set individual sensor values during simulation. A radio model
plugin can update wireless connectivity based on the distances between motes in
the GUI. It can graphically display link probabilities, providing basic mechanisms
for experimenting with how networks behave under change.

AU9215_C016.indd 436AU9215_C016.indd 436 2/22/2010 1:08:07 PM2/22/2010 1:08:07 PM

Sensor Network Simulators ◾ 437

Based on the built-in models in TOSSIM, a user can write her own powerful
TinyViz plugins. For example, the user can model wireless radio obstacles (such
as metal barriers) by changing bit error rates. She can also use a plugin to model
failures by turning motes off at scripted times. One can also use the plugins and
simulation data to examine and analyze the application behaviors. TinyViz can use
the communication services of TOSSIM to allow a user to take an omniscient view
of a large network, examining the internal mote in a running simulation.

16.4 PowerTOSSIM [Victor04]
In realistic WSN experiments, it is very diffi cult to accurately measure how much
power each chip component (such as the CPU and memory) consumes. A good
news is that we can use PowerTOSSIM [Victor04], which consists of the instru-
mentation of the TinyOS codebase, to track hardware power state transitions.
PowerTOSSIM also has an accurate CPU-cycle-counting mechanism based on
basic-block-level profi ling, and analysis tools to visualize and analyze power con-
sumption results on a per-mote basis.

16.4.1 PowerTOSSIM Architecture
Figure 16.5 illustrates the architecture of PowerTOSSIM. Th e PowerState module
accepts request-energy calls from simulated hardware components (radio, sensors,
LEDs, etc.) and emits power state transition messages for each component. With
the calculation of a power model, these messages fi nally produce detailed power
consumption data or energy visualizations.

PowerTOSSIM is able to keep track of the power state of each hardware
component for any simulated sensors. Its tracking procedure is achieved through
specifi c power state transition messages that are recorded during the simulation
run. TOSSIM can issue calls to a component, PowerState, to track hardware power
states for each mote, and logs them to a fi le during the run.

A challenging issue is to estimate the CPU usage if we want to know the CPU
energy consumption. Because PowerTOSSIM runs the software as a native binary
program on the host machine, it does not know the length of time that a sensor
spends using the CPU. But it can accomplish CPU profi ling by mapping the basic
blocks executed by the simulation code to cycle counts in the corresponding mote
binary. PowerTOSSIM combines its generated power state data with a power model
to determine per-mote and per-component energy usage. Th e above tracing proce-
dure can be done off -line to obtain the detailed power consumption for each hard-
ware component of each sensor, or can be output into the TinyViz visualization tool
to display the power consumption data in real time. Th e reason of decoupling the
generation and processing of the power state transition data is to achieve effi ciency
and fl exibility.

AU9215_C016.indd 437AU9215_C016.indd 437 2/22/2010 1:08:07 PM2/22/2010 1:08:07 PM

438 ◾ Wireless Sensor Networks: Principles and Practice

Effi ciency: Just like TOSSIM, PowerTOSSIM can also simulate large networks
that scale to thousands of nodes. To preserve this scalability, we should avoid
high overheads in the simulations. If we record hardware state transition mes-
sages only at runtime, we could achieve very low overhead. Likewise, if we
allow the simulation to run as a native binary program, we could avoid the
overhead of instruction-level simulation.

Flexibility: PowerTOSSIM provides a high degree of fl exibility for capturing
and modeling the power state of the mote. But it does not assume a par-
ticular hardware platform, because new designs are constantly being devel-
oped. Th rough the decoupled design, we could evaluate the power effi ciency
of potential hardware designs only by plugging a new power model into the
PowerTOSSIM analysis tools. And the simulation software itself need not be
re-executed.

Remember this good idea: modularity in complex system
design. Remember Internet network layers, such as the
application layer and the transport layer? Th e Internet does
not use one layer, as it will be much easier to revise each sub-
module without touching the entire system. As long as the
interfaces among modules remain the same, we can easily
update each module based on new design requirements.Good idea

Energy
consumption

summary

TinyViz plugin

Energy model

Visualized runtime
power profiling

PowerTOSSIM MICA2 component model

Power state
transition messages

Postprocessor

Current versus time
data for x–y graph

Figure 16.5 PowerTOSSIM architecture. (Adapted from Shnayder, V. et al.,
Simulating the power consumption of large scale sensor network applications,
SenSys ’04, Baltimore, MD, November 3–5, 2004.)

AU9215_C016.indd 438AU9215_C016.indd 438 2/22/2010 1:08:07 PM2/22/2010 1:08:07 PM

Sensor Network Simulators ◾ 439

16.4.2 Component Instrumentation
As we know, for each hardware component of a sensor, TinyOS has a specifi c software
module that is responsible for controlling the hardware component’s operations.
For example, most aspects of wireless communication from the ChipCon CC1000
radio can be achieved by the CC1000RadioIntM module. TOSSIM (see last sec-
tion) simulates these TinyOS hardware drivers through its own software modules,
which makes it possible to link a TinyOS application to the simulated hardware
with very few code changes.

Like TOSSIM, PowerTOSSIM can instrument each of the simulated hardware
drivers with power state transition messages that are logged during the simulation.
PowerTOSSIM issues call (from each hardware driver) to a new module, called
PowerState, which can generate log messages when the power state of each hardware
component changes as time goes on. By implementing power state transitions in a
separate module, we could allow the interface to be readily extended to support new
hardware components, such as new sensor platforms (non-Crossbow products).

16.4.3 CPU Profi ling
PowerTOSSIM can compile the TinyOS application codes into a binary fi le that
runs directly on the simulation machine. Th is design is effi cient. However, such a
design cannot easily determine how much time a CPU spends in the “active” state
(when actively executing instructions) compared with in the “idle” state, or any of
the other low-power states. In many cases, we need to track the amount of time that
the CPU spends in the active state to get to know the accurate power consumption,
especially for CPU-intensive operations (such as security algorithms) or for some
special occasions (for instance, a sensor may spend much time in low-power sleep
modes, and only wake up and perform computation infrequently).

Today, most sensors’ microcontrollers consume approximately constant power
while executing instructions. Th is is because they do not use the sophisticated chip-
level power management strategies, as in more advanced processors. In a sensor,
most components (such as instruction core, SRAM, ADC, oscillator, timer, and
other peripherals) are always on when the controller is in the “active” mode. In
Crossbow MicaX sensors, the ATMEL Atmega128L CPU consumes about 8 mA
while executing instructions and 3.2 mA while idle. Likewise, the cycle time for
each instruction is well documented and usually deterministic, or at least predict-
able. Th erefore, PowerTOSSIM can compute the CPU energy usage easily by tracking
the amount of time the CPU spends in each power state. Th e amount of time that
a node spends in the “idle” mode depends on external factors, such as the timing of
clock interrupts, which are already modeled by TOSSIM.

Although TOSSIM cannot capture the time spent in executing CPU instruc-
tions, PowerTOSSIM can determine the CPU execution time by simulating the
execution of each instruction. Th e detailed strategy includes the following four steps:

AU9215_C016.indd 439AU9215_C016.indd 439 2/22/2010 1:08:08 PM2/22/2010 1:08:08 PM

440 ◾ Wireless Sensor Networks: Principles and Practice

 1. PowerTOSSIM checks the binary programs to obtain an execution count for
each basic program block with no-branch instructions.

 2. It maps each program block to the corresponding assembly instructions.
 3. It determines the number of CPU cycles for each program block using simple

instruction analysis.
 4. It combines the simulation basic block execution counts with their corre-

sponding cycle counts to obtain the total CPU cycle count.

When the simulation is fi nished, PowerTOSSIM can write down basic program block
execution counters that are processed off -line to obtain CPU cycle count totals. Such a
process is fairly accurate and incurs very little overhead during the simulation time.

16.4.4 PowerState Module
If we scatter the power state tracking code throughout the simulator, it could
incur high overhead. PowerTOSSIM thus uses a single TinyOS module, called
PowerState. Other TinyOS components make calls to it to register hardware power
state transitions. PowerState has a single interface with one command for each pos-
sible state transition. Each function tests if power profi ling is enabled, and if so,
emits a log message detailing the sensor ID, the specifi c power state transition, and
the current simulation time.

An excerpt from this log is shown below [Victor04]:
0: POWER: Mote 0 LED_STATE RED_OFF at 18677335
0: POWER: Mote 0 LED_STATE YELLOW_OFF at 18677335
0: POWER: Mote 0 ADC SAMPLE RSSI_PORT at 18990479
0: POWER: Mote 0 ADC DATA_READY at 18990679
0: POWER: Mote 0 RADIO_STATE TX at 18993551
0: POWER: Mote 0 RADIO_STATE RX at 19199375

16.4.5 Analysis Tools
PowerTOSSIM also includes several tools to analyze and visualize the power
consumption data. Th ese tools accept the input from the log fi les generated by
PowerState, the CPU profi ling information, and a hardware power model.

One of the tools is called a postprocessor, which can compute the total energy
for the various hardware components for each sensor and output a time-series trace
of power consumed by each sensor.

PowerTOSSIM also has a plugin for TinyViz (part of TOSSIM software). Such
a plugin can report per-mote power consumption as the simulation runs. For visu-
alization convenience, the plugin assigns diff erent colors to sensors based on how
much power it has consumed during the simulation, making it possible to visualize
power hot spots in the network.

AU9215_C016.indd 440AU9215_C016.indd 440 2/22/2010 1:08:08 PM2/22/2010 1:08:08 PM

Sensor Network Simulators ◾ 441

Figure 16.6 shows a typical screenshot of the visualization. Th e table on the
right reports a runtime summary of the energy consumed by each component of the
simulated network. Each sensor is also assigned a color based on the total amount
of energy that it has consumed since the start of the simulation run.

Problems and Exercises
16.1 Explain the pros and cons of simulations compared to a real WSN testbed.
16.2 Refer to [GloMoSim] for software download. Play with a few simple wireless

network demos.
16.3 Use PowerTOSSIM to observe a sensor node’s power consumption in a CPU

and an RF transceiver.

Power profiling19

11

13

18

10

16

6

E:108.6

E:274.3
moteid

0

1
2

3
4

5
6

7
8

107.06
181.57
248.67
245.98

169.18
96.24

242.48

176.46
42.42

42.61

72.14
98.55
97.50
67.16
38.23
96.17

69.95
16.84

radio cpu

E:357.41
E:96.39

E:108.31 E:190.1

E:428.24

E:440.75

E:435.01

E:406.99

Figure 16.6 Screenshot of the PowerProfi ling plugin for TinyViz. (Adapted from
Shnayder, V. et al., Simulating the power consumption of large scale sensor network
applications, SenSys ’04, Baltimore, MD, November 3–5, 2004.)

AU9215_C016.indd 441AU9215_C016.indd 441 2/22/2010 1:08:08 PM2/22/2010 1:08:08 PM

AU9215_C016.indd 442AU9215_C016.indd 442 2/22/2010 1:08:08 PM2/22/2010 1:08:08 PM

VIIICASE STUDIES

AU9215_S008.indd 443AU9215_S008.indd 443 12/17/2009 3:38:58 PM12/17/2009 3:38:58 PM

AU9215_S008.indd 444AU9215_S008.indd 444 12/17/2009 3:38:58 PM12/17/2009 3:38:58 PM

445

17Chapter

Case Study 1:
Tele-Healthcare

In this chapter, we provide a case study on an important application—tele-healthcare
based on wireless sensor networks (WSNs). Th e results presented here are based on
the author’s (Hu) research. Th is chapter mainly refers to the author (Hu) and his col-
leagues’ previous publications, including [Hu08, Hu2009a, Hu2009b, Hu2009c,
Hu2009d, Hu2009f, Sunil08a], and others.

17.1 Introduction
Today, in the world, especially in developed countries, cardiovascular diseases are
the largest cause of morbidity and mortality [MGHunink97]. Based on the World
Health Report 2000, each year the coronary artery disease (CAD) kills an esti-
mated 7 million people representing 13 percent of all male deaths and 12 percent
of all female deaths. Th us, low-cost, high-quality cardiac healthcare delivery is a
critical challenge.

Many new cardiovascular disease healthcare systems come up, such as primary/
secondary prevention and patient empowerment. Th ese promote the development
of novel care approaches [LAShort98], in which out-of-hospital monitoring and
follow-up are basic aspects [CardioNet08]. Th erefore, the development and utiliza-
tion of tele-cardiology systems that provide new modes of cardiac patient contact
is of increasing interest [Istepanian04]. Most tele-cardiology systems use wearable
devices (such as portable ECG recorder, sphygmomanometer, and pulse oximetry)
to collect remote cardiac patients’ physiological data (including ECG, blood pres-
sure, pulse rate, etc.).

AU9215_C017.indd 445AU9215_C017.indd 445 2/22/2010 1:09:32 PM2/22/2010 1:09:32 PM

446 ◾ Wireless Sensor Networks: Principles and Practice

In nursing homes or hospitals, the ad hoc interconnection of ECG sensors is a
promising approach to perform automatic heartbeat anomaly detection [Martin00].
Today, many ECG machines are claimed as “portable”—but this does not always
indicate that they are tiny. As a matter of fact, many of these appliances receive
power from an electrical outlet and are so heavy that they have to be mounted on a
cart and wheeled from one location to another.

As mentioned in Chapter 1 (Introduction), the biggest
advantages of WSNs are the sensors’ tiny size, low cost,
and low power. If any of these features is lost, we may
classify such a network as a common wireless network
or an ad hoc network, which has a simpler design than
WSNs.

Remember

WSNs

We could interconnect ECG sensors to form a low-power medical ad hoc sensor
network (MASN), which can signifi cantly improve the ECG portability and timeli-
ness. An MASN can also be regarded as a special type of WSN. A simple MASN
scenario is shown in Figure 17.1. Each patient’s ECG signal can be automatically
collected and processed (such as analog-to-digital conversion), and then be
wirelessly sent to a remote ECG server for data analysis (such as using data classi-
fi cation to fi nd out arrhythmia). If an ECG sensor reports any abnormal heartbeat
signals, an emergency communication channel established between the physician’s
offi ce and the patient’s wireless device (such as a beeper or a cellular phone) will
be used to send out alerts to provide the patient some medical suggestions (such
as taking drugs or performing other further processing). In a typical MASN, a
patient’s ECG sensor can use a neighbor sensor to relay its data for multi-hop
communications.

EKG sensor Doctor’s server

RF communications
(~300 ft)

Figure 17.1 Tele-cardiology sensor networks (MASNs).

AU9215_C017.indd 446AU9215_C017.indd 446 2/22/2010 1:09:33 PM2/22/2010 1:09:33 PM

Case Study 1: Tele-Healthcare ◾ 447

17.2 MASN Hardware Design
17.2.1 ECG Sensors and RF Communication Hardware
An MASN consists of multiple wireless ECG communication units. Each unit is
called a mobile platform. As shown in Figure 17.2, each platform is composed of a
customized ECG sensor board providing connections to a 3-lead ECG monitor-
ing system, which is housed on a wireless communication board (also called RF
motes). While the ECG sensor board gathers useful patient ECG data, the RF mote
provides limited local-signal-processing capabilities (such as ECG noise fi ltering),
and also wireless communication to transmit the ECG signals back to the server for
feature pattern extraction.

Figure 17.3 shows the logic architecture components of the MASN mobile plat-
form. Please note that the sensing chip detects analog inputs from patients’ bodies,
such as ECG (heartbeat signals), SpO2 (oxygen level), and temperature.

Th ere are many commercial products on ECG sensors.
However, if these sensors can only generate analog sig-
nals, we cannot interconnect all ECG sensors into a
network, as these sensors need to have CPU (central pro-
cessing unit) and RF chips. Also remember: Even if an
ECG sensor can interface with a network, WSNs’ defi -
nition points out that each sensor has serious resource

constraints. And the WSN protocols should be able to adapt to large-scale
(>1000 sensors) sensor interconnections. All these WSN features make their
design very challenging. In this chapter, medial sensor networks are used to
monitor thousands of patients.

Difference

WSNs

Figure 17.2 Mobile platform appearance (includes ECG sensor + RF mote).

AU9215_C017.indd 447AU9215_C017.indd 447 2/22/2010 1:09:34 PM2/22/2010 1:09:34 PM

448 ◾ Wireless Sensor Networks: Principles and Practice

Our original RF mote (see Figure 17.2) was based on TelosB motes from
Crossbow Inc. [Crossbow08]. It off ers an on-chip RAM of 10 kB and also pro-
vides an IEEE 802.15.4 Chipcon radio [Chipcon08] with an integrated on-board
antenna providing up to 125 m of range. By using a TI MSP430 microcontroller
[Ti08], the TelosB worked fi ne in this application for its on-board ADC peripherals
with expansion bays, to which the customized sensor board is connected. But the
TelosB also has a few shortcomings. First, it is expensive when deployed in large-
scale networks (its cost was around $200 each in 2009). Second, its power lifetime
is around three to six months depending on how often the ECG signal is transmit-
ted back to the server, which is not long enough for most medical applications—
one year of lifetime is desirable. Th ird, its radio components cannot be enhanced
or replaced (for instance, we cannot use a better radio transceiver/antenna to reach
a longer distance).

Due to the above reasons, we have used Ember CPU-RF chips [Ember08] to
build our own RF motes. As shown in Figure 17.4, the core of the RF board is the
micro central unit (MCU)/ZigBee [Zigbee08] transceiver unit.

Analog sensors

With ADC Memory (typically < 64 K bytes)

Microcontroller RF transceiver

Could be EKG, EEG,
EMG, SpO2 sensors Power supply

Antenna

Figure 17.3 MASN mobile platform: logic architecture.

RF mote

(a) (b)

CPU

RF
tranceiver

Total size < 2 AA batteries

Figure 17.4 Customized RF board with ECG RF communication capabilities.

AU9215_C017.indd 448AU9215_C017.indd 448 2/22/2010 1:09:34 PM2/22/2010 1:09:34 PM

Case Study 1: Tele-Healthcare ◾ 449

Multiple options were considered before selecting the fi nal option. For
instance, we could (1) use a separate MCU and transceiver or (2) use an SoC
(system-on-chip) that incorporates the two devices together. Th e SoC option was
chosen as it would be cheaper to implement, decrease programming complexity,
and create an easier printed circuit board (PCB) layout (as there will be fewer
parts in circuit layout).

An SoC can typically save the manufacturing cost
compared to separate chips. Th e internal chip-to-chip
interfaces have been optimized in SoC chips. When
using separate chips, an engineer could easily make
mistakes in the chip-to-chip pin connections. On
the other hand, for separate chips, you can optimize
the system performance by easily replacing any of the
components.

Good idea

Figure 17.5 shows the connection between an ECG sensor board and our built RF
board. Th e RF board takes the analog ECG data (sensed from a patient’s body),
converts it to a digital format, then uses network protocols to form packets, and
fi nally sends the packets out through the RF antenna. Its RF transceiver can also
receive ECG data from a neighbor RF board (to achieve patient-to-patient multi-hop
communications).

Th e ECG analog sensor board design is based on the results from the Harvard
University CodeBlue team [CodeBlue06]. Th e ECG lead extensions from the sensor
board are pin compatible and color coded to standard 3-lead ECG monitoring
systems. Although there are diff erent fl avors of physiological chest leads, this system
was designed to match any 3-lead ECG snap set leadwires.

If real patients are not available, for the convenience of the test, we could
use ECG generator hardware to emulate diff erent heartbeat signals. Th e genera-
tor used in this prototype is the Model 430B, 12-lead ECG generator, as shown

RF mote

EKG
sensor

Figure 17.5 Connection between ECG sensor and our built RF mote.

AU9215_C017.indd 449AU9215_C017.indd 449 2/22/2010 1:09:35 PM2/22/2010 1:09:35 PM

450 ◾ Wireless Sensor Networks: Principles and Practice

in Figure 17.6. Th is generator provides a complete PQRST waveform at six preset
rates (60, 75, 100, 120, 150, and 200 BPM) as well as six preset amplitudes (0.1, 0.2,
0.5, 1.0, 2.0, and 5.0 mV). It is also capable of generating square waves using its
fi ve ECG snaps plus ten banana jacks. Th is provides a good testing interface if this
system is adapted into a 12-lead monitoring system in the future. Figure 17.6
also shows the connection between the 430B ECG simulator and the RF commu-
nication boards.

In many countries, there are strict government policies
on the use of real patients or animals for medical tests.
It could require a long procedure to get the approval
for such real tests. Fortunately, there are many accurate
commercial signal generators that can simulate diff erent
types of body parameters. For instance, the above-men-
tioned Model 430B, 12-lead ECG generator could simu-
late dozens of heart disease signals.

.
Good idea

17.3 Reliable MASN Communication Protocols
17.3.1 Enhanced Cluster-Based MASN Data

Transmission [Sunil08, Sunil08a]
It is important to achieve a fast and reliable detection of the ECG signals from the
patients. We have used a cluster-based, energy-aware ECG collection scheme where
the ECG data is reliably relayed to the sink (i.e., a server) in the form of aggregated
data packets [Sunil08, Sunil08a].

EKG generator

Figure 17.6 Model 430B patient simulator.

AU9215_C017.indd 450AU9215_C017.indd 450 2/22/2010 1:09:36 PM2/22/2010 1:09:36 PM

Case Study 1: Tele-Healthcare ◾ 451

Clustering is a good idea in distributed computing. Its
basic idea is to group nodes into diff erent “clusters”
based on some common attributes (such as physical loca-
tion proximity and similar CPU capacity). Typically,
each cluster has a member elected as cluster head (CH).
Cluster-to-cluster communications are achieved through
head-to-head connections. Th ere are some research issues

in clustering schemes, such as the forming of clusters under node mobility,
CH selection rules, intra-cluster and intercluster routing schemes, cluster
size, and reliable clustering.

Good idea

Our proposed MASN routing scheme is diff erent from LEACH [WBHeinzelman02]
and other clustering schemes due to our consideration of energy-level determina-
tion of sensor nodes, event-triggered cluster formation, and dynamic adaptation of
reliability based on the cluster member density and event proximity. Th e details are
as follows.

We assume that the sensor nodes know their maximum energy (Emax), residual
energy (ER), and threshold energy (Eth). Here, Eth is the minimum energy required
by the sensor nodes to identify themselves in one of the n energy levels. A sensor
node having ER ≤ Eth belongs to the energy level 0. Initially, the energy of a sensor
node is divided into n levels as follows:

⎡ ⎤= ⎢ ⎥
⎢ ⎥

max

th
log x

En
E

(17.1)

where the energy range of level L is defi ned as the diff erence between the upper and
lower energy values and x is the ratio between the maximum and minimum values
of a level. Th e value of x depends on the requirement of the application. Th e energy
level (L) of a sensor node is determined as follows:

⎢ ⎥< = = − ⎢ ⎥⎣ ⎦

max
R th

R
If , 0; else EE E L L n

E
(17.2)

A sensor node decides to participate in the cluster formation process if the ampli-
tude of the event parameter crosses a predetermined threshold, Δ. Here, the value
of Δ depends on the measured event parameter.

While forming clusters, the sensors with the highest energy level are given an
opportunity to become the CHs, to ensure longer cluster lifetime. In areas lacking
high-energy sensor nodes, the lower-energy sensor nodes take the initiative to form
CHs. Th is is mainly to ensure that the primary purpose of reliable event detection

AU9215_C017.indd 451AU9215_C017.indd 451 2/22/2010 1:09:36 PM2/22/2010 1:09:36 PM

452 ◾ Wireless Sensor Networks: Principles and Practice

at the sink is achieved. Th e sensor nodes then elect their CHs based on the energy
level and the AMRP value. Here, the AMRP is defi ned as the average minimum
power level required by the r neighboring nodes to reach the sensor node claiming
to become the CH, as follows [OYounis04]:

 AMRP == ∑ 1
MinPWR

r

i
i

r (17.3)

where
MinPWRi denotes the minimum power level required by a node vi, 1 ≤ i ≤ r, to

communicate with the CH
r is the number of neighbor nodes

Th e sensor nodes advertise themselves as CHs based on their energy level. Th e
sensor node claiming to be a CH broadcasts the advertisement message to its
neighbors using maximum power (MaxPWR). Th e normalized AMRP is defi ned
as the ratio of AMRP to that of the MaxPWR.

Other sensor nodes receiving the advertisements decide to join a CH based on
a function of CH energy level and communication power. Every sensor node waits
for a random time before advertising itself to other sensor nodes to become a CH.
Th is delay time for sending the advertisement message is based on a function of the
energy level (L) of the sensor node and the normalized average minimum reach-
ability power (nAMRP).

Th e sink assigns a reliability value, REL, for an event in terms of the total
number of packets of the event required to be reported in a time T at the sink. Th is
reliability factor is distributed among the clusters formed in the event area based
on (1) the number of sensor nodes in the cluster and (2) the cluster-event proxim-
ity. Every CH of the event area transmits the number of its cluster members in the
aggregated data packet header to the sink through multi-hop communications.
By analyzing the values of the measured event parameters in the aggregated data
packets, the sink knows which of the CHs are closest to the event. Th e sink assigns
a reliability value to each cluster as follows:

()()
CR

=

∗
=

∑ 1

REL

i i
i z

i i
i

J m

J m
(17.4)

where
CRi is reliability assigned to the ith cluster
z is the number of clusters
Ji is the event proximity for its cluster
mi is the number of sensor nodes in the cluster

AU9215_C017.indd 452AU9215_C017.indd 452 2/22/2010 1:09:37 PM2/22/2010 1:09:37 PM

Case Study 1: Tele-Healthcare ◾ 453

If Ji = 1, then the reliability is distributed among all the clusters based on their
member density. By assigning a higher value of Ji, the sink can acquire more
number of packets from the clusters closer to the event. Th e event proximity
parameter, Ji, varies from cluster to cluster from a minimum value of 0 to a maximum
value of 1.

Th e sink will vary the reliability values for the clusters if the event propagates to
other areas. Th eir sensors will also form clusters based on the values of the measured
event parameters. Th is idea of dynamic reliability adaptation at the sink (i.e., server) is
helpful in terms of obtaining maximum information of the event.

17.3.2 MASN Routing Performance
Energy consumption: A major concern in MASN networking design is energy

consumption. Our experiments have shown that most of the sensor battery is
consumed in radio communications instead of in local data processing (such
as ECG compression) or sensing (see Figure 17.7). Th erefore, any MASN
networking protocols (such as fi nding the optimal route) should have low
complexity to save energy consumption.

Th roughput: For better observation of a patient’s health condition, a sensor can
send out data at a high reporting frequency, and then use a high data rate to
send out the large amount of sensed data wirelessly. Figure 17.8 shows the
packet reception ratio (the number of received packets divided by the num-
ber of transmitted packets) for diff erent sending rates (number of network
packets per second). We can see that the MASN performance drops sharply
if the sending rate is higher than 25 packets/s. Th us, it is important to use a
reasonable reporting frequency in each medical sensor.

Scalability: We have investigated the MASN performance with the increasing
number of sensors (it also means more patients if each patient carries one
sensor). Our MASN system can still maintain good performance (reception

RF
communications

65 percent

Local data processing
10 percent

Miscellanous 4 percent Analog sensing
21 percent

Figure 17.7 Energy consumption of MASN.

AU9215_C017.indd 453AU9215_C017.indd 453 2/22/2010 1:09:37 PM2/22/2010 1:09:37 PM

454 ◾ Wireless Sensor Networks: Principles and Practice

ratio >80 percent) even if there are a large number of patients (see Figure
17.9). It indicates that our MASN will be suitable to a large nursing home.

Mobility: We have tested the MASN delay performance under users’ mobil-
ity behaviors. Currently, our system cannot achieve real-time data collection
(delay >10 s) if the users move quickly (such as at 30 MPH) (see Figure 17.10).
Th is is a future research topic.

Delay: We defi ne aggregated packet delay as the time taken for the fi rst aggre-
gated event packet to reach the sink from the time an event is detected by the
sensor nodes. Th is parameter represents the speed of reaction of the network
to the event occurrence. In the proposed as well as Hybrid Energy-Effi cient
Distributed Clustering (HEED) [OYounis04] schemes, we consider that clus-
ters are formed on the fl y when the event occurs. In our experimental results

100
90
80
70
60
50
40
30
20

20 50 100 120 150

of nodes

Av
er

ag
e r

ec
ep

tio
n

(p
er

ce
nt

)

Figure 17.9 Reception ratio ~ number of nodes.

100
90
80
70
60
50
40
30
20
10

0
5 15 25

Packets per second

Av
er

ag
e r

ec
ep

tio
n

(p
er

ce
nt

)

35 45

Figure 17.8 Reception ratio ~ sending rate.

AU9215_C017.indd 454AU9215_C017.indd 454 2/22/2010 1:09:37 PM2/22/2010 1:09:37 PM

Case Study 1: Tele-Healthcare ◾ 455

(see Figure 17.11), the HEED scheme needs more time for the fi rst aggregate
data packet to reach the sink due to the setup phase. In this phase, no packets
are reported to the sink and clusters are formed with the help of overhead
messages. In the proposed scheme, the event packets are transmitted to the
sink even as the clusters are being formed.

17.4 MASN Software Design
17.4.1 ECG Sensor Mote Wireless Communication Software
All of the MASN RF mote control software runs in a special operating system
called TinyOS [TinyOS07]. In the medical server that receives all patients’ ECG
data, we can monitor the entire MASN network topology. If two patients are close
enough, a radio link will be shown between them to indicate the possibility of
transmitting the ECG data between them (Figure 17.12).

In our software, we can remotely control the ECG sensors’ performance
parameters (such as ECG detection threshold) through the over-the-air command

18
16
14
12
10

8
6
4
2
0

1 5 10
MPH

D
el

ay
: m

s

15 30

Figure 17.10 End-to-end delay ~ mobility.

3

2.5

2

1.5

1

0.5

0
HEED (100 s)

Fi
rs

t a
gg

re
ga

te
d

pa
ck

et
de

la
y (

s)

HEED (50 s) HEED (20 s) Our scheme

Figure 17.11 The fi rst aggregated packet delay from the CH to the sink.

AU9215_C017.indd 455AU9215_C017.indd 455 2/22/2010 1:09:38 PM2/22/2010 1:09:38 PM

456 ◾ Wireless Sensor Networks: Principles and Practice

transmission from the server to any ECG sensor. As shown in Figure 17.13, the
ECG server (i.e., the MASN workstation) control parameters can be issued to a
sensor to change its detection frequency (i.e., how many ECG values we should
collect in each second).

VitalDust Plus [CodeBlue06] is used to display the data. It has two modules, the
TinyOS software for the mobile platforms to sample and transmit vital sign data over
the radio, and a Java GUI application to display the vital signs in a graphical form.

Figure 17.12 Cardiac-monitoring software for a simple nursing home with three
cardiac patients. (From Hu, F. et al., IEEE J. Sel. Areas Commun., 27(4), 450, 2009)

Figure 17.13 Remote control software to adjust ECG sensor parameters.

AU9215_C017.indd 456AU9215_C017.indd 456 2/22/2010 1:09:39 PM2/22/2010 1:09:39 PM

Case Study 1: Tele-Healthcare ◾ 457

Figure 17.14 is a screenshot of our enhanced software. It shows that a server is
receiving patient data from two separate mobile platforms: mote30 and mote40.
Th e patient data fi eld is displaying the ECG waveform associated with the selected
mobile platform. Only data from the currently selected mobile platform is sent to
MATLAB® for signal processing. Th e link quality fi eld shows the quality of the
wireless signal also associated with the selected mobile platform.

17.5 Integration of RFID and Wearable
Sensors [Laura07]

An RFID (radio frequency identifi cation) system consists of a reader and some tags.
Th e reader contains an antenna and a transceiver. It reads the tag’s information and
transfers the information to a processing device. Th e tag, or transponder, is an inte-
grated circuit containing the RF circuitry and information to be transmitted.

RFID has been used to replace the universal product code (UPC) in supply-chain/
object mobility monitoring applications in many organizations, such as Wal-Mart
and the Depart of Defense [Wang06]. Industry and tele-healthcare corporations
have seen the success and usefulness of RFID and are now beginning to incor-
porate it into healthcare scenarios to alleviate errors and to cut down costs. For
example, a location-based medicare service (LBMS) was implemented in the Taipei
Medical University Hospital that used RFID tags to locate both patients and hos-
pital assets with successful results [Wang06]. Exavera’s eSheperd has used RFID
over a Wi-Fi network to track patients, staff , and supplies, including medication

Figure 17.14 Enhanced VitalDust Plus.

AU9215_C017.indd 457AU9215_C017.indd 457 2/22/2010 1:09:40 PM2/22/2010 1:09:40 PM

458 ◾ Wireless Sensor Networks: Principles and Practice

dispensed to patients by the staff [Exavera07]. En-Vision America has created a new
way to provide prescription information to the user using RFID with ScripTalk
[EnVision07]. When a patient using a ScripTalk reader submits a prescription, the
pharmacy software prints and programs an auxiliary smart label using a dedicated,
small-footprint printer. Th e smart label, which stores prescription information, is
placed onto the prescription container by the pharmacist. At home, the patient uses
a hand-held ScripTalk reader that speaks out the label information using a speech
synthesis technology.
Why is the integration of RFID and sensors required? As it can be seen from the above
discussions, sensors and RFID have diff erent application scenarios. On the other
hand, they represent two complementary technologies, and there would be a big
advantage if such two technologies could be merged together. Th e following lists
some benefi ts of the integration of RFID and wireless sensors.

 1. RFID has the capability of tracking patients, which is a good complement
to wireless sensors if used in disabled people tracking. Wherever they go, the
RFID tags located in diff erent places can tell us whether or not they are in a
dangerous situation (for instance, near a road with a sharp slope). RFID can
also help them recognize diff erent medicines to be taken.

 2. MSN sensors can provide various medical-condition-sensing capabilities that
RFID cannot provide. More importantly, these wireless sensors have a CPU,
which can run data processing and communication software. While RFID
readers do not have such an intelligent processing capability, they can utilize
MSN sensors to send out disabled people’s tracking information to a control
center. Th us, MSN makes RFID achieve remote transmission.

 3. RFID is a single-hop wireless system, that is, an RFID reader can only
communicate with tags that are one hop away (typically <3 m). Th rough
the integration with sensor networks, the RFIDs can utilize the multi-hop,
advanced mesh network protocols in MSNs to handle an arbitrary number of
RFID readers and their complex communication issues.

 4. RFID is typically a closed system, that is, current commercialized RFID
readers do not allow customers to change its internal control software except
some simple parameter confi gurations. By integrating with wireless sensors,
the programmers can upload software codes to the sensor memory to indi-
rectly process the RFID tags’ data. For instance, a sensor program may store
the disabled people’s tracking information in a database for patient motion
analysis.

In our work, we have successfully integrated wireless medical sensors (EKG/
EMG) with RFID readers into one circuit board, and we have also created
an integrated software to control RFID and sensor behaviors. Moreover, we
ensure that diff erent RFID/sensor boards communicate with each other without
collisions.

AU9215_C017.indd 458AU9215_C017.indd 458 2/22/2010 1:09:40 PM2/22/2010 1:09:40 PM

Case Study 1: Tele-Healthcare ◾ 459

RFID for road guide: Th e RFID can be used to keep track of disabled people. If a
person gets closer to a place without a disability road, the patient’s RFID reader can
trigger a warning signal (such as making a sound in the patient’s sensor). Th e sys-
tem’s software automatically draws the trajectory wherever the patient goes (as long
as there is a tag in each location). Figure 17.15 shows the result of such a tracing.

RFID for medicine-taking guide: Th e developed RFID software allows a program-
mer to fi ll out all prescription information on an RFID tag, which is destined
to be applied on a medication bottle. Th e tag will contain the patient’s name,
the name of the prescription, the quantity of medication in the bottle, the dose
size, the doses needed per day, and the programmed node (reader) ID, which
would be printed on the unit if this system were to be manufactured. A screen-
shot of the RFID application can be seen in Figure 17.16. Th e programmer
places the RFID tag over the reader, fi lls in all the fi elds with the previously
mentioned information, and hits the “Write Tag” button. If the programmer
would like to check whether all information was appropriately entered, all he or
she needs to do is press the “Read Tag” button, and the fi elds will be fi lled with
the data he or she previously entered. If it is found that a mistake was made
after reading back the tag information, the programmer can simply correct
the appropriate fi eld and rewrite to the tag. Th e status box above the buttons
informs the programmer whether the read or write has failed or completed
successfully.

RFID database: Following the above medicine-taking application, behind the
scene, when the “Write Tag” button is pressed, a new entry will be placed in
the database with all the information supplied by the programmer, as well as

Figure 17.15 RFID for patient tracing.

AU9215_C017.indd 459AU9215_C017.indd 459 2/22/2010 1:09:40 PM2/22/2010 1:09:40 PM

460 ◾ Wireless Sensor Networks: Principles and Practice

the RFID tag’s ID. Th e tag ID is stored under the database fi eld named tagID.
Th ere is also a fi eld in the database, doseToday, that determines how many
doses of that medication were taken for the current day. Th is is set to 0 when a
new entry is added. A screenshot of the current database contents can be seen
in Figure 17.17.

In the above database, the fi eld names in the database have the following
meaning (see Figure 17.18).

Th ere are several situations in which the patient and healthcare personnel will
receive an alert. Th ese include the given medication not being in the database; a
patient attempting to take medication that is not his or her own; if the patient is out
of pills; and, fi nally, if the patient has not taken all the required doses of that medi-
cation for the day. For each of these errors, a pop-up will be displayed containing
a time stamp, the patient who is incorrectly taking the medication, and the reason
why the application was incorrect.

Figure 17.16 RFID for patient medicine-taking management.

Figure 17.17 RFID database screenshot.

AU9215_C017.indd 460AU9215_C017.indd 460 2/22/2010 1:09:41 PM2/22/2010 1:09:41 PM

Case Study 1: Tele-Healthcare ◾ 461

It is possible to determine if a medication is in the database by looking up the
RFID tag ID under the tagID fi eld in the database. If it does not exist in the data-
base, it was never entered into the system, and an alert should be sent. To check if
a patient is taking medication that is not his or her own, the software system could
look up the tag ID in the database.

If this entry does not have a value in the readerID fi eld of the database that
matches the patient’s mote ID, that is, the patient is attempting to take medication
that is not his or her own, an alert must be sent. It can easily be determined if a
patient is out of pills by checking the QTY fi eld in the database for the correspond-
ing tag ID received. If the value in the QTY is 0, an alert should be sent, so that the
prescription may be refi lled.

Finally, and, perhaps, most importantly, we should check to ensure that a
patient is not about to overdose on his or her medication. Th e doseToday fi eld in the
database should be queried for the corresponding tag ID. If the value in this fi eld
is equal to the value in the doseDay fi eld, the patient should not be taking anymore
medication. If an attempt is made, an alert must be sent to keep the patient from
overdosing. An example pop-up message for each of the previously described situations
can be seen in Figures 17.19 through 17.22.

Database Field Name Meaning

Name Full name

Rx Prescription

QTY Quantity

doseSize Dose size

doseDay Doses per day

readerID Reader ID

Figure 17.18 Database fi eld names.

Figure 17.19 The given medication is not in the database.

AU9215_C017.indd 461AU9215_C017.indd 461 2/22/2010 1:09:41 PM2/22/2010 1:09:41 PM

462 ◾ Wireless Sensor Networks: Principles and Practice

Problems and Exercises
17.1 Multi-choice questions
 1. An ECG sensor without an RF circuit cannot perform which of the follow-

ing functions?
 a. Filtering thermal and circuit noise in ECG signals
 b. Converting analog signals to digital format
 c. Compressing the ECG stream by removing normal ECG patterns
 d. Selecting the nearest CH to forward the data

Figure 17.20 Patient attempting to take medication that is not his or hers.

Figure 17.21 Patient is out of pills.

Figure 17.22 Patient is about to overdose.

AU9215_C017.indd 462AU9215_C017.indd 462 2/22/2010 1:09:42 PM2/22/2010 1:09:42 PM

Case Study 1: Tele-Healthcare ◾ 463

 2. Th e ECG data could be damaged during wireless transmission due to some
factors. Which of the following factors is not the main concern?

 a. Wireless transmission errors accumulate in each wireless hop.
 b. Radio signals are interfered with by some obstacles.
 c. Th e relay sensor’s CPU processing unintentionally changes some data.
 d. Th e network attackers can falsify the ECG data.
 3. Th e benefi ts of designing a customized communication board instead of

using Crossbow motes include which of the following?
 a. Lower unit cost
 b. Longer RF communication range
 c. Easy change of software
 d. All of the above
 4. Th e advantages of RFID (compared to general product bar codes) include

which of the following?
 a. Longer product code reading distance
 b. Richer product information can be read
 c. Both a and b
 d. Possibility of running wireless network protocols
 5. In the discussed work, the patient’s ECG signals and medicine information

could be read simultaneously in the same network packet because of which
of the following?

 a. Th e integration of the RFID reader and the RF mote on the same board
 b. Th e sensed data from both the ECG sensor and the medicine sensor
 c. Th e voice signals from the patient on the medicine name
 d. None of the above
17.2 Some telemedicine systems use cell phones to send out medical data. Some oth-

ers use a wireless LAN deployed in the building to send out data. Compared
to these two approaches, what are the advantages of the sensor network–based
telemedicine system? (Hint: Try to think of some scenarios where the tradi-
tional approaches do not work well.)

17.3 Conduct some Web research to summarize RFID systems’ operation prin-
ciples, design challenges, and application examples.

17.4 Some companies have designed special RFID products to monitor medicine-
taking procedures. For instance, RFID tags may be put near each pill to
detect the medicine dose. Please conduct some Web research to list a few
examples of such applications.

17.5 In this chapter, we have proposed an enhanced cluster-based sensor network rout-
ing scheme. What advantages does it have compared to the LEACH scheme?

17.6 Besides ECG sensors, other medical sensors are also under research and
development now. Can you conduct some independent research on diabetes
patients by monitoring through glucose sensors and insulin pumps and sum-
marize their operation principles?

AU9215_C017.indd 463AU9215_C017.indd 463 2/22/2010 1:09:43 PM2/22/2010 1:09:43 PM

AU9215_C017.indd 464AU9215_C017.indd 464 2/22/2010 1:09:43 PM2/22/2010 1:09:43 PM

465

18Chapter

Case Study 2:
Light Control

In this chapter, we introduce an interesting WSN application: light control. Th is
chapter is based on the excellent work described in [Hamin06, Heemin07].

18.1 Introduction
It would be useful to collect the live light information from light sensors. Real-time
data accounts for how characteristics (such as light intensity) change due to fi lament
aging, supply voltage variation, changes in fi xture position, color fi lters, etc. It is
important to perform real-time measurement of light as it will take much time and
eff ort to maintain desired intensities of lights for certain areas across many venues
and over long time periods. Although we can measure light intensities through the
currently available handheld manual light meters [Sek, Kon], these devices do not
support automatic light control. Th ey must be manually moved through diff erent
points in space. Cameras can provide only refl ected light intensity, so it is important
to study incident light to have measurements that are independent of surfaces and
materials.

An intelligent light control system, called the Illuminator, has been developed
in [Hamin06]. It can detect and control the best light actuation profi les using inci-
dent light measurements by light sensors and user requirements. Th e Illuminator
can help media production staff to characterize, control, and set up lights in perfor-
mance and fi lmmaking using WSN technologies. Th e Illuminator has three tasks
(given a light setup and user constraints): (1) recommend the optimized sensor

AU9215_C018.indd 465AU9215_C018.indd 465 2/22/2010 4:25:16 PM2/22/2010 4:25:16 PM

466 ◾ Wireless Sensor Networks: Principles and Practice

deployment, (2) collect the lights’ characteristics, and (3) manage the best light
actuation profi les satisfying user constraints. Th ese constraints represent require-
ments about the aesthetic eff ect of lighting and include desired light intensities of
the fi eld or a high-level description of lighting conditions.

Although this book provides diff erent WSNs applica-
tions, all systems have very similar networking issues
such as sensor deployment, topology control, routing
protocols, and congestion reduction. However, those
systems have very diff erent “analog sensor” design and
corresponding sensor data analysis software. Th erefore,
you may put more learning focus on the specifi c analog
sensor hardware part and its interface to an RF board.

Remember

WSNs

Th is system of Heemin [Hamin06] (we call it Heemin in this chapter) assumes that
lights have a fi xed position over the time of Illuminator’s control; but Heemin does
not require knowledge of characteristics and locations of lights. Tracking and spot-
lighting using pan-tilt mounts is a well-known technology and can be implemented
easily [Spo]. Heemin does allow mobile stage elements, equipment, and actors lit
through these fi xed lighting instruments, using mobile tags. Tag is a single entity
that can sense light intensity and know its location.

To generate desired light levels at specifi c locations, we need to know the projection
pattern of lights and brightness according to dimmer level. We call such informa-
tion the light characteristics, and call the process of capturing this information as
light characterization. Th e characterization process is done by turning on each light
one by one at each dimmer level and by measuring the incident light intensities
using wireless light sensors.

Th e Illuminator system could detect a light level with the best usage based on
the user’s requirements as well as the data from the light that has already been found.
Th e Illuminator system also reconstructs other similar lighting eff ects in a diff erent
kind of physical light. To obtain this reconstruction, it requires a re-characterization
of each of the lights within the current setup. An example is when the same perfor-
mance needs to be done in diff erent places or at diff erent times. If the setup diff ers
in any way, the setup will vary even though the fi lm crew will attempt to set up the
system of lights in the same way as before. Heemin uses Illuminator to document
the results of the setup of the lighting (not just the physical setup and assignment
of the equipment).

Figure 18.1 shows typical usage scenario of the Heemin Illuminator system.
Based on user constraints and available light sensors, the Illuminator system recom-
mends sensor placement. Th en, a user deploys sensors based on the Illuminator’s
recommendation. Th e Illuminator automatically characterizes lights using deployed

AU9215_C018.indd 466AU9215_C018.indd 466 2/22/2010 4:25:17 PM2/22/2010 4:25:17 PM

Case Study 2: Light Control ◾ 467

sensors. Once the light characterization process is done, light sensors can be removed
from the set except for ones that are used for consistent illumination or tracking.
In the rehearsal process, the Illuminator controls lights by online light actuation
profi le generation. A user may want to improve lighting design as rehearsal iterates.
Improvement can be done by changing user constraints, adding more sensors for
light characterization, and adding or moving light sensors for better illumination
results. For example, if a user found that the characterization is insuffi cient for
some area because of obstacles, he or she would want to deploy more sensors at the
area of the obstacles.

WSNs can help with continuity management of lighting. Th e order of a fi lm’s
sequence of events that an audience views is very diff erent from the order in which
they are produced. Film shots are generated based on the order that minimizes cost
and makes best use of actors, crew, and locations. Note that the footage captured
in diff erent times should appear without diff erence when they are shown in a con-
secutive way, or, the system must be able to control the diff erences for creative show
purposes. Th erefore, we need to monitor and replicate the quality of light (illumi-
nance and color) in each shot, so that footage captured at diff erent times/locations
does not show unexpected diff erences, which may not be perceived by the human

System maintains the desired
lighting effects during events

such as filming

Add

Add/move

User defines the system of lights
and constraints for the system

System gives user recommendation
for placement of sensors

User puts out all the sensors
using systems instructions

Sensor adjusts lighting
(characterization)

Figure 18.1 Usage scenario of the Illuminator system. (Adapted from Park, H.,
Design and implementation of a wireless sensor network for intelligent light con-
trol, PhD dissertation, Department of Electrical Engineering, UCLA, Los Angeles,
CA, 2006.)

AU9215_C018.indd 467AU9215_C018.indd 467 2/22/2010 4:25:17 PM2/22/2010 4:25:17 PM

468 ◾ Wireless Sensor Networks: Principles and Practice

eye but could aff ect the fi lm stock. Heemin [Hamin06] has focused on lighting
instrumentation as the fi rst component of our advanced technology for cinematography
(ATC) [WMB02].

Heemin [Hamin06] provides an interesting example on
the importance of automatic light control: in the Lord of
the Rings trilogy, the footage captured in three diff erent
movies has vastly diff erent release dates and schedules.
Although this movie staff comprised over 2400 people,
maintaining continuity was remarkably diffi cult as notes
had to be taken by hand and conditions were constantly
changing. Th erefore, continuity management is required

for props, scenery, actors, and camera information, as well as lighting, though
the term is typically applied to the management of nontechnical elements.

Case study

Th e Illumimote supports three diff erent light sensing modalities: incident light inten-
sity, color intensities, and incident light angle (the angle of ray arrival from the strongest
source). It should also support two situational sensing modalities: attitude and tem-
perature. Th e Illumimote has comparable performance to commercial light meters,
and also meets the size and energy constraints imposed by its application in WSNs.

Design criteria for the Illumimote include the following capabilities: (1) light
intensity and color temperature sensing, (2) robustness against infrared energy, (3) wide
dynamic range, (4) fast response time, and (5) high accuracy. Illumimote is compatible
with the Mica mote from Crossbow, a common platform in wireless sensor network
research and development.

18.2 Illumimote’s Sensors
Th e Illumimote’s data acquisition is based on the three basic attributes of illu-
mination: Signal strength (intensity), frequency (color), and transmission vector
(incident light angle and sensor attitude). Th e Illumimote includes the following
sensors: (1) Incident light intensity sensor: It detects incident light intensity with the
precision of a commercial light meter (such as ekonic L558Cine [Sek] light meter).
(2) Color intensity sensors: Th ey detect red, green, and blue colors to calculate color
temperature [WS82]. (3) Incident light angle sensors: Th ey are to determine the angle
to the strongest incident light source. (4) Situational sensors: Some additional sen-
sors are included onboard to provide richer proprioceptive information [BFM06].
Th ey include a gravity-based attitude sensor (accelerometer) for earth-plane relative
transformation in the event that the sensor is not oriented parallel to the ground.
A temperature sensor is used to detect overheating conditions that might occur
under high intensity lighting.

AU9215_C018.indd 468AU9215_C018.indd 468 2/22/2010 4:25:18 PM2/22/2010 4:25:18 PM

Case Study 2: Light Control ◾ 469

18.3 System Architecture
Th e overall Heemin Illumimote system architecture diagram is shown in Figure 18.2.
It only shows one light sensor channel out of the eight channels. Th e number of allo-
cated light sensor channels depends on the number of detector circuits required to
capture the illumination attribute. For example, the color temperature unit requires
three channels for red, green, and blue luminosity. Signals from the eight light acqui-
sition units and four situational units are multiplexed via the channel selection unit,
and are sent to the ADC for conversion into a 10-bit digital signal. Its output data is
conveyed to the sensor motes (Heemin used MicaZ motes) via either the I2C data
bus or a direct 16550A compatible UART link that uses line-level (rail-to-rail) out-
put. Th e operation of the Illumimote’s units can be controlled directly from the mote
via the I2C bus or locally by an onboard Atmel Atmega48 microprocessor.

18.4 Calibration
To convert the digitized sensor values to light intensity (lux), Heemin used linear
transformation with two coeffi cients (i.e., y = ax + b, where y is the converted lux
value, x is the ADC reading, and a and b are calibration coeffi cients). Specifi cally,
Heemin used three steps to fi nd the optimal coeffi cients:

Temperature sensor

Ch
an

ne
l s

el
ec

tio
n

un
it

Attitude sensor

Situational sensors

Sensitivity control unit (the
programmable dynamic range)

Light sensor unit

Amplifier

Feedback
network

(band-limited)
10-bit ADC

Power
supply

Local

MicaZ motes
(RF sensors)

Sy
st

em
 d

at
a b

us

Figure 18.2 Architecture of the Illumimote. (Adapted from Park, H., Design and
implementation of a wireless sensor network for intelligent light control, PhD dis-
sertation, Department of Electrical Engineering, UCLA, Los Angeles, CA, 2006.)

AU9215_C018.indd 469AU9215_C018.indd 469 2/22/2010 4:25:18 PM2/22/2010 4:25:18 PM

470 ◾ Wireless Sensor Networks: Principles and Practice

Step 1: Plot the Illumimote’s ADC readings with respect to reference lux values
measured by a commercial light meter on 2D plane.

Step 2: Use MATLAB’s® polyfi t command to fi nd a linear line (i.e., y = a′x + b′)
that best represents the plot of the ADC values.

Step 3: We then get the calibration coeffi cients a and b by projecting the linear
line (y = a′x + b′) onto y = 18. Th e projection is done by a = 1/a′ and b = −b′.
We then use the collected ADC output values and calibrated a and b for
Illumimote’s six sensitivity settings.

MATLAB Polyfi t function has been used in many lin-
ear regression and function interpolation calculations.
Its basic idea is to come up with a polynomial function
to fi t a series of experimental data points.

Good idea

Color temperature of a light source is the black-body radiator’s temperature in Kelvin
that matches the hue of the light source [WS82]. However, as many light sources
(except incandescent light) do not emit radiation like a black body, Heemin instead
used correlated color temperature (CCT) to represent the color temperature of the light
source. Color temperature calibration can be achieved by setting the factors that convert
the Red, Green, Blue (RGB) raw readouts into RGB relative light intensities.

18.5 System Evaluation
To evaluate the Illumimote performance, Heemin integrated a wireless sensing sys-
tem with the Illumimote. Th eir experimental setup is shown in Figure 18.3. To set up
a light source, they used a tungsten-balanced incandescent lamp that generates a color

36΄ 27΄

Sensor data
Computer base that records

all data sent from the
wireless light sensors

Light
source

Illumimote and light/color meter

Distance that the sensor is from the lamp (0 – 36΄)

18΄ 9΄ 0΄

Figure 18.3 Experimental system setup. (Adapted from Park, H., Design and
implementation of a wireless sensor network for intelligent light control, PhD dis-
sertation, Department of Electrical Engineering, UCLA, Los Angeles, CA, 2006.)

AU9215_C018.indd 470AU9215_C018.indd 470 2/22/2010 4:25:18 PM2/22/2010 4:25:18 PM

Case Study 2: Light Control ◾ 471

temperature near 3200 K and can provide about 3000 lux brightness at a distance of
6 ft. It is a common light source in fi lm sets, and has a well defi ned and very specifi c
color temperature. To generate diverse brightness, they placed the Illumimote at 11
diff erent points from 6 through 36 ft away from the light source in 3 ft each step.

Heemin developed three embedded software components for the experimental
wireless sensing system. First, the sensitivity control software was downloaded to the
Illumimote board. Second, Heemin has built programs in MicaZ mote for Illumimote
driver and light-sensing applications. It uses SOS that is an OS for mote-class wireless sen-
sor networks developed by NESL at UCLA [HKS05]. Finally, in the laptop (base station),
a Java program was used to monitor and log the light measurements, and a visualization
interface was used for real-time debugging and analysis. A Graphical User Interface (GUI)
visualization interface is shown in Figure 18.4 to display the status of the Illumimote in
real time. Th is GUI makes it easy to test and evaluate the Illumimotes visually and is a
step toward designing the interface that could be used by a cinematographer.

Th e entire Illuminator system can be divided into three subsystems: sensor
network, Illuminator core, and DMX controller and dimmer. Figure 18.5 shows
the overall system connection of the Illuminator light control system.

Floor plan of the
studio with the

placement of the
Illumimote

Graph showing the
variation of the

intensity and color
temperature over

time

Intensity readings
from Illumimote A room with

light in it as well
as the sensor

Sensor

Animated 3D
representation of the

Illumimote which
shows its orientation

and incident light angle

Light 5115 Lux
3250.0 K
R 4161.75
G 2527.0
B 1227.75

Figure 18.4 Screenshot of the real-time visualization interface (top) with a simpli-
fi ed version of interface (bottom). (Adapted from Park, H., Design and implemen-
tation of a wireless sensor network for intelligent light control, PhD dissertation,
Department of Electrical Engineering, UCLA, Los Angeles, CA, 2006.)

AU9215_C018.indd 471AU9215_C018.indd 471 2/22/2010 4:25:18 PM2/22/2010 4:25:18 PM

472 ◾ Wireless Sensor Networks: Principles and Practice

Heemin used a sensor network to measure the light intensities and sensor
locations. It further consists of two subnetworks: one is the Cricket localiza-
tion system and the other is single-hop MicaZ network with the Illumimote
light-sensing board [PFG06]. Th ree Cricket [Priyantha05] nodes were used for
beacon nodes that are precalibrated with their locations, and a Cricket was cou-
pled with each Illumimote for localizing the light sensor module. To manage
two sensor network platforms, two Java modules run concurrently: SerialServer
for interfacing between the Illuminator core and sensor networks and Localizer
for computing positions of the Cricket nodes based on the ultrasound range
measurements.

Problems and Exercises
18.1 Multi-choice questions
 1. Th e signifi cance of this proposed light control sensor network includes
 a. Real-time data accounts for how characteristics like light intensity and

color temperature change over time and deployments due to fi lament
aging, supply voltage variation, changes in fi xture position, color fi lters, etc.

Wireless base
station

Illumimote and
cricket

Light source

Dimmer

DMX controller

Database Illuminator light
control system

Serial sever and
localizer

User input

GUI
display

SET

Figure 18.5 Illuminator light control system. (Adapted from Park, H., Design and
implementation of a wireless sensor network for intelligent light control, PhD dis-
sertation, Department of Electrical Engineering, UCLA, Los Angeles, CA, 2006.)

AU9215_C018.indd 472AU9215_C018.indd 472 2/22/2010 4:25:19 PM2/22/2010 4:25:19 PM

Case Study 2: Light Control ◾ 473

 b. Th rough real-time measurement of light, we do not need to maintain
desired intensities of lights for certain area across many venues and over
long time periods.

 c. Current handheld manual light meters have not been incorporated
in systems supporting automatic light control and must be manually
moved through diff erent points in space.

 d. All of the above.
 2. Illuminator’s roles do not include
 a. Light-to-light communications
 b. Characterize the lights
 c. Manage the best light actuation profi les satisfying user constraints
 d. Recommend sensor deployment
 3. WSN is good for light management due to the following facts:
 a. We need to monitor and replicate the quality of light (illuminance and

color) in each shot, so that footage captured at diff erent times or in dif-
ferent locations does not show unexpected diff erences

 b. Maintaining continuity was remarkably diffi cult as notes had to be
taken by hand and conditions were constantly changing

 c. Many large-budget feature fi lms require signifi cant postproduction
digital image manipulation prior to release, which is quite expensive

 d. All of the above
 4. Illuminator system could be useful for the following case(s):
 a. Entertainment and media production
 b. Achieving required illumination profi les in outdoor public venues
 c. Acoustic sensing in underwater imaging
 d. Both a and b
 5. Illumimote’s data acquisition capabilities include
 a. Signal strength (intensity)
 b. Frequency (color)
 c. Transmission vector (incident light angle and sensor attitude)
 d. All of the above
18.2 Why should we use sensor networks for light control?
18.3 How many capabilities does a light sensor have?
18.4 Explain each module of Illumimote’s architecture.
18.5 Explain the principle of color temperature calibration.

AU9215_C018.indd 473AU9215_C018.indd 473 2/22/2010 4:25:19 PM2/22/2010 4:25:19 PM

AU9215_C018.indd 474AU9215_C018.indd 474 2/22/2010 4:25:19 PM2/22/2010 4:25:19 PM

475

References

[Abarroso05] A. Barroso, U. Roedig, and C. Sreenan, μ-MAC: An energy-effi cient medium
access control for wireless sensor networks, in Proceedings of the Second IEEE European
Workshop on Wireless Sensor Networks, Istanbul, Turkey, January 2005, pp. 70–80.

[Abolhasan04] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, A review of routing protocols
for mobile ad hoc networks, Ad Hoc Networks (Elsevier), 2, 1–22, January 2004.

[ACerpa02] A. Cerpa and D. Estrin, ASCENT: Adaptive selfconfi guring sensor network
topologies, in Proceedings of the INFOCOM ’02, New York, June 2002.

[Achandra00] A. Chandra, V. Gummalla, and J.O. Limb, Wireless medium access control
protocols, IEEE Surveys and Tutorials, 3(2), 2–15, Second Quarter, 2000.

[ADK04] A.D. Kshemkalyani, Th e power of logical clock abstractions, Distributed Computing,
17(2), 131–150, 2004.

[ADoucet01] A. Doucet, N. Freitas, and N. Gordon, Sequential Monte Carlo Methods in
Practice. Springer-Verlag, New York, 2001.

[Aelhoiydi04] A. El-Hoiydi and J.-D. Decotignie, WiseMAC: An ultra low power MAC
protocol for the downlink of infrastructure wireless sensor networks, IEEE Computers
and Communications, 1, 244–251, July 2004.

[Aelhoiydi05] A. El-Hoiydi and J.-D. Decotignie, Low power MAC protocol for infrastruc-
ture wireless sensor networks, ACM Mobile Networks and Applications, 10(5), 675–690,
October 2005.

[AFH05] M. Amundson, J. Friedman, V. Holtgrewe, and H. Park, UCLA engineers collabo-
rate on unique sensor system for fi lm production, UCLA Engineering News Center,
Los Angeles, CA, March 2005.

[Akan05] Ö.B. Akan and I.F. Akyildiz, Event-to-sink reliable transport in wireless sen-
sor networks, IEEE/ACM Transactions on Networking, 13(5), 1003–1016, October
2005.

[Akcan06] H. Akcan, V. Kriakov, H. Brönnimann, and A. Delis, GPS-Free node localiza-
tion in mobile wireless sensor networks, in Proceedings of the Fifth ACM International
Workshop on Data Engineering for Wireless and Mobile Access (MobiDE ’06), Chicago,
IL, June 25, 2006, ACM, New York, pp. 35–42.

[Akkaya05] K. Akkaya and M. Younis, A survey on routing protocols for wireless sensor
networks, Ad Hoc Networks (Elsevier), 3, 325–349, May 2005.

[Akyildiz02] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor
networks: A survey, Computer Networks (Elsevier), 38, 393–422, March 2002.

AQ1

AU9215_C019.indd 475AU9215_C019.indd 475 12/23/2009 9:18:05 AM12/23/2009 9:18:05 AM

476 ◾ References

[Akyildiz04] I.F. Akyildiz and I.H. Kasimoglu, Wireless sensor and actor networks: Research
challenges, Ad Hoc Networks (Elsevier), 2, 351–367, October 2004.

[Akyildiz04a] I.F. Akyildiz, D. Pompili, and T. Melodia, Challenges for effi cient commu-
nication in underwater acoustic sensor networks, SIGBED Review, 1(2), 3–8, July
2004.

[Akyildiz07] I.F. Akyildiz, T. Melodia, and K.R. Chowdhury, A survey on wireless multime-
dia sensor networks, Computer Networks (Elsevier), 51(4), 921–960, March 2007.

[Akyildiz] I.F. Akyildiz, Lecture notes on wireless sensor networks.
[Ahuja93] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows: Th eory, Algorithms,

and Applications. Prentice Hall, Englewood Cliff s, NJ, February 1993.
[AJsang01] A. Jsang, A logic for uncertain probabilities, International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 9(3), 279–311, June 2001.
[AJsang02] A. Jsang and R. Ismail, Th e beta reputation system, in Proceedings of the 15th Bled

Electronic Commerce Conference, Bled, Slovenia, June 2002.
[ALeon94] A. Leon-Garcia, Probability and Random Processes for Electrical Engineering, 2nd

edn. Addison-Wesley Publishing Company Inc., Reading, MA, 1994.
[AManjeshwar01] A. Manjeshwar and D.P. Agrawal, TEEN: A routing protocol for enhanced

effi ciency in wireless sensor networks, in Proceedings of the 15th IEEE International
Parallel and Distributed Processing Symposium, San Francisco, CA, April 2001, pp.
2009–2015.

[AMAbdel85] A.M. Abdel-Ghaar, Ambient vibration studies of golden gate bridge, Journal
of Engineering Mechanics, 111(4), 483–499, April 1985.

[Anderson96] R. Anderson and M. Kuhn, Tamper resistance—A cautionary note, in
Proceedings of the Second Usenix Workshop on Electronic Commerce, Oakland, CA, 1996,
pp. 1–11.

[ANDERSON 02] J. Anderson, D. Culler, A. Mainwaring, J. Polastre, and R. Szewczyk,
Wireless sensor networks for habitat monitoring, in Workshop on Wireless Sensor
Networks and Applications (WSNA ’02), Atlanta, GA, September 2002.

[AMD03] AMD, AM49DL640BG Stacked Multi-Chip Package (MCP) Flash Memory and
SRAM. 2003: http://www.amd.com/usen/assets/content_type/white_papers_and_
tech_docs/26090a.pdf

[Anandarajah05] A. Anandarajah, K. Moore, A. Terzis, and I.-J. Wang, Sensor networks for
landslide detection, in Proceedings of the Th ird International Conference on Embedded
Networked Sensor Systems, San Diego, CA, 2005, pp. 268–269.

[APerrig00] A. Perrig, R. Canetti, J. Tygar, and D. Song, Effi cient authentication and signing
of multicast streams over lossy channels, in IEEE Symposium on Security and Privacy,
Oakland, CA, 2000.

[APerrig01] A. Perrig et al., SPINS: Security protocols for sensor networks, in Proceedings of
ACM MOBICOM, Rome, Italy, 2001.

[APerrig02] A. Perrig, R. Canetti, J.D. Tygar, and D. Song, Th e TESLA broadcast authenti-
cation protocol, CryptoBytes, 5(2), 2–13, Summer/Fall 2002.

[ASavkin03] A. Savkin, P. Pathirana, and F. Faruqi, Th e problem of precision missile guid-
ance: LQR and H1 control frameworks, IEEE Transactions on Aerospace and Electronic
Systems, 39(3), 901–910, July 2003.

[ASavvides01] A. Savvides, C.-C. Han, and M. Srivastava, Dynamic fi ne-grained localiza-
tion in ad-hoc networks of sensors, in Proceedings of the Seventh ACM International
Conference on Mobile Computing and Networking (Mobicom), Rome, Italy, July 2001,
ACM, New York, pp. 166–179.

AQ2

AQ3

AU9215_C019.indd 476AU9215_C019.indd 476 12/23/2009 9:18:06 AM12/23/2009 9:18:06 AM

Fei Hu
Line

References ◾ 477

[ASPNES 03] J. Aspnes and G. Shah, Skip graphs, in Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, Baltimore, MD, January 12–14, 2003, pp.
384–393.

[ASrinivasan06] A. Srinivasan, J. Teitelbaum, and J. Wu, DRBTS: Distributed reputation-
based beacon trust system, in Second IEEE International Symposium on Dependable,
Autonomic and Secure Computing (DASC ’06), Indianapolis, IN, 2006, pp. 277–283.

[ASrinivasan08] A. Srinivasan and J. Wu, A survey on secure localization in wireless sensor
networks, in Encyclopedia of Wireless and Mobile Communications, B. Furht, Ed., CRC
Press/Taylor & Francis Group, Boca Raton, FL, 2008 (accepted for publication).

[ASyed05] A. Syed and J. Heidemann, Time synchronization for high latency acoustic net-
works. USC/Information Sciences Institute, Technical Report ISI-TR-2005-602, April
2005, extended tech report version of the INFOCOM paper with a detailed appendix.
[Online]. Available: http://www.isi.edu/#johnh/PAPERS/Syed05a.html

[Athanassios03] A. Boulis, C.-C. Han, and M.B. Srivastava, Design and implementation of
a framework for effi cient and programmable sensor networks, in Proceedings of the First
International Conference on Mobile Systems, Applications, and Services (MobiSys ’03), San
Francisco, CA, May 5–8, 2003.

[ATIhler04] A.T. Ihler, J.W. Fisher III, R.L. Moses, and A.S. Willsky, Nonparametric belief
propagation for self-calibration in sensor networks, in Information Processing in Sensor
Networks, Berkeley, CA, 2004.

[Atmel01] Atmel Corporation, Atmega103(L) Datasheet. 2001, Atmel Corporation: http://
www.atmel.com/atmel/acrobat/doc0945.pdf

[Atmel08] Atmel Corporation, http://www.atmel.com. 2008.
[AWoo93] A. Woo, T. Tong, and D. Culler, Taming the underlying challenges of reliable

multihop routing in sensor networks, in SenSys 2003, Los Angeles, CA.
[AWoo01] A. Woo and D. Culler, A transmission control scheme for media access in sen-

sor networks, in Proceedings of the Seventh Annual International Conference on Mobile
Computing and Networking (MOBICOM ’01), Rome, Italy, July 2001, pp. 221–235.

[AWood02] A. Wood and J. Stankovic, Denial of service in sensor networks, IEEE Computer,
35(10), 54–62, October 2002.

[AWood03] A. Wood, J. Stankovic, and S.H. Son, Jam: A jammed-area mapping service for
sensor networks, in Real-Time Systems Symposium, Cancun, Mexico, 2003.

[BANCILHON 87] F. Bancilhon, T. Briggs, S. Khoshafi an, and P. Valduriez, FAD, a power-
ful and simple database language, in Proceedings of VLDB, Brighton, U.K., 1987.

[Banerjee05] N. Banerjee, J. Sorber, M.D. Corner, S. Rollins, and D. Ganesan, Triage: A
power-aware software architecture for tiered microservers, Technical Report, University
of Massachusetts, Amherst, MA, April 2005.

[Bao01] L. Bao and J.J. Garcia-Luna-Aceves, A new approach to channel access scheduling
for ad hoc networks, in Seventh Annual International Conference on Mobile Computing
and Networking, Rome, Italy, 2001, pp. 210–221.

[BBloom70] B. Bloom, Space/time trade-off s in hash coding with allowable errors,
Communications of the ACM, 13(7), 422–426, July 1970.

[Bchen02] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, Span: An energy-effi cient
coordination algorithm for topology maintenance in ad hoc wireless networks, ACM
Wireless Networks, 8(5), 481–494, September 2002.

[Bdavid02] D. Braginsky, Estrin rumor routing algorithm for sensor networks, in Proceedings
of the First ACM International Workshop on Wireless Sensor Networks and Applications,
Atlanta, GA, September 2002, ACM, New York, pp. 22–31.

AQ4

AU9215_C019.indd 477AU9215_C019.indd 477 12/23/2009 9:18:06 AM12/23/2009 9:18:06 AM

478 ◾ References

[Bellare93] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for design-
ing effi cient protocols, in Proceedings of the First ACM Conference on Computer and
Communications Security, Fairfax, VA, 1993, pp. 62–73.

[Berg00] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry,
2nd edn. Springer, Berlin, Germany, 2000.

[BFM06] J. Burke, J. Friedman, E. Mendelowitz, H. Park, and M.B. Srivastava, Embedding
expression: Pervasive computing architecture for art and entertainment, Journal of
Pervasive and Mobile Computing, 2(1), 1–36, February 2006.

[Bharath05] B. Sundararaman, U. Buy, and A.D. Kshemkalyani, Clock synchronization for
wireless sensor networks: A survey, Department of Computer Science, University of
Illinois at Chicago, Chicago, IL, March 22, 2005. http://www.cs.uic.edu/∼ajayk/ext/
ClockSyncWSNsurvey.pdf

[Bharghavan93] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, MACAW: A media
access protocol for wireless LAN’s, in Proceedings of ACM SIGCOMM Conference
(SIGCOMM ’94), London, U.K., August 1994, pp. 212–225.

[BHW97] B.H. Wellenhoff , H. Lichtenegger, and J. Collins, Global Positions System: Th eory
and Practice. Springer-Verlag, New York, 1997.

[Bkrap00] B. Krap and H.T. Kung, GPSR: Greedy perimeter stateless routing for wireless
networks, in Proceedings of MobiCom 2000, Boston, MA, August 2000, pp. 243–254.

[BKusy07] B. Kusy, G. Balogh, A. Ledeczi, and M.M.J. Sallai, in-Track: High precision
tracking of mobile sensor nodes, in Fourth European Workshop on Wireless Sensor
Networks (EWSN ’07), Delft, the Netherlands, January 2007.

[Blake00] I. Blake, G. Seroussi, and N.P. Smart, Elliptic Curves in Cryptography. Cambridge
University Press, Cambridge, U.K., 2000, ISBN 0-521-65374-6.

[BLiskov91] B. Liskov, Practical uses of synchronized clocks in distributed systems, in
Proceedings of the 10th Annual ACM Symposium on Principles of Distributed Computing,
Montreal, Canada, August 1991, pp. 1–9.

[Blom85] R. Blom, An optimal class of symmetric key generation systems, in Advances in
Cryptology: Proceedings of EUROCRYPT ’84, T. Beth, N. Cot, and I. Ingemarsson, Eds.
Lecture Notes in Computer Science, Vol. 209, pp. 335–338, Springer-Verlag, Berlin,
Germany, 1985.

[BLT04] B.L. Titzer, Avrora: Th e AVR simulation and analysis framework, Master’s thesis,
UCLA, Los Angeles, CA, June 2004.

[Blundo93] C. Blundo, A.D. Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M.
Yung, Perfectly secure key distribution for dynamic conferences, in Advances in
Cryptology —CRYPTO ’92, E. Brickell, Ed., Lecture Notes in Computer Science, Vol.
740, pp. 471–486, Springer-Verlag, Berlin, Germany, 1993.

[Bose01] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, Routing with guaranteed delivery
in ad hoc wireless networks, ACM-Kluver Wireless Networks (Springer), 7, 609–616,
November 2001.

[BOX 73] G.E.P. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis. Addison-
Wesley Publishing Company, Inc., Reading, MA, 1973.

[Brekhovskikh01] L. Brekhovskikh and Y. Lysanov, Fundamentals of Oceans Acoustics.
Springer, New York, 2001.

[Broadcast08] http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/tos/lib/Broadcast.
2008.

[Bruce96] B. Schneier, Applied Cryptography, 2nd edn. John Wiley & Sons, New York,
1996.

AU9215_C019.indd 478AU9215_C019.indd 478 12/23/2009 9:18:06 AM12/23/2009 9:18:06 AM

References ◾ 479

[Buff eredLog08] Buff eredLog: see http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos1.x/
tos/system/Buff eredLog.nc

[Bulusu00] N. Bulusu, J. Heidemann, and D. Estrin, GPS-less low cost outdoor localization
for very small devices, IEEE Personal Communications Magazine, 7(5), 28–34, October
2000.

[BULUSU 05] N. Bulusu, C. Chou, W. Hu, S. Jha, A. Taylor, and V. Tran, Th e design
and evaluation of a hybrid sensor network for cane-toad monitoring, in Proceedings of
Information Processing in Sensor Networks, Los Angeles, CA, April 2005.

[BWarneke01] B. Warneke, M. Last, B. Liebowitz, and K.S.J. Pister, Smart dust: Commu-
nicating with a cubic-millimeter computer, IEEE Computer, 34(1), 44–51, 2001.

[BYCHKOVSKIY 03] V. Bychkovskiy, S. Megerian, D. Estrin, and M. Potkonjak, A collab-
orative approach to in-place sensor calibration, in Proceedings of IPSN ’03, Palo Alto,
CA, 2003.

[BZhang04] B. Zhang, G.S. Sukhatme, and A.A.G. Requicha, Adaptive sampling for marine
microorganism monitoring, IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Sendai, Japan, 2004, Vol. 2, pp. 1115–1122. [Online]. Available:
http://cres.usc.edu/pubdb html/fi les upload/402.pdf

[CardioNet08] CardioNet Inc. has developed an integrated technology and service–mobile
cardiac outpatient telemetry (MCOT)—Which enables heartbeat-by-heartbeat, ECG
monitoring, analysis and response, at home or away, 24/7/365. On CardioNet project
details, please see: http://www.cardionet.com/

[Carlo05] C. Curino, G. Matteo, M. Giorgetta, and A. Giusti, TinyLIME: Bridging mobile
and sensor networks through middleware, in Proceedings of the Th ird IEEE International
Conference on Pervasive Computing and Communications, Kauai Island, HI, March
8–12, 2005.

[Carlos04] C. Pomalaza-Ráez, Wireless Sensor Networks Energy Effi ciency Issues, (Lecture
notes), Fall 2004, University of Oulu, Oulu, Finland.

[CARNEY 02] D. Carney et al., Monitoring streams—A new class of data management
applications, in Proceedings of VLDB, Hong Kong, China, 2002.

[Catipovic90] J. Catipovic, Performance limitations in underwater acoustic telemetry, IEEE
Journal of Oceanic Engineering, 15, 205–216, July 1990.

[Cayirci06] E. Cayirci, H. Tezcan, Y. Dogan, and V. Coskun, Wireless sensor networks for
underwater surveillance systems, Ad Hoc Networks (Elsevier), 4(4), 431–446, 2006.

[CcEnz04] C.C. Enz, A. El-Hoiydi, J.-D. Decotignie, and V. Peiris, WiseNET: An ultralow-
power wireless sensor network solution, IEEE Journal, 37(8), 62–70, August 2004.

[CEPerkins99] C.E. Perkins and E.M. Royer, Ad-hoc on-demand distance vector routing, in
Second IEEE Workshop on Mobile Computing Systems and Applications (WMCSA ’99),
New Orleans, LA, February 25–26, 1999, pp. 90–100.

[CERPA 01] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao, Habitat
monitoring: Application driver for wireless communications technology, in Proceedings
of ACM SIGCOMM Workshop on Data Communications in Latin America and the
Caribbean, San Jose, Costa Rica, 2001.

[CFok05] C. Fok, G. Roman, and C. Lu, Mobile agent middleware for sensor networks:
An application case study, in Proceedings of the Fourth International Conference on
Information Processing in Sensor Networks (IPSN ’05), UCLA, Los Angeles, CA, April
25–27, 2005, pp. 382–387.

[Chi06] C. Ma and Y. Yang, Battery-aware routing for streaming data transmissions in wireless
sensor networks, Mobile Networks and Applications, 11, 757–767, 2006.

AU9215_C019.indd 479AU9215_C019.indd 479 12/23/2009 9:18:06 AM12/23/2009 9:18:06 AM

480 ◾ References

[Chieh-Yih05] C.-Y. Wan, A.T. Campbell, Member, IEEE, and L. Krishnamurthy, Pump-
slowly, fetch-quickly (PSFQ): A reliable transport protocol for sensor networks, IEEE
Journal on Selected Areas in Communications, 23(4), 862–872, April 2005.

[Chipcon08] On the Chipcon Inc. RF transceiver products, please see http://www.chipcon.com,
Visited in June 2008.

[CIntanagonwiwat00] C. Intanagonwiwat, R. Govindan, and D. Estrin, Directed diff usion:
A scalable and robust communication paradigm for sensor networks, in Proceedings
of the Sixth Annual International Conference on Mobile Computing and Networking
(MobiCOM ’00), Boston, MA, August 2000, ACM Press, New York, pp. 56–67.

[CKarlof03] C. Karlof and D. Wagner, Secure routing in sensor networks: Attacks and
countermeasures, Ad Hoc Networks, Special issue on Sensor Network Applications and
Protocols (Elsevier), 1(2–3), 293–315, September 2003.

[CKarlof03a] C. Karlof, Y. Li, and J. Polastre, ARRIVE: An architecture for robust routing in
volatile environments, Technical Report UCB/CSD-03-1233, University of California
at Berkeley, Berkeley, CA, March 2003.

[CHANDRASEKARAN 03] S. Chandrasekaran et al., TelegraphCQ: Continuous datafl ow
processing for an uncertain world, in Proceedings of the First Annual Conference on
Innovative Database Research (CIDR), Asilomar, CA, 2003.

[Chang04] J.-H. Chang and L. Tassiulas, Maximum lifetime routing in wireless sensor net-
works, IEEE/ACM Transactions on Networking, 12(4), 609–619, August, 2004.

[Chehri06] A. Chehri, P. Fortier, and P.-M. Tardif, Application of ad-hoc sensor networks
for localization in underground mines, Wireless and Microwave Technology Conference
(WAMICON ’06), Melbourne, FL, 2006. IEEE Annual Volume, Issue, December
4–5, 2006, pp. 1–4.

[CHIPCON 04] Chipcon. CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready RF transceiver,
2004.

[Clement01] C. Ogaja, C. Rizos, and J. Wang, Towards the implementation of on-line
structural monitoring using RTK-GPS and analysis of results using the wavelet trans-
form, in Tenth FIG International Symposium on Deformation Measurement, Orange,
CA, 2001. Downloadable from: http://www.gmat.unsw.edu.au/snap/about/../
publications/ogaja_etal2001a.pdf

[CMUcam08] Th e CMUcam2. http://www-2.cs.cmu.edu/ cmucam/cmucam2/index.html
[CodeBlue06] M. Welsh and B. Chen, CodeBlue: Wireless sensor networks for medical care,

Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA,
2006.

[CORMEN 01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd edn. Th e MIT Press, Cambridge, MA, 2001.

[CPERKINS00] C. Perkins, Ad Hoc Networks. Addison-Wesley, Reading, MA, 2000.
[CSavarese02] C. Savarese, Robust positioning algorithms for distributed ad hoc wireless

sensor networks, Master’s thesis, University of California at Berkeley, Berkeley, CA,
2002.

[Cschurgers01] C. Schurgers and M.B. Srivastava, Energy effi cient routing in wireless sensor
networks, in Proceedings of IEEE MILCOM ’01, Vienna, VA, October 2001, Vol. 1,
pp. 357–361.

[CSrisathapornphat00] C. Srisathapornphat, C. Jaikaeo, and C. Shen, Sensor information
networking architecture, Journal of Computer Science & Technology, in Proceedings of the
International Workshop on Parallel Processing, Toronto, Canada, 2000, pp. 23–30, IEEE
CS Press, Los Alamitos, CA.

AQ5

AQ6

AU9215_C019.indd 480AU9215_C019.indd 480 12/23/2009 9:18:06 AM12/23/2009 9:18:06 AM

References ◾ 481

[CRAINICEANU 04] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram,
Querying peer-to-peer networks using P-trees, Technical Report TR2004-1926,
Cornell University, Ithaca, NY, 2004.

[Crossbow08] On all wireless sensor network products (including motes, sensor boards, gate-
way, etc.) from Crossbow Inc., please see: http://www.xbow.com, Visited in June 2008.

[CYWan02] C.Y. Wan, A.T. Campbell, and L. Krishnamurthy, PSFQ: A reliable transport
protocol for wireless sensor networks, in Proceedings of the ACM WSNA, Atlanta, GA,
September 2002, pp. 1–11.

[DAForsyth02] D.A. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Prentice
Hall, Upper Saddle River, NJ, 2002.

[DAI 04] H. Dai, M. Neufeld, and R. Han, ELF: An effi cient log-structured fl ash fi le system
for micro sensor nodes, in SenSys ’04: Proceedings of the Second International Conference
on Embedded Networked Sensor Systems, Baltimore, MD, 2004, ACM Press, New York,
pp. 176–187.

[Dallas08] Dallas Semiconductor, DS2401 Silicon Serial Number: http://pdfserv.maximic.
com/arpdf/DS2401.pdf

[DAMaltz01] D.A. Maltz, On-demand routing in multihop wireless mobile ad hoc net-
works, PhD dissertation, Carnegie Mellon University, Pittsburgh, PA, 2001.

[Dario07] D. Pompili, Effi cient communication protocols for underwater acoustic sensor
networks, PhD dissertation, School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA, August 2007.

[Ddclark90] D.D. Clark and D.L. Tennenhouse, Architectural Considerations for a New
Generation of Protocols, 20(4), 200–208, September 1990, ACM.

[DDolev85] D. Dolev, J.Y. Halpern, B. Simons, and R. Strong, Dynamic fault-tolerant clock
synchronization, Journal of the ACM, 42(1), 143–185, January 1985.

[DELIN 00] K.A. Delin and S.P. Jackson, Sensor web for in situ exploration of gaseous bio-
signatures, in Proceedings of the IEEE Aerospace Conference, Big Sky, MT, 2000.

[DESNOYERS 05] P. Desnoyers, D. Ganesan, H. Li, and P. Shenoy, PRESTO: A predictive
storage architecture for sensor networks, in 10th Workshop on Hot Topics in Operating
Systems (HotOS X), Sante Fe, NM, June 2005.

[DEWITT 90] D.J. Dewitt, S. Ghandeharizadeh, D.A. Schneider, A. Bricker, H.I. Hsiao,
and R. Rasmussen, Th e gamma database machine project, IEEE Transactions on
Knowledge and Data Engineering, 2(1), 44–62, 1990.

[DFober02] D. Fober, Y. Orlarey, and S. Letz, Clock skew compensation over a high
latency network, in Proceedings of the ICMC, Gteborg, Sweden, 2002, ICMA, San
Francisco, CA.

[DFox99] D. Fox, W. Burgard, F. Dellaert, and S. Th run, Monte Carlo localization: Effi cient
position estimation for mobile robots, in AAAI 1999, Orlando, FL, 1999, pp. 343–349.

[DGWatters02] D.G. Watters, P. Jayaweera, A.J. Bahr, and D.L. Huestis, Design and
performance of wireless sensors for structural health monitoring, in AIP Conference
Proceedings 615: Quantitative Nondestructive Evaluation, D.O. Th ompson and D. E.
Chimenti, Eds., New York, May 2002, pp. 969–976.

[DLiu03] D. Liu and P. Ning, Establishing pairwise keys in distributed sensor networks,
in Proceedings of the 10th ACM Conference on Computer and Communications Security
(CCS ’03), Washington, DC, 2003, pp. 52–61.

[DLiu05] D. Liu, P. Ning, and W. Du, Detecting malicious Beacon nodes for secure location
discovery in wireless sensor networks, in 25th IEEE International Conference on Distributed
Computing Systems (ICDCS ’05), Columbus, OH, 2005, pp. 609– 619.

AU9215_C019.indd 481AU9215_C019.indd 481 12/23/2009 9:18:06 AM12/23/2009 9:18:06 AM

482 ◾ References

[DLiu05a] D. Liu, P. Ning, and W. Du, Attack-resistant location estimation in sensor net-
works, in Proceedings of the Fourth International Conference on Information Processing in
Sensor Networks (IPSN ’05), Los Angeles, CA, April 2005, pp. 99–106.

[DLM91] D.L. Mills, Internet time synchronization: Th e network time protocol, IEEE
Transactions on Communications, 39(10), 1482–1493, October 1991.

[DLM92] D.L. Mills, Network time protocol (version 3): Specifi cation, implementation,
and analysis, Technical Report, Network Information Center, SRI International,
Menlo Park, CA, March 1992.

[DMills89] D. Mills, Internet time synchronization: Th e network time protocol; RFC 1129,
Internet Request for Comments, no. 1129, October 1989.

[Donggang05] D. Liu, Security mechanisms for wireless sensor networks, PhD dissertation,
Department of Computer Science, North Carolina State University, Raleigh, NC,
2005.

[DOOLIN 05] D. Doolin and N. Sitar, Wireless sensors for wildfi re monitoring, March
2005.

[Doyle93] M. Doyle, T.F. Fuller, and J. Newman, Modeling of galvanostatic charge and
discharge of the lithium/polymer/insertion cell, Journal of the Electrochemical Society,
140(6), 1526–1533, 1993.

[DSchmidt07] D. Schmidt, M. Krämer, T. Kuhn, and N. Wehn, Energy modelling in sensor
networks, Advances in Radio Science, 5, 347–351, 2007. See http://www.adv-radio-sci.
net/5/347/2007/

[DSR] D. Johnson, D. Maltz, and J. Broch, Th e dynamic source routing protocol for multi-
hop wireless ad hoc networks, in Ad Hoc Networking, C. Perkins, Ed., Addison-Wesley,
Boston, MA, 2001.

[DSPComm08] DSPComm. available: www.dspcomm.com, Visited in 2008.
[DUDA 01] R.O. Duda, P.E. Hart, and D.G. Stock, Pattern Classifi cation, 2nd edn. John

Wiley & Sons, Inc., New York, 2001.
[Dulman03] S. Dulman, T. Nieberg, J. Wu, and P. Havinga, Trade-off between traffi c over-

head and reliability in multipath routing for wireless sensor networks, IEEE WCNC,
New Orleans, LA, March 2003.

[DuW03] W. Du, J. Deng, Y.S. Han, and P.K. Varshney, A pairwise key pre-distribution
scheme for wireless sensor networks, in Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS ’03), Washington DC, October 27–30,
2003, ACM, New York, pp. 42–51.

[DuW05] W. Du, J. Deng, Y.S. Han, P.K. Varshney, J. Katz, and A. Khalili, A pairwise key
predistribution scheme for wireless sensor networks, ACM Transactions on Information
and System Security, 8(2), 228–258, May 2005.

[DWheeler94] D. Wheeler and R. Needham, TEA, a Tiny Encryption Algorithm, 1994
http://www.ftp.cl.cam.ac.uk/ftp/papers/djw-rmn/djw-rmn-tea.html

[Eelopez06] E.E. Lopez, J. Vales-Alonso, A.S. Martínez-Sala, J. García-Haro, P. Pavón-
Mariño, and M.V.B. Delgado, A wireless sensor networks MAC protocol for real time
applications, Personal and Ubiquitous Computing, 12(2), 111–122, January, 2008,
ACM.

[Ekici99] E. Ekici, R. Rajaie, M. Handley, and D. Estrin, RAP: An end-to-end rate-based
congestion control mechanism for real time streaming in the internet, in Proceedings of
INFOCOM 1999, New York, 1999.

[ElGamal02] A. El Gamal, Trends in CMOS image sensor technology and design,
International Electron Devices Meeting Digest of Technical Papers, 2002.

AU9215_C019.indd 482AU9215_C019.indd 482 12/23/2009 9:18:06 AM12/23/2009 9:18:06 AM

References ◾ 483

[Elnahrawy2003] E. Elnahrawy and B.R. Badrinath, Cleaning and querying noisy sensors, in
Proceedings of the Second ACM International Conference on Wireless Sensor Networks and
Applications, San Diego, CA, September 19, 2003.

[Elson02] J. Elson, L. Girod, and D. Estrin, Fine-grained network time synchronization using
reference broadcasts, SIGOPS Operating System Reviews, 36(SI), 147–163, 2002.

[Ember08] On the RF and CPU chips from Ember Inc., see http://www.ember.com, Visited
in June 2008.

[Engelbrecht05] N. Engelbrecht and W.T. Penzhorn, Secure authentication protocols
used for low power wireless sensor networks, in Proceedings of the IEEE International
Symposium on Industrial Electronics (ISIE 2005), Dubrovnik, Croatia, June 20–23,
2005.

[ENT] ENTTEC. DMX512 Ethernet Gateway MK2 User Manual. http://www.enttec.
com/docs/ethergate manual.pdf

[EnVision07] En-Vision America, ScripTalk, http://www.envisionamerica.com/scriptalk/
scriptalk.php, downloaded 22 August 2007.

[Eschenauer02] L. Eschenauer and V.D. Gligor, A key-management scheme for distrib-
uted sensor networks, in Proceedings of the Ninth ACM Conference on Computer and
Communications Security, Washington, DC, 2002, pp. 41–47.

[EShih01] E. Shih et al., Physical layer driven protocol and algorithm design for energy-
effi cient wireless sensor networks, in Proceedings of the ACM MOBICOM, Rome, Italy,
July 2001, pp. 272–286.

[ESJung05] E.-S. Jung and N.H. Vaidya, A power control MAC protocol for ad hoc net-
works, Wireless Networks, 11, 55–66, 2005.

[ESouto04] E. Souto et al., A message-oriented middleware for sensor networks, in Proceedings
of the Second International Workshop Middleware for Pervasive and Ad-Hoc Computing
(MPAC ’04), Toronto, Canada, October 2004, ACM Press, New York, pp. 127–134.

[ETC] ETC. Lighting Control Products. Website: http://www.etcconnect.com/products.
controls.asp, 2008.

[Exavera07] Exavera Technologies, eShepherd overview, http://www.exavera.com/healthcare/
eshepherd.php, downloaded 22 August 2007.

[FAnjum06] F. Anjum, Location dependent key management using random key-predistribu-
tion in sensor networks, in Proceedings of WiSe ’06, Los Angeles, CA, 2006.

[FCristian89] F. Cristian, Probabilistic clock synchronization, Distributed Computing, 3,
146–158, 1989.

[Feng99] W. Feng, M. Liu, B. Krishnaswami, and A. Prabhudev, A priority-based tech-
nique for the best eff ort delivery of stored video, in Proceedings of the ACM/SPIE
Multimedia Computing and Networking Conference, San Jose, CA, January 1999, ACM,
New York.

[Feng05] W. Feng, E. Kaiser, W.C. Feng, and M.L. Baillif, Panoptes: Scalable low-power
video sensor networking technologies, ACM Transactions on Multimedia Computing,
Communications, and Applications, 1(2), 151–167, May 2005.

[Finn87] G. Finn, Routing and addressing problems in large metropolitan-scale internet-
works, Technical Report, ISI/RR-87-180, USC/ISI, March 1987.

[Fkuhn03] F. Kuhn, W. Roger, and Z. Aaron, Worst-case optimal and average-case effi cient
geometric ad-hoc routing, in Proceedings of International Symposium on Mobile Ad Hoc
Networking & Computing, Annapolis, MD, June 2003.

[Fla05] F.V. Delicato and P.F. Pires, A service approach for architecting application indepen-
dent wireless sensor networks, Cluster Computing, 8(2–3), 211–221, 2005.

AQ7

AU9215_C019.indd 483AU9215_C019.indd 483 12/23/2009 9:18:06 AM12/23/2009 9:18:06 AM

484 ◾ References

[Fli06] F. Li, Y. Li, W. Zhao, Q. Chen, and W. Tang, An adaptive coordinated MAC protocol
based on dynamic power management for wireless sensor networks, in Proceedings of
the 2006 International Conference on Wireless Communications and Mobile Computing,
Vancouver, Canada, July 2006, ACM, New York, pp. 1073–1078.

[Forsyth01] D. Forsyth and J. Ponce, Computer Vision: A Modern Approach. Prentice-Hall,
Upper Saddle River, NJ, 2001.

[Freitag01] L. Freitag, M. Stojanovic, S. Singh, and M. Johnson, Analysis of channel eff ects
on direct-sequence and frequency-hopped spread-spectrum acoustic communication,
IEEE Journal of Oceanic Engineering, 26, 586–593, October 2001.

[FSimjee06] F. Simjee and P.H. Chou, Everlast: Long-life, supercapacitor-operated wireless
sensor node, ISLPED, Tegernsee, Germany, 2006.

[Ftobagi75] F. Tobagi and L. Kleinrock, Packet switching in radio channels, Part II: Hidden-
terminal problem in carrier sense multiple access and the busy-tone solution, IEEE
Transactions on Communications, 23(12), 973–977, December 1975.

[FYe02] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, A two-tier data dissemination model
for large-scale wireless sensor networks, in Eighth Annual International Conference on
Mobile Computing and Networking (ACM Mobicom ’02), Atlanta, GA, September
2002, ACM Press, New York, pp. 148–159.

[Fye01] F. Ye, S. Lu, and L. Zhang, A scalable solution to minimum cost forwarding in large
sensor networks, in Proceedings of IEEE INFOCOM ’01, Anchorage, AK, April 2001,
pp. 304–309.

[Ganeriwal04] S. Ganeriwal and M.B. Srivastava, Reputation-based framework for high
integrity sensor networks, in Proceedings of the Second ACM Workshop on Security of
Ad Hoc and Sensor Networks (SASN ’04), Washington DC, October 25, 2004, ACM,
New York, pp. 66–77.

[GANESAN 03] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann, An
evaluation of multi-resolution storage in sensor networks, in Proceedings of the First ACM
Conference on Embedded Networked Sensor Systems (SenSys), Los Angeles, CA, 2003.

[GANESAN 03a] D. Ganesan, D. Estrin, and J. Heidemann, Dimensions: Why do we
need a new data handling architecture for sensor networks? SIGCOMM Computer
Communication Review, 33(1), 143–148, January 2003.

[Ganesan01] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, Highly resilient, energy-
effi cient multipath routing in wireless sensor networks, ACM SIGMOBILE Mobile
Computing and Communication Review, 5(4), 11–25, 2001.

[Garey79] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Th eory
of NP-Completeness. W. H. Freeman & Co., New York, 1979.

[Gay03] D. Gay, P. Levis, R.V. Behren, M. Welsh, E. Brewer, and D. Culler, Th e nesC lan-
guage: A holistic approach to networked embedded systems, programming language
design and implementation (PLDI), 2003.

[GCNecula02] G.C. Necula, S. McPeak, S. Rahul, and W. Weimer, CIL: Intermediate
language and tools for analysis and transformation of C programs, in Proceedings of
Conference on Compilier Construction, London, U.K., 2002.

[GEHRKE 01] J. Gehrke, F. Korn, and D. Srivastava, On computing correlated aggre-
gates over continual data streams, in Proceedings of ACM SIGMOD Conference on
Management of Data, Santa Barbara, CA, 2001.

[Gerkey04] B.P. Gerkey and M.J. Mataric, A formal analysis and taxonomy of task allocation
in multi-robot systems, Th e International Journal of Robotics Research, 23, 939–954,
September 2004.

AU9215_C019.indd 484AU9215_C019.indd 484 12/23/2009 9:18:06 AM12/23/2009 9:18:06 AM

References ◾ 485

[GGolub96] G. Golub, Matrix Computations. Th e Johns Hopkins University Press, Baltimore,
MD, 1996.

[GIROD 04] L. Girod et al., A system for simulation, emulation, and deployment of het-
erogeneous sensor networks, in Proceedings of the Second ACM Conference on Embedded
Networked Sensor Systems, Baltimore, MD, 2004.

[Girod01] L. Girod and D. Estrin, Robust range estimation using acoustic and multimodal
sensing, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2001), Maui, HI, October 2001.

[Glegg00] S.A. Glegg, R. Pirie, and A. Lavigne, A study of ambient noise in shallow water.
Florida Atlantic University Technical Report, 2000.

[GloMoSim] GloMoSim for network simulation: http://pcl.cs.ucla.edu/projects/
glomosim/.

[Glu04] G. Lu, B. Krishnamachari, and C.S. Raghavendra, An adaptive energy-effi cient and
low-latency MAC for data gathering in wireless sensor networks, in Proceedings of the
IEEE 18th International Parallel and Distributed Processing Symposium, Santa Fe, NM,
April 2004, pp. 224–231.

[Gomez04] J. Gomez and A.T. Campbell, A case for variable-range transmission power con-
trol in wireless multihop networks, in Proceedings of IEEE Conference on Computer
Communications (INFOCOM), Hong Kong, China, March 2004.

[GPottie00] G. Pottie and W. Kaiser, Wireless integrated network sensors, Communications
of the ACM, 43(5), 51–58, May 2000.

[GREENSTEIN 03] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and S. Shenker,
DIFS: A distributed index for features in sensor networks, Journal of Ad Hoc Networks
(Elsevier), 1(2–3), 333–349, 2003.

[GShafer76] G. Shafer, A Mathematical Th eory of Evidence. Princeton University, Princeton,
NJ, 1976.

[GUTTMAN 84] A. Guttman, R-trees: A dynamic index structure for spatial searching,
in SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data, Boston, MA, 1984, ACM Press, New York, pp. 47–57.

[Ham] Hamamatsu Corporation website. Website: http://usa.hamamatsu.com.
[Hamin06] H. Park, Design and implementation of a wireless sensor network for intelligent

light control, PhD dissertation, Department of Electrical Engineering, University of
California, Los Angeles, CA, 2006. Also see: http://nesl.ee.ucla.edu/fw/documents/
journal/2006/Sensors_Illumimote_HeeminPark.pdf

[HanC05] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, A dynamic operating
system for sensor nodes, in Proceedings of the Th ird international Conference on Mobile
Systems, Applications, and Services (MobiSys ’05), Seattle, WA, June 6–8, 2005, ACM,
New York, pp. 163–176.

[HAND 01] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining. Th e MIT Press,
Cambridge, MA, 2001.

[Harald04] H. Vogt, Exploring message authentication in sensor networks, in First European
Workshop on Security in Ad Hoc and Sensor Networks (ESAS 2004), Heidelberg,
Germany, August 5–6, 2004.

[Hartung06] C. Hartung, R. Han, C. Seielstad, and S. Holbrook, FireWxNet: A multi-
tiered portable wireless system for monitoring weather conditions in wildland fi re
environments, in Proceedings of the Fourth International Conference on Mobile Systems,
Applications and Services (MobiSys ’06), Uppsala, Sweden, June 19–22, 2006, ACM,
New York, pp. 28–41.

AU9215_C019.indd 485AU9215_C019.indd 485 12/23/2009 9:18:07 AM12/23/2009 9:18:07 AM

486 ◾ References

[HARVEY 03] N. Harvey, M.B. Jones, S. Saroiu, M. Th eimer, and A. Wolman, Skipnet: A
scalable overlay network with practical locality properties, in Proceedings of the Fourth
USENIX Symposium on Internet Technologies and Systems (USITS ’03), Seattle, WA,
March 2003.

[Hawkins80] D.M. Hawkins, Identifi cation of Outliers. Chapman and Hall, New York,
1980.

[HChan03] H. Chan, A. Perrig, and D. Song, Random key predistribution schemes for
sensor networks, in Proceedings of the 2003 IEEE Symposium on Security and Privacy,
Berkeley, CA, May 11–14, 2003, pp. 197–213.

[HDai04] H. Dai and R. Han, TSync: A lightweight bidirectional time synchronization
service for wireless sensor networks, ACM SIGMOBILE Mobile Computing and
Communications Review, 8(1), 125–139, January 2004.

[Heemin07] H. Park, J. Burke, and M.B. Srivastava, Design and implementation of a wire-
less sensor network for intelligent light control, in Proceedings of the Sixth International
Conference on Information Processing in Sensor Networks (IPSN ’07), Cambridge, MA,
April 25–27, 2007, ACM, New York, pp. 370–379.

[Heinzelman02] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, An application-
specifi c protocol architecture for wireless microsensor networks, IEEE Transactions on
Wireless Communications, 1, 660–670, October 2002.

[HELLERSTEIN 98] J.M. Hellerstein, Optimization techniques for queries with expensive
methods, ACM Transactions on Database System, 23(2), 113–157, 1998.

[HELLERSTEIN 03] J.M. Hellerstein, W. Hong, S. Madden, and K. Stanek, Beyond aver-
age: Towards sophisticated sensing with queries, in Proceedings of IPSN ’03, Palo Alto,
CA, 2003.

[Henri06] H. DuboisFerrière, R. Meier, L. Fabre, and P. Metrailler, A comprehensive plat-
form for wireless sensor network applications, in IPSN ’06, Nashville, TN, April
19–21, 2006.

[Hightower01] J. Hightower and G. Borriello, Location systems for ubiquitous computing,
IEEE Computer, 34, 57–66, August 2001.

[Hill 00] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, System architecture
directions for networked sensors, in Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-IX),
Cambridge, MA, November 2000, ACM, New York, pp. 93–104.

[HKS05] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, A dynamic operating
system for sensor nodes, in Proceedings of the Th ird International Conference on Mobile
Systems, Applications, and Services (MobiSys ’05), Seattle, WA, 2005, ACM Press, New
York, pp. 163–176.

[HMa02] H. Ma and J.A. Paradiso, Th e FindIT Flashlight: Responsive tagging based on
optically triggered microprocessor wakeup, UBICOMP 2002, Gothenburg, Sweden,
Springer Verlag, Berlin, Germany, pp. 160–167, 2002.

[Hojung07] H. Cha et al., Resilient, expandable, and threaded operating system for wireless
sensor networks, in IPSN ’07, Cambridge, MA, April 25–27, 2007.

[Hol92] J.H. Holland, Genetic algorithms, Scientifi c American, 267, 44–50, 1992.
[HOLMAN 03] R. Holman, J. Stanley, and T. Ozkan-Haller, Applying video sensor net-

works to nearshore environment monitoring, IEEE Pervasive Computing, 2(4), 14–21,
2003.

[Honeywell08] Honeywell, 101 Columbia Road, Morristown, NJ 07962 USA. See: http://
www.honeywell.com.

AU9215_C019.indd 486AU9215_C019.indd 486 12/23/2009 9:18:07 AM12/23/2009 9:18:07 AM

References ◾ 487

[Horn86] B.K.P. Horn, Robot Vision, 1st edn. Th e MIT Press, Cambridge, MA, 1986.
[Hschulzrinne96] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A trans-

port protocol for real-time applications. RFC1889, January 1996.
[HU03] F. Hu and S. Kumar, Multimedia query with QoS considerations for wireless sen-

sor networks in telemedicine, in Proceedings of Society of Photo-Optical Instrumentation
Engineers—International Conference on Internet Multimedia Management Systems,
Orlando, FL, September 2003.

[Hu08] F. Hu, M. Jiang, L. Celentano, and Y. Xiao, Robust medical ad hoc sensor networks
(MASN) with wavelet-based ECG data mining, Ad Hoc Networks Journal (Elsevier),
6(7), 986–1012, September 2008.

[Hu2009a] F. Hu, Y. Xiao, and Q. Hao, Congestion-aware, loss-resilient bio-monitoring
sensor networking, IEEE Journal on Selected Areas in Communications (JSAC), 27(4),
450–465, anuary 2009.

[Hu2009b] F. Hu, S. Lakdawala, Q. Hao, and M. Qiu, Low-power, intelligent sensor
hardware interface for medical data pre-processing, IEEE Transactions on Information
Technology in Biomedicine, 13(4), 656–663, May 2009.

[Hu2009c] F. Hu, M. Jiang, M. Wagner and D. Dong, Privacy-preserving tele-cardiology sen-
sor networks: Towards a low-cost, portable wireless hardware/software co-design, IEEE
Transactions on Information Technology in Biomedicine, 11(6), 617– 627, November
2007.

[Hu2009d] F. Hu, L. Celentano, and Y. Xiao, Error-resistant RFID-assisted wireless sensor
networks for cardiac tele-healthcare, Wireless Communications and Mobile Computing
(Wiley), 9, 85–101, February 2009.

[Hu2009e] F. Hu, P. Tilgman, S. Mokey, J. Byron, and A. Sackett, Secure, low-cost proto-
type design of underwater acoustic sensor networks, Journal of Circuits, Systems, and
Computers (World Scientifi c), 18(2), February 2009.

[Hu2009f] F. Hu, Q. Hao, M. Qiu, and Y. Wu, Low-power electroencephalography sensing
data RF transmission: Hardware architecture and test, in ACM MobiHoc 2009—Th e
First ACM International Workshop on Medical-grade Wireless Networks (WiMD ’09),
New Orleans, LA, 2009.

[Huang07] T. Huang, K. Hou, H. Yu, E.T. Chu, and C. King, LA-TinyOS: A locality-
aware operating system for wireless sensor networks, in Proceedings of the 2007 ACM
Symposium on Applied Computing (SAC ’07), Seoul, Korea, March 11–15, 2007, ACM,
New York, pp. 1151–1158.

[Hui07] H. Song, Secure wireless sensor networks: Building blocks and applications, PhD
dissertation, Department of Computer Science and Engineering, Th e Pennsylvania
State University, University Park, PA, 2007.

[Hwendi00] W. Heinzelman, A. Chandrashekaran, and H. Balakrishnan, Energy effi -
cient communication protocol for wireless microsensor networks, in Proceedings of
33rd Hawaii International Conference on Systems Sciences, Cambridge, MA, January
2000.

[HXia96] H. Xia, An analytical model for predicting path loss in urban and suburban envi-
ronments, in Proceedings of the Personal Indoor Radio Communication (PIRMC ’96),
1996.

[IBARAKI 84] T. Ibaraki and T. Kameda, On the optimal nesting order for computing
n-relational joins, ACM Transactions on Database System, 9(3), 482–502, 1984.

[IBorg97] I. Borg and P. Groenen, Modern Multidimensional Scaling Th eory and Applications.
Springer, New York, 1997.

AQ8

AQ9

AU9215_C019.indd 487AU9215_C019.indd 487 12/23/2009 9:18:07 AM12/23/2009 9:18:07 AM

488 ◾ References

[IEEE07] IEEE Standard for Information technology—Telecommunications and informa-
tion exchange between systems—Local and Metropolitan area networks—Specifi c
requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifi cations, pp. 120–121, July 2007.

[IEEE802] IEEE, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifi cation, IEEE Std. 802.11, June 1999.

[Iglewicz93] B. Iglewicz and D.C. Hoaglin, How to Detect and Handle Outliers, ASQC Basic
References in Quality Control, ASQC Quality Press, Milwaukee, WI, 1993.

[IKhalil05] I. Khalil, S. Bagchi, and N.B. Shroff , Analysis and evaluation of SECOS, a proto-
col for energy effi cient and secure communication in sensor networks, Ad Hoc Networks
Journal (ADHOC), 5(3), 360–391, 2007.

[INTANAGONWIWAT 00] C. Intanagonwiwat, R. Govindan, and D. Estrin, Directed
diff usion: A scalable and robust communication paradigm for sensor networks, in
Proceedings of MobiCOM, Boston, MA, 2000.

[Intel02] Intel Corp, Intel Press Release: Intel Builds World’s First One Square Micron SRAM
Cell. 2002: http://www.intel.com/pressroom/archive/releases/20020312tech.htm.

[Internet07] (post date: 7-18-07). http://robotics.eecs.berkeley.edu/∼roosta/SIRI2006.pdf
[INTERSEMA. 2002] INTERSEMA. 2002. MS5534A barometer module, Technical

Report (October). Go online to http://www.intersema.com/pro/module/fi le/da5534.pdf
[IPetersen99] I. Petersen and A. Savkin, Robust Kalman Filtering for Signals and Systems with

Large Uncertainties. Birkhäuser, Boston, MA, 1999.
[IPSec] Security architecture for the Internet Protocol. RFC 2401, November 1998.
[Irhee06] I. Rhee, A. Warrier, J. Min, and L. Ki, DRAND: Distributed randomized TDMA

scheduling for wireless ad-hoc networks, in Proceeding of IEEE MobiHoc, Florence,
Italy, May 2006, pp. 190–201.

[Irhee08] I. Rhee, A. Warrier, M. Aia, J. Min, and M.L. Sichitiu, Z-MAC: A hybrid MAC
for wireless sensor networks, IEEE/ACM Transactions on Networking, 16(3), 511–524,
June 2008.

[Issa06] I. Khalil, Mitigation of control and data traffi c attacks in wireless ad-hoc and sensor
networks, Doctor of Philosophy, Purdue University, West Lafayette, IN, 2006.

[Istepanian04] R.S.H. Istepanian, E. Jovanov, and Y.T. Zhang, Guest editorial introduc-
tion to the special section on M-health: Beyond seamless mobility and global wireless
health-care connectivity, IEEE Transactions on Information Technology in Biomedicine,
8(4), 405–414, 2004.

[Jason03] J.L. Hill, System architecture for wireless sensor networks, PhD dissertation,
Department of Computer Science, University of California at Berkeley, Berkeley, CA,
Spring 2003.

[Jaein07] J. Jeong, X. Jiang, and D. Culler, Design and analysis of MicroSolar power systems
for wireless sensor networks, Technical Report No. UCB/EECS-2007-24, http://www.
eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-24.html

[JBeutel99] J. Beutel, Geolocation in a picoradio environment, Master’s thesis, ETH Zurich,
Zurich, Canton of Zurich, Switzerland, 1999.

[JDaemen99] J. Daemen and V. Rijmen, AES proposal: Rijndael (1999).
[JElson02] J. Elson, L. Girod, and D. Estrin, Fine-grained network time synchronization using

reference broadcasts, in Proceedings of the Fifth Symposium on Operating Systems Design
and Implementation (OSDI 2002), Boston, MA, December 2002, pp. 147–163.

[Jennifer08] J. Yick, B. Mukherjee, and D. Ghosal, Wireless sensor network survey, Computer
Networks, 52(12), 2292–2330, August 22, 2008.

AQ10

AU9215_C019.indd 488AU9215_C019.indd 488 12/23/2009 9:18:07 AM12/23/2009 9:18:07 AM

References ◾ 489

[JGProakis01] J.G. Proakis, E.M. Sozer, J.A. Rice, and M. Stojanovic, Shallow water acoustic
networks, IEEE Communications Magazine, 39(11), 114–119, November 2001.

[JLi01] J. Li, C. Blake, D.D. Couto, H. Lee, and R. Morris, Capacity of ad hoc wireless
networks, in Proceedings of the Seventh Annual International Conference on Mobile
Computing and Networking, Rome, Italy, July 2001, pp. 61–69.

[John06] J.A. Stankovic, wireless sensor networks, Department of Computer Science,
University of Virginia, Charlottesville, VA, 2006. See: http://www.cs.virginia.
edu/∼stankovic/psfi les/wsn.pdf

[JOHNSON 05] J. Johnson, J. Lees, M. Ruiz, M. Welsh, and G. Werner-Allen, Monitoring
volcanic eruptions with a wireless sensor network, in Proceedings of the Second European
Workshop Wireless Sensor Networks (EWSN ’05), Istanbul, Turkey, January 2005.

[Jonathan08] J. Bachrach and C. Taylor, Localization in sensor networks, computer science
and artifi cial intelligence laboratory, Massachusetts Institute of Technology, Cam-
bridge, MA; http://people.csail.mit.edu/jrb/Projects/poschap.pdf; Visited in 2008.

[JUANG 02] P. Juang, O. Hidenkazu, M. Martonosi, L. Peh, D. Rubenstein, and Y. Wang,
Energy-effi cient computing for wildlife tracking: Design tradeoff s and early experi-
ences with ZebraNet, ASPLOS X, San Jose, CA, October 2002.

[JZhao03] J. Zhao, R. Govindan, and D. Estrin, Computing aggregates for monitoring wire-
less sensor networks, in Proceedings of the IEEE ICC Workshop Sensor Network Protocols
Applications, Anchorage, AK, May 2003, pp. 139–148.

[KArvind94] K. Arvind, Probabilistic clock synchronization in distributed systems, IEEE
Transactions on Parallel and Distributed Systems, 5(5), 474 – 487, May 1994.

[Kong05] J. Kong, Z. Ji, W. Wang, M. Gerla, R. Bagrodia, and B. Bhargava, Low-cost attacks
against packet delivery, localization and time synchronization services in under-water
sensor networks, in Proceedings of the Fourth ACM Workshop on Wireless Security (WiSe
’05), Cologne, Germany, September 2, 2005, ACM, New York, pp. 87–96.

[KRamakrishnan90] K. Ramakrishnan and R. Jain, A binary feedback scheme for conges-
tion avoidance in computer networks, ACM Transactions on Computer Systems, 8(2),
158–181, May 1990.

[Kyasanur03] P. Kyasanur and N.H. Vaidya, Detection and handling of MAC layer misbe-
havior in wireless networks, in Proceedings of the International Conference on Dependable
Systems and Networks (DSN ’03), San Francisco, CA, 2003, pp. 173–182.

[Jai04] J. Ai, J. Kong, and D. Turgut, An adaptive coordinated medium access control for
wireless sensor networks, in Proceedings of the Ninth IEEE International Symposium
on Computer and Communications 2004, Alexandria, Egypt, July 2004, Vol. 1,
pp. 214–219.

[Java98] Java Soft, Java Remote Invocation specifi cation, revision 1.5, JDK1.2 edition,
October 1998, http://java.sun.com/j2se/1.4.2/docs/guide/rmi/

[Jeremy01] J. Elson and D. Estrin, Random ephemeral transaction identifi ers in dynamic
sensor networks, in Proceedings of the 21st International Conference on Distributed
Computing, Phoenix, AZ, April 2001.

[Jkulik02] K. Joanna, W. Heidemann, and H. Balakrishnan, Negotiation-based protocols for
disseminating information in wireless sensor networks, ACM Wireless Networks, 8(2/3),
169–185, March–May 2002.

[Jli04] J. Li and G.Y. Lazarou, A bit-map-assisted energy-effi cient MAC scheme for
wireless sensor networks, in Proceedings of the Th ird International Symposium on
Information Processing in Sensor Networks, Berkeley, CA, April 2004, ACM, New York,
pp. 55–60.

AU9215_C019.indd 489AU9215_C019.indd 489 12/23/2009 9:18:07 AM12/23/2009 9:18:07 AM

490 ◾ References

[JNal-karaki04] J.N. Al-Karaki, R. Ul-Mustafa, and A.E. Kamal, Data aggregation in wireless
sensor networks—Exact and approximate algorithms, in Proceedings of IEEE Workshop
on High Performance and Routing 2004, Ames, IA, April 2004, pp. 241–245.

[John06] J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, Research challenges and appli-
cations for underwater sensor networking, in IEEE Wireless Communications and
Networking Conference, Las Vegas, NV, April 2006.

[Joseph05] J. Polastre, R. Szewczyk, and D. Culler, Telos: Enabling ultra-low power wire-
less research, in Fourth International Symposium on Information Processing in Sensor
Networks 2005 (IPSN 2005), Los Angeles, CA, April 15, 2005, Piscataway, NJ,
pp. 364–369.

[JPolastre04] J. Polastre, Interfacing Telos to 51-pin sensorboards, October 2004, http://
www.tinyos.net/hardware/telos/telos-legacy-adapter.pdf

[Jpolastre04] J. Polastre, J. Hill, and D. Culler, Versatile low power media access for wire-
less sensor networks, in Proceeding of Second International Conference on Embedded
Networked Sensor Systems, Baltimore, MD, October 2004, ACM, New York, pp.
95–107.

[JRice00] J. Rice et al., Evolution of seaweb underwater acoustic networking, in
Proceedings of the MTS/IEEE OCEANS, Providence, RI, September 2000, Vol. 3, pp.
2007–2017.

[JRSmith06] J.R. Smith, A. Sample, P. Powledge, A. Mamishev, and S. Roy, A wirelessly
powered platform for sensing and computation, in Eighth International Conference on
Ubiquitous Computing (UbiComp ’06), Orange County, CA, September 17–21, 2006,
pp. 495–506.

[JRVig92] J.R. Vig, Introduction to quartz frequency standards. Army Research Laboratory,
Electronics and Power Sources Directorate, Technical Report SLCET-TR-92-1, 1992.

[JShu03] J. Shu and P. Varaiya, PEDAMACS: Power effi cient and delay aware medium access
protocol for sensor networks, Information Research Frontiers, 5(1), 29–37, 2003.

[JZhao03] J. Zhao and R. Govindan, Understanding packet delivery performance in dense
wireless sensor networks, in Proceedings of the First ACM Conference on Embedded
Network Sensor System (SenSys), Los Angeles, CA, November 2003, pp. 1–13.

[Kalofonos03] D. Kalofonos, M. Stojanovic, and J. Proakis, Performance of adaptive
MCCDMA detectors in rapidly fading Rayleigh channels, IEEE Transactions on
Wireless Communications, 2, 229–239, March 2003.

[Karlof04] C. Karlof, N. Sastry, and D. Wagner, TinySec: A link layer security architec-
ture for wireless sensor networks, in Proceedings of the Second International Conference
on Embedded Networked Sensor Systems (SenSys ’04), Baltimore, MD, November 3–5,
2004, ACM, New York, pp. 162–175.

[Karthikeyan] K. Vaidyanathan, S. Sur, S. Narravula, and P. Sinha, Data aggregation tech-
niques in sensor networks, Technical Report OSU-CISRC-11/04-TR60, Department
of Computer Science and Engineering, Th e Ohio State University, Columbus, OH,
downloadable from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi = 10.1.1.60.937,
Visited in 2009.

[Kavek04] K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks: A Unifi ed
Approach, 1st edn. Prentice Hall, Englewood Cliff s, NJ, 2004, ISBN: 8178086468.

[KAY 93] S. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Th eory.
Prentice Hall, Upper Saddle River, NJ, 1993.

[Keoliver05] K.E. Oliver, Introduction to automatic design of wireless networks, CrossRoads
ACM Student Magazine, 11(4), 1–4, 2005.

AQ11

AU9215_C019.indd 490AU9215_C019.indd 490 12/23/2009 9:18:07 AM12/23/2009 9:18:07 AM

References ◾ 491

[KFall03] K. Fall, A delay-tolerant network architecture for challenged internets, Technical
Report IRB-TR-03-003, Intel Research Berkeley, February 2003.

[Kirsten06] K. Terfl oth, G. Wittenburg, and J. Schiller, FACTS—A rule-based middleware
architecture, in Proceedings of the IEEE/ACM International Conference on Information.
Processing in Sensor Networks (IPSN), Los Angeles, CA, 2006.

[Kjamieson03] K. Jamieson, H. Balakrishnan, and Y.C. Tay, Sift: A MAC protocol for
Event-driven wireless sensor networks, in Proceedings of the Th ird European Workshop
on Wireless Sensor Networks, Zurich, Switzerland, Lecture Notes in Computer Science,
Vol. 3868, pp. 260–275, Springer Link, New York, May 2003.

[KOkeya05] K. Okeya and T. Iwata. Side channel attacks on message authentication codes,
in Second European Workshop on Security and Privacy in Ad Hoc and Sensor Networks,
Visegrad, Hungary, July 2005.

[Kon] K. Minolta, Minolta Color Meter IIIf. http://konicaminolta.com. 2008.
[KRISHNAMURTHY 86] R. Krishnamurthy, H. Boral, and C. Zaniolo, Optimization of

nonrecursive queries, in Proceedings of VLDB, Kyoto, Japan, 1986, pp. 128–137.
[KRomer01] K. Romer, Time synchronization in ad hoc networks, in Proceedings of the ACM

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc ’01), Long Beach,
CA, October 2001, pp. 173–182.

[KSanzgiri02] K. Sanzgiri, B. Dahill, B.N. Levine, C. Shields, and E. Belding-Royer, A secure
routing protocol for ad hoc networks, in Proceedings of the 10th IEEE International
Conference on Network Protocols (ICNP), Paris, France, 2002, pp. 78–87.

[Ksarvakar08] K. Sarvakar and P.S. Patel, An effi cient hybrid MAC layer protocol utilized
for wireless sensor networks, in Proceedings of Fourth IEEE Conference on Wireless
Communication and Sensor Networks ’08, December 2008, pp. 22–26.

[Ksohrabi00] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie, Protocols for self-orga-
nization of a wireless sensor network, IEEE Personal Communications, 7(5), 16–27,
October 2000.

[LAShort98] L.A. Short and E.H. Saindon, Telehomecare rewards and risks, Caring, 17(42),
36–40, 1998.

[Laura07] L.J. Celentano, RFID-assisted wireless sensor networks for cardiac tele-health-
care, MS thesis, Advisor: Dr. F. Hu, Department of Computer Engineering, Rochester
Institute of Technology, New York, October 2007.

[Lcampelli07] L. Campelli, A. Capone, M. Cesana, and E. Ekici, A receiver oriented MAC
protocol for wireless sensor networks, in Proceedings of Mobile Ad Hoc and Sensor
Systems 07, Pisa, Italy, October 2007, pp. 1–10.

[LDoherty01] L. Doherty, K. Pister, and L. El Ghaoui, Convex position estimation in wire-
less sensor networks, in Proceedings of the 20th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM-20), Anchorage, AK, April 2001,
pp. 1655–1663.

[LEWIS 86] F.L. Lewis, Optimal Estimation: With an Introduction to Stochastic Control Th eory.
John Wiley & Sons, Inc., New York, 1986.

[LEGG] G. Legg, ZigBee: Wireless technology for low-power sensor networks.
[Lep] Leprecon. Leprecon LD-360 Users Manual. Website: http://www.leprecon.com/

ProductSupport/LD-360 Dimmers/21-1044c 360MPX manual.pdf
[Levis04] P. Levis, N. Patel, D. Culler, and S. Shenker, Trickle: A self-regulating algorithm

for code propagation and maintenance in wireless sensor networks, in Proceedings of
the First Symposium on Networked Systems Design and Implementation (2004), USENIX
Association, San Francisco, CA, 2004, pp. 15–28.

AU9215_C019.indd 491AU9215_C019.indd 491 12/23/2009 9:18:07 AM12/23/2009 9:18:07 AM

492 ◾ References

[Levis06] P. Levis et al., TinyOS: An operating system for sensor networks, in Ambient
Intelligence, W. Weber, J. Rabaey, and E. Aarts, Eds., Springer-Verlag, New York,
2004.

Website for PDF: http://www.cs.berkeley.edu/∼culler/AIIT/papers/TinyOS/levis06tinyos.pdf
On TinyOS programming: also see: D. Gay, P. Levis, and D. Culler, Software design patterns

for TinyOS, ACM Transactions on Embedded Computing Systems (TECS), 6(4), 2007.
[LHu04] L. Hu and D. Evans, Using directional antennas to prevent wormhole attacks, in

Network and Distributed System Security Symposium (NDSS), San Diego, CA, 2004.
[LHu04a] L. Hu and D. Evans, Localization for mobile sensor networks, in Proceedings of the

10th Annual International Conference on Mobile Computing and Networking (MobiCom),
Philadelphia, PA, 2004, pp. 45–57.

[Licia05] L. Capra, W. Emmerich, and C. Mascolo, Middleware for mobile computing,
Technical Report, Department of Computer Science, University College London,
Bloomsbury, London, 2005.

[Linear04] Linear Technology. LTC1540: Nanopower comparator with reference. Datasheet,
7 December 2004. http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1
154,C1004,C1139,P1593,D1777

[LLazos04] L. Lazos and R. Poovendran, SeRLoc: Secure range-independent localization for
wireless sensor networks, in ACM WiSe, Philadelphia, PA, 2004, pp. 21–30.

[LLazos05] L. Lazos, R. Poovendran, and S. Capkun, ROPE: Robust position estimation
in wireless sensor networks, in Proceedings of the Fourth International Symposium on
Information Processing in Sensor Networks (IPSN ’05), Los Angeles, CA, 2005.

[Lli01] L. Li and J.Y. Halpern, Minimum-energy mobile wireless networks revisited, in
Proceedings of IEEE International Conference on Communications, Helsinki, Finland,
June 2001, Vol. 1, pp. 278–283.

[LLjung87] L. Ljung, System Identifi cation. Th eory for the User. Prentice-Hall, Englewood
Cliff s, NJ, 1987.

[LMeier04] L. Meier, P. Blum, and L. Th iele, Internal synchronization of drift-constrained
clocks in ad-hoc sensor networks, in Proceedings of the Fifth ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc ’04), Roppongi
Hills, Japan, May 2004, pp. 90–97.

[Lsubramanian00] L. Subramanian and R.H. Katz, An architecture for building self-con-
fi gurable systems, in Proceedings of MobiHoc 2000, Boston, MA, November 2000, pp.
63–73.

[LWashburn95] L. Washburn at the Institute for Computational Earth Systems, R. Kohno,
R. Meidan, and L. Milstein, Spread spectrum access methods for wireless communica-
tions, IEEE Communications Magazine, 33(1), 58–67, January 1995.

[Macwilliams77] F. Macwilliams and N. Sloane, Th e Th eory of Error-Correcting Codes. Elsevier
Science, New York, 1977.

[MADDEN02] S. Madden, M.J. Franklin, and J.M. Hellerstein, TAG: A Tiny AGgregation
service for ad-hoc sensor networks, in Proceedings of Fifth Annual Symposium on
Operating Systems Design and Implementation (OSDI), Boston, MA, December 2002.

[MADDEN 02a] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, TAG: A Tiny
Aggregation service for ad-hoc sensor networks, in Proceedings of OSDI, Boston, MA,
2002a.

[MADDEN 03] S. Madden, Th e design and evaluation of a query processing architecture
for sensor networks, PhD dissertation, University of California at Berkeley, Berkeley,
CA, 2003.

AQ12

AU9215_C019.indd 492AU9215_C019.indd 492 12/23/2009 9:18:07 AM12/23/2009 9:18:07 AM

References ◾ 493

[MADDEN 04] S. Madden and M.J. Franklin, Fjording the stream: An architecture for
queries over streaming sensor data, in Proceedings of ICDE, Berkeley, CA, 2002.

[Malan04] D. Malan, T.R.F. Fulford-Jones, M. Welsh, and S. Moulton, CodeBlue: An ad
hoc sensor network infrastructure for emergency medical care, in Proceedings of the
MobiSys 2004 Workshop on Applications of Mobile Embedded Systems (WAMES 2004),
Boston, MA, 2004, pp. 12–14.

[Malan04a] D.J. Malan, M. Welsh, and M.D. Smith, A public-key infrastructure for key
distribution in TinyOS based on elliptic curve cryptography, in First Annual IEEE
Communications Society Conference on Sensor and Ad Hoc Communications and Networks,
2004 (IEEE SECON 2004), Santa Clara, CA, October 4–7, 2004. doi:10.1109/
SAHCN.2004.1381904.

[Manish06] M. Raghuvanshi, Implementation of wireless sensor mote, MTech thesis,
Department of Nuclear Engineering and Technology, Indian Institute of Technology,
Kanpur, India, 2006, see http://home.iitk.ac.in/∼ynsingh/mtech/manish2006.pdf

[Marati02] A. Manjeshwar and D.P. Agarwal, APTEEN: A hybrid protocol for effi cient rout-
ing and comprehensive information retrieval in wireless sensor networks, in Proceedings
of 15th IEEE Parallel and Distributed Processing Symposium, Fort Lauderdale, FL, April
2002, pp. 195–202.

[Mark07] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, MiniSec: A secure sensor network
communication architecture, in Proceedings of the Sixth International Conference on
Information Processing in Sensor Networks (IPSN 2007), Cambridge, MA, April
2007.

[Martin00] T. Martin, E. Jovanov, and D. Raskovic, Issues in wearable computing for medi-
cal monitoring applications: A case study of a wearable ECG monitoring device, in
Proceedings of the International Symposium on Wearable Computers (ISWC), Atlanta,
GA, 2000, pp. 43–50.

[Masoomeh07] M. Rudafshani and S. Datta, Localization in wireless sensor networks, in
IPSN’07, Cambridge, MA, April 25–27, 2007.

[Mateusz07] M. Malinowski, M. Moskwa, M. Feldmeier, M. Laibowitz, and J.A. Paradiso,
CargoNet: A low-cost MicroPower sensor node exploiting quasi-passive wakeup for
adaptive asychronous monitoring of exceptional events, in SenSys ’07, Sydney, Australia,
November 6–9, 2007.

[Mauri05] M. Kuorilehto, M. Hännikäinen, and T.D. Hämäläinen, A survey of application
distribution in wireless sensor networks, EURASIP Journal on Wireless Communications
and Networking, 38(5), 774–788, 2005.

[MBellare97] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, A concrete security treatment
of symmetric encryption: Analysis of the DES modes of operation, in Proceedings of
38th Annual Symposium on Foundations of Computer Science (FOCS 97), Miami Beach,
FL, 1997.

[MChen08] M. Chen, W. Cui, V. Wen, and A. Woo, Security and deployment issues in a
sensor network, Ninja Project, A Scalable Internet Services Architecture, Berkeley, CA.
http://www.cs.berkeley.edu/∼wdc/classes/cs294-1-report.pdf. 2008.

[McSharry03] P.E. McSharry, G.D. Cliff ord, L. Tarassenko, and L.A. Smith, A dynami-
cal model for generating synthetic electrocardiogram signals, IEEE Transactions on
Biomedical Engineering, 50(3), 289–294, March 2003.

[MCVuran04] M.C. Vuran, O.B. Akan, and I.F. Akyildiz, Spatio-temporal correlation:
Th eory and applications for wireless sensor networks, Computer Networks Journal,
45(3), 245–261, June 2004.

AU9215_C019.indd 493AU9215_C019.indd 493 12/23/2009 9:18:07 AM12/23/2009 9:18:07 AM

494 ◾ References

[MDLemmon00] M.D. Lemmon, J. Ganguly, and L. Xia, Model-based clock synchroniza-
tion in networks with drifting clocks, in Proceedings of the 2000 Pacifi c Rim International
Symposium on Dependable Computing, Los Angeles, CA, December 2000.

[MELEXIS 02] MELEXIS, INC. 2002. MLX90601 infrared thermopile module, Technical
Report (August). Go online to http://www.melexis.com/prodfi les/mlx90601.pdf

[Melodia05] T. Melodia, D. Pompili, and I.F. Akyildiz, On the interdependence of distrib-
uted topology control and geographical routing in ad hoc and sensor networks, Journal
of Selected Areas in Communications, 23, 520–532, March 2005.

[Melodia07] T. Melodia, D. Pompili, V.C. Gungor, and I.F. Akyildiz, Communication
and coordination in wireless sensor and actor networks, IEEE Transactions on Mobile
Computing, 6(10), 1116–1129, October 2007. On Melodia’s underwater sensor net-
work papers: D. Pompili, T. Melodia, and I. Akyildiz, Th ree-dimensional and two-
dimensional deployment analysis of underwater acoustic sensor networks, Ad Hoc
Networks (Elsevier), 7(4), 778–790, June 2009.

I.F. Akyildiz, D. Pompili, and T. Melodia, State of the art in protocol research for underwater
acoustic sensor networks, ACM Mobile Computing and Communication Review (Invited
Paper), October 2007.

[MGHunink97] M.G. Hunink et al., Th e recent decline in mortality from coronary heart
disease, 1980–1990. Th e eff ect of secular trends in risk factors and treatment, Journal
of the American Medical Association, 277, 535–542, 1997.

[MGreen98] M. Green and J. Rice, Handshake protocols and adaptive modulation for
underwater communications networks, in Proceedings of the MTS/IEEE OCEANS,
Nice, France, September 1998, Vol. 1, pp. 487–491.

[Miaomiao08] M. Wang, J. Cao, J. Li, and S.K. Das, Middleware for wireless sensor net-
works: A survey, Journal of Computer Science and Technology, 23(3), 305–326, 2008.

[MICA motes] Crossbow technology, inc. Technical Report http://www.xbow.com.
[Michael99] M. Rosing, Implementing Elliptic Curve Cryptography. Manning, Greenwich,

CT, 1999.
[MicroTimer08] http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/apps/

HighFrequencySampling/MicroTimerM.nc. Proposed in 2008.
[Mihir00] M. Bellare, J. Kilian, and P. Rogaway, Th e security of the cipher block chaining

message authentication code, Journal of Computer and System Sciences, 61(3), 362–399,
December 2000.

[Min07] M.K. Park and V. Rodoplu, UWAN-MAC: An energy-effi cient MAC protocol for
underwater acoustic wireless sensor networks, IEEE Journal of Oceanic Engineering,
32(3), 710–720, July 2007.

[MLSichitiu03] M.L. Sichitiu and C. Veerarittiphan, Simple, accurate time synchronization
for wireless sensor networks, in Proceedings of the IEEE Wireless Communications and
Networking Conference (WCNC 2003), New Orleans, LA, 2003, pp. 1266–1273.

[MMaroti04] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, Th e fl ooding time synchroniza-
tion protocol, in Proceedings of the Second International ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), Baltimore, MD, 2004, ACM Press, New York, pp. 39–49.

[MMock00] M. Mock, R. Frings, E. Nett, and S. Trikaliotis, Continuous clock synchroniza-
tion in wireless real-time applications, in Proceedings of the 19th IEEE Symposium on
Reliable Distributed Systems (SRDS-00), pp. 125–133, October 2000.

[Mohamed02] M.G. Gouda, E.N. Elnozahy, C.-T. Huang, and T.M. McGuire, Hop integ-
rity in computer networks, IEEE/ACM Transactions on Networking, 10(3), 308–319,
June 2002.

AU9215_C019.indd 494AU9215_C019.indd 494 12/23/2009 9:18:08 AM12/23/2009 9:18:08 AM

References ◾ 495

[MONMA 79] C. L. Monma and J. Sidney, Sequencing with series parallel precedence con-
straints, Mathematics of Operations Research, 4, 215–224, 1979.

[Moore04] D. Moore, J. Leonard, D. Rus, and S. Teller, Robust distributed network local-
ization with noisy range measurements, in Proceedings of the Second International
Conference on Embedded Networked Sensor Systems, Baltimore, MD, November 03–05,
2004.

[MOTWANI 03] R. Motwani et al., Query processing, approximation and resource manage-
ment in a data stream management system, in Proceedings of the First Annual Conference
on Innovative Database Research (CIDR), Asilomar, CA, 2003.

[MPhilipose05] M. Philipose, J.R. Smith, B. Jiang, A. Mamishev, S. Roy, and K. Sundara-
Rajan, Battery-free wireless identifi cation and sensing, IEEE Pervasive Computing,
4(1), 37–45, January–March 2005.

[MRyu98] M. Ryu and S. Hong, Revisiting clock synchronization problems: Static and
dynamic constraint transformations for correct timing enforcement, Technical Report
No. SNU-EE-TR-1998-3, Seoul National University, South Korea, September
1998.

[MTorrentMoreno06] M. Torrent-Moreno, F. Schmidt-Eisenlohr, H. Fussler, and
H. Hartenstein, Eff ects of a realistic channel model on packet forwarding in vehicular
ad hoc networks, Wireless Communications and Networking Conference (WCNC), Las
Vegas, NV, 2006, Vol. 1, pp. 385–391.

[NBS77] National Bureau of Standards (NBS), Specifi cation for the data encryption stan-
dard, Federal Information Processing Standards (FIPS) Publication 46 (1977).

[Neuman94] B.C. Neuman and T. Tso, Kerberos: An authentication service for computer
networks, IEEE Communications, 32(9), 33–38, September 1994.

[Newsome04] J. Newsome, E. Shi, D. Song, and A. Perrig, Th e sybil attack in sensor
networks: Analysis & defenses, in Proceedings of the Th ird international Symposium on
Information Processing in Sensor Networks (IPSN ’04), Berkeley, CA, April 26–27, 2004,
ACM, New York, pp. 259–268.

[Ngajaweera08] N. Gajaweera and D. Dias, FAMA/TDMA hybrid MAC for wireless sensor
networks, in Proceedings of Fourth IEEE International Conference on Information and
Automation for Sustainability ’08, December 2008, pp. 67–72.

[Nikita01] N. Borisov, I. Goldberg, and D. Wagner, Intercepting mobile communica-
tions: Th e insecurity of 802.11, in Seventh Annual International Conference on Mobile
Computing and Networking (MobiCom 2001), Rome, Italy, 2001.

[NIST81] National Institute of Standards and Technology (NIST), DES model of operation,
Federal Information Processing Standards Publication 81 (FIPS PUB 81), 1981.

[NIST08] Advanced Network technologies division, National Institute of standards and
Technology. http://w3.antd.nist.gov/wahn_ssn.shtml

[Njamal04] N.A. Jamal and A.E. Kamal, Routing techniques in wireless sensor networks:
A survey, IEEE Wireless Communications, 11(6), 6–28, December 2004.

[NPriyantha05] N. Priyantha, H. Balakrishnan, E. Demaine, and S. Teller, Mobile-assisted
topology generation for auto-localization in sensor networks, in Proceedings of Infocom,
Miami, FL, 2005.

[OGoldreich86] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random
functions, Journal of the ACM, 33(4), 210–217, 1986.

[Ogren04] P. Ogren, E. Fiorelli, and N.E. Leonard, Cooperative control of mobile sensor
networks: Adaptive gradient climbing in a distributed environment, IEEE Transactions
on Automatic Control, 49, 1292–1302, August 2004.

AU9215_C019.indd 495AU9215_C019.indd 495 12/23/2009 9:18:08 AM12/23/2009 9:18:08 AM

496 ◾ References

[Olaf05] O. Landsiedel, K. Wehrle, B.L. Titzer, and J. Palsberg, Enabling detailed mod-
eling and analysis of sensor networks, Praxis der Informationsverarbeitung und
Kommunikation, 28(2), 101–106, April–June 2005, ISSN (Print) 0930-5157, doi:
10.1515/PIKO.2005.101.

[OYounis04] O. Younis and S. Fahmy, Distributed clustering in ad-hoc sensor networks: A
hybrid, energy-effi cient approach, in Proceedings of the IEEE INFOCOM, Hong Kong,
China, March 2004.

[Park03] S. Park and S. Jayaraman, Enhancing the quality of life through wearable technol-
ogy, IEEE Engineering in Medicine and Biology Magazine, 22(3), 41–48, 2003.

[Park04] S.-J. Park, R. Vedantham, R. Sivakumar, and I. Akyildiz, A scalable approach
for reliable downstream data delivery in wireless sensor networks, in Proceedings of
the International Symposium on Mobile Ad Hoc Networking and Computing (ACM
MOBIHOC), Tokyo, Japan, May 2004, pp. 78–89.

[PBonnet01] P. Bonnet, J.E. Gehrke, and P. Seshadri, Towards sensor database systems, in
Proceedings of the Second International Conference on Mobile Data Management (MDM
’01), Hong Kong, China, January 2001, pp. 314–810.

[PDutta05] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, Design of a wire-
less sensor network platform for detecting rare, random, and ephemeral events, in
IPSN ’05: Proceedings of the Fourth International Symposium on Information Processing
in Sensor Networks, Los Angeles, CA, IEEE Press, Piscataway, NJ, 2005, pp. 70–75.

[PDutta06] P. Dutta et al., Trio: Enabling sustainable and scalable outdoor wireless sensor
network deployments, IEEE SPOTS, Nashville, TN, 2006.

[Perkins94] C. Perkins and P. Bhagwat, Highly dynamic destination sequenced distance vec-
tor routing (DSDV) for mobile computers, in Proceedings of the ACM Special Interest
Group on Data Communications (SIGCOMM), London, U.K., 1994.

[Perkins08] C. Perkins, E. Belding-Royer, and S. Das, Ad hoc on demand distance vector
(AODV) routing. IETF RFC 3561, 2008.

[Peter05a] P. Desnoyers, D. Ganesan, and P. Shenoy, TSAR: A two tier sensor storage architec-
ture using interval skip graphs, in SenSys ’05, San Diego, CA, November 2–4, 2005.

[PFG06] H. Park, J. Friedman, P. Gutierrez, V. Samanta, J. Burke, and M.B. Srivastava,
Illumimote: Multi-modal and high fi delity light sensor module for wireless sensor net-
works, IEEE Sensors Journal, 2006. in press.

[Philip03] P. Levis, N. Lee, M. Welsh, and D. Culler, TOSSIM: Accurate and scalable simu-
lation of entire TinyOS applications, in SenSys ’03, Los Angeles, CA, November 5–7,
2003.

[Philip07] P. Levis et al., TinyOS: An operating system for sensor networks, see http://www.
dbis.ethz.ch/education/ss2007/tatbul/hotdms/papers/tinyos_chapter.pdf, Visited in
2007.

[PhysioNet08] PhysioNet ECG database. Available from: http://www.physionet.org/phys-
iobank/database/nsrdb/, Visited in 2008.

[PIRAHESH 92] H. Pirahesh, J.M. Hellerstein, and W. Hasan, Extensible/rule based query
rewrite optimization in starburst, in Proceedings of ACM SIGMOD, San Diego CA,
1992, pp. 39–48.

[PJuang02] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein, Energy-
effi cient computing for wildlife tracking: Design tradeoff s and early experiences with
zebranet, in Proceedings of the Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X ’02), San Jose, CA, October 2002, pp.
96–107.

AU9215_C019.indd 496AU9215_C019.indd 496 12/23/2009 9:18:08 AM12/23/2009 9:18:08 AM

References ◾ 497

[Pkarn90] P. Karn, MACA—A new channel access method for packet radio, in ARRL/CRRL
Amateur Radio Ninth Computer Networking Conference, Montreal, Canada, September
1990, pp. 1–5.

[PLevis02] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks, in
Proceedings of the 10th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-X), San Jose, CA, 2002, ACM Press, New
York, pp. 85–95.

[Plin04] P. Lin, C. Qiao, and X. Wang, Medium access control with a dynamic duty cycle
for sensor networks, in Proceedings of Wireless Communications and Networking
Conference, Piscataway, NJ, March 2004, Vol. 3, pp. 1534–1539.

[PNing05] P. Ning, R. Li, and D. Liu, Establishing pairwise keys in distributed sensor
networks, ACM Transactions on Information and System Security, 8(1), 41–77, 2005.

[Pompili06] D. Pompili, T. Melodia, and I.F. Akyildiz, Routing algorithms for delay-insensitive
and delay-sensitive applications in underwater sensor networks, in Proceedings of the 12th
Annual International Conference on Mobile Computing and Networking (MobiCom ’06),
Los Angeles, CA, September 23 –29, 2006, ACM, New York, pp. 298–309.

[Pompili09] D. Pompili, T. Melodia, and I.F. Akyildiz, Th ree-dimensional and two-dimensional
deployment analysis for underwater acoustic sensor networks, Ad Hoc Networks, 7(4),
778–790, June 2009.

[Pottie00] G.J. Pottie and W.J. Kaiser, Wireless integrated network sensors, Communications
of the ACM, 43, 51–58, May 2000.

[PResnick00] P. Resnick and R. Zeckhauser, Trust among strangers in Internet transactions:
Empirical analysis of eBay’s reputation system, in NBER Workshop on Empirical Studies
of Electronic Commerce, 2000.

[Priyantha00] N.B. Priyantha, A. Chakraborty, and H. Balakrishnan, Th e cricket location-sup-
port system, in Proceedings of the Sixth Annual ACM International Conference on Mobile
Computing and Networking (MobiCom ’00), Boston, MA, August 2000, pp. 32–43.

[Pro] B. Fry and C. Reas, Processing. http://www.processing.org/
[Proakis03] J. Proakis, J. Rice, E. Sozer, and M. Stojanovic, Shallow water acoustic networks,

in Encyclopedia of Telecommunications, J.G. Proakis, Ed., John Wiley & Sons, New
York, 2003.

[PRogaway01] P. Rogaway, M. Bellare, and J. Black, OCB: A block-cipher mode of operation
for effi cient authenticated encryption, ACM TISSEC, New York, November 2001.

[PSikka06] P. Sikka, P. Corke, P. Valencia, C. Crossman, D. Swain, and G. Bishop-Hurley,
Wireless ad hoc sensor and actuator networks on the farm, IEEE SPOTS, 2006.

[Pubudu05] P.N. Pathirana, N. Bulusu, A.V. Savkin, and S. Jha, Node localization using
mobile robots in delay-tolerant sensor networks, IEEE Transactions on Mobile
Computing, 4(3), 285–296, May/June 2005.

[PUGH 90] W. Pugh, Skip lists: A probabilistic alternative to balanced trees, Communications
of the ACM, 33(6), 668–676, 1990.

[Purushottam07] P. Kulkarni, SensEye: A multi-tier heterogeneous camera sensor network,
PhD thesis, Department of Computer Science, University of Massachusetts, Amherst,
MA, February 2007.

[PXie05] P. Xie, J.-H. Cui, and L. Li, VBF: Vector-based forwarding protocol for underwa-
ter sensor networks, UCONN CSE Technical Report, UbiNet-TR05-03 (BECAT/
CSETR-05-6), February 2005.

[PZhang04] P. Zhang, C.M. Sadler, S.A. Lyon, and M. Martonosi, Hardware design experi-
ences in zebranet, in ACM Sensys, Baltimore, MD, 2004.

AU9215_C019.indd 497AU9215_C019.indd 497 12/23/2009 9:18:08 AM12/23/2009 9:18:08 AM

498 ◾ References

[Qfang03] Q. Fang, F. Zhao, and L. Guibas, Lightweight sensing and communication
protocols for target enumeration and aggregation, in Proceedings of MobiHoc 2003,
Annapolis, MD, June 2003, pp. 165–176.

[Qli01] Q.Li, J. Aslam, and D. Rus, Hierarchical power-aware routing in sensor networks,
in Proceedings of the DIMACS Workshop on Pervasive Networking, Piscataway, NJ, April
2001, pp. 1–5.

[QLi04] Q. Li and D. Rus, Global clock synchronization in sensor networks, in IEEE
INFOCOM, Hong Kong, China, 2004.

[Radu05] R. Stoleru, T. He, J.A. Stankovic, and D. Luebke, A high-accuracy, low-cost local-
ization system for wireless sensor networks, in SenSys ’05, San Diego, CA, November
2–4, 2005.

[Rahimi05] M. Rahimi et al., Cyclops: In situ image sensing and interpretation in wire-
less sensor networks, in Proceedings of the Th ird International Conference on Embedded
Networked Sensor Systems (SenSys ’05), San Diego, CA, November 2–4, 2005, ACM,
New York, pp. 192–204.

[Rahimi03] M. Rahimi, H. Shah, G. Sukhatme, J. Heidemann, and D. Estrin, Studying the
feasibility of energy harvesting in a mobile sensor network, in Proceedings of the IEEE
International Conference on Robotics and Automation, Taipai, Taiwan, May 2003, pp. 19–24.

[Rakhmatov03] D. Rakhmatov and S. Vrudhula, Energy management for battery-powered
embedded systems, ACM Transactions Embedded Computing Systems, 2(3), 277–324,
August 2003.

[Ramanuja06] R. Vedantham, Energy-effi cient network protocols for wireless sensor and
actor networks, PhD dissertation, School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, December 2006.

[Ramnath03] R. Venugopalan, P. Ganesan, P. Peddabachagari, A. Dean, F. Mueller, and
M. Sichitiu, Encryption overhead in embedded systems and sensor network nodes:
Modeling and analysis, in 2003 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, San Jose, CA, 2003, pp. 188–197.

[RAnderson01] R. Anderson and A. Perrig, Key infection: Smart trust for smart dust,
Unpublished Manuscript, November 2001.

[Rappaport96] T.S. Rappaport, Wireless Communication: Principles and Practices. Prentice-
Hall PTR, Upper Saddle River, NJ, 1996.

[RATNASAMY 01] S. Ratnasamy et al., Data-centric storage in sensornets, in ACM First
Workshop on Hot Topics in Networks, Princeton, NJ, 2001.

[RATNASAMY 02] S. Ratnasamy et al., GHT—A geographic hash-table for data-centric
storage, in First ACM International Workshop on Wireless Sensor Networks and Th eir
Applications, Atlanta, GA, September 2002.

[Rcshah02] R.C. Shah and J.M. Rabaey, Energy aware routing for low energy ad hoc sensor
networks, in Proceedings of the IEEE WCNC ’02, Orlando, FL, March 2002, Vol. 1,
pp. 350–355.

[RCSmith86] R.C. Smith and P. Cheeseman, On the representation and estimation of spatial
uncertainty, Th e International Journal of Robotics Research, 5(4), 56–68, 1986.

[Red03] R. Stann and J. Heidemann, RMST: Reliable data transport in sensor networks,
in First IEEE International Workshop on Sensor Net Protocols and Applications (SNPA),
Anchorage, AK, May 2003.

[Rkannan03] R. Kannan, K. Ram, S.S. Iyengar, and V. Kumar, Energy and rate based MAC
protocol for wireless sensor network, in Proceedings of the ACM SIGMOD 2003, 32(4),
60–65, December 2003.

AU9215_C019.indd 498AU9215_C019.indd 498 12/23/2009 9:18:08 AM12/23/2009 9:18:08 AM

References ◾ 499

[RLRivest95] R.L. Rivest, Th e RC5 encryption algorithm, in Workshop on Fast Software
Encryption, Leuven, Belgium, 1995, pp. 86–96.

[RMerkle80] R. Merkle, Protocols for public key cryptosystems, in Proceedings of 1980 IEEE
Symposium on Security and Privacy, Oakland, CA, 1980.

[RMKarp72] R.M. Karp, Reducibility among combinatorial problems, Complexity of Computer
Computations, Vol. 1. Plenum Press, New York, May 1972, pp. 85–103.

[Rosenfeld66] A. Rosenfeld and J.L. Pfaltz, Sequential operations in digital picture process-
ing, Journal of the ACM, 13(4), 471–494, 1966.

[Rosner83] B. Rosner, Percentage points for generalized ESD many-outlier procedure,
Technometrics, 25, 165–172, 1983.

[Rramanathan97] S. Ramanathan, A unifi ed framework and algorithms for (T/F/C) DMA
channel assignment in wireless networks, in Proceedings of IEEE INFOCOM, San
Francisco, CA, April 1997, Vol. 2, pp. 900–907.

[RShah03] R. Shah, S. Roy, S. Jain, and W. Burnette, Datamules: Modeling a three-tier
architecture for sparse sensor networks, Journal of Ad Hoc Networks (Elsevier), 1(2–3),
215–233, 2003.

[RSivakumar99] R. Sivakumar, P. Sinha, and V. Bharghavan, CEDAR: A core-extraction dis-
tributed ad hoc routing algorithm, IEEE Journal on Selected Areas in Communications,
Special issue on Ad Hoc Networks, 17(8), 1454–1465, August 1999.

[RStewart00] R. Stewart et al., RFC 2960: Stream control transmission protocol. Network
Working Group, October 2000.

[RSTOLERU04] R. Stoleru, T. He, and J. Stankovic, Walking GPS: A practical localization
system for manually deployed wireless sensor networks, IEEE EmNets, Tampa, FL,
2004.

[RSzewczyk04] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler, An analysis of
a large scale habitat monitoring application, in Proceedings of the Second ACM
Conference on Embedded Networked Sensor Systems (SenSys), Baltimore, MD,
November 2004.

[Rwheinzelman99] R.W. Heidemann, K. Joanna, and H. Balakrishnan, Adaptive protocols
for information dissemination in wireless sensor networks, ACM Mobicom ’99, Seattle,
WA, August 1999, pp. 174–185.

[SADAGOPAN 03] N. Sadagopan, B. Krishnamachari, and A. Helmy, Th e acquire mech-
anism for effi cient querying in sensor networks, in Proceedings of IEEE SNPA ’03,
Anchorage, AK, May 2003.

[Salva03] F. Salva-Garau and M. Stojanovic, Multi-cluster protocol for ad hoc mobile under-
water acoustic networks, in Proceedings of the MTS/IEEE Conference and Exhibition for
Ocean Engineering, Science and Technology (OCEANS), San Francisco, CA, September
2003.

[SAM06] T. Kuhn and P. Becker, A simulator interconnection framework for the accurate
performance simulation of SDL models, in System Analysis and Modeling: Language
Profi les, Lecture Notes in Computer Science, Vol. 4320, Springer, Berlin, Germany,
2006, ISBN 3-540-68371-2.

[Sameni05] R. Sameni, M.B. Shamsollahi, C. Jutten, and M. Babaie-Zade, Filtering noisy
ECG signals using the extended Kalman fi lter based on a modifi ed dynamic ECG
model, in Proceedings of the 32nd Annual International Conference on Computers in
Cardiology, Lyon, France, September 25–28, 2005, pp. 1017–1020.

[SAMSUNG 03] Samsung Semiconductor Inc. K9W8G08U1M, K9K4G08U0M: 512M ×
8 bit/1G × 8 bit NAND fl ash memory, 2003.

AU9215_C019.indd 499AU9215_C019.indd 499 12/23/2009 9:18:08 AM12/23/2009 9:18:08 AM

500 ◾ References

[Samuel02] R.S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, TAG: A Tiny
AGgregation service for ad-hoc sensor networks, in Fifth Symposium on Operating
Systems Design and Implementation (OSDI 2002), Boston, MA, 2002.

[SBasagni99] S. Basagni, Distributed clustering algorithm for ad-hoc networks, in Proceedings
of the International Symposium on Parallel Architectures, Algorithms, and Networks
(I-SPAN), Perth, Australia, 1999.

[SBrands93] S. Brands and D. Chaum, Distance-bounding protocols (extended abstract). In
T. Helleseth, Ed., EUROCRYPT ’93, Lofthus, Norway, Lecture Notes in Computer
Science, Vol. 765, pp. 344 –359, Springer, Berlin, Germany, 1993.

[SCapkun03] S. Capkun, L. Buttyán, and J.-P. Hubaux, SECTOR: Secure tracking of node
encounters in multi-hop wireless networks, in Proceedings of the First ACM Workshop on
Security of Ad Hoc and Sensor Networks (SASN ’03), Fairfax, VA, 2003, pp. 21–32.

[SCapkun04] S. Capkun and J.-P. Hubaux. Secure positioning in sensor networks, Technical
Report IC/200444, EPFL, May 2004.

[Schenato05] L. Schenato, S. Oh, and S. Sastry, Swarm coordination for pursuit evasion
games using sensor networks, in Proceedings of the International Conference on Robotics
and Automation, Barcelona, Spain, April 2005.

[Sek] Sekonic, Sekonic L-558Cine DualMaster. http://www.sekonic.com/Products/L-
558Cine.html. 2008.

[SENSIRION 02] SENSIRION. 2002. SHT11/15 relative humidity sensor. Tech. rep. (June).
Go online to http://www.sensirion.com/en/pdf/Datasheet_SHT1x_SHT7x_0206.pdf

[SensorSim] S. Park, A. Savvides, and M.B. Srivastava, SensorSim: A simulation framework
for sensor networks, in Proceedings of MSWiM 2000, Boston, MA, August 11, 2000.
From http://nesl.ee.ucla.edu/projects/sensorsim/

[Seth00] S. Edward-Austin Hollar, COTS Dust, MS thesis, Mechanical Engineering,
University of California at Berkeley, Berkeley, CA, Fall 2000.

[Seung-Jong08] S.-J. Park, R. Vedantham, R. Sivakumar, and I.F. Akyildiz, GARUDA:
Achieving eff ective reliability for downstream communication in wireless sensor net-
works, IEEE Transactions on Mobile Computing, 7(2), 214–230, February 2008.

[SFloyd93] S. Floyd and V. Jacobson, Random early detection gateways for congestion avoid-
ance, IEEE/ACM Transactions on Networking, 1(4), 397–413, August 1993.

[SGaneriwal03] S. Ganeriwal, R. Kumar, and M.B. Srivastava, Timing-sync protocol for
sensor networks, in Proceedings of the First International ACM Conference on Embedded
Networked Sensor Systems (SenSys), Los Angeles, CA, 2003, ACM Press, New York,
pp. 138–149.

[SHATDAL 95] A. Shatdal and J. Naughton, Adaptive parallel aggregation algorithms, in
Proceedings of ACM SIGMOD, San Jose, CA, 1995.

[Shanmugasundaram 04] J. Shanmugasundaram, Querying peer-to-peer networks using
P-trees, Technical Report TR2004-1926, Cornell University, Ithaca, NY, 2004.

[Sib81] R. Sibson, A brief description of the natural neighbor interpolant. In Interpreting
Multiariate Data, D.V. Barnett, Ed. John Wiley & Sons, Chichester, U.K., 1981.

[Sichitiu03] M.L. Sichitiu and C. Veerarittiphan, Simple, accurate time synchronization for
wireless sensor networks, IEEE Wireless Communications and Networking (WCNC ’03),
New Orleans, LA, 2003, Vol. 2, pp. 16–20.

[SKG05] V. Singhvi, A. Krause, C. Guestrin, Jr. J.H. Garrett, and H.S. Matthews, Intelligent
light control using sensor networks, in SenSys ’05: Proceedings of the Th ird International
Conference on Embedded Networked Sensor Systems, San Diego, CA, 2005, ACM Press,
New York, pp. 218–229.

AU9215_C019.indd 500AU9215_C019.indd 500 12/23/2009 9:18:08 AM12/23/2009 9:18:08 AM

References ◾ 501

[SkyeTek08] SkyeTek, SkyeModule M1-mini, http://www.skyetek.com/SkyeModuleM1mini/
tabid/338/Default.aspx, Visited in 2008.

[SLi03] S. Li, S. Son, and J. Stankovic, Event detection services using data service middle-
ware in distributed sensor networks, in Proceedings of the Second International Workshop
Information Processing in Sensor Networks (IPSN ’03), Palo Alto, CA, April 22–23,
2003, pp. 502–517.

[Slindsay02] S. Lindsay and C.S. Raghavendra, PEGASIS: Power-effi cient gathering in sen-
sor information systems, in Proceedings of Aerospace Conference, Big Sky, Mont, June
2002, Vol. 3, pp. 1125–1130.

[SLindsey02] S. Lindsey and C.S. Raghavendra, PEGASIS: Power effi cient gathering in sen-
sor information systems, in Proceedings of the 2002 IEEE Aerospace Conference, Big Sky,
Mont, March 2002, pp. 1–6.

[Sof] Cast Software. WYSIWYG. Website: http://www.castlighting.com/. 2008.
[Sony08]Sony SNC-RZ30N Camera driver. http://cvs.nesl.ucla.edu/cvs/viewcvs.cgi/

CoordinatedActuation/Actuate/
[Sorber05] J. Sorber, N. Banerjee, M.D. Corner, and S. Rollins, Turducken: Hierarchical

power management for mobile devices, in Proceedings of MOBISYS, Seattle, WA, 2005,
pp. 261–274.

[Sozer00] E. Sozer, M. Stojanovic, and J. Proakis, Underwater acoustic networks, IEEE
Journal of Oceanic Engineering, 25, 72–83, January 2000.

[SPalChaudhuri03] S. PalChaudhuri, A. Saha, and D.B. Johnson, Probabilistic clock syn-
chronization service in sensor networks, Technical Report TR 03-418, Department of
Computer Science, Rice University, Houston, TX, 2003.

[Sparton08] Sparton SP3003D Digital Compass. 2008. http://www.sparton.com/
[SPB04] N.M. Su, H. Park, E. Bostrom, J. Burke, M.B. Srivastava, and D. Estrin,

Augmenting fi lm and video footage with sensor data, in Second IEEE International
Conference on Pervasive Computing and Communications (PerCom), Orlando, FL,
March 2004.

[SPing03] S. Ping, Delay measurement time synchronization for wireless sensor networks,
Intel Research, IRB-TR-03-013, June 2003.

[SRM05] S.R. Madden, M.J. Franklin, J.M. Hellerstein and W. Hong, TinyDB: An acqui-
sitioned query processing system for sensor networks, ACM Transactions Database
Systems, 30(1), 122–173, 2005.

[Spo] Spotlight. Website: http://www.spotlight.it
[SRoundy03] S. Roundy, B.P. Otis, Y.-H. Chee, J.M. Rabaey, and P. Wright, A 1.9ghz rf

transmit beacon using environmentally scavenged energy, in IEEE International
Symposium on Low Power Electronics and Devices, Seoul, Korea, 2003.

[SShakkottai03] S. Shakkottai, R. Srikant, and N. Shroff , Unreliable sensor grids: Coverage,
connectivity and diameter, in Proceedings of the IEEE INFOCOM, San Francisco, CA,
2003, pp. 1073–1083.

[Ssingh98] S. Singh, M. Woo, and C.S. Raghavendra, Power-aware routing in mobile
ad hoc networks, in Proceedings of MobiCom ’98, Dallas, TX, October 1998,
pp.181–190.

[SSL] OpenSSL. http://www.openssl.org
[SSTanya05] S.S. Tanya Roosta, Probabilistic geographic routing in ad hoc and sensor

networks, in Proceedings of the International Workshop on Wireless Ad-hoc Networks
(IWWAN), London, U.K., May 2005.

[Stargate08] Stargate platform. http://www.xbow.com/Products/XScale.htm. 2008.

AU9215_C019.indd 501AU9215_C019.indd 501 12/23/2009 9:18:08 AM12/23/2009 9:18:08 AM

502 ◾ References

[Stemm97] M. Stemm and R.H. Katz, Measuring and reducing energy consumption of
network interfaces in hand-held devices, IEICE Transactions on Communications, E80-
B(8), 1125–1131, August 1997.

[Steven96] S.M. Bellovin, Problem areas for the IP security protocols, in Proceedings of the
Sixth USENIX Security Symposium, San Jose, CA, 1996.

[Steven01] S.M. Bellovin and M. Blaze, Cryptographic modes of operation for the internet,
in Second NIST Workshop on Modes of Operation, Santa Barbara, CA, August 2001.

[Stockdon00] H. Stockdon and R. Andholman, Estimation of wave phase speed and near-
shore bathymetry from video imagery, Journal of Geophysical Research, 105(9), 22015–
22033, September 2000.

[Stojanovi94] M. Stojanovic, J. Catipovic, and J. Proakis, Phase coherent digital commu-
nications for underwater acoustic channels, IEEE Journal of Oceanic Engineering, 19,
100–111, January 1994.

[STONEBRAKER 91] M. Stonebraker and G. Kemnitz, Th e POSTGRES next-generation
database management system, Communications of the ACM, 34(10), 78–92, 1991.

[SUDARSHAN 91] S. Sudarshan and R. Ramakrishnan, Aggregation and relevance in
deductive databases, in Proceedings of VLDB, Barcelona, Catalonia, Spain, 1991, pp.
501–511.

[Sukun05] S. Kim, Wireless sensor networks for structural health monitoring, MS thesis,
Department of Electrical Engineering and Computer Sciences, University of California
at Berkeley, Berkeley, CA, Spring 2005.

[Sundararaman05] B. Sundararaman, U. Buy, and A. Kshemkalyani, Clock synchronization for
wireless sensor networks: A survey, Ad Hoc Networks (Elsevier), 3, 281–323, May 2005.

[Sunil08] Z. Feng, S. Kumar, F. Hu, and Y. Xiao, E^2SRT: Enhanced event-to-sink reliable
transport for wireless sensor networks, Wireless Communications and Mobile Computing
(Wiley), November 2008 (accessible online). DOI: 10.1002/wcm.705.

[Sunil08a] S. Kumar, K.K.R. Kambhatla, B. Zan, F. Hu, and Y. Xiao, An energy-aware
and intelligent cluster-based event detection scheme in wireless sensor networks,
International Journal of Sensor Networks (InderScience), 3(2) 123–133, February 2008.

[Suyound07] S. Yoon, Power management in wireless sensor networks, PhD thesis, Department
of Computer Engineering, North Carolina State University, Raleigh, NC, 2007.

[SYN99] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, Th e broadcast storm problem in
a mobile ad hoc network, in Proceedings of the Fifth Annual ACM/IEEE International
Conference Mobile Computing Networking, Seattle, WA, August 1999, pp. 151–162.

[Szhou07] S. Zhou, R. Liu, D. Everitt, and J. Zic, A2-MAC: An application adaptive medium
access control protocol for data collections in wireless sensor networks, in Proceedings of
IEEE ISCIT07, Sydney, Australia, October 2007, pp. 1131–1136.

[TAbdelzaher04] T. Abdelzaher et al., EnviroTrack: Towards an environmental computing par-
adigm for distributed sensor networks, in Proceedings of the 24th International Conference
on Distributed Computing Systems (ICDCS ’04), Tokyo, Japan, March 23–26, 2004.

[Tanya06] T. Roosta, S.P. Shieh, and S. Sastry, Taxonomy of security attacks in sensor net-
works and countermeasures, in First IEEE International Conference on System Integration
and Reliability Improvements, Hanoi, Vietnam, December 2006.

[TAOS] TAOS, INC. 2002. TSL2550 ambient light sensor, Technical Report (September).
Go online to http://www.taosinc.com/images/product/document/tsl2550.pdf

[TCamp02] T. Camp, J. Boleng, and V. Davies, A survey of mobility models for ad hoc
network research, Wireless Communications and Mobile Computing, 2(5), 483–502,
2002.

AU9215_C019.indd 502AU9215_C019.indd 502 12/23/2009 9:18:08 AM12/23/2009 9:18:08 AM

References ◾ 503

[Ti08] One of the largest chip production company—Texas Instruments, see http://www.
ti.com, Visited in June 2008.

[Tian04] T. He, B.M. Blum, J.A. Stankovic, and T. Abdelzaher, AIDA: Adaptive application-
independent data aggregation in wireless sensor networks, Transactions on Embedded
Computing System, 3(2), 426 – 457, May 2004.

[Timer08] Timer component: http://cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/tos/
system/TimerC.nc, 2008.

[TinyOS07] On TinyOS operating system, see http://www.tinyos.net, Visited in June
2007.

[TLiu98] T. Liu, P. Bahl, and I. Chlamtac, Mobility modeling, location tracking, and
trajectory prediction in wireless ATM networks, IEEE Journal on Selected Areas in
Communications, 16(6), 922–936, August 1998.

[TLiu03] T. Liu and M. Martonosi, Impala: A middleware system for managing autonomic,
parallel sensor systems, in PPOPP ’03, San Diego, CA, June 2003.

[Tmote06] Tmote invent user’s manual, Technical Report, Moteiv, Inc., San Francisco, CA,
February 2006.

[Tommaso07] T. Melodia, Communication and coordination in wireless multimedia sen-
sor and actor networks, PhD thesis, School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, August 2007.

[Transducer08] International Transducer Corporation. Available: www.itc-transducer.com.
Visted in 2008.

[Tsai87] R.Y. Tsai, A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off -the-shelf TV cameras and lenses, IEEE Journal of Robotics
and Automation, RA-3(4), 323–344, August 1987.

[Tse05] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge
University Press, Cambridge, U.K., June 27, 2005.

[Th e03] H. Tian, J.A. Stankovic, C. Lu, and T. Abdelzaher, SPEED: A stateless protocol for
real-time communication in sensor networks, in Proceedings of Distributed Computing
Systems 2003, Providence, RI, May 2003, pp. 46–55.

[TVon92] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser, Active messages:
A mechanism for integrating communication and computation, in Proceedings of the
19th Annual International Symposium on Computer Architecture, Gold Coast, Australia,
May 1992, pp. 256–266.

[Tvdam03] T. Van Dam and K. Langendoen, An adaptive energy-effi cient MAC protocol for
wireless sensor networks, in Proceedings of First International Conference on Embedded
Networked Sensor Systems, Los Angeles, CA, November 2003, ACM, New York, pp.
171–180.

[TYlonen96] T. Ylonen, SSH—Secure login connections over the internet, in Proceedings of
the Sixth USENIX Security Symposium, San Jose, CA, 1996.

[Urick83] R.J. Urick, Principles of Underwater Sound. McGraw-Hill, New York, 1983.
[VHDL] 3170 vhdl simulator. www.midwestcad.com/pdf/dig/vhdl_sim.pdf
[VJacobson88] V. Jacobson, Congestion avoidance and control, in Proceedings of the ACM

SIGCOMM Symposium, Stanford, CA, August 1988.
[VKawadia03] V. Kawadia and P.R. Kumar, Power control and clustering in ad hoc networks,

in Proceedings of the IEEE INFOCOM, San Francisco, CA, April 2003.
[Victor04] V. Shnayder, M. Hempstead, B. Chen, G.W. Allen, and M. Welsh, Simulating the

power consumption of large scale sensor network applications, in SenSys ’04, Baltimore,
MD, November 3–5, 2004.

AU9215_C019.indd 503AU9215_C019.indd 503 12/23/2009 9:18:08 AM12/23/2009 9:18:08 AM

504 ◾ References

[Virantha04] V. Ekanayake, C. Kelly IV, and R. Manohar, An ultra low-power processor for
sensor networks, ASPLOS ’04, Boston, MA, October 7–13, 2004.

[Vijay01] V.K. Garg, Wireless Network Evolution: 2G to 3G, 1st edn. Prentice Hall PTR,
Upper Saddle River, NJ, January 15, 2001, ISBN-10: 0130280771; ISBN-13: 978-
0130280770.

[Vrajendran05] V. Rajendran, J.J. Garcia-Luna-Aceves, and K. Obraczka, Energy-effi cient,
application-aware medium access for sensor networks, in Proceedings of IEEE Mobile
Adhoc and Sensor Systems ’05, Washington, DC, November 2005, pp. 630–637.

[Vrajendran06] V. Rajendran, K. Obraczka, and J.J. Garcia-Luna-Aceves, Energy-effi cient,
collision-free medium access control for wireless sensor networks, in Proceedings of the
First International Conference on Embedded Sensor Systems (SenSys ’03), Los Angeles,
CA, February 2006, ACM, New York, Vol. 12, No. 1, pp. 63–78.

[VRaghunathan05] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava,
Design considerations for solar energy harvesting wireless embedded systems, IEEE
SPOTS, Los Angeles, CA, 2005.

[Vrodoplu99] V. Rodoplu and T.H. Meng, Minimum energy mobile wireless networks, IEEE
Journal on Selected Areas in Communications, 17(8), 1333–1344, August 1999.

[VVazirani01] V.V. Vazirani, Approximation Algorithms. Springer, Berlin, Germany, May
2001.

[Wan03] C. Wan, S.B. Eisenman, and A.T. Campbell, CODA: Congestion detection and
avoidance in sensor networks, in Proceedings of the First International Conference on
Embedded Networked Sensor Systems (SenSys ’03), Los Angeles, CA, November 5–7,
2003, ACM, New York, pp. 266–279.

[Wang06] S. Wang, W. Chen, C. Ong, L. Liu, and Y. Chuang, RFID application in hospi-
tals: A case study on a demonstration RFID project in a Taiwan hospital, in Proceedings
of the 39th Annual Hawaii International Conference on System Sciences (HICSS ’06),
Kauai, HI, January 4–7, 2006, Vol. 8, p. 184a.

[Wang08] M.M. Wang, J.N. Cao, J. Li, and S. Das, Middleware for wireless sensor networks:
A survey, Journal of Computer Science and Technology, 23(3), 305–326, May 2008.

[Ward97] A. Ward, A. Jones, and A. Hopper, A new location technique for the active offi ce,
IEEE Personal Communications, 4(5), 42–47, October 1997.

[WBHeinzelman02] W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan, An appli-
cation-specifi c protocol architecture for wireless microsensor networks, in Proceedings
of the IEEE Transactions on Wireless Communications, 1(4), 660–670, October 2002.

[WBHeinzelman04] W.B. Heinzelman et al., Middleware to support sensor network appli-
cations, IEEE Network, 18(1), 6–14, 2004.

[WDiffi e76] W. Diffi e and M.E. Hellman, New directions in cryptography, IEEE Transactions
on Information Th eory, IT-22(6), 644–654, 1976.

[WDu04] W. Du, J. Deng, Y.S. Han, S. Chen, and P.K. Varshney, A key management
scheme for wireless sensor networks using deployment knowledge, in Proceedings of
IEEE INFOCOM, Hong Kong, China, 2004.

[Welch08] G. Welch and G. Bishop, An Introduction to the Kalman Filter. Available from
http://www.cs.unc.edu/∼welch/kalman/kalmanIntro.html, Visited in 2008.

[Wikipedia 07] Wikipedia, the free encyclopedia: On defi nition of MEMS technology, see
http://en.wikipedia.org/wiki/MEMS, Visited in June of 2007.

[Wikipedia 07a] Wikipedia, the free encyclopedia: On the defi nition of micro-sensors, see
http://www.wikipedia.com, Visited in June 2007.

[WINS] Wireless integrated network systems(wins). http://wins.rsc.rockwell.com/. 2008.

AU9215_C019.indd 504AU9215_C019.indd 504 12/23/2009 9:18:09 AM12/23/2009 9:18:09 AM

References ◾ 505

[WMB02] F. Wagmister, B. McDonald, J. Brush, J. Burke, and T. Denove, Advanced
Technology for Cinematography, 2002. Website: http://hypermedia.ucla.edu/projects/
atc.php

[WOO 01] A. Woo and D. Culler, A transmission control scheme for media access in sensor
networks, in Proceedings of ACM Mobicom, Rome, Italy, 2001.

[WS82] W. Gunter and W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data
and Formulae, 2nd edn. John Wiley & Sons, New York, 1982.

[Wstallings04]W. Stallings, IEEE 802.11 Wireless LANs: From a to n, IT Proceedings, 6,
32–37, September–October 2004

[WXu05] W. Xu, W. Trappe, Y. Zhang, and T. Wood, Th e feasibility of launching and detect-
ing jamming attacks in wireless networks, in ACM MOBIHOC, Urbana-Champaign,
IL, 2005, pp. 46–57.

[WYe04] W. Ye, J. Heidemann, and D. Estrin, Medium access control with coordinated
adaptive sleeping for wireless sensor networks, IEEE/ACM Transactions on Networking,
12(3), 493–506, June 2004.

[Wye02] W. Ye, J. Heidemann, and D. Estrin, An energy-effi cient MAC protocol for wire-
less sensor networks, in Proceedings of IEEE INFOCOM, New York, June 2002, Vol. 3,
pp. 1567–1576.

[Wye04] W. Ye, J. Heidemann, and D. Estrin, Medium access control with coordinated
adaptive sleeping for wireless sensor networks, IEEE/ACM Transactions on Networking,
12(3), 453–506, July 2004.

[WWang04] W. Wang and B. Bhargava, Visualization of wormholes in sensor networks, in
ACM WiSe, New York, 2004, pp. 51–60.

[WSu05] W. Su and I.F. Akyildiz, Time-diff usion synchronization protocol for sensor net-
works, IEEE/ACM Transactions on Networking, 13(2), 384–398, 2005.

[XHong99] X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, A group mobility model for ad
hoc wireless networks, in MSWiM ’99, Seattle, WA, 1999, ACM Press, New York,
pp. 53–60.

[Xiang04] X. Ji, Localization algorithms for wireless sensor network systems, PhD thesis,
Department of Computer Science and Engineering, Th e Pennsylvania State University,
Philadelphia, PA, 2004.

[Xie00] G.G. Xie and J. Gibson, A networking protocol for underwater acoustic networks,
Technical Report TR-CS-00-02, Naval Postgrad. School, Monterey, CA, 2000.

[Xie06] P. Xie and J.-H. Cui, SDRT: A reliable data transport protocol for underwa-
ter sensor networks, University of Connecticut, Mansfi eld, CT, Technical Report
UbiNet-TR06-03, February 2006.

[XJiang05] X. Jiang, J. Polastre, and D. Culler, Perpetual environmentally powered sensor
networks, IEEE SPOTS, April 2005.

[Yyan01] Y. Yan, R. Govindan, and D. Estrin, Geographical and energy aware routing: A
recursive data dissemination protocol for wireless sensor networks, Technical Report
UCLA-CSD TR-010023, August, 2001.

[Yan01] Y. Yu, R. Govindan, and D. Estrin, Geographical and energy aware routing: A
recursive data dissemination protocol for wireless sensor networks. Technical Report
TR-01-0032, Computer Science Department, University of California, Los Angeles,
CA, 2001.

[Yang02] X. Yang, K.G. Ong, W.R. Dreschel, K. Zeng, C.S. Mungle, and C.A. Grimes, Design
of a wireless sensor network for long-term, in-situ monitoring of an aqueous environ-
ment, Sensors, 2, 455–472, 2002, ISSN 1424-8220, http://www.mdpi.net/sensors.

AU9215_C019.indd 505AU9215_C019.indd 505 12/23/2009 9:18:09 AM12/23/2009 9:18:09 AM

506 ◾ References

[YangXiao07] Y. Xiao, V.K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, A survey of key
management schemes in wireless sensor networks, Computer Communications Journal
(Elsevier), Special issue on Security on Wireless Ad Hoc and Sensor Networks, 30(11–12),
2314–2341, September 2007.

[Yyao02] Y. Yao and J. Gehrke, Th e COUGAR approach to in-network query processing in
sensor networks, ACM SIGMOD Record, 31, 9–18, September 2002.

[YCHu03] Y.-C. Hu, A. Perrig, and D.B. Johnson, Packet leashes: A defense against
wormhole attacks in wireless networks, in IEEE INFOCOM, San Francisco, CA,
2003.

[YIyer05] Y. Iyer, S. Gandham, and S. Venkatesan, STCP: A generic transport layer protocol
for sensor networks, in Proceedings of 14th IEEE International Conference on Computer
Communications and Networks, San Diego, CA, October 2005.

[YTirta06] Y. Tirta, B. Lau, N. Malhotra, S. Bagchi, Z. Li, and Y.-H. Lu, Controlled mobil-
ity for effi cient data gathering in sensor networks with passively mobile nodes, in Sensor
Network Operations. Wiley-IEEE Press, Hoboken, NJ, 2006.

[Yuan06] H. Yuan, H. Ma, and H. Liao, Coordination mechanism in wireless sensor and actor
networks, in Proceedings of the First International Multi-Symposiums on Computer and
Computational Sciences (IMSCCS ’06), April 20–24, 2006, Vol. 02, IEEE Computer
Society, Washington, DC, pp. 627–634.

[Yxu01] Y. Xu, J. Heidemann, and D. Estrin, Geography informed energy conservation for
ad hoc routing, in Proceeding of MobiCom 2001, Rome, Italy, July 2001, pp. 70–84.

[YXu01] Y. Xu, J. Heidemann, and D. Estrin, Geography informed energy conservation for
ad hoc routing, in Proceedings of the Seventh Annual International Conference on Mobile
Computing and Networking, Rome, Italy, July 2001.

[Zhang08] P. Zhang and M. Martonosi, LOCALE: Collaborative localization estimation
for sparse mobile sensor networks, in Proceedings of the 2008 International Conference
on Information Processing in Sensor Networks (IPSN ’08), April 22–24, 2008, IEEE
Computer Society, Washington, DC, pp. 195–206.

[Zhao03] F. Zhao, J. Liu, J. Liu, L. Guibas, and J. Reich, Collaborative signal and informa-
tion processing: An information directed approach, in Proceedings of the IEEE, 91(8),
1199–1209, 2003.

[Zigbee08] On Zigbee wireless communication standard please see http://www.zigbee.org,
Visited in June 2007.

[Zhou07] Z. Yu and J. Bo, Research and implementation on μC/OS-II operating system
into wireless networked sensors, Th e Eighth International Conference on Electronic
Measurement and Instruments, ICEMI ’07, Xian, China, 2007.

[Zhu03] S. Zhu, S. Setia, and S. Jajodia, LEAP: Effi cient security mechanisms for large-scale
distributed sensor networks, in Proceedings of the 10th ACM Conference on Computer
and Communications Security (CCS ’03), Washington DC, October 27–30, 2003,
ACM, New York, pp. 62–72.

[Zhu03a] S. Zhu, S. Xu, S. Setia, and S. Jajodia, LHAP: A lightweight hop-by-hop authen-
tication protocol for ad-hoc networks, in 23rd International Conference on Distributed
Computing Systems, Providence, RI, May 19–22, 2003.

[Zhu06] S. Zhu, S. Setia, and S. Jajodia, LEAP: Effi cient security mechanisms for large-scale
distributed sensor networks, ACM Transactions on Sensor Networks, 2(4), 500–528,
November 2006.

[ZLi05] Z. Li, W. Trappe, Y. Zhang, and B. Nath, Robust statistical methods for securing wire-
less localization in sensor networks, in Proceedings of IPSN ’05, Los Angeles, CA, 2005.

AU9215_C019.indd 506AU9215_C019.indd 506 12/23/2009 9:18:09 AM12/23/2009 9:18:09 AM

Author Queries
[AQ1] Please provide in-text citation to the following references: [Abolhasan04,

ACerpa02, ADK04, Aelhoiydi05, AFH05, Akkaya05, Akyildiz04, Ahuja93,
AJsang01, AJsang02, ALeon94, AManjeshwar01, AMAbdel85, Anderson96,
Anandarajah05, AODV, ASyed05, Athanassios03, ATIhler04, Atmel08,
AWoo93, AWoo01, BANCILHON 87, Banerjee05, BBloom70, Bellare93,
Berg00, BFM06, Bharath05, Blake00, BLiskov91, BLT04, Bose01, BOX 04,
BOX 73, Brekhovskikh01, Broadcast08, Bruce96, Buff eredLog08, BZhang04,
Carlo05, CARNEY 02, Catipovic90, Cayirci06, CcEnz04, CEPerkins99,
CFox05, Chan03, CKarlof03a, CHALEMEK 00, CHANDRASEKARAN
03, CHIPCON 04, Clement01, CSrisathapornphat00, CRAINICEANU
04, DAForsyth02, DAMaltz01, Dario07, Ddclark90, DDolev85,
DESNOYERS 05, DEWITT 90, DFober02, DGWatters02, DLiu03,
DLM92, DMills89, Donggang05, DSR, DSPComm08, DUDA 01,
DuW05, DWheeler94, Ekici99, ElGamal02, Elson02, Engelbrecht05,
ENT, Eschenauer02, ESJung05, ETC, FAnjum06, FCristian89, Feng99,
Fla05, Forsyth01, Freitag01, FYe02, Ganeriwal04, Garey79, GCNecula02,
GEHRKE 01, Gerkey04, GIROD 04, Glegg00, GloMoSim, Gomez04,
GPottie00, GREENSTEIN 03, GShafer76, GUTTMAN 84, Ham,
Hamin06, HAND 01, Harald04, HChan03, HDai04, Heemin06,
Heemin07, Heinzelman02, HELLERSTEIN 98, HELLERSTEIN 03,
Henri06, Hightower01, Hill 00, HKS05, HMa02, Hol92, Hu2009e,
HuL04, IBARAKI 84, IEEE802, INTANAGONWIWAT 00, Jason03,
Jaein07, JGProakis01, JHill00, JLi01, JZhao03, KArvind94, Kong05, Java98,
Jeremy01, John06, JPolastre04, JRice00, JRSmith06, JRVig92, JShu03,
Kalofonos03, KArvind94, KFall03, Kirsten06, Kon, KRISHNAMURTHY
86, KRomer01, LDoherty01, Lep, Levis04, Licia05, LLazos05, LLjung87,
LMeier04, LWashburn95, MADDEN02, MADDEN 03, MADDEN 04,
Malan04, Malan04a, Mauri05, MBellare97, MChen08, McSharry03,
MCVuran04, MDLemmon00, Melodia05, Melodia07, MGreen98, MICA
motes, Michael99, MicroTimer08, Mihir00, Min07, MLSichitiu03,
MMock00, MONMA 79, MOTWANI 03, MPhilipose05, MRyu98,
MTorrentMoreno06, NBS77, Neuman94, Nikita01, NIST81, NIST08,
NPriyantha05, OGoldreich86, Ogren04, Olaf05, Park03, Park04, PDutta05,
Perkins94, Perkins08, PETER05, PFG06, Philip03, Philip07, PhysioNet08,
PIRAHESH 92, PJuang02, PNing05, Pompili06, Pompili09, Pottie00,
PResnick00, Pro, PRogaway01, Proakis03, PUGH 90, PXie05, QLi04,
Ramanuja06, Ramnath03, RAnderson96, RAnderson01, RATNASAMY
02, RCSmith86, Red03, RLRivest95, RMerkle80, RMKarp72,
Ramanuja06, Ramnath03, RAnderson96, RAnderson01, RATNASAMY
02, RCSmith86, Red03, RLRivest95, RMerkle80, RMKarp72, Romer01,
Rosenfeld66, Rosner83, RStewart00, RSTOLERU04, SADAGOPAN 03,

AU9215_C019.indd 507AU9215_C019.indd 507 12/23/2009 9:18:09 AM12/23/2009 9:18:09 AM

Salva03, Sameni05, SAMSUNG 03, SBasagni99, SBrands93, SCapkun04,
Schenato05, Sek, SensorSim, SHATDAL 95, Sib81, Sichitiu03, SKG05,
SkyeTek08, Slindsay02, Sony08, Sozer00, SPalChaudhuri03, SPB04,
SPing03, SRM05, Spo, SRatnasamy02, SShakkottai03, Ssingh98,
SSTanya05, Steven96, Steven01, Stojanovi94, STONEBRAKER 91,
SUDARSHAN 91, Sukun05, Sundararaman05, Suyound07, SYN99,
TAbdelzaher04, Timer08, TLiu98, TLiu03, Tommaso07, Transducer08,
Tse05, Urick83, VHDL, VKawadia03, Victor04, Vijay01, VVazirani01,
Wang08 [WBHeinzelman02, WDiffi e76, WDu04, Welch08, Wikipedia
07, Wikipedia 07a, WINS, WMB02, WOO 01, WS82, Wstallings04,
WXu05, WYe04, WWang04, WSu05, Xiao07, Xie00, Xie06, Xiping02,
Yan01, Yang02, YAO 2, Yuan06, YXu01, Zhang04, Zhao03, ZHAO 03,
Zhou07, Zhu03, Zhu03a, Zhu06]

 [AQ2] Please provide the complete details in the references [JDaemen99, Ddclark90,
Hschulzrinne96, PFG06, Akyildiz, DOOLIN 05, Gay03, Carlos04, LEGG].

 [AQ3] Please check the inserted details in references [ANDERSON 02, BULUSU
05, JOHNSON 05].

 [AQ4] Th e references [ASrinivasan06a] and [ASrinivasan06], [Marati01] and
[AManjeshwar01], [Awoo01] and [Awoo01], [Zhang04] and [BZhang04],
[CFox05] and [CFox05], [CHALEMEK 00, Cintanagonwiwat00] and
[CIntanagonwiwat00], [CEPerkins99] and [AODV], [Fye02] and [FYe02],
[BOX 04] and [BOX 73], [Chan03] and [HChan03], [Heemin06]
and [Hamin06], [JHill00] and [Hill 00], [ZHAO 03] and [JZhao03],
[Lester03] and [Jason03], [KArvind94, Romer01] and [KRomer01],
[HuL04] and [LHu04a], [PHIPIPPE 01] and [PBonnet01], [PETER05] and
[DESNOYERS 05], [RAnderson96] and [Anderson96], [Sganeriwal03,
Ganeriwal03] and [SGaneriwal03], [MADDEN 04, SRatnasamy02] and
[RATNASAMY 02], [TinyDB] and [SRM05], [TSR96] and [Rappaport96],
[Bwendi02] and [Heinzelman02],[LEACH02] and [WBHeinzelman02],
[Xiping02] and [Yang02], [Xiao07] and [YangXiao07], [YAO 02] and
[Yyao02] are repeated. Hence repeated references are deleted.

 [AQ5] Kindly update the volume number and page range in the reference
[Chehri06].

 [AQ6] Kindly update the volume number and page range in the journal citation
in reference [CSrisathapornphat00].

 [AQ7] Please check the inserted location in the reference [Engelbrecht05].
 [AQ8] Please provide the page range in the reference [Hu2009e].
 [AQ9] Please provide the location in the reference [HXia96, Ngajaweera08,

PResnick00, PSikka06, Ksarvakar08, XJiang05, Yuan06, Zhang08,
MMock00, ElGamal02].

[AQ10] Kindly update the volume number in the reference [IEEE07].
[AQ11] Please provide the publisher in the reference [Joseph05].
[AQ12] Kindly update the page range in the journal in reference [Levis06].

AU9215_C019.indd 508AU9215_C019.indd 508 12/23/2009 9:18:09 AM12/23/2009 9:18:09 AM

	Preface
	AU9215_C001 -first
	AU9215_C001
	AU9215_C002 - First
	AU9215_C002
	AU9215_C003 - First
	AU9215_C003
	AU9215_C004
	AU9215_C005
	AU9215_C006 - First
	AU9215_C006
	AU9215_C007
	AU9215_C008
	AU9215_C009 - First
	AU9215_C009
	AU9215_C010
	AU9215_C011
	AU9215_C012 - First
	AU9215_C012
	AU9215_C013
	AU9215_C014
	AU9215_C015 - First
	AU9215_C015
	AU9215_C016
	AU9215_C017 - First
	AU9215_C017
	AU9215_C018
	AU9215_C019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white draft PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

